
Chapter 5
Acceleration of Classical Molecular
Dynamics Simulations

Y. Andoh, N. Yoshii, J. Jung and Y. Sugita

Abstract In this chapter, we describe the acceleration and parallelization in classical
molecular dynamics simulations. As electrostatic interactions are computationally
intensive, the importance of the particle mesh Ewald (PME) method and the fast
multipole method (FMM) will increase. These methods will be described here. In
addition, general techniques for hierarchical parallelization on the latest general-
purpose supercomputers (especially connected by a three-dimensional torus net-
work), together with the critical importance of the data array structure, are explained.
We show the optimization and benchmark results in the parallel environments of the
molecular dynamics calculation programs, MODYLAS and GENESIS.

5.1 Classical Molecular Dynamics Simulations

Molecular dynamics (MD) calculation is a method to investigate the thermodynamic
properties, structures, and dynamics of molecular assemblies, such as liquids, solids,
gases, glasses, polymers, and biomolecules. By numerically solving the equations of
motion of all atoms andmolecules in the system, we directly obtain their trajectories.
When themotion of the atoms follows the equation ofmotion as described by classical
mechanics (Newtonian mechanics), it is called classical MD calculation.

To solve the equations of motion of atoms, it is necessary to obtain the force acting
on each atom. When the force is sufficiently accurate and a numerical solution of the
equation of motion is obtained with sufficient precision, it can be regarded that the

Y. Andoh · N. Yoshii (B)
Center for Computational Science, Graduate School of Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
e-mail: yoshii@ccs.engg.nagoya-u.ac.jp

N. Yoshii
Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya,
Aichi 464-8603, Japan

J. Jung · Y. Sugita
RIKEN Advanced Institute for Computational Science, Kobe, Japan

© Springer Nature Singapore Pte Ltd. 2019
M. Geshi (ed.), The Art of High Performance Computing
for Computational Science, Vol. 2,
https://doi.org/10.1007/978-981-13-9802-5_5

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9802-5_5&domain=pdf
mailto:yoshii@ccs.engg.nagoya-u.ac.jp
https://doi.org/10.1007/978-981-13-9802-5_5

118 Y. Andoh et al.

trajectory of the atom is equivalent to that of the real system. Various thermodynamic
quantities and statistical mechanical functions can be obtained from the trajectories
of the atoms. We can discuss the physics and chemistry of the target system.

Due to the recent widespread use of highly parallel computers, target systems for
MD calculations become larger. MD calculations are now used in various fields,
including materials science and bioscience. The development of high-precision
general-purpose potential functions, such as AMBER [1], CHARMM [2], OPLS
[3], and the development of high performance and multifunctional free software,
such as GROMACS [4], NAMD [5], LAMMPS [6], has made it easier to perform
high-quality MD calculations. However, using massively parallel machines with
more than 1,000 nodes, it is difficult to efficiently execute these programs because
of the reduction in parallelization efficiency caused by internode communication. It
is necessary to choose algorithms and optimize data structures in programs to main-
tain high parallel efficiency in highly parallel environments. By applying various
techniques, we can use the high performance of a massively parallel computer. In
this chapter, we will explain the various algorithms and schemes used in the MD
calculation software, MODYLAS [7], and GENESIS [8] developed by the authors,
suitable for the massively parallel computers.

5.1.1 Molecular Dynamics Calculation Flow

Here,we outline theMDcalculationflow (Fig. 5.1). First,we set the initial conditions.
The coordinates and velocities of atoms are input as an initial condition.When atomic
coordinates are obtained experimentally, their structures should be used as the initial
coordinates. As a preparation for MD calculation, addition of the solvent molecules
and energy optimization is applied, if necessary. In the simulation of liquids, we
first prepare a lattice structure as an initial configuration. We obtain the equilibrated
liquid structure byperforming ahigh-temperatureMDsimulation. The initial velocity
of each atom is assigned to reproduce a Maxwell distribution corresponding to the
target temperature. In addition,wemust set up the calculation conditions for eachMD
calculation, such as the parameters for mass and intermolecular interaction of each
atom, statistical ensembles concerning temperature and pressure control, number of
MD steps, time steps, and so on.

Next, we calculate the forces acting on each atom, which are assigned to
intramolecular interactions acting through chemical bonds within the molecule and
intermolecular interactions acting between atoms in different molecules or distant
atoms in the same molecule. This intramolecular interaction consists of stretching
potential which is a two-body interaction acting between bonded atoms, bending
potential which is a three-body interaction, torsional potential which is a four-body
interaction, and so on. The computational complexity of these interactions is O(N),
where N is the number of atoms in the system. However, the calculation amount for
intermolecular interactions, such as electrostatic and van der Waals interactions, is
O(N 2). As a system becomes large, the computational amount increases drastically.

5 Acceleration of Classical Molecular Dynamics Simulations 119

Fig. 5.1 MD calculation flow

The intermolecular interaction is the important factor in determining the size of the
target system.Various techniques have beendeveloped to accelerateMDcalculations.
This chapter focuses on the acceleration of intermolecular interaction calculations.

The numerical integration of the equation of motion is performed using the inter-
molecular force at time t, and the newvelocity andposition of the atoms at time t + �t
are obtained. Difference approximation and predictor-corrector methods have been
often used as numerical integration algorithms for the equation of motion [9, 10]. In

120 Y. Andoh et al.

Sect. 5.1.4 , we discuss the reference system propagator algorithm (RESPA) method,
which enables multiple time steps and efficient numerical integration.

In the numerical integration of the equation of motion, rapid intramolecular
degrees of freedom are often removed. For example, stretching and bending motions
in water molecules are not so important, and they are often treated as rigid molecules
that eliminate intramolecular degrees of freedom. The motion of the water molecules
can be decomposed as the translational motion of the center of mass and rotational
motion around the center of mass. Each motion can be obtained by numerically
integrating Newton’s equation of motion and Euler’s equation [9, 10]. Alternatively,
constraint dynamics may be used where the equations of motion are numerically
solved with distance- or angle-constraints among atoms. By these methods, it is pos-
sible to introduce a larger time step �t, which greatly improves the efficiency of the
numerical integration of equations of motion in MD simulations. In Sect. 5.1.5, we
discuss the constraint dynamics.

The physical quantity can be calculated using the position and velocity obtained
from MD calculations. If the MD calculations reach an equilibrium state where
the physical quantity of interest fluctuates around a certain value, the equilibration
from the initial configuration is completed. The MD calculations are continued and
we output the molecular trajectory and physical quantity at each step. If sufficient
statistics are obtained, the MD calculations are terminated.

5.1.2 Algorithms to Reduce the Calculation Amount
for Nonbonded Interactions

In general, the amount of calculation for nonbonded interactions is considerably
larger than that for bonded interactions. The Lennard-Jones (LJ) interaction is com-
posed of (1/rij)12 and (1/rij)6, where both converge rapidly to zero with rij and rij
is the distance between the atom i and j. The LJ interaction can be truncated if rij is
greater than a cutoff distance rcut. Typically, rcut is chosen to be 3σ − 4σ, where σ
is the LJ parameter that corresponds to the diameter of the atom.

By using a cutoff technique, most of the candidate j atoms located in a region
distant from the i atom can be omitted without calculating the rij values. There are
two established methods for this purpose: i.e., the Verlet neighbor list and linked-list
cell (LLC) methods [11].

In the Verlet neighbor list method, a list for candidate j atoms is stored for each
i atom by using a longer cutoff radius, r′

cut = rcut + �rcut, than the actual rcut. The
list is updated per tens of MD steps. In the LLC method, a calculation unit cell
is divided into subregions (subcells). Each atom is assigned to one of the subcells
according to its position. The subcells where the candidate j atoms may be included
are listed using the distance between subcell centers, which can reduce the search
range of the candidate j atoms. The interaction is calculated between i and j atoms by
applying a cutoff. These two methods are widely used in MD calculation programs

5 Acceleration of Classical Molecular Dynamics Simulations 121

in which the LLC method is sometimes used in preprocessing to create the neighbor
list effectively.

However, the electrostatic interaction is a function of (1/rij), which converges
very slowly to zero with rij. Thus, the cutoff technique causes serious artifacts in the
calculation results [12], even though a relatively large rcut value is chosen. To date,
some algorithms to reduce the calculation cost of the electrostatic interaction have
been suggested without losing the accuracy of the calculated potential energy and
forces. We will explain some of these algorithms below.

5.1.3 Acceleration of Electrostatic Interactions

InmostMDcalculations including all biomolecular systems, the electrostatic interac-
tion calculation is the largest hot spot.When the electrostatic interaction is calculated
directly, the calculation complexity is O(N 2). If a cutoff is used, the computational
cost becomes O(N), but a discontinuous and large change of force and potential
appears at the cutoff length, and a significant artifact occurs in the calculation result.
Therefore, it is not permissible to use the cutoff.

The Ewald method has been used for a long time to evaluate the electrostatic
interaction under periodic boundary conditions efficiently [9, 11]. In this method,
the electrostatic potential 1/r is multiplied by the error and complementary error
functions. The sum of these two functions becomes 1. With increasing x, the error
function, erf(x), attenuates slowly and the complementary error function, erfc(x),
attenuates quickly. The cutoff can be used for the latter. For the former, the function
can be expressed as a sum of wavenumber vectors by a Fourier series. The sum of
this Fourier series is obtained through fast convergence and does not require so many
terms. However, the calculation amount increases as O(N 2/3) ∼ O(N 2). Therefore,
it is difficult to apply to large-scale systems. Currently, the particle mesh Ewald
(PME)method,which efficiently performsFourier series, partly using the fast Fourier
transform (FFT), is the mainstream technique [13, 14]. In the PMEmethod, the point
charges distributed in the MD cell are allocated lattice points using the interpolation
technique to reproduce the electrostatic potential in the system. The contribution of
the reciprocal-space of the Ewald method can be evaluated by the computational
complexityO(N logN) by using the FFT for the charge on this lattice. However, care
must be taken when executing the FFT in a highly parallel environment. Generally,
the FFT requires all-to-all communication. In massively parallel computers of 1,000
nodes or more, all-to-all communication is often a major hurdle. This problem is
successfully overcome by the GENESIS software described later, which achieves
high performance [8]. On the other hand, the FMM [15] and multilevel summation
method [16] were developed as non-FFT algorithms. The FMM with a periodic
boundary condition is described in detail in Appendix.

122 Y. Andoh et al.

5.1.4 Acceleration by Multiple Time Steps

In the numerical integration of the equation of motion, the time span for MD steps
is determined by the fastest atomic motion in the system. Slow degrees of freedom
must also be integrated by small time steps, which is quite inefficient. It is desirable
to separate the degrees of freedom according to the rapidity of the molecular motion
and integrate the equations of motion separately according to their suitable time
steps. Multiple time steps enable this calculation.

First, the RESPA method [10], which is a numerical integration method that
enables multiple time steps, is described. mi, ri, and pi are the mass, coordinate, and
momentum of atom i, respectively. V (rN) is the potential energy of the system.When
the Hamiltonian is given by

H (rN , pN) =
N∑

i=1

pi
2

2mi
+ V (rN), (5.1)

the Liouville operator corresponding to Eq. (5.1) is

iL =
N∑

i=1

(
pi
mi

∂

∂ri
+ Fi

∂

∂pi

)
. (5.2)

The time evolution operator for time step �t is given by eiL�t [10]. The above Liou-
ville operators are composed of two noncommutative operators iL1 = ∑N

i=1
pi
mi

∂
∂ri

and iL2 = ∑N
i=1 Fi

∂
∂pi

. When the time evolution operator eiL1�t+iL2�t is symmetri-
cally decomposed by Suzuki-Trotter expansion, it can be approximated as

e(iL1+iL2)�t = eiL2
�t
2 eiL1�teiL2

�t
2 + O(�t3). (5.3)

By applying this to ri(0) and pi(0) at time t = 0, the well-known velocity Verlet
method,

ri(�t) = ri(0) + �t
pi(0)
mi

+ �t2
Fi(0)

mi
(5.4)

pi(�t) = pi(0) + �t
Fi(0) + Fi(�t)

mi
(5.5)

is obtained. For Hamiltonian dynamics systems, the numerical solution as described
above becomes a symplectic integrator. The coordinates and the momentum are the
canonical variables, and the discretized expression (5.4) has the conservative quantity
called shadow Hamiltonian. Numerical integration is known to be stable over a long
period of time [9, 10].

Next, iL is divided into fast iLfast and slow degrees of freedom iLslow. Then, the
time evolution operator eiL�t in Eq. (5.4) can be divided as

5 Acceleration of Classical Molecular Dynamics Simulations 123

e(iL1+iL2)�t ≈ eiLfast
�t
2 eiLslow�teiLfast

�t
2

=
(
eiLfast

δt
2

)n
eiLslow�t

(
eiLfast

δt
2

)n
(5.6)

where �t = nδt, δt is the time step for the fast degree of freedom, and �t is the
time step for the slow degree of freedom. In Eq. (5.6), on the one hand, the fast part
is divided into n so that we calculate the fast motion in a small time step. On the
other hand, the part that moves slowly does not calculate the interaction. In general,
the calculation cost of the slow part is higher; therefore, multiple time steps are
very efficient. With respect to eiLfast

�t
2 and eiLslow�t in Eq. (5.6), ri and pi are updated

according to the formula of the velocity Verlet method represented by Eq. (5.4).
Here, division of the Liouville operator can be done for each degree of freedom.

However, there is no restriction on this division. For example, it is possible to separate
total force acting on an atom into fast changing force caused by stretching, bending,
and torsionalmotions, and a slowly changing one by LJ and electrostatic interactions.

In multiple time steps, a force acts on the atom for every δt and another force
acts for each �t. A certain node in the system may resonate with the force acting on
every �t. Some atomic motions may become unstable or the trajectory may greatly
differ from the original trajectory [17]. In recent years, various schemes have been
proposed to avoid this phenomenon [18]. It is necessary to pay attention to whether
such things have happened.

5.1.5 Constraint Dynamics

The degrees of freedom in the molecule are often removed and the molecule is
treated as a rigid body. For example, water molecules have three intramolecular
degrees of freedom. By fixing the distance between oxygen and hydrogen atoms,
the OH stretching motion can be removed. Furthermore, when the distance between
the two hydrogen atoms is fixed, we can remove the bending motion of ∠HOH. By
constraining these degrees of freedom, �t can be increased and efficient calculation
can be performed.

There are two methods to constrain the intramolecular degree of freedom. One is
to handle amolecule as a rigid rotormodel and the other is to use constraint dynamics.
Here we describe constraint dynamics, which is applicable to various constraints and
widely used in general-purpose MD calculation software.

Now, we consider that there is a chemical bond in a molecule and its bond length
is fixed. In constraint dynamics, a constraint condition, i.e., the distance between
atoms i and j is constant, is imposed. The binding force between atoms is considered
to act on atoms to satisfy the constraint condition,

g = (
ri − rj

)2 − dij
2 = 0. (5.7)

124 Y. Andoh et al.

The constraint condition expressed by Eq. (5.7) is called a holonomic constraint. The
equation of motion of the atom is

mi
d2ri
dt2

= Fi + λ
∂g

∂ri
, (5.8)

which includes the constraint force λ ∂g
∂ri

by the constraint condition g. Here, λ is
an undetermined Lagrange multiplier. When this equation of motion is numerically
integrated according to the velocity Verlet method, the position coordinate at time
t = �t is

ri(�t) = ri(0) + �t
pi(0)
mi

+ �t2

2mi

{
Fi(0) + λ

∂g

∂ri

}

= r′i(�t) + �t2

2mi
λ

∂g

∂ri
(5.9)

where r′i(�t) = ri(0) + �t pi(0)mi
+ �t2

2mi
Fi(0). The new position ri(�t) must satisfy

the constraint condition g. By substituting ri(�t) into Eq. (5.7), we have

g =
[{

r′i(�t) + �t2

2mi
λ

∂g

∂ri

}
−

{
r′j(�t) + �t2

2mj
λ

∂g

∂rj

}]2

− d2
ij = 0. (5.10)

Since this is a quadratic equation for λ, we can evaluate the constraint force λ ∂g
∂ri

by
solving for λ.

This is a simple case where the constraint on each atom is one. In the case of two
or more constraints on one atom, the Eq. (5.10) is replaced by simultaneous quadratic
equations including the same number of undeterminedmultipliers λ as the number of
constraints. When the target molecule becomes large, such as macromolecules and
proteins, the constrained atoms are connected to each other; therefore, the simul-
taneous equations are increased and the calculation cost for obtaining λ becomes
very high. Thus, in general, Eq. (5.10) is linearized by ignoring the λ2 term. Iterative
calculations are performed until the constraint condition g is satisfied. This is the
SHAKE method [19], which is widely used in general-purpose MD software. Var-
ious schemes to accelerate the convergence of iterative calculations in the SHAKE
method have been proposed [20].

In addition, the velocity constraint was also obtained by differentiating Eq. (5.7)
with respect to time. A constraint algorithm, the RATTLE method [21] for velocity
similarly to the SHAKE method, was developed to satisfy the constraint condition.

Accelerated algorithms for constraint dynamics designed for water molecules,
such as LINCS [22] and SETTLE [23], have been developed and are used widely.

These techniques can be introduced separately to the site to be constrained. It is
not necessary to introduce new coordinates (e.g., Euler angle, quaternion), which
are necessary for a rigid rotor model. Therefore, it is possible to keep the structure
of the program simple; it is widely used for many general-purpose MD software. In

5 Acceleration of Classical Molecular Dynamics Simulations 125

contrast, a rigid rotor model can increase the time step �t in MD calculations [24].
As described above, several methods for constraining the intramolecular degree of
freedom are available; therefore, we must choose an effective method for the target
system.

5.1.6 Developments of Classical MD Simulations Related
with HPC

5.1.6.1 Development of Parallelization

The main bottleneck in MD is the evaluation of nonbonded interactions, i.e., elec-
trostatic and van der Waals interactions. Fortunately, the van der Waals interaction
decreases rapidly as the interparticle distance increases. Therefore, if a sufficiently
large cut-off distance is assigned, energy and force values in the van der Waals
interaction can be regarded as zero when the interparticle distance is greater than
the defined cutoff distance. Using Ewald summation description for electrostatic
energy/force, interactions can be split into those in real- and reciprocal-space, and
cutoff value can be assigned like van derWaals case [13, 14]. To dealwith interactions
with long-range distance, we perform energy and force calculation using fast Fourier
transform (FFT) in the reciprocal-space. Therefore, it is necessary to consider par-
allelization of nonbonded interactions in both real- and reciprocal-spaces. Basically,
there are three parallelization schemes for the real-space interactions: atomic, force,
and spatial decompositions. Parallelization based on the atomic decomposition is
a relatively simple algorithm, and historically introduced earliest in MD programs.
The algorithm of parallelization based on spatial decomposition is more complicated
than the atomic decomposition, but it is currently introduced in most MD programs
because of high parallel efficiency. Detailed parallelization schemes based on spatial
decomposition are slightly different in each program. NAMD applies a paralleliza-
tionmethod combining spatial and force decomposition in the real-space interactions,
and furthermore it schedules interactions between subdomains by CHARMM++ [5].
In addition, pencil (two-dimensional) decomposition is used to parallelize the FFT
calculation that is required in the reciprocal-space calculation. In DESMOND, spa-
tial decomposition based on the midpoint method is applied for parallelization in the
real-space interaction. In addition, all-to-all communications are replaced by but-
terfly communications in one-dimensional FFT for the reciprocal-space interaction
[25, 26]. Parallelization scheme of the real-space interaction in BLUE MATTER is
similar toDESMOND, but the volumetric decomposition (three-dimensional decom-
position) scheme is used for parallelizing the reciprocal-space interaction [27]. In
GENESIS, the midpoint cell method [8] was introduced to improve the performance
from the midpoint method, and FFT is parallelized using volumetric decomposition
with one-dimensional all-to-all communications [28]. In addition, hybrid paralleliza-
tion scheme combining OpenMP and MPI is introduced. In CHARMM and GRO-

126 Y. Andoh et al.

MACS, a spatial decomposition method based on the eighth-shell scheme is adopted
and non-bonded interactions in the real-space and reciprocal-space are performed in
different CPU nodes [29, 30]. CHARMM only performs MPI communication, but
GROMACS can make use of a hybrid parallelization combining MPI and OpenMP.
In some programs, PME is replaced by another long-range force calculation method
to increase the parallel efficiency. MODYLAS showed excellent parallelization effi-
ciency on the K computer by introducing the fast multipole method (FMM) [7].
Recently, NAMD introduces a new scheme called multilevel summation method to
increase parallelization efficiency [14].

5.1.6.2 Development of MD in Specialized Platforms

In recent years, dedicated computers have become a great influence for speeding up
theMDenergy/force calculation.MDGRAPE-3 acceleratesMDby using specialized
hardware in computing non-bonded interactions [31]. In ANTON [32], developed
by D. E. Shaw Research, specialized hardware is used for the entire MD simula-
tion. Reciprocal-space interactions are accelerated by using theGaussian-split Ewald
method. By such a contrivance, ANTON achieved 100 times faster performance.
However, MD calculation using ANTON has limitations on the size of the molecular
system. It is difficult to calculate a large-scale molecular system exceeding 1 mil-
lion atoms with ANTON. In the latest ANTON 2, this restriction was relaxed, and
high-speed calculation was possible for 2 million atoms system [33].

5.1.6.3 Development of MD for GPUs

An important development in MD from the viewpoint of hardware utilization is
the use of a graphics processing unit (GPU). GPUs were originally developed as
arithmetic chips dedicated to graphics, but today they have been used for various
scientific and technical calculations. MD program using GPUs is roughly divided
into two categories. The first one is to send all necessary information to GPU and
perform all operations withGPUs. Thismethod is adopted inAMBER [34], ACEMD
[35], OpenMM [36],MOIL [37], DESMOND, and so on. Despite this method is very
efficient when single node is used, there are restrictions in the system size that can be
calculated due to the memory limitation of the GPU. It is also difficult to parallelize
on multiple computers. The other method is to divide the overall calculation into a
computation-intensive part, that is, calculation of the real-space non-bonded inter-
actions and a communication-intensive part including reciprocal-space interaction
with FFT. The former is mainly computed by GPUs and the latter is computed by
CPUs. In this case, communication between the CPU and the GPU is required at
every integration step. NAMD [38], GROMACS [39], and GENESIS [40] adopt this
method. In this method, parallelization across multiple computers can be performed,
so it is possible to handle a large molecular system. On the other hand, when using a

5 Acceleration of Classical Molecular Dynamics Simulations 127

single node, the calculation speed of the latter is slower than computing using only
GPUs.

5.2 Hierarchical Parallelization in the Latest
Supercomputers

5.2.1 Hierarchical Hardware Structure

The latest supercomputers have a hierarchical structure for not only their calculation
units, but also their devices to store calculation data.

Calculation units are composed of thousands or tens of thousands of calculation
nodes, which are connected by a high-speed internode network. A calculation node
sometimes has plenty of CPUs. The independent arithmetic units inside the CPUs are
called the cores. In each core, units to execute various kinds of arithmetic operations
are installed. Modern CPUs are also equipped with vector operation units (the same
arithmetic operations on inputted multiple data), which work by single-instruction-
multiple-data (SIMD)processing.Acoprocessor to accelerate a part of the calculation
is optionally installed onto the PCI-e bus at the same level as the CPUs, which is
beyond the scope of this section.

As data storage devices, the main memory or random-access memory (RAM)
devices (with tens of gigabytes (GB) of memory) are installed on each calculation
node and accessed by the CPU(s). When one node has more than two CPUs, the
access speed from each CPU to each main memory is mostly nonuniform; this is
called nonuniform memory access (NUMA) architecture. In each CPU, a small but
high-speed data storage device called cachememory is shared by several of the cores.
These caches have levels: i.e., the level 1 cache with tens of kilobytes (kB) is the
nearest cache from the arithmetic unit, and the level 2 cache with hundreds of kB
is the second nearest one. The lowest data storage module is a processor register,
which connects directly to the arithmetic units in the CPU, such as floating-point
arithmetic unit (FPU). The data access speed of this module is the fastest, but it only
stores a fixed amount of one integer or floating-point data. Vector registers can treat
a large amount of data for SIMD operations.

Any parallelized software aiming at high parallelization efficiency must be
designed considering the hierarchical structures of both calculation units and data
storage devices in modern supercomputer systems.

5.2.2 Parallelization Strategy

Parallel execution between calculation nodes involves a distribution of calculation
data onto the main memory devices on each calculation node. In standard operations,

128 Y. Andoh et al.

such a parallelized execution is realized by the message-passing interface (MPI) by
inserting additional MPI functions onto the original code. The unit of parallelization
by the MPI is called the MPI process. In the case of several CPUs in one node or one
CPU with the NUMA structure, allocating one MPI process onto one CPU or one
NUMA unit often provides better parallelization efficiency.

Next, in parallel execution between the cores, the required calculation data on
the cache(s) can be shared between the cores. This style of parallelized execution is
usually realized by the OpenMP language extension, which is a standard component
of modern Fortran/C language compilers. By adding a set of OpenMP directives
before and after a DO loop (Fortran) or for loop (C), the arithmetic operations in the
loop are distributed among the parallelized units (threads). Typically, one thread is
assigned to one physical core.

Finally, when the CPU equips vector arithmetic devices, parallel execution by
the SIMD instruction is possible for the deepest loops. For highest parallelization
efficiency, it is essential to code a series of arithmetic operations at hot spots by
vectorized assembler language or in the intrinsic instructions, although this requires
high coding skills. A second-best method is to use the compiler’s automatic SIMD
parallelization function, in addition to the vectorized messages provided by the com-
piler. From these messages, we can observe which loops are vectorized, and if not
vectorized, what elements inhibit SIMD parallelization of the loop. Better SIMD
efficiency could be obtained by modifying the loop structure of problematic loops
repeatedly.

Consider that hierarchical parallelization starts from the lowest MPI level, fol-
lowed by the thread level, to the SIMDprocessing because the efficiency of the higher
level parallelization is strongly restricted by the manner of implementation of the
lower level parallelization. In particular, the parallelization efficiency of the code is
dominated not by arithmetic efficiency (i.e., equal partitioning of tasks among par-
allelized units), but by the data transfer efficiency between hierarchical data devices.
If the access time to data on a register is 1, it is 10 for data on the cache(s), and
100 on the main memory. Therefore, without establishing a smoothed data-flow path
from the main memory to the register, an ideal parallelization efficiency could not
be obtained at higher levels. Arithmetic devices waste time waiting for data to be
calculated.

Section5.3.2 describes an example of a sophisticated data structure that enables
a smoothed data-flow path for MPI/OpenMP/SIMD hierarchical parallelization on
supercomputer systems with a three-dimensional (3D) torus network.

5 Acceleration of Classical Molecular Dynamics Simulations 129

5.2.3 Parallelization Techniques Based on Torus Network
Characteristics

5.2.3.1 A Torus Network

A torus network is a network to connect calculation nodes in series and circularly
along one direction. A 3D torus network is comprised of calculation nodes placed
at 3D lattice points connected by a torus network along the x, y, and z axes. There
can be more than three dimensions of network connections; e.g., the Tofu intercon-
nect developed by Fujitsu Co. Ltd. provides a six-dimensional torus network for
supercomputer systems with high fault tolerance to network troubles. A torus net-
work is superior to other network structures, such as fat-tree networks from the
following perspectives.

• High-speed and low-latency data transfer to first neighbor nodes along each axis.
• High affinity to MPI parallelization in spatial domain decomposition style.

However, it also has the following disadvantages:

• Need for relay nodes for communication with nodes other than the nearest neigh-
bors.

• Increase of communication count, if software requires wide range communication.
• Frequent occurrence of collisions between twodata transfers in opposite directions,
if without a communication procedure design.

As schematically shown in Fig. 5.2a, a direct communication with calculation nodes
on the diagonal line can be made possible by a two-step communication; i.e., the
first communication along the x-axis followed by y-axis communication with a relay
node. The situation becomes more severe when the target node is more distant from

4 3 2 3 4

3 2 1 2 3

2 1 2

3 2 1 2 3

4 3 3 4

myrankmyra

 other ranks

4 3 2 3 4

3 2 1 2 3

2 2

3 2 1 2 3

4 3 2 3 4

myrank

 other ranks

myrank

Collision

Collision

(a) (b)

Fig. 5.2 Problems that can occur in a torus network. a Increase in communication count and b
occurrence of collisions between two data transfers in opposite directions

130 Y. Andoh et al.

the source node. The integer numbers in Fig. 5.2a indicates a communication count
required for data transfer to the centered myrank from each rank. In total, 60 counts
of communication are necessary to gather data from the surrounding hashed region
to myrank. On the other hand, as shown in Fig. 5.2b, if each communication is not
scheduled, collisions of two data transfers in opposite directions occur frequently
everywhere. The occurrence of a collision event delays communication time signif-
icantly because one communication started after the other communication ended.

For parallelized calculations aiming at strong scalability, such asMDcalculations,
these delays in communication due to collisions are fatal. Thus, it is strongly desirable
to implement MPI parallelization algorithms to minimize the communication counts
without any collision events on the 3D torus network.

5.2.3.2 MPI Function Suited to a Torus Network

TheMPI_SENDRECV is aMPI function to hide the disadvantages of a torus network
as described above and to realize highly effective parallelization by the MPI.

call MPI_SENDRECV (sendbuf,scount,stype,dest,stag,
recvbuf,rcount,rtype,source,rtag,comm,status,ierr)

sendbuf : initial address of send buffer
scount : element number in sendbuf
stype, stag : type of elements in sendbuf, send tag
recvbuf : initial address of receive buffer
rcount : element number in recvbuf
rtype, rtag : type of elements in recvbuf, receive tag
dest, source : rank of destination, rank of source
comm, status, ierr : communicator, status code, error status

This function executes MPI_SEND and MPI_RECV in one call; i.e., myrank sends
scount elements of sendbuf with stype to dest rank, while it receives rcount elements
of recvbuf with rtype from source rank. By calling this subroutine from every MPI
process along one axis on a torus network, a circularly shifted communication is
realized.

Figure5.3 shows how the MPI_SENDRECV function can hide the disadvantages
of a torus network in a two-dimensional (2D) case. Assuming that data on ranks 0–
24, except for rank 12 (myrank), are transferred to the myrank. First, by calling the
MPI_SENDRECV function, data on each rank are shifted along the +x direction.
Integer numbers below s and d in squares are values for rank of source and rank of
destination as set in subroutine arguments, respectively. In this process, the function
is called from all ranks simultaneously. As a result of these collective MPI commu-
nications, any collision events do not occur. Second, after the communication, the
transferred data are merged with the originally owned data. The merged data are
then shifted again along the +x direction by calling the MPI_SENDRECV function.
By applying the same communications along the −x direction, distributed data on
the ranks along the x-axis are gathered to the centered ranks (ranks 2, 7, 12, 17,
and 22). Third, the merged data within each x line are shifted twice along the +y

5 Acceleration of Classical Molecular Dynamics Simulations 131

direction by calling the MPI_SENDRECV function twice with setting source and
destination numbers as shown in the right panel of Fig. 5.3. Finally, by shifting the
merged data along the −y direction twice in the same manner, all data on ranks 0–24
are transferred to myrank without any collision events.

In this technique, the communication count required to gather the data is only 8,
which is 13% of the count for a series of fundamental one-to-one communications as
shown in Fig. 5.2a. In a 3D case, the degree of reduction ismore remarkable, i.e., from
450 to 12, which is a reduction rate of 97%. Furthermore, with this style of collective
communication, all involved MPI processes gather the same range of data at once,
which is in most cases a favorable situation for the subsequent arithmetic operations.
If the torus network equipment has bidirectional communication architecture, such
as the Tofu interconnect, the communication count can be further reduced to half.

For example, MODYLAS [7] software implements this kind of collective com-
munication routine to gather the data of atom coordinates and coefficients of mul-
tipole expansions required to calculate potential energy and forces. The same type
of communication algorithm is available in a process to send data back to the orig-
inal processes, such as a scattering of reaction forces by the nonbonded two-body
interactions.

The communication technique described here is widely applicable to any MPI
parallelized software on a 3D torus network.

5.2.4 Necessity of Sophisticated Data Structure for Highly
Efficient Parallelization

As described briefly in Sect. 5.2.2, the parallelization efficiency of hybrid paral-
lelization is determined by the smoothness of data transfers between memory stor-
age devices. First, an element controlling the smoothness of data flow is the data
array structure, followed by proper coding at each parallelization level. An ideal
data structure for hierarchical parallelization should have the following properties
simultaneously:

1. Data are sequentially accessed at the time of arithmetic operation.
2. Data are localized, compartmentalized by small areas, and a data-blocking tech-

nique can be applied without using temporary arrays.
3. No data sorting and copying operations are required through a series of MPI

communications.

Property 1 is important for the working efficiency of arithmetic units by smoothed
data transfer from the cache(s) to registers. If not, software pipelining cannot be
applied; therefore, the units waste time waiting for input data. If vector units are
assumed, data sequentiality is more important to realize highly efficient vectorized
operations.Data sequentiality is not normally achieved in particle-based calculations,
such as MD calculations. For example, when the Verlet neighbor list method is
adopted for pairwise additive LJ interaction calculations, the access to coordinate

132 Y. Andoh et al.

Collective communication
 along +x direction

Collective communication
 along +y direction

Data flow Data flow

Fig. 5.3 An example of a circularly shifted communication on a 2D torus network realized by the
MPI_SENDRECV function. First collective communication along the±x-axis (left) and successive
collective communications along the±y-axis (right). In each stage, data are shifted by twice to plus
or minus direction. Consequently, data on ranks 0–24 are transferred to rank 12 with 4 counts of
communication

data based on a list of candidate j atoms becomes random in general, as shown in
Fig. 5.4. This is because an arrangement of coordinate data on memory devices does
not consider the relative distance between atoms. Much effort is needed to realize
sequential access to coordinate data with the Verlet neighbor list method. In contrast,
when the cell-linkmethod is used, sequential access on data can be realized relatively
easily with a well-designed data structure as described in Sect. 5.3.2.

Property 2 is important from the perspective of effective utilization of data on the
cache(s) without reloading data from the main memory. In a calculation hot spot, it
is desirable to load the data required for a series of arithmetic operations just once
from the main memory to the cache. An established method, e.g., the data-blocking
technique, is usually adopted for this purpose. The data-blocking technique assumes
that a whole data set, such as atom coordinates stored in myrank, is subdivided into
smaller data sets. The manner of division is chosen so that accesses to data in one
data set are concentrated and data loading is performed with a unit of each data set.
Unnecessary data reloading can be reduced by applying some modifications to the
nested loop structures.

Property 3 is important from the perspective of strong scaling at process-level par-
allelization by omitting essentially unnecessary data sorting and duplication opera-

5 Acceleration of Classical Molecular Dynamics Simulations 133

tions. Some types of parallelized calculations, such as MD calculations, in their scal-
ability to MPI process number with a fixed problem size (strong scalability) is more
important than the scalability by making problem size per process constant (weak
scalability). Decreasing the overall elapsed time with large MPI process numbers,
an accumulation of small times costed for pre- and post-processing of interprocess
communications by the MPI functions could become a rate-determining process in
parallelized calculations. This extra wasted time comes from the implementation
style, which can be removed by devising the data structure appropriately.

Various data structures could have all of the features listed above, depending on
the degree of hierarchy of hardware, kind of interconnections between calculation
nodes, and whether coprocessors are used or not. Section5.3.2 shows an example of
the data structure suitable for MD calculations, which is hierarchically parallelized
on multicore CPU nodes connected by a 3D torus network.

5.3 MODYLAS

This section introduces general techniques of a hybrid parallelization of large-scale
calculations by MPI, OpenMP, and SIMD suited for supercomputers connected by
a 3D torus network, with practical examples of implementation of the techniques on
MD calculations that adopts the FMM (see Appendix) to calculate the long-range
electrostatic interaction under a 3Dperiodic boundary condition.With a sophisticated
data structure, it becomes possible to perform massively parallelized calculations
with excellent parallelization and arithmetic efficiency [7].

Coordinate data originally
distributed to myrank

rcut

Random access to
j atom coordinates

i atom

j atom

Coordinate data
repeatedly reloaded
from main memory

DO iatom
DO k=Verlet-list(iatom)
 jatom=list(k)
 rij = |riatom-rjatom|
 calculate potential
 calculate forces
ENDDO
ENDDO

Coordinate data received
from other ranks

Heading&Sorting of data

Potential rate-determining
process in strong scaling
problem

j atom

i atom

Fig. 5.4 General issues to inhibit efficient hierarchical parallelization with standard data structure
for atom coordinates

134 Y. Andoh et al.

5.3.1 Parallelization Characteristics of the FMM

From the perspective of massive parallelization, the FMM is superior to the PME
method in the following aspects.

First, the data required to calculate both short- and long-range interaction are spa-
tially localized at each level by its nested structure. Thus, adjacent communications
can be used by the MPI instead of all-to-all type communications. In particular, if
a 3D torus network is installed onto a supercomputer, the techniques described in
Sect. 5.2.3 are directly applicable byminimizing a number of hops and avoiding data-
transfer collisions. Second, the boundary of twokinds of potential energy calculations
(P2P and L2P operations) is not spherical as in the Ewald method; therefore, access
to rj does not require a list of candidates of rjs. List access could become a barrier to
achieving highly efficient vectorized arithmetic operations with SIMD instructions.
Third, the FMM assumes a partitioning of a calculation unit cell into subcells; thus,
the established LLC method (Sect. 5.1.2) can be used for the P2P operation. Fur-
thermore, because atoms have metadata of the relative position of their belonging
subcells, continuous access to data of atom coordinates rjs is possible with their
well-designed data structure as shown in Sect. 5.2.4. Finally, since its calculation
order is O(N), there is a greater possibility to treat a much larger number of atoms
in MD calculations using over 10,000 calculation nodes of exascale supercomputers
[41] without losing calculation accuracy. The techniques described in this section
can be the basis for such massively parallelized calculations in the near future.

5.3.2 A Metadata Structure of Coordinates and Multipoles

The interatomic interactions treated in MD calculations are distance dependent and
reduce to zero with increasing distance between the source and destination atoms.
Most of these interactions become completely zero at ten and a few angstroms,
except for the electrostatic interaction. Therefore, it is beneficial to add supplemen-
tary information about spatial decomposition onto the atom coordinate data, which
is one of the metadata sets. These metadata are also useful for other primary data
used in electrostatic interaction calculations, such as multipoles in the FMM and grid
charges in the PME method.

Figure 5.5 shows the data structure of atom coordinates meta_xyz with meta-
data of the relative distances between each subcell. Relative indices rather than
absolute indices of each subcell are more favorable as metadata for homogeneous
coding among different myranks. The data are represented in two ways: i.e., a one-
dimensional representation as a copy of the original array (left panel of the figure) and
a multidimensional representation emphasizing the metadata of the relative address
of each subcell (right panel of the figure). The data originally stored by myrank are
placed in a continuous manner not at the top of the array, but at the center of the
array. The blanks arranged above and below the data are storage regions to receive

5 Acceleration of Classical Molecular Dynamics Simulations 135

 meta_xyz(1,1)

meta_xyz(3,n)

 X
Y

(1,1) (2,1) (3,1) (4,1) (5,1)

(1,2) (2,2) (3,2) (4,2) (5,2)

(1,3) (2,3) (3,3) (4,3) (5,3)

(1,4) (2,4) (3,4) (4,4) (5,4)

(1,5) (2,5) (3,5) (4,5) (5,5)

tag(3,3)

na_per_cell(3,3)

(X,Y): Relative indices of subcells

Two dimensional representation

 meta_xyz(3,n)

Coordinate data originally
distributed to myrank

 meta_xyz(1,1)

Empty region to
receive coordinate
data transferred
from other ranks

One dimensional representation

(3,1)
(2,1)
(1,1)

(3,3)

(5,5)
(4,5)
(3,5)

Mapped onto X-Y plane

Fig. 5.5 Two kind of data array representations for atom coordinates with metadata structure

coordinates transferred from other surrounding MPI processes. In the multidimen-
sional representation, blanks form a square halo in a 2D representation and a cubic
halo in a 3D representation.

Access to the data is always performed usingmetadata by preparing two additional
arrays. The first is a tag array, which stores initial addresses of a series of coordinate
data included in each subcell (tag in Fig. 5.5), and the second is a counter array,
which stores the number of atoms packed in each subcell (na_per_cell in Fig. 5.5).
The dimensions of these arrays are the same as themetadata information; e.g., (5,5) in
Fig. 5.5. With these arrays, the data originally distributed to myrank with an address
of (3,3) are accessed by

DO i0=tag(3,3), tag(3,3)+na_per_cell(3,3)-1
meta_xyz(1:3, i0)

ENDDO

Data to be transferred by a series of MPI communications are stored as shown in
Fig. 5.6. These data are spatially localized around the original myrank data according
to the following series of MPI communications. First, data transferred along the ±x-
axis are placed at both sides of the original data by connecting its left (+x) and
right (−x) end to the original data. As a result, data blocks are laid along the x-axis
in which all coordinate data are arranged serially. Next, data transferred along the
±y-axis with data-block units from (1,3) to (5,3) are placed at the top and bottom
of the line at address 3, where voids at both sides of the block are also transferred
to avoid any heading and sorting of data in each communication process. With tag

136 Y. Andoh et al.

 meta_xyz(3,n)

 X

Y

Y ,

Y

tag(1,1)

na_per_cell(5,1)

tag(5,1)

Coordinate data originally
distributed to myrank

One dimensional representation

(1) Data transfer
along X axis

(2) Data transfer
along Y axis

Data received from
ranks along + X axis

Data received from
ranks along - X axis

Data received from ranks along + Y axis

Data received from ranks along + Y axis

Data received from ranks along - Y axis

Data received from ranks along - Y axis

(3,3) (3,3)

(1,5) (5,5)

(1,1) (5,1)

Two dimensional representation

(1,3) (5,3)

(5,3)

(3,3)

(1,3)

(5,1)

(1,1)

(5,3)

(3,3)

(1,3)

(5,5)

(1,5)

Fig. 5.6 Storage style for coordinate data transferred from other ranks

and na_per_cell reconstructed after the communications, any data stored in the halo
region can be accessed in the same way as a method to access data on (3,3). For
example, the coordinate data packed in a set of five subcells at line address 1 are
accessed by

DO i0=tag(1,1), tag(5,1)+na_per_cell(5,1)-1
meta_xyz(1:3, i0)

ENDDO

with a completely serial access favorable for the following vectorized arithmetic oper-
ations. In addition, a set of five subcells designated according to tag and na_per_cell
with the start and end address of subcell block can be a data-blocking unit without
introducing any temporary arrays.

Generally, several subcells are distributed to each rank, depending on the given
total subcell number and MPI process. In such a case, the coordinate data are sepa-
rately stored with a unit of a line along one axis, which is chosen as same as the first
axis in a series of MPI communications optimized for a 3D torus network described
in Sect. 5.2.3.2 and Fig. 5.3.

For the multipole data, a similar data structure with metadata of relative indices
of subcells or supercell addresses is considered.

The M2M operation refers to multipoles on eight subcells or supercells with
the same parent cell. The M2L operation requires multipoles on surrounding 875
(=103 − 23) subcells or supercells for each level where interactions with centered
23 cells are calculated at the lower level. Within this range of multipole information,
the other operation is available. In the torus network and collective communications
described in Sect. 5.2.3.2, data not only on target ranks, but also on intermediate
ranks, are automatically gathered to myrank. Therefore, it is more efficient to receive

5 Acceleration of Classical Molecular Dynamics Simulations 137

 X
Y meta_wm0(1:(nmax+1)2,5,5)

 meta_wm0(1:(nmax+1)2,6,5)
 meta_wm0(1:(nmax+1)2,5,6)
 meta_wm0(1:(nmax+1)2,6,6)

 meta_wm0(1:(nmax+1)2,1:10,9:10)
 meta_wm0(1:(nmax+1)2,1:10,7:8)
 meta_wm0(1:(nmax+1)2,1:10,5:6)
 meta_wm0(1:(nmax+1)2,1:10,3:4)
 meta_wm0(1:(nmax+1)2,1:10,1:2)

(1,1) (10,1)

(10,1) (10,10)

(5,5) (6,5)

(5,6) (6,6)

Multipole data originally distributed to myrank

Multipole data receieved from other myranks

(X,Y): Relative indices of subcells

(1) Data transfer along X axis

(2) Data transfer along Y axis

Data received from ranks along + Y axis

Data received from ranks along + Y axis

Data received from ranks along - Y axis

Data received from ranks along - Y axis

Data received
from ranks along
+ X axis

Data received
from ranks along
- X axis

Fig. 5.7 Two-dimensional representations of data array for multipoles with metadata structure

redundant multipoles on surrounding 103 cells than to extract multipoles on 875 (for
M2L) and 8 (for M2M) cells explicitly.

Figure5.7 shows the data structure of multipoles at level 0 (meta_wm0) in a
2D representation where multipoles on four subcells at (5,5), (6,5), (5,6), and (6,6)
addresses are distributed to myrank. The FMM is based on a hierarchical partitioning
of a calculation unit cell where metadata of relative distance among subcells or
supercells are equipped originally. Unlike the case of atomic number, the number of
elements for each cell is constant, which corresponds to the number of expansion
terms (nmax + 1)2. Thus, it is not necessary to prepare additional arrays to store the
metadata of data numbers for each cell.

In meta_wm0 array, data are serially packed along the X -axis in each line.
Data transferred from other ranks along the ±X -axis by MPI communications
are placed at both sides of data in myrank. A data block in each line, e.g.,
meta_wm0(1:(nmax + 1)2,1:10,5) is sent to the adjacent rank by a MPI communi-
cation along the +Y -axis, receiving a data block meta_wm0(1:(nmax + 1)2,1:10,4)
from the adjacent rank in −Y direction. By repeating send/receive communications,
the empty region in the halo area is filled with multipole data necessary for the M2M
and M2L operations.

138 Y. Andoh et al.

5.3.3 Techniques to Realize Highly Effective Arithmetic
Operations

5.3.3.1 Data Blocking

Data blocking is a general method to utilize the data on the cache(s). The data to be
calculated are partitioned into a group of patches,which are small enough to be placed
on the cache, especially level 1 cache (a few 10 kBs). It is desirable for calculation
efficiency that the same data are loaded from the main memory to the cache only
once. In other words, the data loaded on the cache are consumed thoroughly without
flowing back.

In MD calculations, a data-blocking target is the coordinate data in the pairwise
additive interaction calculations. If the FMM is adopted for the calculation method
of the long-range electrostatic interaction, the multipole data on each subcell or
supercell and partial elements of the transformation matrix in the M2L operation are
to be blocked.

An issue in the pairwise additive interaction calculation by the LLC method is
summarized in Fig. 5.8a. In the usual implementations of the LLC method, DO loop
for i-cells owned by myrank is located at the outermost position, followed by j-cells
loop. Inside these cell loops, loops for i atoms in the i-cell and j atoms in one specified
j-cell are included. This loop structure is easy to understand, although there is a large
amount of wasted time loading the coordinate data of j atoms; i.e., the range of access
is determined separately by the position of each i-cell and most of them overlap each
other. Thus, the same data of the j atom coordinates are repeatedly loaded from the
main memory to the caches.

On the other hand, Fig. 5.8b shows a DO loop structure considering the data
blocking of j atom coordinates. The outermost DO loop orders a shift of blocked
data, i.e., jcell_line in the figure. A length of the jcell_line is five subcells in the
direction where data are stored serially. The second inner loop orders a shift of i-cells
in a direction vertical to the jcell_line within the decomposed domain (icell_line).
The third DO loop selects i atoms in each subcell, followed by the fourth DO loop,
which selects j atoms in each jcell_line. With this DO loop structure, coordinate
data in each jcell_line are loaded only once, and all relevant pairwise interactions
are calculated properly.

In typical biological systems, if a side length of subcell is about 6–7Å, the number
of atoms in each subcell is nearly 40. Thus, the data size of atom coordinates in each
jcell_line is about 5 kB, which is small enough to be placed in the level 1 cache
(typically, 32 kB in modern CPUs). For calculations of the LJ and electrostatic
interactions, the force field parameters (σ, ε, and q) are also required. In general, the
same parameters are reused for different atoms; therefore, the required data size for
these is relatively small. The data size for i atoms is one fifth of j atoms, which costs
only a few kBs of data.

In the case of M2L operation, the same loop structure is adopted for a blocked
arithmetic operation, as shown in Fig. 5.9. In the conventional loop structure, desti-

5 Acceleration of Classical Molecular Dynamics Simulations 139

myrank

do icell(myrank)
do jcell
 do iatom=tag(icell),
 tag(icell)+na_per_cell(icell)-1
 do jatom=tag(jcell),
 tag(jcell)+na_per_cell(jcell)-1

 enddo
 enddo
enddo
enddo

icell

myrank

do jcell_line
do icell(myrank) [shift icell along icell_line]
 do iatom=tag(icell),
 tag(icell)+na_per_cell(icell)-1
 do jatom=tag(jcell),
 tag(jcell+4)+na_per_cell(jcell+4)-1

 enddo
 enddo
enddo
enddo

jcell_line

tag(jcell)

tag(jcell+4)+
na_per_cell(jcell+4)-1

Move jcell blok loop to outermost

Range of
jcell access

Region where coordinate data
were transfered

Calculate potential and forces
between iatom and jatom

Calculate potential and forces
between iatom and jatom

Region where coordinate data
were transfered

icell_line

(a)

(b)

Fig. 5.8 An example of the data blocking in the pairwise additive calculation of interatomic inter-
actions

nation cells are shifted by the outermost DO loop, followed by a shift of source cells.
For each selected cell pair, matrix (M2L transformation matrix) times vector (mul-
tipole elements) arithmetic operations are executed. However, in the data-blocking
arithmetic operations, the multipole data on the surrounding 875 subcells or super-
cells are partitioned into a set of small patches. Similarly to the blocked pairwise
additive calculation, the outermost DO loop shifts a patch of source cells. The sec-
ond inner DO loop shifts a destination cell within the domain distributed to myrank.
After selecting source and destination cell pairs, a matrix-times-vector operation is
executed. The optimal size of each block depends on the truncated degree of multi-
pole expansions nmax. The expansion coefficient and translation matrix elements are
complex numbers (16 bytes (B) in double precision), and the required data size for
blocks is an integer multiple of 16 B × (nmax + 1)2, which should be less than the
cache size on the hardware used.

140 Y. Andoh et al.

When the data-blocking technique is adopted, the data in each block are also
required to be serially packed on the main memory to reduce the frequency of data
transfer to the cache and for the following vectorized arithmetic operations by SIMD
instructions. An easy way is to prepare a temporary array for blocked arithmetic
operations by copying the original data to the temporary arraywith partitions between
each block. However, as described below, the time consumed in a data copy operation
from the original array to the temporary array could become a rate-determining
process when the elapsed time is greatly reduced by hierarchical parallelization of a
code. With the metadata structure of coordinate data as described in Sect. 5.3.2, the
temporary array and copy operation are omitted completely because the coordinate
data are already partitioned based on small units (subcells) and data are serially
packed along one axis by a series of MPI communications. Consequently, the atom
coordinates in an arbitrary number of subcells in onedirection canbe serially accessed
by a combination of tag and na_per_cell.

In conclusion, the metadata structure is excellent from the perspectives of not
only low latency MPI communications, but also the data-blocking technique for the
following arithmetic operations.

5.3.3.2 Thread-Level Parallelization

Thread-level parallelization is realized by the OpenMP language extension, which
is activated by adding the OpenMP directives. Since the latest hardware develop-
ment trend is toward many cores and wide SIMD architectures, it becomes critically
important to apply efficient thread-level parallelization at every hot spot.

Briefly, the range of thread-level parallelization in a Fortran code is defined by
a pair of !$omp parallel and !$omp end parallel directives (#pragma omp parallel
and #pragma omp end parallel in a C code). In a defined parallelized region, any
DO loops sandwiched by !$omp DO and !$omp end DO directives are the target of
thread-level parallelization (#pragma omp for in a C code, without end statement).
In addition, a proper compile option to a compiler (e.g., -fopenmp for gfortran, or
-qopenmp for ifort, -mp for pgfortran) is required to interpret the inserted directives.
Modern compilers are equipped with the auto thread-level parallelization function,
which is activated by the defined option (-parallel for ifort, -Mconcur for pgfortran).
In practice, however, it is only applicable to simple codes, such as setting of initial
array values because the compiler assigns priority to keep the auto parallelized code
accurate. Therefore, an explicit thread-level parallelization of calculation hot spots
by inserting the OpenMP directives is required.

A general point to be noted for efficient thread-level parallelization is the uniform
load balancing between threads. The easiest but effective way is to elongate the
length of the target loop for thread-level parallelization compared with a given thread
number. By default, a block of a whole loop length divided by Nt is assigned to each
thread. Thus, the longer the loop, the smaller the load imbalance between threads
becomes. Frequently, a fusion technique of two or more loops is used to elongate the
loop length. The collapse clause in the OpenMP is prepared for this purpose; i.e.,

5 Acceleration of Classical Molecular Dynamics Simulations 141

do iblk =1,nblock
do icy = icyblkst (iblk),icyblkend (iblk)
do icx =icxblkst (iblk),icxblkend (iblk)
do icell (myrank)
if(icx,icy is within 2 nearest neighbors) cycle
do m1=1,(nmax+1)2

do m2=1,(nmax+1)2

wl(m1) =wl(m1)+ m2l (m1,m2)* wm(m2)
enddo
enddo
enddo
enddo
enddo
enddo

icxblkst(1) icxblkend(1)

icyblkend(1)

icyblkst(1)

iblk=2

iblk=3 iblk=4

iblk=1

iblk=1
M2L

myrank

!$omp parallel
!$omp do

!$omp end do
!$omp end parallel

Fig. 5.9 Blocked arithmetic operations parallelized with the OpenMP directives in the M2L oper-
ation

multiple loops are merged into one loop in the compiling process and thread-level
parallelization is performed on the merged loop.

The next method is to design the size of loop blocks assigned to each thread
explicitly, if possible, considering blocked arithmetic operations. In addition, it is
desirable that the number of blocks is integer times the number of threads from
the perspective of load balancing of parallelized calculations between threads. This
method achieves excellent loadbalancing, especiallywhen the amount of calculations
between each pair of source block and destination patch is uniform.

Figure5.9 shows an example of the blocked arithmetic operations parallelized
with the OpenMP directives in the M2L operation. The outermost loop with DO
variable iblk shifts the block of source cells with a total nblock number (nblock = 4
in this case). If given thread numberNt is 4 (determined by an environmental variable
of operation system OMP_NUM_THREADS when a code is executed), one block
composed of 25 cells is assigned to each thread. The block shape is controlled by the
index arrays icxblkst, icxblkend, icyblkst, and icyblkend with an argument, iblk. In
a 3D case, an additional two index arrays are introduced, iczblkst and iczblkend.

When the amount of calculations is not uniform for each block, which is the gen-
eral case for pairwise additive interaction calculations, a more sophisticated thread-
level parallelization algorithm is required to achieve high parallelization efficiency
with good load balancing.

5.3.3.3 Vectorized Arithmetic Operations

For operations within the innermost loop, vectorized arithmetic operations could be
applied by the SIMD instructions on modern CPU architectures. Its prerequisite is

142 Y. Andoh et al.

that the same kinds of operations are performed on a series of input data. In MD cal-
culations, e.g., pairwise additive calculations of the LJ and electrostatic interactions
fully satisfy this prerequisite. That is, the data of atom coordinates and force field
parameters for j atoms in the jcell_line and i atoms in i-cell are loaded, and then
the potential energy and force are calculated by the equations in the same functional
form. The M2L operation is also a good candidate for vectorized arithmetic oper-
ations because multiplications of the coefficient matrix and multipole element row
are repeated for each pair of source and destination subcells or supercells.

There are several ways to implement vectorized arithmetic operations. The easiest
way is to use the compilers’ auto-SIMD optimization or autovectorized functions,
which are activated by adding specific compiler options (e.g., -msse for gfortran,
-vec for ifort, or -fastsse for pgfortran). Compilers are also equipped with an option
to output vectorized reports of a code, sometimes with a function annotating the ele-
ments to inhibit the generation of vectorized instructions (e.g., -qopt-report for ifort).
Performance of vectorized arithmetic operations in a calculation hot spot could be
improved step by step, modifying the code beingmore suited to vectorized arithmetic
operations based on a vectorized report. Directives for SIMD optimization (!$OMP
SIMD [42]) are now prepared from the OpenMP 4.0, which are activated in another
compiler option (e.g., -qopenmp-simd for ifort). With these SIMD directives, more
detailed information to enhance autovectorization can be added to the compiler.

The second, but highly professional way is to use SIMD’s intrinsic functions [43].
An optimized set of vectorized codes for basic mathematical operations are prepared
for each vector technology (e.g., SSE, AVX, AVX-512) and precision. However,
intrinsic coding does not always result in highly effective vectorization of a hot spot. It
is only validwhen the code is rate-limited by arithmetic operations themselves: If not,
vectorized arithmetic units waste most of the time waiting for input data. Therefore,
in advance of optimization for vectorized arithmetic operations, hierarchical coding
based on a sophisticated data structure must be realized to achieve excellent total
parallelization efficiency of the code. For example, our proposed metadata structures
for coordinates and multipoles satisfy the condition for well-vectorized arithmetic
operations. The blocked coordinate data for j atoms in jcell_line or multipoles on
source cells are placed serially in the level 1 cache without delays in loading time
for data from the main memory.

We outline the general considerations for highly efficient vectorized operations
as follows. First, the serial dependency between elements in data arrays should be
removed bymodifying a code or the algorithm itself. In general, backward or forward
reference to data, such as

DO
a[i]=a[i-1]+b[i]

ENDDO

or

DO
a[i]=a[i+1]+b[i]

5 Acceleration of Classical Molecular Dynamics Simulations 143

ENDDO

where loop index i is difficult to be vectorized because the present arithmetic oper-
ation for a[i] depends on the past a[i-1] or future a[i+1] data with the possibility of
being updated. It is also difficult to vectorize a code effectively when a loop contains
an indirect access to a data array element by introducing an index list array, such as

DO
a[list(i)]=a[list(i)]+b[i]

ENDDO

with loop index i. There are some established tricks to overcome these difficulties,
whereas the bestway is to adopt an alternative algorithmwithout backward or forward
reference to data.

Second, the type of arithmetic operation to input data in the target loop is as uni-
form as possible; e.g., in the calculation of the LJ interactions in MD calculations,
a cutoff technique (Sect. 5.1.2) is usually adopted. Its execution depends on the dis-
tance between i and j atoms. Usually, an IF sentence may be introduced into the
target loop of vectorized arithmetic operations, which makes arithmetic operations
in the loop nonuniform. Another example inMD calculations is an exclusive calcula-
tion of interatomic interactions in the same molecule. Since interatomic interactions
between atoms separated by one chemical bond (the so-called 1–2 interaction) and by
two chemical bonds (the 1–3 interaction) are evaluated by bonded potential terms and
angled potential terms, they must be eliminated from interatomic LJ and electrostatic
interaction calculations to avoid a duplicated estimation of interactions. In addition,
a scaled calculation (or calculation with special parameters) of an interatomic inter-
action between atoms separated by thee chemical bonds (the 1–4 interaction) in the
same molecule should be considered in longer molecules, since the interaction is
partially evaluated by dihedral potential terms. In the former, the code can be made
uniform by introducing a cutoff variable with a value of 0 (if rij > rcut) or 1 (else)
multiplied by the calculated potential and forces. In the latter, it may be possible to
use a redundant calculation and removal technique that calculates all pair interac-
tions once, and then eliminates the pair interactions from the total. In most cases,
the removal process code is complicated and does not suit vectorization. However,
since the calculation amount is much higher in the uniform calculation than the latter
removal calculation, this method greatly improves the total performance. An issue is
that a large round off could produce errorswhen subtracting repulsive 12-power terms
in the LJ interaction. The error is acceptable with a double-precision floating-point
calculation, while it is not acceptable in the case of a single-precision calculation. In
such a case, another technique, such as mask processing to avoid the 1–2 and 1–3
calculations should be implemented to keep the MD calculations accurate.

Third, the loop length is long enough to conceal the pre- and post-processing time
for vectorized arithmetic operations and enhance the software pipeline. It is also
desirable from the perspective of load balancing between vector lines. An easy way
to elongate a loop length is a fusion of the loop with upper loop(s) as in the case
for thread-level parallelization by the OpenMP directives described above. However,

144 Y. Andoh et al.

do jcell_line
do icell [along icell_line]

do iatom=tag(icell),
 tag(icell)+na_per_cell(icell)-1
 do jatom=tag(jcell),
 tag(jcell+4)+na_per_cell(jcell+4)-1
 rij=rij(ri,rj)

if(rij rcut) LJ_epsilon=0d0
nonbond= nonbond+ ij

f(i)=f(i)+Fi
f(j)=f(j)+Fj

 enddo
enddo

enddo
enddo

do iatom=tag(icell),
 tag(icell)+na_per_cell(icell)-1
 do jatom=1,voidpair123(iatom)
 rij=rij(ri,rj)

nonbond= nonbond– ij

f(i)=f(i) – Fi
f(j)=f(j) – Fj

 enddo
 do jatom=1,scalepair14(iatom)
 rij=rij(ri,rj)

x=1-s
nonbond= nonbond–x* ij

f(i)=f(i) – x*Fi
f(j)=f(j) – x*Fj

 enddo
enddo

This “if sentence” is
replaced by a mask
processing
by Fujitsu compiler

Calculate once the potential energy
and force for the all pairs without
distinguishing 1-2, -3, -4, and others

Removel of 1-2 and 1-3
interactions to be omited

Removal of scaled 1-4
interactions with scaling
factor s

Target do loop for
vectorized arithmetics

!$omp parallel

!$omp end parallel

!$omp do

!$omp end do

!$omp parallel
do icell [along icell_line]
!$omp do

!$omp end do
enddo
!$omp end parallel

Fig. 5.10 Vectorized arithmetic operations of the pairwise additive LJ and electrostatic interactions
for a molecular system, which includes the 1–2 and 1–3 interactions to be omitted and the 1–4
interactions to be scaled in the same molecule

it usually involves an introduction of an index list that relates the loop variable of
a fused new loop to the loop variables in the original loops. As stated above, an
indirect access by an index list makes it difficult to create an optimized vectorized
code using a compiler because the data dependency between loops becomes opaque
for a compiler. In any case, the best way is to elongate the target loop in the original
code from the perspective of calculation algorithms.

Figure5.10 shows an example of the SIMD-optimized code for pairwise additive
calculations of the LJ and electrostatic interactions, including thread-level paral-
lelization by the OpenMP directives adopted by the MODYLAS [7] software. The
left block of the program is executed first, followed by the right block. The third
DO loop with DO variable iatom in the left block is the target of thread-level paral-
lelization. The innermost DO loop with DO variable jatom is the target of vectorized
arithmetic operations; its loop length is determined as the [average number of atoms
in each subcell (about 40)]×[number of subcells in jcell_block (5)]≈ 200 for typical
biological systems. The cutoff processing of the LJ interaction is performed by the IF
sentence, which is replaced bymask processing in the compiling process by Fujitsu’s
Fortran compiler. The potential energy and forces are removed from their total by
the third DO loop in the right block, which detects the atoms of the 1–2 and 1–3
interaction sources for each iatom. Similarly, the fourth DO loop in the right block
detects the 1–4 interaction source for each iatom in which the calculated interaction
multiplied by x = 1 − s (s: original scaling factor) is removed from the total.

By a performance measurement on the K computer, which has a 128-bit SIMD
with for double-precision floating-point calculations and eight cores (eight threads

5 Acceleration of Classical Molecular Dynamics Simulations 145

execution) in each CPU, the left program block gives over a 95% SIMD instruction
fraction to floating-point arithmetic operations with a very low cache miss rate at
less than 1% and nearly 0% for the level 1 and 2 caches. In addition, the distributed
memory parallelization by theMPI keeps scalability up to 65,536 (216) processeswith
an input of a 10 million atom system when the long-range electrostatic interactions
are calculated by the FMM [7].

5.3.4 Future Prospects

In the exascale era, general-purpose supercomputers with many cores and vectorized
units with wider SIMD widths will be installed. The quality of not only thread-
level parallelization, but also vectorized arithmetic operations becomes more critical
in performing highly effective parallelized calculations on such supercomputers.
Obviously, points to note for achieving highly effective parallelization are a good
load balance and the uniformity of arithmetic operations between parallelized units.
These are realized by temporarily applying some established methods, although the
best way is to modify the calculation algorithm at the hot spot itself as we recently
proposed for the P2P operation [44]. New algorithms for parallelization should be
continuously invented to adopt to future supercomputer architectures.

5.4 GENESIS

5.4.1 Main Features of GENESIS for Optimization and
Parallelization

To extend the simulation system size and time is a great challenge inMD due to small
integration time step and required long simulation time. GENESIS (Generalized-
Ensemble Simulation System) is implemented to address these challenges by opti-
mizing the program and developing efficient algorithms for ensemble generations
[8]. In this section, we focus on the developments in GENESIS from the point of
view of optimization. Because the electrostatic interaction in GENESIS is based on
particle mesh Ewald (PME), we will discuss optimization on two points: efficient
parallelization of three-dimensional Fast Fourier Transform (FFT) and evaluations
of finite-range interactions in the real-space.

5.4.1.1 Inverse Lookup Table [45]

In MD, the major bottleneck is the calculation of non-bonded interactions including
van der Waals or electrostatics. Especially in the PME method, much of the opera-

146 Y. Andoh et al.

tion cost is spent on the square root function and the error function evaluations. MD
software, therefore, usually employs a calculation method that avoids calling these
mathematical functions. Instead, a numerical lookup table obtained by performing
numerical interpolation is generated in advance and used for non-bonded interac-
tions. The feature of GENESIS’s lookup table is that the numerical interpolation
is performed evenly in proportion to the reciprocal of the distance squared. Using
this lookup table, it is possible to accurately calculate the interaction energy and the
force at short distance since many interpolation points are used. As for the large dis-
tance interaction, it is possible to increase the performance by using a small number
of interpolation points. Given the interaction distance r and the cutoff distance rv ,
respectively, it is possible to define the interpolation point coordinates L using the
interpolation point density D,

L = INT

(
D × r2ν

r2

)
(5.11)

Then, the energy function E(r) using the lookup table can be written as

E(r) = Etab(L) + t(Etab(L + 1) − Etab(L)) (5.12)

t = D × r2ν
r2

− L (5.13)

By using the lookup table scheme with Eqs. (5.11)–(5.13), which we named inverse
lookup table, CPU cache memory can be used efficiently, so high-speed nonbonded
interaction evaluation can be performed. Even using small number of interpolation
points, it provides accurate energy and force calculation.

5.4.1.2 Spatial Decomposition Scheme in GENESIS

In GENESIS, there are two MD simulators: ATDYN (ATomic decomposition
DYNamics) and SPDYN (SPatial decomposition DYNamics). ATDYN is paral-
lelized based on the atomic decomposition, and each MPI processor has all informa-
tion of the system, such as coordinates, velocities, charges, and so on. Parallelization
of SPDYN is based on the spatial decomposition scheme. SPDYN is particularly
designed for large-scale MD simulations suitable for recent multicore CPUs. There-
fore, in this section, we introduce the parallelization method of GENESIS, limited to
SPDYN. In SPDYN, the simulation space is divided into the same subdomain as the
number of MPI processors. Subdomain is further divided into smaller unit domains
called cell. The length of cell in each dimension is limited to a size greater than half of
the cutoff distance. Particle data like coordinates or velocities are grouped according
to cell indices. Pairwise interactions are grouped by cell pairs which are distributed
over OpenMP threads by shared memory parallelization scheme using OpenMP.

5 Acceleration of Classical Molecular Dynamics Simulations 147

(1) Midpoint cell method [8]

The midpoint cell method is an extension of the existing midpoint method for hybrid
parallelization of MPI and OpenMP. In the midpoint method, the non-bonded inter-
action between a particle pair is evaluated in the subdomain containing the midpoint
of the particle pair. Therefore, a particle pair interaction is often performed in a
subdomain where none of the particles exist. In the case of using the cut-off dis-
tance or pairlist cutoff distance, rv , it is sufficient to import coordinate data within a
distance of rv/2 from each subdomain using the midpoint scheme. In the midpoint
cell method, particle data are grouped cell-wise and the interaction subdomain is not
decided from the midpoint of each particle pair but from the midpoint cell of each
cell pair in which each particle resides. The midpoint cell is sometimes not uniquely
defined. For example, in Fig. 5.11, themidpoint cell of the cell pair a and b is uniquely
determined. On the other hand, there are two possibilities for the midpoint cell of the
cell pair c and d. In such a case, the midpoint cell is determined considering the load
balance in the actual operation. In the case of using the midpoint cell method, it is
only necessary to communicate from/to the adjacent cells of each subdomain. In both
midpoint and midpoint cell methods, communication cost is reduced by increasing
the number of processors, enabling high parallel efficiency. In the existing midpoint
method, it is necessary to determine the subdomains including the midpoints for all
particle pairs every step or whenever pairlist is rewritten. On the other hand, in the
midpoint cell method, midpoint cells are decided before running MD simulation.

(2) Volumetric decomposition FFT [28]

By using the PME method, the amount of computation required for the non-bonded
interaction decreases from O(N 2) to O(N logN) when the total number of parti-
cles is N . However, since the FFT calculation in PME requires global all-to-all
communications, FFT becomes a main bottleneck in MD when using very large
number of processors. In NAMD and GROMACS, slab (one-dimensional) or pen-
cil (two-dimensional) decomposition schemes are used, whereas GENESIS uses a
parallelizationmethod based on volumetric (three-dimensional) decomposition. Vol-
umetric decomposition FFT requiresmore frequent all-to-all communication than the
case of using slab or pencil decompositions, but the number of processors involved in
each communication is minimized. For this reason, FFT calculation using volumetric
decomposition is generally suitable for MD simulations of big systems using many
processors. Furthermore, by applying the same node topology as volumetric decom-
position, volumetric decomposition can be useful for supercomputers equipped by
torus network type like K.When the midpoint cell method and volumetric decompo-
sition FFT are combined to each other, all-to-all communication of charge informa-
tion can be skipped. For example, in Fig. 5.12a, the information of the charge in the
reciprocal-space held by the processor 10 can be obtained without any communica-
tion from the information held by the same processor in the real-space. If different
decomposition scheme is done between the real- and reciprocal-spaces, shown in

148 Y. Andoh et al.

Fig. 5.11 Spatial
decomposition scheme in
GENESIS SPDYN

Fig. 5.12b, the charge information in the reciprocal-space in the processor 10 can be
obtained by communication among processors 3, 7, 11, and 15.

5.4.2 Benchmark Performance of GENESIS

Here we introduce the benchmark results of GENESIS using PC clusters and the K
computer. As for the PC clusters, we used 32 nodes, each of which consists of two
Intel Xeon E5-2670 CPUs. Since the number of cores included in this CPU is 8, the
number of cores in a node is 16, so the PC cluster consists of 512 CPU cores. We
used three molecular systems for the benchmark, which are listed as followings:

(1) Main porin fromMycobacterium smegmatis (MSPA, 216, 726 atoms in 126.933
× 126.933 × 131.063 Å3 box)

(2) Satellite tobacco mosaic virus (STMV, 1,066,628 atoms in 216.83 × 216.83 ×
216.83 Å3 box)

(3) 27 STMV (28, 798, 956 atoms in 650.49 × 650.49 × 650.49 Å3 box)

The third molecular system is obtained by magnifying three times in each dimension
from (2). The number of FFTgrids are (144, 144, 144), (256, 256, 256), and (512, 512,

5 Acceleration of Classical Molecular Dynamics Simulations 149

Fig. 5.12 a There is no communication between real- and reciprocal-space if we assign identical
spatial decompositions, but b communication is necessary if different spatial decomposition is
assigned

512), respectively. The cutoff distance and the pairlist cutoff distancewere (12Å, 13.5
Å) for (1) and (10 Å, 11.5 Å) for (2) and (3). Water molecules were treated as rigid
bodies using the SETTLE method, and intramolecular bonds containing hydrogen
atoms were subjected to be constrained using the SHAKE/RATTLE algorithms. The
time step in MD simulation is set to 2 fs. Figure5.13 shows the benchmark results of
MSPA and STMV on the PC clusters. Parallelization efficiency is not lowered up to
512 cores despite we do not use multiple time step (MTS) integration. The maximum
speeds of MSPA and STMV on the PC clusters are 17.79 ns/day and 5.87 ns/day,
respectively.

Next, the performance using the K computer for STMV and 27 STMV is shown
in Fig. 5.14. For STMV, the speed efficiency does not decrease up to 4096 nodes,
and the maximum speed is 37.61 ns/day. When using RESPA MTS integration, the
maximum speed has reached 47.77 ns/day. For 27 STMV, the speed efficiency does

150 Y. Andoh et al.

not decrease up to 16,384 nodes, and the maximum speeds using the velocity Verlet
and RESPA MTS integrations are 14.60 ns/day and 17.51 ns/day, respectively.

Our benchmark results show excellent parallelization efficiency of GENESIS.
Despite executing FFT calculation including all-to-all communication every step,
high parallelization efficiency is maintained both in PC cluster and K. The perfor-
mance ofGENESIS shows even better values usingRESPAMTS integration scheme.

Exercises

1. Process number calculation: MD calculations are often performed under the
three- dimensional periodic boundary condition. In a circularly shifted commu-
nication using theMPI_SENDRECV function described in Sect. 5.2.3.2, it is nec-
essary to determine process numbers dest and sourcewith taking into account of
the periodic boundary condition. Given that the total number of MPI processes
is NPROCS = 2n (n ≥ 1), and the number of processes assigned along the x, y,

Fig. 5.13 Performance of a MSPA and b STMV systems on K computer

Fig. 5.14 Performance of a STMV and b 27 STMV systems on K computer

5 Acceleration of Classical Molecular Dynamics Simulations 151

and z axis are 2nx , 2ny and 2nz (i.e., n = nx + ny + nz). Then, derive an equation to
calculate dest and source for any myrank.

2. Reduction of array: Code a program that takes a reduction of array parallelized
by threads, without using the reduction clause prepared in OpenMP language
extension (i.e., !omp reduction (+:a)).

3. Performance measurement of vectorized operation: (1) Specify an option to
enable automatic SIMD vectorization, by applying “man” linux command to a
compiler. Its name depends on a kind of fortran compiler. (2) Evaluate rate of
acceleration by vectorized SIMD operations, comparing elapsed time of a code
by vectorized operation with that by normal (non-vectorized) operation, by using
“time” linux command.With adding “-O0” option for compilers, completely non-
vectorized executable is created. Note that the latest compilers do optimization
of a code to some extent at default, and that “-O0” option disables such hidden
optimizations.

Appendix: FMM

The principle of the fast multipole method (FMM) is briefly explained in this
Appendix. See Ref. [15] for exact mathematical treatment of the transformation of
multipole moment and local expansion coefficients, such as M2M, M2L, and L2L.

Fundamentals of Multipole Expansion

As shown inFig. 5.15, the atom i of the charge qi in a certain area forms the potential at
a distant pointQ. The reciprocal 1/ri of the distance between two points is calculated
using the distance �ri from the origin O to the atom i in the region, the distance r
from the origin O to the point Q, and the angle γi formed by the points �ri and r
with the point O. This can be expressed as

1

ri
= 1√

r2 − 2r�ri cos γi + �r2i

= 1

r
√
1 − 2�ri

r cos γi +
(

�ri
r

)2 (5.14)

from the cosine theorem. When this equation is rewritten by Taylor expansion, it
becomes

1

ri
= 1

r
+ �ri

r2
cos γi + �r2i

2r3
(
3 cos2 γi − 1

) + �r3i
2r4

(
5 cos3 γi − 3 cos γi

) + · · ·

= 1

r

∑

n

Pn(cos γi)

(
�ri
r

)n

, (5.15)

152 Y. Andoh et al.

Fig. 5.15 Multipole
expansion of electrostatic
interaction

wherePn(cos γi) is a Legendre polynomial. This Eq. (5.15) is calledmultipole expan-
sion. Pn(cos γi) is written as

Pn(cos γi) =
n∑

m=−m

Y−m
n (θi,φi)Y

m
n (θ,φ) (5.16)

using the spherical harmonics, Ym
n (θ,φ) for spherical coordinates (�ri, θi,φi) and

(r, θ,φ) of the two vectors �ri and r. In Eq. (5.16), the coordinate variables of atom
i and point Q are completely separated into two factors. Therefore, the sum with
respect to the charges in a region can be represented independently of the position
of the point Q. The sum

Mm
n =

∑

i

qiY
−m
n (θi,φi)�ri

n (5.17)

is the multipole moment formed by the charge in the region. The electrostatic field
formed by all charges in the region can be expressed as

∑

i

qi
ri

= 1

rn+1

∑

n=0

n∑

m=−n

Mm
n Ym

n (θ,φ). (5.18)

Division of Unit Cells

In FMM, unit cells are divided into small spaces (subcells). As described in the next
section, the interaction calculation is performed using these subcells. There are sev-
eral ways to divide unit cells into subcells; however, an octree structure is commonly
used, in which each side of the unit cell is divided into two equal parts and the whole
is divided into eight subcells (Fig. 5.16). This division is repeated until the subcell
reaches the desired size of small subcells, i.e., level 0 for the unit cell and level 1 after

5 Acceleration of Classical Molecular Dynamics Simulations 153

Fig. 5.16 Division of unit cell

dividing once. The number of subcells of level n is 8n. In practical use, tens of atoms
are assigned to the smallest subcell. This smallest subcell is a unit of regional divi-
sion.We assign subcells to compute nodes and cores to perform parallel calculations.

Interaction Calculation by FMM

We assume that the unit cell is divided to level 4, as shown in Fig. 5.17. We now
calculate the potential of an atom in region A. First, we evaluate the electrostatic
interaction directly up to the second nearest neighbor (B) of region A of level 4. For

154 Y. Andoh et al.

A
B

C

D

E

F

G

1st nearest neighbor

cell

2nd nearest neighbor

cell

cell

Unit cell

3rd nearest neighbor

Fig. 5.17 Interactions between atoms and subcell

subcells beyond region B, the interaction calculation is performed using multipole
moments.

Region C is within the second nearest neighbor of the subcell of level 3, but
excluding region B. The interaction calculation with region C is performed using
the multipole moment of level 4. Region D is within the second nearest neighbor

5 Acceleration of Classical Molecular Dynamics Simulations 155

of the subcell of level 2, but excluding region C. The interaction calculation with
region B is performed using the multipole moment of level 3. Hereinafter, regions
E and F are determined in the same manner. Subcells beyond region F (image cell
of third or further nearest neighbor of the unit cell) are treated as those of level 0.
Thus, the interactions can be calculated for each region without excess or deficiency.
By using small subcells for interactions with neighboring regions and large subcells
for interactions with distant regions, it is possible to efficiently perform interaction
calculations without decreasing accuracy.

Multipole Expansion and Local Expansion

The procedure for determining the potential acting on the i atom in region A is shown
(Fig. 5.18). First, the contributions from regions A and B is obtained by direct cal-
culation. This procedure is called particle to particle (P2P) in FMM. For region C,
the multipole moment is calculated in level 4 subcells according to Eq. (5.17). This
operation is called particle to multipole (P2M). Next, the center of the multipole
moment is moved to the center of subcell A. The expression obtained by this trans-
formation is the form of Taylor expansion at the center of subcell A, which is called
local expansion. This shift operation of the expansion center is called multipole to
local (M2L). By using the local expansion coefficient and the relative position from
the center subcell of atom i, its potential, force, and virial can be calculated, which
is called local to particle (L2P). For the further subcell D, the multipole moment
of the level 4 subcell is obtained by P2M similarly to C. The expansion center of
the multipole moment is shifted to the center position of the level 3 subcell (i.e.,
multipole to multipole (M2M)). Similarly, with respect to the other seven subcells,
the center of expansion is shifted by M2M. The obtained multipole moments are
summed to obtain a multipole moment of level 3, which is transformed to the local
expansion coefficient of the level 3 subcell, including subcell A, by M2L operation.
The local expansion coefficient is shifted to the center of the subcell of level A (i.e.,
local to local (L2L)). The contributions from the previously obtained subcell C and
the subcells D are summed and then the interaction is evaluated by L2P. The contri-
bution from image cells more distant than region F in Fig. 5.17 can be included by
applying Ewald’s method to the multipole moment of image cells [46].

Accuracy of FMM

FMM is a strictly formulated analytical method that includes error evaluation. The
error depends on the expansion order of the multipole moment; i.e., as the order
increases, the calculation accuracy monotonically increases. Table5.1 shows the
benchmark results of potential and force in a system consisting of 10,125,000 atoms
using MODYLAS software. The accuracy of FMM was evaluated by comparison

156 Y. Andoh et al.

P2M

M2M

M2L

L2L

L2P P2M

M2L
multipole moment

atomi

local expansion coefficient

A B B

B B B

C D

D

D

D
level

level

level

Fig. 5.18 Interaction between atoms and subcell
Table 5.1 Potential and force obtained by FMM

Expansion degree V /10−13 J Fx/10−10 N Fy/10−10 N Fz /10−10 N

Exact −218,735,559 −4.357177 6.380146 −1.477348

4th −218,735,742 −4.356659 6.380802 −1.475152

8th −218,735,559 −4.357201 6.380145 −1.477340

with the result of thePMEmethodwith parameters giving a sufficiently high accuracy.
The values obtained at the 4th to 8th expansion order coincide with the exact value in
the range of 4–9 digits. There is also an accuracy of 4–7 digits for force; i.e., enough
accuracy can be obtained for MD calculations even in expansions up to the 4th order.

References

1. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz Jr., D.M. Ferguson, D.C.
Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, J. Am. Chem. Soc. 117, 51795197 (1995)

2. A.D. MacKerell Jr., M. Feig, C.L. Brooks III, J. Comput. Chem. 25, 14001415 (2004)
3. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 1122511236 (1996)
4. H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91, 43–56 (1995)
5. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel,

L. Kale, K. Schulten, J. Comput. Chem. 26, 1781–1802 (2005)
6. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)
7. Y. Andoh et al., J. Chem. Theory Comput. 9, 3201 (2013)
8. J. Jung, T. Mori, C. Kobayashi, Y. Matsunaga, T. Yoda, M. Feig, Y. Sugita, WIREs Comput.

Mol. Sci. 5, 310 (2015)
9. D. Frenkel, B. Smit,Understanding Molecular Simulation (Academic Press, San Diego, 1996)

5 Acceleration of Classical Molecular Dynamics Simulations 157

10. M.E. Tuckerman, Statistical Mechanics: Theory andMolecular Simulation (Oxford University
Press, New York, 2010)

11. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989)
12. J. Wong-ekkabut, M. Karttunen, Biochim. Biophys. Acta 1858, 2529 (2016)
13. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)
14. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys.

103, 8577 (1995)
15. L. Greengard, V. Rokhlin, J. Comput. Phys. 73, 325 (1987)
16. D.J. Hardy, Z.Wu, J.C. Phillips, J.E. Stone, R.D. Skeel, K. Schulten, J. Chem. Theory Comput.

11, 766 (2015)
17. J.J. Biesiadecki, R.D. Skeel, J. Comput. Phys. 109, 318–328 (1993)
18. P. Minary, M.E. Tuckerman, G.J. Martyna, Phys. Rev. Lett. 93, 150201 (2004)
19. J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys. 23, 327341 (1977)
20. P. Gonnet, J. Comput. Phys. 220, 740 (2007)
21. H.C. Andersen, J. Comput. Phys. 52, 2434 (1983)
22. B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, J. Comput. Chem. 18, 14631472

(1997)
23. S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13, 952962 (1992)
24. H. Okumura, S.G. Itoh, Y. Okamoto, J. Chem. Phys. 126, 084103 (2007)
25. K.J. Bowers et al., in ACM/IEEE Conference on Supercomputing (SC06) (IEEE, Tampa,

Florida, 2006)
26. K.J. Bowers, R.O. Dror, D.E. Shaw, J. Chem. Phys. 124, 184109 (2006)
27. B.G. Fitch, A. Rayshubskiy,M. Eleftheriou, T.J.C.Ward,M. Giampapa,M.C. Pitman, J. Pitera,

W.C. Swope, R.S. Germain, Comput. Model. Membr. Bilayers 60, 159 (2008)
28. J. Jung, C. Kobayashi, T. Imamura, Y. Sugita, Comput. Phys. Commun. 200, 57 (2016)
29. A.P. Hynninen, M.F. Crowley, J. Comput. Chem. 35, 406 (2014)
30. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)
31. T. Narumi et al., inProceedings of the 2006 ACM/IEEEConference on Supercomputing (ACM,

2006), p. 49
32. D.E. Shaw et al., in 34th Annual International Symposium on Computer Architecture (ISCA

’07) (ACM, 2007), p. 910
33. D.E. Shaw et al., in Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis (IEEE Press, 2014), p. 41
34. R. Salomon-Ferrer, A.W. Gotz, D. Poole, S. Le Grand, R.C. Walker, J. Chem. Theory Comput.

9, 3878 (2013)
35. M.J. Harvey, G. Giupponi, G. De Fabritiis, J. Chem. Theory Comput. 5, 1632 (2009)
36. P. Eastman et al., J. Chem. Theory Comput. 9, 461 (2013)
37. A.P. Ruymgaart, A.E. Cardenas, R. Elber, J. Chem. Theory Comput. 7, 3072 (2011)
38. J.C. Phillips, Y. Sun, N. Jain, E.J. Bohm, L.V. Kal, in Proceedings of the International Confer-

ence for High Performance Computing, Networking, Storage and Analysis (IEEE Press, 2014),
p. 81

39. M.J. Abraham, T. Murtola, R. Schulz, S. Pali, J.C. Smith, B. Hess, E. Lindahl, Softw. X 1–2,
19 (2015)

40. Jung et al., J. Chem. Theory Comput. 12, 4947 (2016)
41. W.J. Harrod, A journey to exascale computing, in The International Conference for High

Performance Computing, Networking, Storage and Analysis, SC12 (2012), https://science.
energy.gov/~/media/ascr/ascac/pdf/reports/2013/SC12_Harrod.pdf

42. https://software.intel.com/en-us/articles/explicit-vector-programming-in-fortran
43. https://software.intel.com/sites/landingpage/IntrinsicsGuide/
44. Y. Andoh, S. Suzuki, S. Ohshima, T. Sakashita, M. Ogino, T. Katagiri, N. Yoshii, S. Okazaki,

J. Supercomput. 74, 2449 (2018)
45. J. Jung, T. Mori, Y. Sugita, J. Comput. Chem. 34, 2412 (2013)
46. T. Amisaki, J. Comput. Chem. 21, 10751087 (2000)

https://science.energy.gov/~/media/ascr/ascac/pdf/reports/2013/SC12_Harrod.pdf
https://science.energy.gov/~/media/ascr/ascac/pdf/reports/2013/SC12_Harrod.pdf
https://software.intel.com/en-us/articles/explicit-vector-programming-in-fortran
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

	5 Acceleration of Classical Molecular Dynamics Simulations
	5.1 Classical Molecular Dynamics Simulations
	5.1.1 Molecular Dynamics Calculation Flow
	5.1.2 Algorithms to Reduce the Calculation Amount for Nonbonded Interactions
	5.1.3 Acceleration of Electrostatic Interactions
	5.1.4 Acceleration by Multiple Time Steps
	5.1.5 Constraint Dynamics
	5.1.6 Developments of Classical MD Simulations Related with HPC

	5.2 Hierarchical Parallelization in the Latest Supercomputers
	5.2.1 Hierarchical Hardware Structure
	5.2.2 Parallelization Strategy
	5.2.3 Parallelization Techniques Based on Torus Network Characteristics
	5.2.4 Necessity of Sophisticated Data Structure for Highly Efficient Parallelization

	5.3 MODYLAS
	5.3.1 Parallelization Characteristics of the FMM
	5.3.2 A Metadata Structure of Coordinates and Multipoles
	5.3.3 Techniques to Realize Highly Effective Arithmetic Operations
	5.3.4 Future Prospects

	5.4 GENESIS
	5.4.1 Main Features of GENESIS for Optimization and Parallelization
	5.4.2 Benchmark Performance of GENESIS

	References

