
Chapter 3
Case Studies of Performance
Optimization of Applications

Kazuo Minami and Kiyoshi Kumahata

Abstract In 2006, 7-year’s project of MEXT (the Ministry of Education, Culture,
Sports, Science andTechnology) of the development andutilization of state-of-the-art
high-performance supercomputers usually called the next-generation supercomputer
project started. RIKEN undertook its main development, and the name “K computer”
was determined. At the end of September 2010, the first K computer enclosure was
carried into a building inKobe, and the installation of the entire systemwas completed
bySeptember 2011 [1]. TheKcomputerwas completed in June 2012 after adjustment
and improvement of the system software, and public use began in September 2012.
Prior to the operation of the K computer, RIKEN had begun developing a set of tuned
applications to demonstrate the system performance. We began programming and
developed the high-performance computing technique to achieve high parallelization
and fully utilize the enhanced functions introduced in the processor. The author was
engaged in this application development work as a team leader. In this chapter, we
first outline the set of tuned applications to demonstrate the system performance of
the K computer. Next, we outline the K computer system, which is the premise of
the subsequent section. Concrete examples of the applications mentioned in Chap. 2
are then described.

3.1 Applications for Demonstration of the Performance
of the K Computer

3.1.1 Outline of Application Groups

The application group for the performance demonstration of the K computer was
selected to demonstrate that applications in various fields can have a high perfor-
mance by making full use of the versatility of the K computer. It also demonstrated

K. Minami (B) · K. Kumahata
RIKEN Center for Computational Science, RIKEN, Kobe, Hyogo, Japan
e-mail: minami_kaz@riken.jp

© Springer Nature Singapore Pte Ltd. 2019
M. Geshi (ed.), The Art of High Performance Computing
for Computational Science, Vol. 2,
https://doi.org/10.1007/978-981-13-9802-5_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9802-5_3&domain=pdf
mailto:minami_kaz@riken.jp
https://doi.org/10.1007/978-981-13-9802-5_3

42 K. Minami and K. Kumahata

computer science characteristics that could be useful for future computer develop-
ment. The term “computer science characteristics” as used hereinmeans, specifically,
two aspects:

(a) in the parallelization, whether it is easy to obtain high-parallelization perfor-
mance with relatively simple parallelization methods, or whether complicated
methods must be used;

(b) in the single-CPU performance, whether it is difficult or easy to obtain high
single-CPU performance because of the high or low required B/F value of the
application, and so on.

Using these two issues as a basis, we evaluated target applications, adding the
evaluation based on the analysis of parallelization characteristics described later, and
selected several applications that could be expected to result in high-parallelization
performance. The selected applications are listed in Table 3.1. Specifically, we
selected two applications in the earth sciences field (NICAM [2] and Seism3D
[3, 4]), two in the nanoscience field (PHASE [5] and RSDFT [6]); one in the
engineering field (FrontFlow/Blue (FFB) [7, 8]); and one application in the basic
physics field (LatticeQCD [9]) for a total of six applications. For our purposes, these
have the following characteristics.

(A) Earth sciences field (NICAM, Seism3D)

(a) For high parallelization, a relatively simple domain decompositionmethod
is used. Because most communications are adjacent, high-parallel perfor-
mance tends to be obtained relatively easily, even at high parallelization.
(b) For single-CPUperformance, theEarth Simulator (vector-parallel com-
puter), shows high performance of about 40% peak performance ratio and
tends to require high memory bandwidth performance. On the other hand,
for scalar parallel computerswith relatively lowmemorybandwidthperfor-
mance relative to the computational peak performance, these applications
require careful programming to obtain high performance. For this rea-
son, it is essential to utilize the newly introduced high-speed computing
mechanism in the K computer, including the effective use of cache.

(B) Nanoscience/nanotechnology field (PHASE, RSDFT)

(a) For high parallelization, we found it difficult to adapt to the paralleliza-
tion in the K computer with tens of thousands of nodes with the current
parallelization method, following an analysis of the parallelization char-
acteristics. Reviewing the fundamental parallelization method is the key
point. (b) For single-CPU performance, high performance was expected
by replacing the main processing with the processing of the matrix–matrix
product.

3 Case Studies of Performance Optimization of Applications 43

Ta
bl
e
3.
1

A
pp
lic
at
io
ns

fo
r
th
e
pe
rf
or
m
an
ce

de
m
on
st
ra
tio

n
of

th
e
K
co
m
pu
te
r

N
am

e
Fi
el
d

O
ut
lin

e
of

ap
pl
ic
at
io
n

C
om

pu
ta
tio

na
ls
ci
en
tifi

c
fe
at
ur
es

of
co
de

Ph
ys
ic
al
m
od

el
/m

et
ho

d

N
IC
A
M

E
ar
th

sc
ie
nc
es

G
lo
ba
lh

ig
h-
re
so
lu
tio

n
at
m
os
ph

er
ic
ge
ne
ra
lc
ir
cu
la
tio

n
si
m
ul
at
io
n

Fo
r
E
Sa
,t
he

pe
ak

pe
rf
or
m
an
ce

ra
tio

is
40
%
.F

or
pr
og
ra
m
m
in
g,

it
is
es
se
nt
ia
lt
o
us
e
hi
gh

-s
pe
ed

ar
ith

m
et
ic
m
ec
ha
ni
sm

s
su
ch

as
ef
fe
ct
iv
e
us
e
of

th
e
ca
ch
e
to

m
ee
t

B
/F

pe
rf
or
m
an
ce

A
tm

os
ph
er
ic
ge
ne
ra
l

ci
rc
ul
at
io
n/
FD

M

Se
is
m
3D

E
ar
th

sc
ie
nc
es

Se
is
m
ic
pr
op
ag
at
io
n/
st
ro
ng

vi
br
at
io
n
si
m
ul
at
io
n

Fo
r
E
S,

th
e
pe
ak

pe
rf
or
m
an
ce

ra
tio

is
40
%
.F

or
pr
og
ra
m
m
in
g,

it
is
es
se
nt
ia
lt
o
us
e
hi
gh

-s
pe
ed

ar
ith

m
et
ic
m
ec
ha
ni
sm

s
su
ch

as
ef
fe
ct
iv
e
us
e
of

th
e
ca
ch
e
to

m
ee
t

B
/F

pe
rf
or
m
an
ce

Se
is
m
ic
w
av
e/
FD

M

PH
A
SE

N
an
os
ci
en
ce
,n

an
ot
ec
hn
ol
og
y

Fi
rs
tp

ri
nc
ip
le
s
of

m
ol
ec
ul
ar

dy
na
m
ic
s
ba
se
d
on

D
FT

w
ith

pl
an
e
w
av
e
ex
pa
ns
io
n

T
he

im
pr
ov
em

en
to

f
si
ng
le
-u
ni
t

pe
rf
or
m
an
ce

m
ay

be
po
ss
ib
le
by

re
pl
ac
in
g
th
e
m
ai
n
pr
oc
es
si
ng

w
ith

th
e
pr
oc
es
si
ng

of
m
at
ri
x–

m
at
ri
x
pr
od

uc
ts
.

H
ow

ev
er
,t
o
se
cu
re

pe
rf
or
m
an
ce

in
ul
tr
ah
ig
h
pa
ra
lle

lis
m
,i
ti
s

ne
ce
ss
ar
y
to

in
cr
ea
se

th
e
nu
m
be
r

of
at
om

s
co
ns
id
er
ab
ly

an
d
it
is

ne
ce
ss
ar
y
to

co
ns
id
er

hi
gh

pa
ra
lle

liz
at
io
n

D
FT

/p
la
ne

w
av
e
m
et
ho
d (c
on
tin

ue
d)

44 K. Minami and K. Kumahata

Ta
bl
e
3.
1

(c
on
tin

ue
d)

N
am

e
Fi
el
d

O
ut
lin

e
of

ap
pl
ic
at
io
n

C
om

pu
ta
tio

na
ls
ci
en
tifi

c
fe
at
ur
es

of
co
de

Ph
ys
ic
al
m
od

el
/m

et
ho

d

R
SD

FT
N
an
os
ci
en
ce
,n

an
ot
ec
hn
ol
og
y

Fi
rs
tp

ri
nc
ip
le
s
of

m
ol
ec
ul
ar

dy
na
m
ic
s
ba
se
d
on

D
FT

w
ith

re
al
-s
pa
ce

di
ff
er
en
ce

m
et
ho

d

T
he

im
pr
ov
em

en
to

f
si
ng
le
-u
ni
t

pe
rf
or
m
an
ce

m
ay

be
po
ss
ib
le
by

re
pl
ac
in
g
th
e
m
ai
n
pr
oc
es
si
ng

w
ith

th
e
pr
oc
es
si
ng

of
m
at
ri
x–

m
at
ri
x
pr
od

uc
ts
.

H
ow

ev
er
,i
ti
s
ne
ce
ss
ar
y
to

in
cr
ea
se

th
e
nu
m
be
r
of

m
es
he
s

co
ns
id
er
ab
ly

to
se
cu
re

pe
rf
or
m
an
ce

in
ul
tr
ah
ig
h

pa
ra
lle

lis
m

an
d
it
is
ne
ce
ss
ar
y
to

co
ns
id
er

hi
gh

pa
ra
lle

liz
at
io
n

D
FT

/r
ea
l-
sp
ac
e
m
et
ho

d

L
at
tic

eQ
C
D

Ph
ys
ic
s

E
le
m
en
ta
ry

pa
rt
ic
le
nu

cl
ea
r

an
al
ys
is
us
in
g
L
at
tic

e
Q
C
D

si
m
ul
at
io
n

A
dv
an
ce
d
pa
ra
lle

liz
at
io
n
tu
ni
ng

th
at
co
ns
id
er
s
co
m
m
un

ic
at
io
n

to
po
lo
gy

an
d
m
ea
su
re
s
to

im
pr
ov
e
si
ng
le
-u
ni
tp

er
fo
rm

an
ce

th
at
ar
e
co
ns
ci
ou
s
of

ac
tu
al

m
ac
hi
ne
s
ar
e
in
di
sp
en
sa
bl
e

Q
C
D
/p
at
h
in
te
gr
al
m
et
ho

d

Fr
on
tF
lo
w
/

B
lu
e
(F
FB

)
E
ng
in
ee
ri
ng

U
ns
te
ad
y
flo

w
an
al
ys
is
ba
se
d
on

la
rg
e
ed
dy

si
m
ul
at
io
n
(L
E
S)

Fo
r
E
S,

th
e
pe
ak

pe
rf
or
m
an
ce

ra
tio

is
25
%
.F

or
pr
og
ra
m
m
in
g,

hi
gh

B
/F

pe
rf
or
m
an
ce

is
re
qu
ir
ed
,a
nd

fo
r
lis
ta
cc
es
s
it
is

es
se
nt
ia
lt
o
us
e
a
hi
gh

-s
pe
ed

ar
ith

m
et
ic
m
ec
ha
ni
sm

su
ch

as
th
e
ef
fe
ct
iv
e
us
e
of

th
e
ca
ch
e
an
d

to
im

pr
ov
e
th
e
ef
fic
ie
nc
y
of

da
ta

ac
ce
ss

Fl
ui
d/
FE

M

a E
S
E
ar
th

Si
m
ul
at
or

3 Case Studies of Performance Optimization of Applications 45

(C) Engineering field (FFB)

(a) For high parallelization, the domain decomposition method, which is rel-
atively easy to parallelize, is used. However, because the unstructured
grid method is adopted, the parallelization becomes somewhat more com-
plicated than that for applications in the earth science field that use the
structural grid method. From the parallelization characteristics analysis,
we found that adjacent communication does not become a large load even
when it is highly parallelized; however, the time for global communica-
tion tends to increase with high parallelization. (b) For the single-CPU
performance when using the Earth Simulator, about 20% of peak perfor-
mance could be obtained. However, high memory bandwidth performance
is required. Because the main part of the calculation requires list accesses,
in a scalar computer with low memory bandwidth performance relative to
the peak performance, it tends to be very difficult to obtain high perfor-
mance.

(D) Physics field (Lattice QCD)
This application has the same characteristics as (A). However, because it was
adjusted to make effective use of the cache by reducing the problem scale
executed on one node, the application has the following features. (a) For high
parallelization, the domain decomposition method as in (A) was used, which
made it easy to achieve high parallelization. However, because the problem
size in one node is small, more communication is required compared with the
computation, and the number of communications also increases. Therefore, this
application has intermediate properties between (A) and (B). The parallelization
characteristics analysis confirmed the above characteristics, and an advanced
parallelizationmethod aware of the utilizationof the communication topology is
required. (b) For the single-CPU performance, this application tends to require
high B/F performance as in (A), and in principle, it is difficult to obtain high
performance on the scalar architecture. Because the problem size in one node
is small, it is easy to make effective use of the cache, and the application again
has intermediate properties between (A) and (B). However, the programming is
complicated, and this application requires measures to improve the single-CPU
performance in accordance with the architecture of K computer.

The features described here are shown in Fig. 3.1.
In this chapter, we describe examples from two points of view. One is the evalua-

tion method of the highly parallel characteristics and the examples of the ultrahigh-
parallelization methods found to solve the problems. The other is the evaluation
method of the single-CPU performance and the examples of the improvement of the
CPU performance to solve the problems. For the former, we mainly discuss RSDFT
and PHASE from the applications shown in this section; for the latter, we mainly
discuss Seism3D and FFB.

46 K. Minami and K. Kumahata

Fig. 3.1 Computer science
characteristics of
applications for the
performance demonstration

PHASE

Parallelization
difficult

NICAM
Seism3D

FFB

Lattice
QCD

High

Low HighLow

ecna
mrofreP rossecor P A

RSDFT

3.2 System Outline of the K Computer

In this section, we outline the system of the K computer as a basis for discussion.

3.2.1 Processor Features

We first describe the features and give a system outline of the processor of the K
computer. First, we describe the outline of the CPU of the K computer [10]. One
compute node consists of one CPU (SPARC 64 TMVIII fx, manufactured by Fujitsu
Limited), 16 GB of memory, and an interconnect LSI (interconnect controller, ICC),
which performs data transfers between compute nodes. The CPU has eight processor
cores, a shared secondary cache memory (6 MB, 12-way write-back cache), and a
memory control unit. CPU chips are 22.7 mm × 22.6 mm. Each core has an L1 data
cache (32 KB, 2-way write-back cache), four product–sum operation units, and 256
double-precision floating-point registers. With one SIMD instruction, two produc-
t–sum operation units can be operated at the same time. By executing two SIMD
instructions simultaneously, one core can perform eight floating-point operations
per clock cycle. Therefore, the theoretical performance of each core is 16 GFLOPS,
and the theoretical performance of the CPU (eight cores) is 128 GFLOPS for both
single and double precision. The CPU also has various mechanisms for scientific
and technical calculations, such as a hardware barrier mechanism for synchroniz-
ing the parallel processing between the cores, a prefetch mechanism for taking data
necessary for calculation into the cache in advance, and a sector cache mechanism
enabling programmable cache control. The theoretical bandwidth of the memory is
64 GB/s, and the B/F value is 0.5. The theoretical bandwidth of the L2 cache is
256 GB/s and the B/F value is 2.0. The theoretical bandwidth of the L1 cache is
64 GB/s, and the B/F value is 4.0. The memory and the L2 cache are accessed by
lines of 128 bytes. The DGEMM performance of the CPU is 123.6 GFLOPS (exe-

3 Case Studies of Performance Optimization of Applications 47

cution efficiency 96.6%), and the hardware barrier performance between the cores is
49 ns. The memory access performance by a triad of the STREAM benchmark code
is 46.6 GB/s.

We now describe the outline of the system. The complete K computer is a very
large system composed of more than 80,000 CPUs, with the aforementioned node
as the smallest structural unit. Four nodes are mounted on one system board, and 24
system boards are mounted in a computer rack. The entire K computer consists of
864 computer racks and has computing performance of 10 PFLOPS or more and the
memory capacity is 1 PB or more. The K computer has also realized excellent power-
saving performance (at the beginning of system operation) and high reliability. The
SPARC64 TMVIII fx provides 128 GFLOPS per chip while the power consumption
is only 58 W. It has excellent power-saving performance compared with the CPUs
used in other supercomputers (at the beginning of system operation). This is realized
by various technologies for power saving, such as a low operating frequency (2 GHz)
(at the beginning of system operation) and a mechanism for cutting power to unused
circuits. The operating temperature of this CPU is about 30 °C, which is extremely
low (compared with the CPUs installed in other supercomputers), contributing to the
reduction of the failure rate.

The execution time of the LINPACK benchmark program took about 28 h and
no malfunction occurred even though the system operated with a high load for that
time. This is an outstandingly large value compared with other supercomputers,
and it shows the low failure rate and high reliability of the K computer. In this
way, the K computer has not only the world’s best computing performance but also
various functions to improve utilization as a shared system, such as power-saving
performance, reliability, availability, and operability.

3.2.2 Outline of Tofu Interconnect

In the K computer, the Tofu (torus fusion) interconnect [10, 11] was adopted to
construct a communication network between the nodes, and the communication
among the 82,944 nodes is realized in the whole system. Each node is equipped with
an ICC, which has four Tofu network interfaces (TNIs) and a Tofu network router
(TNR); simultaneous communication in up to four directions is possible with the
TNI.

The TNR has ten links. Four of them handle communications for a three-
dimensional (3D)mesh/torus networkwithin 12 nodes (Tofu units), which is the basic
unit of Tofu. The remaining six links handle communications for a 3D mesh/torus
network between Tofu units. A six-dimensional (6D) mesh/torus network consists
of two 3D mesh/torus networks.

48 K. Minami and K. Kumahata

3.2.3 6D Network

The physical coordinate axes in the 6D mesh/torus network are denoted as (x, y,
z, a, b, c) [10, 11]. The three dimensions a, b, and c consist of 12 nodes of 2 × 3
× 2, which is a unit of Tofu, and are arranged in physically close positions in the
rack. The three dimensions x, y, and z are configured over several racks. In the K
computer, the node allocation is carried out in units of Tofu to reduce the load of the
job scheduler. With this combination of three dimensions plus three dimensions, the
communication can avoid faulty nodes and the construction of the 3D torus network
by job unit becomes possible [10]; this arrangement allows high availability1 and
flexibility to meet various operational needs. Users can specify the dimensions for
assigning the nodes when submitting jobs to the K computer. Here, we call it “node
shape”. Node shapes may be one-dimensional (1D), two-dimensional (2D), or 3D,
and it is possible to construct a torus network by job unit. For example, when the
node shape is specified as 3D, it is realized by a combination of six dimensions
((xa), (yb), (zc)). The MPI environment of the K computer is based on OpenMPI.
For the collective communication function of MPI, in addition to the communication
algorithmderived fromOpenMPI, a communication algorithmoptimized for theTofu
interconnect (Tofu-dedicated algorithm) was developed and high-communication
performance is realized. For example, for MPI_ALLREDUCE communication in a
3D torus network, we have adopted an algorithm called Trinaryx 3, which realizes
high performance by 3-way simultaneous communication, by dividing amessage into
three. Of the OpenMPI algorithm and the Tofu-dedicated algorithm, the optimum
one is automatically selected according to the size of the message at the time of
communication.

3.3 Computer Environment for Performance Evaluation

In the examples described below, the K computer was mainly used once it was
completed. However, before its completion, we used the T2 K-Tsukuba system of
the University of Tsukuba and the RIKEN integrated cluster of clusters (RICC)
system, which was the largest computer system in Japan at that time. We also used
the FX1 system as a small parallel computer environment. The CPU configuration,
the theoretical performance, and themainmemory of each of these computer systems
are shown below.

(1) T2K-Tsukuba

CPU configuration: Opteron Barcelona B 8000 648 node (quad-core × 4 sock-
ets/node)

1Here, availability means the ability of the system to operate continuously.

3 Case Studies of Performance Optimization of Applications 49

Theoretical performance: 2.3 GHz × 4 arithmetic × 4 cores × 4 sockets =
147.2 GFLOPS/node, 95.3 TFLOPS for the system
Main memory: 32 GB/node = 20.7 TB/system

(2) RICC parallel cluster

CPU configuration: Intel Xeon × 2048 CPUs (8192 core) (1024 units)
Theoretical performance: 2.93 GHz × 4 operations × 8192 cores = 96.0
TFLOPS
Main memory: 12.0 TB (12 GB × 1024 units)

(3) Fujitsu FX 1

CPU configuration: SPARC64 VII (2.5 GHz) 4 core/CPU, 1 CPU/node, 32
nodes
Theoretical performance: 40 GFLOPS/node, 1280 GFLOPS/system
Main memory: 32 GB/node.

3.4 Outline of the Examples of High-Parallelization
Performance Optimization

3.4.1 Enhancement of the Parallelization Axis

As described later in Sect. 3.5.4 for RSDFT and in Sect. 3.6.2 for PHASE, problems
arise when a software application cannot use the full parallelism of the hardware or
the global communication time increases. For PHASE, another problem is the large
residue of nonparallel parts. As described in Sect. 2.7 as a countermeasure against
these problems, the enhancement of the parallelization axis is adopted.

Details of the enhancement of the parallelization axis for RSDFT are given in
Sect. 3.5.5, and the results are shown in Sect. 3.5.6. Similarly, the enhancement of
the parallelization axis was applied to PHASE as shown in Sect. 3.6.3, and the results
are shown in Sect. 3.6.4.

3.4.2 Improvement of Communication and Load Imbalances

For RSDFT, the problems of the increasing global communication time are described
later in Sect. 3.5.4, and load imbalance problems in the Gram–Schmidt calculation
and the eigenvalue calculation are described in Sect. 3.5.6.

50 K. Minami and K. Kumahata

To deal with the increased global communication of the former, the enhancement
of the parallelization axis was adopted as described in Sect. 2.7. By applying the
optimum Tofu mapping method together with the enhancement of the parallelization
axis, significant performance improvement in communications was obtained. Details
of its application are given in Sect. 3.5.5, and the results are shown in Sect. 3.5.6.

3.5 Performance Optimization of RSDFT

3.5.1 Overview of RSDFT

RSDFT is a program to perform electronic state calculations based on density func-
tional theory [6]. It aims to elucidate quantum theory phenomena at the nanoscale
based on first principles and to predict nanomaterials and structures having new func-
tions. For example, themagnitude of leakage current of conventional semiconductors
has become a problem as the process becomes finer. To solve these problems, RSDFT
is used for a simulation to investigate the characteristics of new semiconductors with
low power consumption.

The Kohn–Sham (KS) equation expressed as follows is derived from density
functional theory within a local density approximation (LDA):

[
−1

2
∇2 + ve f f

]
ψi

(−→r) = εiψi
(−→r)

, (3.1)

ve f f = Vnucl
(−→r) + ∫ n

(−→r ′)∣∣−→r − −→r ′∣∣d
−→
r ′ + δExc[n]

δn
(−→r) , (3.2)

n
(−→r) =

∣∣∣∑ ψi
(−→r)∣∣∣2. (3.3)

In Eq. (3.1), i represents the quantum number of an energy band, ψi represents a
wave function, and r represents a space coordinate. Equation (3.1) is the eigenvalue
equation that will be solved. From the wave function ψi , i is obtained by solving
the eigenvalue equation and the electron density n

(−→r)
is calculated using Eq. (3.3).

The calculation is performed repeatedly until the input electron density matches
the output electron density within a certain range (self-consistent field calculation
(SCF)). RSDFT adopts the real-space method, which introduces a 3D lattice of
the real space into the eigenvalue equation and solves discretized physical property
values on each lattice as a difference equation. The lattice forming the 3D space is
divided into equal parts, ML1, ML2, and ML3, and the KS equation is solved as the
Hermitian eigenvalue problem with dimension ML (=ML1 × ML2 × ML3). The
parallel processing is implemented by dividing the space lattice into several small
areas and assigning each small area to a node.

3 Case Studies of Performance Optimization of Applications 51

3.5.2 Understanding the Software Application
Characteristics by Investigating the RSDFT Source
Code

Examination of the RSDFT source code showed that the main parts of the software
program are as follows: DTCG, which implements the conjugate gradient method;
GS, which carries out the standard Gram–Schmidt orthogonalization; and DIAG,
which carries out partial diagonalization. The main part of the calculations and the
update of the electronic density and potential are repeated until the condition of self-
consistent field (SCF) is satisfied. Figure 3.2 shows the calculation flow of RSDFT.

Fig. 3.2 Calculation flow of
RSDFT Read initial atomic configuration

Construct initial density
and initial potentials

Generate initial orbitals

Construct ionic pseudo potentials

Update orbitals
using Conjugate-Gradient (CG)

Perform Gram-Schmidt ortho-normalization (GS)

Update density

Update Hartree and
exchange-correlation potentials

Perform subspace diagonalization (SD)

Has SCF converged ?

end

No

Yes

52 K. Minami and K. Kumahata

Table 3.2 Investigation results of RSDFT source code

Name Explanation of processing Amount of computation

DTCG MB eigenvalues and eigenvectors of a
symmetric ML*ML matrix calculated with
a conjugate gradient method in order from
the smallest eigenvalues

O(ML × ML)

O
(
N 2

)

Gram–Schmidt Orthogonalization O
(
ML × MB2

)
O

(
N 3

)
DIAG Diagonalization of Hamiltonian limited to

a subspace of ML dimension

Creating matrix elements (MatE) O
(
ML × MB2

)
O

(
N 3

)
Solving eigenvalues (pdsyevd) O

(
MB3

)
O

(
N 3

)
Calculation of rotating (RotV) O

(
ML × MB2

)
O

(
N 3

)

DIAG consists of three parts: MatE, which generates matrix elements; pdsyevd,
which performs the eigenvalue calculation; and RotV, which performs rotation cal-
culation. Table 3.2 shows the processing and the amount of computation found in
the investigation of the source code. Here, ML represents the number of grids and
MB represents the number of energy bands. Because MB and ML are proportional
to the number of atoms N, the amount of computation in DTCG is of the order of
N2, while the amount of computation in Gram–Schmidt is of the order of N3. MatE,
pdsyevd, and RotV were also found to require computation of the order of N3. These
investigation results are consistent with the theoretical background.

As a supplement to these results, the cost distribution was measured under the
following conditions.

Measurement computer: RICC parallel cluster
Calculation parameters: number of atoms 8000, grid size 120 × 120 × 120
Number of energy bands: 16,000
Parallelism: 8 × 8 × 8 = 512, space parallel only

The following cost distribution was obtained. As described in the survey results
of the source code, the cost analysis also confirmed that DTCG, Gram–Schmidt, and
DIAG together form the main calculation part.

Initialization: 0.4%
SCF part (assuming SCF 100 times): 99.6%
DIAG: 30.5%
DTCG: 27.4%
Gram–Schmidt: 38.6%
Mixing and output of intermediate result: 3.1%.

3 Case Studies of Performance Optimization of Applications 53

3.5.3 Measurement of the Parallelization Features of RSDFT

Scalability measurements were performed on the three blocks found to be the main
computing parts: DTCG, Gram–Schmidt, and DIAG. The T2 K-Tsukuba of the Uni-
versity of Tsukuba and the PGI compiler were used, andmvapich2-mediumwas used
as a communication library. Five block divisions were used in the spatial direction:
128, 256, 512, 1024, and 2048. The calculation system used for the measurement
was 4096 atoms of Si, with 8192 energy bands and 96 × 96 × 96 grids for each
block. The calculation time, the global communication time, and the adjacent com-
munication timewere separated andmeasured using strong scaling. Figure 3.3 shows
the measurement results for each block, including calculation and communication
time. DTCG, Gram–Schmidt, and DIAG have good scalability only up to about 256

Fig. 3.3 Scalability of each
calculation block of RSDFT

SCF total time
DIAG total time
GS total time
DTCG total time

E
la

pp
se

d
tim

e(
se

c)

0

100

200

300

400

500

600

700

800

900

1000

Numbers of processes
0 500 1000 1500 2000

SCF ratio of speedup
DIAG ratio of speedup
GS ratio of speedup
DTCG ratio of speedup
Ideal

R
at

io
 o

f s
pe

ed
up

0

2

4

6

8

10

12

14

16

18

Number of prpcesses
0 500 1000 1500 2000

(a)

(b)

54 K. Minami and K. Kumahata

comm.S global
comm. S adjacent
calculation

num. of proc.
 SCF

num. of proc.
 DIAG

num. of proc.
 GS

num. of proc.
 DTCG

12
8

25
6

51
2

10
24

20
48

12
8

25
6

51
2

10
24

20
48

12
8

25
6

51
2

10
24

20
48

12
8

25
6

51
2

10
24

20
48

E
la

ps
ed

 ti
m

e(
se

c)

0

100

200

300

400

500

600

700

800

900

1000

Fig. 3.4 Scalability of each calculation/communication block of RSDFT

parallel paths. Figure 3.4 shows the measurement results for each block divided into
the calculation, the global communication, and the adjacent communication times.
For each block of DTCG, Gram–Schmidt, and DIAG, the calculation time shows
good scaling up to 1024 parallel paths but shows a deterioration in scaling from
2048 parallel paths. We found that the global communication time increased as the
number of parallel paths increased for DTCG and DIAG.

3.5.4 Evaluation of RSDFT Kernel and High-Parallelization
Feature

For RSDFT, the calculation and communication kernel was evaluated. From the
investigation of the source code shown in Sect. 3.5.2, when targeting 100,000 atomic
systems, we found that the calculation parts of Gram–Schmidt, MatE, pdsyevd, and
RotV, with computation of the order of N3, computationally formed a kernel. From
the measurement results of the parallelization characteristics shown in Sect. 3.5.3,

3 Case Studies of Performance Optimization of Applications 55

we found that DTCG, which causes increases in communication time in accordance
with the increase of the number of nodes, is also the kernel.

First, we consider the parallelization characteristics for computation time. By
dividing the number of grids shown in the calculation scheme in Sect. 3.5.2 by the
number of parallel paths, 96 × 96 × 96/2048 = 432 is obtained. It turns out that the
parallelization characteristics of the operationworsen at 432 grids per process. At this
point, assuming that the target problem of 100,000 atoms is solved using all 82,944
nodes of the K computer, 100,000× 216= 21,600,000 grids are required. When this
value is divided by the number of nodes, 82,944, the value becomes 260.4, which is
much smaller than the number of grids, 432 per process, at which the parallelization
characteristics worsen. This means that for the target problem, in the parallelization
of the current grid space, there is a problem that not all nodes of the K computer
can be used; that is, there is a mismatch in the number of parallel paths between the
hardware and the application.

Next, we consider the high-parallelization characteristics of the communication
time. For the twokernels,DTCGandDIAG, the global communication time increases
drastically, and for DIAG and Gram–Schmidt the global communication time for
2048 parallels is almost the same as the computation time. For DTCG, the global
communication time for 2048 parallel paths is nearly four times larger than the
computation time. This is a major problem when aiming for high parallelization.
The parallelization characteristics of each kernel are summarized in Table 3.3.

3.5.5 Code Modifications for High Performance of RSDFT

Enhancement of the parallelization axis
As described in Sect. 3.5.4, the first problem for the high parallelization of RSDFT
is to deal with the limited parallelism of RSDFT compared with the hardware. The
second problem is the high global communication time.

RSDFT solves the eigenvalue equation of Eq. (3.1). In the original RSDFT code,
the variable r representing the space in this eigenvalue equation is parallelized. This
equation contains the quantum number of the energy band i, and because there is
no dependence between different energy bands, in principle it is also possible to
parallelize by i. By enhancing the parallelization axis as described in Sect. 2.7,
it is possible to increase the parallelization of the application. At this point, the
parallelizationwas carried out for the energy bands in addition to the spatial direction,
to enhance the parallelization axis, allowing us to use several tens of thousands of
parallel paths rather than 1000, as shown later.

Investigation of the communication time after enhancing the parallelization axis
As shown in Sect. 2.7, the enhancement of the parallelization axis may eliminate an
increase in global communication time, which is the second problem of RSDFT. An
outline of the communication used in RSDFT is shown below. The underlined steps

56 K. Minami and K. Kumahata

Ta
bl
e
3.
3

Pa
ra
lle

lc
ha
ra
ct
er
is
tic

s
of

R
SD

FT
ke
rn
el

N
am

e
E
xp
la
na
tio

n
of

pr
oc
es
si
ng

A
m
ou
nt

of
co
m
pu
ta
tio

n
Pa
ra
lle

lc
ha
ra
ct
er
is
tic

s
Si
ng

le
-C

PU
pe
rf
or
m
an
ce

D
T
C
G

M
B
ei
ge
nv
al
ue
s
an
d

ei
ge
nv
ec
to
rs
of

a
sy
m
m
et
ri
c
M
L
*M

L
m
at
ri
x

ca
lc
ul
at
ed

w
ith

a
co
nj
ug
at
e

gr
ad
ie
nt

m
et
ho
d
in

or
de
r

fr
om

th
e
sm

al
le
st

ei
ge
nv
al
ue
s

M
in
im

iz
e
of

R
ay
le
ig
h

qu
ot
ie
nt

〈 ψ
m

|H
K
S
|ψ

n
〉

〈 ψ
m

ψ
n
〉

O
(M

L
×

M
L
)

O
(N

2
)

In
cr
ea
se
d

co
m
m
un

ic
at
io
n
tim

e.
It

is
re
ve
rs
ed

ca
lc
ul
at
io
n

tim
e.
L
ac
k
of

pa
ra
lle

lis
m

M
at
ri
x–
ve
ct
or

pr
od
uc
t

pe
rf
or
m
an
ce

is
ba
d

G
ra
m
–S

ch
m
id
t

O
rt
ho
go
na
liz
at
io
n

H
m

,n
=

〈 ψ
m
|H

K
S
|ψ

n
〉

O
(M

L
×

M
B
2
)

O
(N

3
)

C
om

m
un

ic
at
io
n
tim

e
do
es

no
td

ec
re
as
e.
It
is

co
m
pa
ra
bl
e
to

ca
lc
ul
at
io
n
tim

e.
L
ac
k

of
pa
ra
lle

lis
m

G
oo
d
du
e
to

m
at
ri
x–
m
at
ri
x
pr
od
uc
t

D
IA

G
D
ia
go

na
liz

at
io
n
of

H
am

ilt
on

ia
n
lim

ite
d
to

a
su
bs
pa
ce

of
M
L
di
m
en
si
on

C
re
at
in
g
m
at
ri
x

el
em

en
ts
(M

at
E
)

ψ
′ n
=

ψ
n

−
n−

1 ∑ m
−1

ψ
m
〈 ψ

m
|ψ

n
〉

O
(M

L
×

M
B
2
)

O
(N

3
)

In
cr
ea
se
d

co
m
m
un

ic
at
io
n
tim

e.
It

is
co
m
pa
ra
bl
e
to

ca
lc
ul
at
io
n
tim

e.
L
ac
k

of
pa
ra
lle

lis
m
.

Sc
al
ab
ili
ty

of
Sc

al
ap
ac
k

is
ba
d

G
oo
d
du
e
to

m
at
ri
x–
m
at
ri
x
pr
od
uc
t

So
lv
in
g
ei
ge
nv
al
ue
s

(p
ds
ye
vd
)

(
H
N

×N
)(−→ c n

) =
ε
(−→ c n

)
O

(M
B
3
)

O
(N

3
)

Pe
rf
or
m
an
ce

of
Sc

al
ap
ac
k
is
ba
d

C
al
cu
la
tio

n
of

ro
ta
tin

g
(R
ot
V
)

ψ
′ n
(r

)
=

N ∑ m
−1

c m
,n

ψ
m
(r

)
O

(M
L

×
M
B
2
)

O
(N

3
)

G
oo
d
du
e
to

m
at
ri
x–
m
at
ri
x
pr
od
uc
t

3 Case Studies of Performance Optimization of Applications 57

show the communication in the direction of the energy band, which is necessary
because of the enhancement of the parallelization axis.

• Global communication
• MPI_ALLREDUCE

– Gram–Schmidt: inner product array, normalization variable
– DTCG: scalar variable

• MPI_REDUCE

– DIAG (MatE)

• MPI_BCAST

– DIAG (Rot V)
– Gram–Schmidt: Deliver the updated wave functions of the triangle parts in Fig.
3.5

• MPI_ALLGATHERV

– DIAG
– Gram–Schmidt

• Adjacent communication
• Exchange of the boundary data: BCAST
• Nonlocal term calculation: HPSI
• Exchange the symmetric block data: DIAG (MatE)

Because of the enhancement of the parallelization axis, new communication pro-
cessing on the enlarged energy band axis is required. Figure 3.5 shows the outline
of the MPI_BCAST communication related to the Gram–Schmidt calculation as a

Fig. 3.5 MPI_BCAST communication related to the Gram–Schmidt calculation on the energy
band axis

58 K. Minami and K. Kumahata

typical example of the new communication processing on the energy band axis. First,
we perform the calculation of the triangle parts with rank 0. Next, we transfer the
calculation result to other ranks where the transferred data is used to calculate the
rectangle parts using DGEMM. After these, the procedure is repeated.

As described in Sect. 2.7.3, a reduction in communication time can be
expected for MPI_ALLREDUCE or MPI_BCAST by applying the enhancement
of the parallelization axis, but this reduction is less than the reduction effect for
MPI_ALLGATHERV and MPI_ALLTOALL. This means that if new communica-
tions of the types MPI_ALLGATHERV and MPI_ALLTOALL are required in the
code, the penalty for the addition of the communication may be large. The above
outline of the communication used inRSDFT shows that the center of the global com-
munication of the original RDFT code isMPI_ALLREDUCE andMPI_BCAST, and
MPI_ALLGATHERV and MPI_BCAST are additions. That is, the effect of reduc-
ing the communication time is not large, and the penalty may actually increase.
Therefore, the amount of communication and the number of each communication
were investigated. Part of the result is shown in Table 3.4. The portions of the com-
munication added are indicated by hatching in this table. This table shows that for
MPI_ALLGATHERV, which carries a large penalty, neither the amount of commu-
nication nor the number of communications is large. We can also see that neither the
amount nor the number of communications is large for MPI_BCAST.

Evaluation of the parallelization and communication by the enhancement of the
parallelization axis of RSDFT
To verify the results of these investigations, we implemented the energy band paral-
lelization and evaluated the increase in parallelization and the communication time.
Table 3.5 shows themeasurement patterns used for the evaluation. Normally, increas-
ing the number of atoms increases the number of energy bands. Here, to measure
the weak scaling, we performed the measurement while fixing the number of energy
bands to 19,200, the number of parallel paths for the energy band to eight, and the
number of energy bands in parallel to 2400. For the parallelization with respect to
the grid, the number of grids per process was fixed to 12 × 12 × 12, the number of
parallel processes was 4 × 4 × 4 = 64, 5 × 5 × 5 = 125, 6 × 6 × 6 = 216, or 8
× 8 × 8 = 512. Finally, the measurement was performed using the four parallelism
numbers 64 × 8 = 512, 125 × 8 = 1000, 216 × 8 = 1728, and 512 × 8 = 4096.

In the measurements, data were acquired for each of the four blocks GS, DTCG,
MatE/DIAG, and RotV/DIAG. Figure 3.6 shows the evaluation results. The calcula-
tion time is shown as “CALCULATION”, the global communication time for space
is shown as “COMMSGLOBAL”, the global communication time for energy bands
is shown as “COMM B GLOBAL”, and the adjacent communication time for space
is shown as “COMM S NEIGHBOR”. The execution times of the four blocks are
shown as the name of each process: “GS”, “DTCG”, “MatE”, and “RotV”.

There was no significant increase in global communication with respect to space,
as seen in Sect. 3.5.3, and no significant increase in the global communication with
respect to the newly added energy bands was observed. We also measured with weak
scaling, and no increase in the computation time was observed for any process-

3 Case Studies of Performance Optimization of Applications 59

Table 3.4 Communication size and number of communication times of RSDFT

Name MPI function Type Data size Number of
communications

Gram–Schmidt mpi_allgatherv mpi_real8 MB/NPB 1

mpi_allreduce mpi_real8 MBLK*NBLK ~
(NBKL1+1) *
(NBLK1+1)

MB/NBLK *
MBLK/NPB +
Int(log(NBLK/NBLK1))
* (MB/NBLK/NPB)

mpi_allreduce mpi_real8 NBLK1~1 NBLK1 *
(MB/NBLK/NPB)

mpi_allreduce mpi_real8 1 MB/NBLK *
MB/NBLK/NPB +
Int(log(NBLK/NBLK1))
* (MB/NBLK/NPB) +
NBLK1 *
(MB/NBLK/NPB)

mpi_bcast mpi_real8 MLO*NBLK MB/NBLK/NPB

DIAG mpi_allgatherv mpi_real8 MB/NPB 1

mpi_reduce mpi_real8 MBLK*MBLK (MB/MBLK *
MB/MBLK)/NPB

isend/irecv mpi_real8 MBLK*MBLK 1

Omit communication
in Scalapack (pdsyevd)

mpi_bcast mpi_real8 MSIZE*NBSIZE (MB/MBSIZE *
MB/NBSIZE)/NPB

HPSI mpi_isend mpi_real8 lma_nsend(irank) *
MBLK

6 * NCNONL *
MB/MBLK/NPB

mpi_irecv mpi_real8 lma_nsend(irank) *
MBLK

6 * NCNONL *
MB/MBLK/NPB

mpi_waitall – MB/MBLK/NPB

BCAST mpi_isend mpi_real8 Md*MBLK 6*MB/MBLK/NPB

mpi_irecv mpi_real8 Md*MBLK 6*MB/MBLK/NPB

mpi_waitall – MB/MBLK/NPB

MB Number of energy Band, NBLK Max size of DGEMM, NBLK1 Minimum size of DGEMM, MBSIZE Row
block size of MB × MB matrix, NBSIZE Column block size of MB × MB matrix, MBLK min(MBSIZE,
NBSIZE), Md Order of higher order finite difference, lma_nsend Number of nonlocal terms, NPB Number
of energy band parallelism, MLO Number of grids processed by one process, NCNONL Number of adjacent
communications in nonlocal term calculation for each direction

ing block, and no increase in the adjacent communication time was observed. The
absence of an increase in the computation time for the weak scaling measurements
implies that there is no nonparallel part in the computation, and the absence of an
increase in the adjacent communication time means that there are no problems in the
adjacent communication.

60 K. Minami and K. Kumahata

Table 3.5 Evaluation pattern of parallel axis expansion effect

Number of atoms Number of space
grids

Number of energy
bands

Number of
processes

Pattern1 512 48 × 48 × 48 19,200 512 (4 × 4 × 4 ×
8)

Pattern2 1000 60 × 60 × 60 19,200 1000 (5 × 5 × 5 ×
8)

Pattern3 1728 72 × 72 × 72 19,200 1728 (6 × 6 × 6 ×
8)

Pattern4 4096 96 × 96 × 96 19,200 4096 (8 × 8 × 8 ×
8)

GS calc.
GS total
GS comm. S glob.
GS comm. B glob.

Si4096atoms(space96 96 96,band8192)
GS,Weak Scaling,T2K-Tsukuba

E
la

ps
ed

 ti
m

e(
se

c)

0

10

20

30

40

50

numbers of processes
0 1000 2000 3000 4000

DTCG calc.
DTCG total
DTCG comm. S glob.
DTCG comm. B glob.

Si4096atoms(96 96 96, 8192)
DTCG,Weak Scaling,T2K-Tsukuba

E
la

ps
ed

 ti
m

e(
se

c)

0

5

10

15

20

25

30

35

40

45

numbers of processes
0 1000 2000 3000 4000

(a) (b)

(c) (d)

MatE calc.
MatE total
MatE comm. S glob.
MatE comm. S adj.

Si4096atoms(space96 96 96,band8192)
MatE/DIAG,Weak Scaling,T2K-Tsukuba

E
la

ps
ed

 ti
m

e(
se

c)

0

5

10

15

20

25

numbers of processes

0 1000 2000 3000 4000

RotV calc.
RotV total
RotV comm.S glob.

Si4096atoms(space96 96 96,band8192)
RotV/DIAG,Weak Scaling,T2K-Tsukuba

E
la

ps
ed

 ti
m

e(
se

c)

0

5

10

15

20

25

numbers of processes

0 1000 2000 3000 4000

Fig. 3.6 Evaluation result of effect expanding the parallelization axis

3 Case Studies of Performance Optimization of Applications 61

Fig. 3.7 Process mapping using for RSDFT on Tofu topology

By dividing the number of grids used for this evaluation by the number of parallels,
we obtained 96 × 96 × 96/4096 = 216, which is the same value as that for the target
problemevaluated inSect. 3.5.3.Wecan conclude that the scalability up to about 4000
parallel paths is secured while satisfying the (grid number/parallelization number)
value of the target problem by enhancing the parallelization axis.

3.5.6 Results of High Performance of RSDFT

Adoption of optimal Tofu mapping
In RSDFT, global communications such as MPI_BCAST and MPI_ALLREDUCE,
occur, and have large message lengths. They require efficient communication. In
dealing with the above extremely massive parallelization of RSDFT, the product
of the grid points and the number of divisions of energy bands is allocated to all
compute nodes through the two-axes parallelization.

In the K computer, a manually prepared rankmapping file2 can allow the optimum
mapping of the addresses of the network topology to the rank numbers. In this stage of
the performance tuning of RSDFT, we used this feature andmapped the computation
nodes to the Tofu network, as shown in Fig. 3.7. In this figure, “orbital” represents
an orbital corresponding to an energy band. When all the compute nodes are divided
into three parts, as shown in Fig. 3.7, the compute nodes in each part can always

2This is specified with the parameters at the job execution.

62 K. Minami and K. Kumahata

be connected in a torus network, thanks to the 6D Tofu network. Orbitals can be
partitioned almost equally into the same number of orbital groups as the number
of parts and each orbital group is allocated to each part. The parallelized tasks at
the grid points are executed within the part. With this allocation, communication
among the parallel tasks in the grid points is kept within a part and does not affect
the communications within other parts. The number of parts is increased to the
number of parallel paths in the orbitals. By adopting this mapping, the performance
improvement shown in Fig. 3.8 is obtained. By optimizing the mapping, the optimal
communication algorithm is applied for the Tofu topology, and the communications
are about 4.5 times faster.

Improving communication performance through two-axes parallelization
An analysis of silicon nanowires using 19,848 silicon atoms was carried out to verify
the improvement in communication performance through two-axes parallelization.
The number of energy bands was 41,472. We used 12,288 nodes of the K computer
and 98,304 cores. The number of grids used for the calculation was 320 × 320 ×
120 = 12,288,000. Figure 3.9 shows the comparison between the computation and
the communication time for space-only parallel processing for each processing block
and for two-axes parallel processing. The number of grid divisionswhen using space-
only parallelization was 12,288, and each node handled 1000 grids. With two-axes
parallelization of space and energy band, there were 4096 grid divisions and each
node handled 3000 grids. The energy band blocks were divided into three, and each
node handled 13,664 energy bands. The figure shows the great reduction in global
communication time that can be achieved for any processing block.

Without process mapping With optimal process mapping

number of atoms 19848
number of space grids 320 320 120
number of energy bands 41472
number of processes 12288

-space grids 2048(32 32 2)
-enrgy bands 6

torus : 32 32 12

(s
ec

)

0

20

40

60

80

100

Fig. 3.8 Process mapping effect using for RSDFT on Tofu topology

3 Case Studies of Performance Optimization of Applications 63

S
 p

ar
al

le
l

S
+

B
 p

ar
al

le
l

S
 p

ar
al

le
l

S
+

B
 p

ar
al

le
l

S
 p

ar
al

le
l

S
+

B
 p

ar
al

le
l

S
 p

ar
al

le
l

S
+

B
 p

ar
al

le
l

GS MatE/
DIAG

RotV/
DIAG

DTCG

comm. B sync
comm. B global
comm. S global
comm. S adj.
calculation

S : spacial
S+B : spacial + energy bands

el
ap

se
d

tim
e(

se
c)

0

50

100

150

200

250

300

350

400

Fig. 3.9 Improving effect of communication performance by expanding the parallelization axis

3.5.7 Total Performance of RSDFT

Figure 3.10 shows the strong scaling performance of RSDFT with two-axes paral-
lelization. The number of block-parallel divisions in the space was fixed to 1536,
and the energy band blocks were divided into 1, 2, 3, and 6 groups. Therefore, the
total parallelization was 1536, 3072, 4608, and 9216, respectively. The numbers of
cores used were 12,288, 24,576, 36,864, and 73,728, respectively. The horizontal
axis in Fig. 3.10 shows the number of cores and (a), (b), (c), and (d) show the cal-
culation and communication times for each processing block of GS, CG, MatE/SD,
and RotV/SD. The dashed line with open circles indicates the theoretical calculation
time, and the solid line with black squares indicates the measured calculation time.
They are consistent with each other, which shows that good scalability is obtained
with two-axes parallelization. It is also clear that there is no problem because, for
both the space and the energy band, the global communication and adjacent com-
munication times decrease as the number of parallel paths increases or when their
absolute values are small. The graphs in Fig. 3.10 show the good effects of two-axes
parallelization using the space and the energy bands.

64 K. Minami and K. Kumahata

GS cal.(theoretical)
GS cal.
GS comm. S adj.
GS comm. S global
GS comm. B global
GS comm. B sync

G
S

 e
la

ps
ed

 ti
m

e(
se

c)

0

50

100

150

200

250

300

350

number of cores

20,000 40,000 60,000 80,000

DTCG cal.(theoretical)
DTCG cal.
DTCG comm. S adj.
DTCG comm.S global
DTCG comm. B global
DTCG comm. B sync

D
T

C
G

 e
la

ps
ed

 ti
m

e(
se

c)

0

20

40

60

80

100

120

140

number of cores

20,000 40,000 60,000 80,000

MatE/DIAG cal.(theoretical)
MatE/DIAG cal.
MatE/DIAG comm. S adj.
MatE/DIAG comm. S global
MatE/DIAG comm. S global
MatE/DIAG comm.B sync

M
at

E
/D

IA
G

 e
la

os
ed

 ti
m

e(
se

c)

0

20

40

60

80

100

120

140

160

180

200

number of cores

20,000 40,000 60,000 80,000

RotV/DIAG cal.(theoretical)
RotV/DIAG cal.
RotV/DIAG comm. S global
RotV/DIAG comm. S adj.
RotV/DIAG comm. B sync

R
ot

V
/D

IA
G

 e
la

ps
ed

 ti
m

e(
se

c)

0

50

100

150

200

250

300

number of cores

20,000 40,000 60,000 80,000

(a) (b)

(c) (d)

Fig. 3.10 Strong scaling performance of RSDFT with two-axes parallelization

For the total performance verification, silicon nanowires were analyzed using
107,292 silicon atoms. The number of energy bands was 229,824. The number of
nodes of the K computer used was 55,296 with 442,368 cores. The number of grids
used for the calculation was 576 × 576 × 192 = 63,700,992, with 18,432 grid block
divisions, and each node handled 3456 grids. The energy band blocks were divided
into three groups, and each node handled 76,608 energy bands. The total performance
of this system is shown in Table 3.6. The complete SCF calculation achieved 3.08
PFLOPS, achieving apeakperformance ratio of 43.6%.This experimentwas awarded
the Gordon Bell Award at SC’11, which is a large international conference related
to supercomputers [12].

3 Case Studies of Performance Optimization of Applications 65

Ta
bl
e
3.
6

To
ta
lp

er
fo
rm

an
ce

of
R
SD

FT

Pr
oc
ed
ur
e

bl
oc
k

E
xe
cu
tio

n
tim

e
(s
)

C
om

pu
ta
tio

n
tim

e
(s
)

C
om

m
un

ic
at
io
n
tim

e
(s
)

A
dj
ac
en
t/s
pa
ce

G
lo
ba
l/s
pa
ce

G
lo
ba
l/e
ne
rg
y

ba
nd

W
ai
t/e

ne
rg
y
ba
nd

Pe
rf
or
m
an
ce

PF
L
O
PS

/%

SC
F

54
56
.2
1

44
17
.1
5

83
.1
8

89
9.
05

15
.8
7

40
.9
3

3.
08
/4
3.
63

SD
37
10
.0
1

32
18
.7
3

27
.7
0

45
8.
87

4.
70

–
2.
72
/3
8.
52

M
at
E

10
84
.7
0

71
7.
45

27
.7
0

33
7.
85

4.
70

–
3.
09
/4
3.
72

E
ig
en
So

lv
e

13
22
.1
6

87
9.
61

–
44
2.
39

–
–

0.
04
/0
.6
1

R
ot
V

12
98
.1
6

11
77
.1
5

–
12
1.
01

–
–

5.
18
/7
3.
25

C
G

20
9.
29

57
.6
6

55
.4
8

96
.1
4

0.
01

–
0.
05
/0
.7
4

G
S

15
36
.9
0

11
40
.7
6

–
34
4.
04

11
.1
6

40
.9
3

4.
37
/6
1.
87

66 K. Minami and K. Kumahata

3.6 Performance Optimization of PHASE

3.6.1 Overview of PHASE

PHASE [5] performs electronic structure calculations based on density functional
theory, like RSDFT. It clarifies quantum theory phenomena at the nanoscale from
first principles and predicts nanomaterials and nanostructures with new functions.
The purpose of PHASE is to calculate structural relaxation and dynamics from first
principles and to calculate various physical properties of the structures obtained.

Solving the Kohn–Sham equation obtained from density functional theory is ulti-
mately equivalent to solving the eigenvalue equation:

Hψik

(−→
G

)
= εiψik

(−→
G

)
. (3.4)

Here,ψik represents thewave function defined in the periodic boundary condition,
i represents the quantum number of the energy band,

−→
G represents the reciprocal

lattice vector, and k represents the kth point in the reciprocal lattice space. In contrast
to RSDFT, PHASE uses a periodic boundary condition and the wave function is
expressed as a function of the reciprocal lattice vector

−→
G . To solve the Kohn–Sham

equation, fast Fourier transformation (FFT) is used. Plane waves are employed as the
basis function and the wave function is expressed by a linear combination of plane
waves.

3.6.2 Understanding the Application Characteristics
by Investigating PHASE Source Code

Because RSDFT and PHASE have parts in common, we will briefly describe the
programming of the parts that are different from RSDFT.

Our investigation of the source code of PHASE showed that the program is divided
into 11 blocks. When these processing blocks are categorized according to their cal-
culation characteristics, they can be classified into three kinds of processing blocks:

• Blocks that can be rewritten as matrix–matrix products;
• Blocks including FFT;
• Blocks that perform the diagonalization of matrices.

The first group of processes can be rewritten as matrix–matrix products, as
in RSDFT, as Gram–Schmidt orthonormalizations (described in Sect. 2.8.4). The
amount of computation of these processes is of the order of N3, as in RSDFT.

The second group of processes involves FFT, which is not in RSDFT. PHASE
performs the FFT processing from the reciprocal lattice space to the real space
once while calculating the product of Hamiltonian and wave functions in solving

3 Case Studies of Performance Optimization of Applications 67

the Kohn–Sham equation, and performs inverse FFT processing after inner product
processing in the real space. In PHASE, using the discretization in the reciprocal
lattice space, the second group of processes appears frequently. The calculation
amount of the FFT processing is of the order of N 2 × log2 N .

The third group of processes performs diagonalizations, and these are also present
in RSDFT. The amount of computation of the diagonalization processing is of the
order of N3.

In PHASE, as with RSDFT, there is no dependency on the energy band quan-
tum number i (Eq. (3.4)), and this independence is used to parallelize the energy
bands. There is also a part parallelized for the reciprocal lattice (G in Eq. (3.4)).
The transpose operation is used, so the wave functions parallel to the energy bands
before G-parallelization can be G-parallelized. In addition, the transpose operation
for returning the wave functions parallelized in G is parallel to the energy band par-
allelization after the G-parallel calculation has completed. The transpose operation
shown inFig. 3.11 is the global communication between all nodes (MPI_ALLTOALL
type), and both the transfer amount and the transfer count are large contributors to
the increase in the communication cost.

From the source code investigation, the loop structure of block 2 is shown in
Fig. 3.12. This loop structure is displayed in a simplified form; originally, it was a
more complicated structure, but the essential parts are shown here. The innermost
energy band parallel part is the loop originally parallelized in PHASE. There is a

Fig. 3.11 Transpose
operation in PHASE

G

i G

i

Fig. 3.12 Loop structure of
PHASE block 2

68 K. Minami and K. Kumahata

loop for atoms outside this loop, which also contains the heavy processing for the
reciprocal lattice. The loop between this atomic number loop and the energy band
parallel part was not parallelized in the original PHASE code. We found that there
is a nonparallel part in section 2, so that the whole is partially parallelized.

The domain decomposition is in many cases completely parallelized. However,
as in PHASE, in spite of physically being able to adopt multiple parallelization axes,
if only one axis is used, nonparallel parts may remain.

3.6.3 Modification of the Code for High Performance
of PHASE

The problem with the high parallelization of PHASE was the limited parallelization
of the applications compared with the number of cores, as with RSDFT. PHASE
solves the eigenvalue equation of Eq. 3.4. Basically, in the original PHASE, the par-
allelizationwas implemented for the variable i representing the energy band quantum
number in the eigenvalue equation. For the Gram–Schmidt diagonalization process-
ing, for example, parallelization through the reciprocal lattice (G) was implemented.
In principle, the equations used in PHASE can be parallelized completely for all
energy bands i and the reciprocal lattices G for all parts. As described in Sect. 2.7.3,
enhancement of the parallelization axis allows an increase in the parallelization of
the application to match the number of hardware cores. At this time, the full par-
allelization of two axes has been implemented for all parts concerning the energy
bands and the reciprocal lattice. By thus enhancing this parallelization axis, we have
extended the number of parallel paths to several tens of thousands from 1000, as
shown later.

In Sect. 3.6.2, the high parallelization of PHASE showed that there was a remain-
ing nonparallel part, which was sandwiched between the head of the atomic number
loop and the energy band parallel part shown in Fig. 3.12. This part performs the
calculation on the reciprocal lattice. Therefore, in addition to the energy bands, by
parallelizing through the reciprocal lattice (G), this remaining nonparallel part can
be parallelized.

As described in Sect. 2.8.4, it is also possible to rewrite the calculation of the non-
local term and the calculation of the Gram–Schmidt orthogonalization as matrix—
matrix products, as with RSDFT. This revision can reduce the required B/F value,
and high performance of a single CPU can be expected. Furthermore, by using the
matrix–matrix product BLAS level 3 subroutine DGEMM from the mathematical
library, it becomes possible to calculate with very high performance optimized for
a particular machine [5]. Because PHASE did not implement the algorithm using
this matrix–matrix product, we have applied this algorithm and have evaluated the
results [13].

3 Case Studies of Performance Optimization of Applications 69

3.6.4 Total Performance of PHASE

Table 3.7 shows the execution time and the execution efficiency while calculating the
amorphous system of HfSiO2 with 1536 atoms, as measured in the K computer using
2048 cores. The parts rewritten using the BLAS library achieved efficiencies of more
than 50%, and we have achieved execution efficiency exceeding 20% throughout the
SCF loop. Moreover, from measuring an SiC system with 3800 atoms using from
48 to 12,288 parallel paths, we confirmed that the scaling can be secured up to
parallelization numbers much larger than the number of atoms. This could not be
calculated using the conventional parallelizationmethod because of the finer division
granularity.

3.7 Examples of Single-CPU Performance Optimization

In this section, we outline the performance optimizations related to the single-CPU
performance as described in Sect. 2.8, using Seism3D and FFB. For Seism3D, we
describe the effective use of the cache shown in Sect. 2.8.9. The effective use of the
cache is shown in Sect. 3.8.3 and the results are shown in Sect. 3.8.4 [7]. We also
describe the cache validation method for applications using list access in Sect. 2.8.10
for FFB. Section 3.9.3 shows the method and Sect. 3.9.4 shows the result [7, 14, 15].

Again using FFB as the example, we describe the block coloring method for
recurrence elimination, targeting the unstructured grid shown in Sect. 2.8.3. The
method is shown in Sect. 3.9.3 and the results are shown in Sect. 3.9.4 [7, 14, 15].
Using Seism3D and FFB as examples, we describe the performance estimation using

Table 3.7 Performance of amorphous 1536 atomic system in 2048 processes (K computer)

Block name Elapsed time (s) Ratio of peak
performance (%)

SCF 39.79 20.11

Block1 (FFT) 0.02 2.19

Block2 (BLAS) 6.89 53.53

Block3 (FFT) 3.99 3.56

Block4 (BLAS) 1.88 64.76

Block5 (BLAS, comm.) 2.53 17.32

Block6 (FFT) 1.24 5.15

Block8 (FFT, BLAS) 4.16 16.56

Block9 (BLAS,
ScaLAPACK)

12.31 3.88

Block10 (BLAS) 1.89 64.30

Block11 (FFT) 5.05 4.78

70 K. Minami and K. Kumahata

the roofline model described in Sect. 2.8.8. The results for Seism3D are shown in
Sect. 3.8.2 and those for FFB in Sect. 3.9.2 [7].

3.8 Single-CPU Performance Optimization of Seism3D

3.8.1 Overview of Seism3D

Seism3D [3, 4] is a large-scale parallelization program that solves earthquake prop-
agation and tsunamis in conjunction with each other by the time evolution of the
viscoelastic equation using the finite difference method (staggered lattice difference
method). Seism3D is composed of the following six calculation kernels:

(a) Stress spatial difference calculation
(b) Velocity spatial difference calculation
(c) Stress–time integral calculation
(d) Stress–time integral absorption calculation
(e) Velocity–time integral calculation
(f) Velocity–time integral absorption calculation.

There are two versions of Seism3D. The initial version did not implement steps
(d) and (f) and used 3D domain decomposition for the parallelization. This version
only dealt with earthquake simulation. Figure 3.13 shows the calculation flow of the
initial version. The full version was then developed by implementing the physical
properties of water on top of the mesh to simulate tsunamis as well as earthquakes. In
this version, to overcome the imbalance of calculation times between earthquake and
tsunami, a 2D domain decomposition in the horizontal direction was adopted, and
the processing of (d) and (f) was included. Calculations in this version required large
B/F values, and the communications were only in the halo region in the horizontal
direction.

Fig. 3.13 Calculation flow
of Seism3D Stress spatial difference

integral
integral

absorption

Velocity MPI communication

Velocity spatial difference

integral
integral

absorption

Stress MPI communication

Tim
e S

tep

(a)

(b)

(c) (d)

(e) (f)

3 Case Studies of Performance Optimization of Applications 71

The results of the investigation of the program flow for the original version of
Seism3D are described below. Seism3D can explicitly obtain the propagation of the
seismicwaves in a heterogeneous underground structure from the equations ofmotion
(stress–equilibrium equation) and the constituent equations of stress–distortion by
using the difference calculation method (time: second-order accuracy, space: fourth-
order accuracy). The equations of motion are

ρüx = ∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
+ fx , (3.5)

ρü y = ∂σyx

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
+ fy, (3.6)

ρüz = ∂σzx

∂x
+ ∂σzy

∂y
+ ∂σzz

∂z
+ fz. (3.7)

Here, ü is an acceleration, σ is stress, ρ is a density, and f is an external force.
The stress–strain constitutive equation (Hooke’s law) is

σpq = λ
(
exx + eyy+ + ezz

)
δepq + 2μepq). (3.8)

Here, e is a distortion, λ and μ are constants of Lame, δ is the Kronecker delta,
and the distortion can be found from

exx = ∂ux

∂x
, ey = ∂uy

∂y
, ez = ∂uz

∂z
, (3.9)

exy = 1

2

(
∂ux

∂y
+ ∂σ y

∂x

)
, eyz = 1

2

(
∂uy

∂z
+ ∂u z

∂y

)
, ezx = 1

2

(
∂uz

∂x
+ ∂ux

∂z

)
.

(3.10)

3.8.2 Evaluation of Single-CPU Performance of Seism3D

We mentioned in Sect. 2.8.9 that the sparse matrix–vector product often appears
when a partial differential equation is discretized. It appears in Seism3D. The sparse
matrix is a type of scalar value and the vector is represented as a 3D array. Because
only a few elements appear in each row of the sparse matrix, the reusability of the
vector elements is limited to the same number.

The performance prediction from the roofline model shown in Sect. 2.8.8 is
described. Among the six calculation blocks shown in Sect. 3.8.1, the same cal-
culations are performed for the spatial differential calculations of (a) and (b). As
our example, we use the coding of the velocity difference term in the Z-direction
in (a) and (b) of Fig. 3.14. This coding is the sparse matrix–vector product and the

72 K. Minami and K. Kumahata

Fig. 3.14 Velocity finite
difference calculation of
Z-direction

do J = 1, NY
do I = 1, NX

do K = 3, NZ-1
DZV (k,I,J) = (V(k,I,J) -V(k-1,I,J))*R40 &

- (V(k+1,I,J)-V(k-2,I,J))*R41
end do

end do
end do

sparse matrix is the scalar type. In this loop, thread parallelization through the block
division is implemented in the J loop of the outermost loop. Here, NZ = 4000,
NX = 60, and NY = 80. This program is coded in single precision. Therefore, the
size of the entire array of V and DZV is 76.8 MB, the size of the K axis × I axis is
960 KB, and the size of the K axis is 16 KB. The entire array is too large to store
in the cache, though one occurrence of the K axis × I axis is small enough to store
in the L2 cache, and the K axis can be stored in the L1 cache. In this example, the
FLOP value is 5,3 and the B/F value required is obtained from the coding as follows.
First, we calculate the required byte value. V(K – 2, I, J) is loaded from the memory
first. Assuming that V(K – 1, I, J), V(K, I, J), and V(K+ 1, I, J) are in the same cache
line at this time, these data do not need to be loaded separately from the memory but
can be loaded from the L1 cache because they are stored together in the L1 cache.
DZV(K, I, J) is loaded once frommemory and then stored in memory. Therefore, the
number of loads and stores from memory is 3.4 The number of required FLOPS is 5
when counting the number of operations from Fig. 3.14. In the roofline model, only
memory accesses are considered without considering cache accesses. Therefore, the
byte value required from the coding in Fig. 3.14 is 12 bytes in 3 × 4 bytes, and the
required B/F value is 12/5 = 2.4. In the roofline model, the estimated performance
is obtained by dividing the required B/F value by the hardware B/F value. The B/F
value of the hardware of K computer can be obtained by dividing 64 GB/s by 128
GFLOPS. Using this value, 0.5/2.4 = 0.208, so 20.8% is the predicted performance.

Performance prediction of Seism3D
We found that the estimation accuracy can be improved by using the effective peak
performance without using the theoretical peak performance of the memory band-
width. The effective memory bandwidth between the CPU and memory of K com-
puter is 46 GB/s; the B/F value of the hardware (0.5) is multiplied by the ratio,
0.72 (=46/64), between the theoretical memory bandwidth (64 GB/s) and the effec-
tive memory bandwidth (46 GB/s); and the effective B/F value of the hardware is
obtained as 0.36. Therefore, the predicted performance value is 0.36/2.4 = 0.15, and
it can be predicted that the performance of 15% of the peak performance ratio is the
maximum performance of this coding.

3In this case, we consider “add” as 3 and “multiply” as 2.
4In this case, we consider “store” as 1 and “load” as 2.

3 Case Studies of Performance Optimization of Applications 73

Next, the coding of two difference calculations in the X- and Y- direction is shown
in Figs. 3.15 and 3.16. The performance prediction in the X-direction is almost the
same as that for the Z-direction. The difference is that three V elements out of the
four V loads are predicted, as the data are stored in the L1 cache in the Z-direction
calculation, whereas in theX-direction calculation, because it is in the range of 16KB
× 4 = 64 KB, it is predicted to be stored in either the L1 cache or the L2 cache.
In either case, no memory access occurs, so the required B/F value is 2.4 as in the
Z-direction difference and the predicted performance is 15%.

The performance prediction in the Y-direction is rather different from the predic-
tion in the Z or X-direction. The size of theK axis× I axis is 960KB, and considering
that thread parallelization is applied on the J axis, none of the four elements of V
will remain in the cache. Therefore, there are six load/stores from memory and the
24 bytes are required bytes, so the required B/F value becomes 24/5 = 4.8, and the
predicted performance becomes 7.5%.

Measurement results and evaluation of the space differential calculation of
Seism3D
Table 3.8 summarizes the required B/F values and the predicted performance value
shown in Sect. 3.8.2, together with the measured values. Table 3.8 shows that the
predicted value is consistent with the measured value. From the coding shown in
Sect. 3.8.2, the basic pattern is that prefetch works because the data are accessed
continuously, and it seems that condition (1) in Sect. 2.6 and the effective use of

Fig. 3.15 Velocity finite
difference calculation of
X-direction

do J = 1, NY
do I = 1, NX

do K = 1, NZ
DXV (k,I,J) = (V(k,I,J) -V(k,I-1,J))*R40&

- (V(k,I+1,J)-V(k,I-2,J))*R41
end do

end do

Fig. 3.16 Velocity finite
difference calculation of
Y-direction

do J = 1, NY
do I = 1, NX

do K = 1, NZ
DYV (k,I,J) = (V(k,I,J) -V(k,I,J-1))*R40 &

- (V(k,I,J+1)-V(k,I,J-2))*R41
end do

end do
end do

Table 3.8 Velocity finite difference calculation of Seism3D

Z-direction X-direction Y-direction

Required B/F value 2.4 2.4 4.8

Predicted performance value (%) 15.0 15.0 7.5

Measured performance value (%) 15.3 15.1 7.6

74 K. Minami and K. Kumahata

prefetch are satisfied. Because it is a continuous access, it also satisfies condition
(2), that is, the effective use of line accesses. Because these conditions are satisfied,
it is reasonable that the predicted value is consistent with the measured value. We
concluded that there are no performance problems with this coding.

3.8.3 Modification of the Code for Improved Performance
of Seism3D

In this section, detailed examples of tuning the sparse matrix–vector product shown
in Sect. 2.8.9 are described.

Cyclic division thread parallelization
As a further tuning method, we first consider the loop fusion of each loop of ZXY.
Because there are references to the elements of V(K, I, J) in each of the three loops,
by fusing loops it may be possible to halve the load of V(K, I, J) overall. Next, we can
change the outermost J loop from thread parallelization by the block division method
to thread parallelization by the cyclic division method. In the J-axis loop, V(K, I, J)
is loaded from memory. However, for the sequence V(K, I, J – 1), V(K, I, J – 2),
and V(K, I, J + 1), the thread parallelization by cyclic division of the J-axis can be
expected to use the elements of V loaded into the L2 cache by both the neighboring
threads. This takes advantage of the characteristics of the K computer in which the
L2 cache is shared by the eight cores. Figure 3.17 shows the code after tuning.

We consider the predicted performance value of this post-tuning coding. First, the
FLOP value is 15. As before, one element of V is loaded from memory. At that time,
the other 11 elements of V are thought to be stored in the L1 or L2 cache. DZV(K,
I, J), DXV(K, I, J), and DYV(K, I, J) are loaded once from memory and then stored
in memory. Therefore, there are seven load/stores from the memory. The coding in
Fig. 3.17 requires 7 × 4 bytes = 28 bytes, and the required B/F value is 28/15 =
1.86. The predicted performance value is therefore 19% from 0.36/1.86 = 0.19.

Fig. 3.17 Coding of cyclic
division thread
parallelization

!$OMP DO SCHEDULE(static,1),PRIVATE(I,J,K)
do J = 1, NY

do I = 1, NX
do K = 3, NZ-1

DZV (k,I,J) = (V(k,I,J) -V(k-1,I,J))*R40 &
- (V(k+1,I,J)-V(k-2,I,J))*R41

DXV (k,I,J) = (V(k,I,J) -V(k,I-1,J))*R40&
-(V(k,I+1,J)-V(k,I-2,J))*R41

DYV (k,I,J) = (V(k,I,J) -V(k,I,J-1))*R40 &
- (V(k,I,J+1)-V(k,I,J-2))*R41

end do
end do

end do

3 Case Studies of Performance Optimization of Applications 75

Table 3.9 Result of applying
cyclic division thread
parallelization method

Required B/F value 28/15 = 1.86

Predicted performance value 0.36/1.86 = 0.19

Measured performance value 17.7%

Table 3.10 Result of stress
time integral calculation

Required B/F value 252/175 = 1.44

Predicted performance value 0.36/1.44 = 0.25

Measured performance value 17.4%

Table 3.9 summarizes the performance predictions and the measured results for
this coding. The performance of about 18% is obtained for all of ZXY, and the
predictions and measurements are consistent. The tuning effort has improved the
original performance.

Performance prediction and measurement of stress–time integral calculation
Among the six calculation blocks shown in Sect. 3.8.1, the performance prediction
and the measurement result of the stress–time integral calculation of (c) are shown
in Table 3.10. Because there is no difference calculation such as –1,+1 that has been
evaluated so far, the stress calculation section is an examplewith no vector reusability,
even in the sparse matrix–vector product. All the arrays are accessed with indexes
(K, I, J) as the accesses of DXV, DYV, and DZY that appeared in the ZXY difference
calculation. Therefore, all the arrays are accessed from memory. Because the coding
length is about 100 rows, although not described here, an evaluation similar to the
previous discussion was carried out and the required B/F value and the predicted
performance value were obtained. Table 3.10 shows that the measured value is much
lower than the predicted value.

Tuning of stress–time integral calculation
Based on this result, we investigated whether there was a prospect of improving the
performance. When we examined the profile data in detail, the measured result for
the memory bandwidth was about 35 GB/s, which shows that it does not satisfy
the condition (1) shown in Sect. 2.6. When looking at the prefetching situation, we
found that the hardware prefetching was not used efficiently. We reduced the number
of streams by fusing several sequences and reducing the number of sequences to
increase the efficiency of the hardware prefetching. With this tuning, the execution
performance improved from17.4 to 21.8%and approaches the predicted performance
value, and the memory bandwidth value is also 42.4 GB/s, which is close to the
46 GB/s effective value.

76 K. Minami and K. Kumahata

3.8.4 Results for the High-Performance Version of Seism3D
and the Total Performance

Similar evaluations and tuning were carried out for all of (a)–(f) shown in Sect. 3.8.1.
Table 3.11 summarizes the results of solving the L1 cache conflict and so on. The
results show the peak performance of the original and tuned code including the
communication, and that the performance has improved from 10.3% to 15.3%. For
the differential/integral calculation, we show the single-CPU performance without
the communications, and the performance improvement is confirmed in either case.
By further tuning such as the use of theXFILL5 control statement for the efficiency of
the data store, the single-CPU performance without communications was improved
up to 17.5%.

Finally, Fig. 3.18 shows the results of measuring the performance with weak
scaling from 16 nodes to 82,944 nodes. Good weak scalability up to 80,000 nodes is
obtained, and the total performance of all nodes is 2.1 PFLOPS, achieving the peak
performance ratio of 19.7%.

Table 3.11 Performance improvement result of Seism 3D(1)

Original Tuned code

Elapsed
time (s)

Ratio of
peak per-
formance
(%)

Elapsed
time (s)

Ratio of
peak per-
formance
(%)

Overall 75.5 10.3 52.9 15.3

Stress spatial difference calculation 13.0 10.4 9.2 14.7

Velocity spatial difference calculation 13.4 10.1 7.7 17.7

Stress–time integral calculation 12.8 17.0 11.5 21.8

Stress–time integral absorption
calculation

12.5 7.6 10.3 10.2

Velocity–time integral calculation 9.7 7.5 3.0 23.0

Velocity–time integral absorption
calculation

7.9 15.3 6.9 17.5

5Control statement for streamlining array access without loading.

3 Case Studies of Performance Optimization of Applications 77

Fig. 3.18 Total performance of Seism3D

3.9 Single-CPU Performance Optimization of FFB
and an Example

3.9.1 Overview of FFB

FFB [7] is a general-purpose fluid analysis application based on large eddy simulation
(LES) that can predict the unsteady flow of uncompressed fluids with high accuracy.
It can predict the noise generated from fluid machines such as fans or pumps by
adopting discretization using the finite element method with excellent shape confor-
mity, unsteady turbulent flow around complex shapes, and flow. There are two types
of calculation methods in the finite element method. The first constructs an over-
all stiffness matrix and solves the matrix using the implicit method, and the other
advances the calculation using only the element rigidity matrix without constructing
the overall configuration matrix (element-by-element method). The new version of
FFB is compatible with both the solvers.

Figure 3.19 shows the processing flow of the FFB solver. The calculation of the

78 K. Minami and K. Kumahata

velocity predictor, the calculation of pressure, and the velocity correction calculation
are the main parts of this calculation. The flow of the subroutines called from the
calculation of the velocity predictor is shown in Fig. 3.20. The main parts of the
calculation are bcgs2x and calaxc, which calculate the matrix–vector product. The
configuration of the subroutines called from the calculation of pressure is shown in
Fig. 3.21. This calculation has a nodal pressure mode in which an entire stiffness
matrix is constructed and solved by the implicit method, and an element pressure
mode in which the calculation is advanced using the element-by-element method.
The center of the calculation of the nodal pressure mode is calaxc, which is also

ddsync*

setpro

erchk2*

vel3d1*

Pressure calc.*
(pres3x, pres3e)

vel3d2*

calfbf*

calfrx*

caluel

nodlex*

hokan

caldnr*

ddcom2*

Sync

Properties

Error
check

Velocity
prediction

Velocity
correction

M
ai

n
 c

al
c.

Fig. 3.19 Calculation flow of FFB

vel3d1
(Velocity prediction)

N
ex

t
T

im
e

(Velocity correction)

e2pmat Constructs an overall stiffness matrix
ddcomx Adjacent communication
dgnscl Diagonal scaling
ddcomx Adjacent communication
clrcrs Setting Dirichlet condition
bcgs2x Velocity prediction of UVW (Bi-CGSTB)

calaxc Calculate Ax
ddcomx Adjacent communication(Ax)
ddcom2 Allreduce (r0 rk)

ddcom2 Allreduce (b b)

calaxc Calculate Apk

ddcomx Adjacent comm. (Apk)

ddcom2 Allreduce(r0 Apk)

calaxc Calculate Atk

ddcomx Adjacent comm. (Atk)

ddcom2 Allreduce (Atk Tk)

ddcom2 Allreduce(Atk Atk)

Loop

Fig. 3.20 Calculation flow of velocity prediction

3 Case Studies of Performance Optimization of Applications 79

Fig. 3.21 Calculation flow of pressure calculation

the center of the calculation of vel3d1. The center of the calculation of the element
pressure mode is callap.

3.9.2 Evaluation of Single-CPU Performance of FFB

Investigation of the execution characteristics of FFB
Figure 3.22 shows the execution time distribution of the subroutines when 100,000
tetrahedron elements are calculated. The gradient calculations of the tetrahedral ele-
ments (callap) required 14.1 s (30%) and 4.8 s (10%), and the sparse matrix–vector
products (calaxc) required 13.0 s (27%). As shown in Figs. 3.20 and 3.21, the main
communication processing within the FFB time integration loop is of the following
two types. The first performs the global communication in the subroutine ddcom2,
and MPI_ALLREDUCE (MPI_SUM) is called in all MPI ranks. The second per-

Fig. 3.22 Execution time
distribution of FFB

80 K. Minami and K. Kumahata

forms the adjacent communication in the subroutine ddcomx. The communication
of physical quantities on the nodes shared with adjacent regions is performed in each
region of the domain decomposition processing. The communication processing uses
the following procedure:

– Packing of the communication data to the transmission buffer
– Asynchronous communication (MPI_ISEND, MPI_IRECV) call
– Waiting for the asynchronous communication (MPI_WAITALL)
– Adding the communication data from the receive buffer to the actual array.

From the configuration of these subroutines,we found that the center of calculation
is calaxc and callap, and the center of communication is ddcomx and ddcom2.

Sparse matrix–vector product of FFB
FFB is a fluid calculation program using the finite element method. As described
above, the finite element method includes two types of calculations; one builds the
entire rigidity matrix, and the other is an element-by-element method that advances
calculation with only the element rigidity matrix without constructing the entire
configuration matrix. First, we describe the sparse matrix–vector product kernel
used to build the overall rigidity matrix. The coding of the kernel of the sparse
matrix–vector product of FFB is shown in Fig. 3.23. The general compressed sparse
row (CSR) format6 is used for thematrix data storage. The vectors are accessed using
a list array that stores the surrounding nodal numbers for calculating a certain node.
Because the average number of elements in each row of the sparse matrix is about
30, the reusability of the vector elements is about 30.

Next, we describe the computational kernel used to calculate the element-by-
element method. The coding of the kernel is shown in Fig. 3.24. In this example, the
finite element approximation is

∇p = ∂p

∂xi
=

∑
j=1

∂N j

∂xi
pe. (3.11)

It is calculated for the tetrahedral elements. The shape function stored in DNX
and the others and the value of the pressure stored in S are continually referenced.
The gradient value of the pressure represented by FX and the others appearing on

Fig. 3.23 Matrix–vector
product coding of FFB

6A method for storing only the nonzero elements of a sparse matrix.

3 Case Studies of Performance Optimization of Applications 81

Fig. 3.24 Kernel coding of
element-by-element method

the right side are stored in each node, and the nodal number is accessed by a list
arrangement with the element number as an index.

Performance prediction of FFB
First, we describe the sparse matrix–vector product kernel used to build the overall
rigidity matrix. This evaluation uses hexahedron elements with at most 27 adjacent
nodal points and tetrahedral elements with at most 24 adjacent nodal points. Because
in this coding we use list access to obtain the vector data, the latency of the memory
access occurs when referring to the vector element and a large penalty is caused by
using only one element out of one line. A remarkable performance deterioration is
predicted. Even when the elements of the vector are stored in the L2 cache, they do
not decrease memory accesses much, and similar penalties occur in the L2 cache.
If the data of the vector used for the calculation can be stored in the L1 cache, the
penalty for the latency and the line access will be eliminated and the access penalty
to the vector memory can be ignored. In this case, 8 bytes are required for 2 elements
× 4 bytes and the FLOP value is 2, so the required B/F value is 4. Using the effective
B/F value of 0.36, the predicted performance is 0.36/4 = 0.09, that is 9%.

Next, we describe the computational kernel used to calculate the element-by-
element method. Again, suppose that the data defined by a nodal point such as FX
are stored in the L1 cache. In this case, 16 elements× 4 bytes× (9/4)+ 1 element×
4 bytes = 148 bytes are required, and the required FLOP value is 24, so the required
B/F value is 148/24 = 6.17. The factor (9/4) is included because nine elements are
declared in the first dimension of DNX. Using the effective B/F value of 0.36, the
predicted performance is 0.36/6.17 = 0.058, that is 5.8%.

82 K. Minami and K. Kumahata

Table 3.12 Performance of
matrix–vector product of FFB

Hexahedron (ratio of
1 core peak
performance)

Tetrahedron (ratio of
1 core peak
performance)

Original code 5.9% 2.4%

Measurement results and evaluation of FFB kernel performance
First, we describe the sparse matrix–vector product kernel used to build the overall
rigidity matrix. Initially, because the original code kernel was not thread parallelized,
it was measured with one core and the results are shown in Table 3.12. The numerical
value is the ratio of the peak performance to the peak performance 16 GFLOPS of
one core. The result for the STREAM benchmark when occupying the memory
bandwidth with one core is 20 GB/s. Therefore, the theoretical hardware B/F value
is 1.25 at 20 GB/16 GFLOPS. Because the required B/F value is 4, as shown in
Sect. 3.9.2, the predicted performance value is 31% at 1.25/4 = 0.31. The value
in Table 3.12 is much smaller than this predicted value. The cause is presumed to
be inefficient instruction scheduling given that the iteration count of the innermost
loop is at most 27, in addition to the large penalty of vector accesses described in
Sect. 3.9.2.

Next, we describe the computational kernel used to calculate the element-by-
element method. Because the kernel of the original code was also not thread paral-
lelized, it was measured with one core. When predicting the performance of one core
in the same way as for the sparse matrix–vector product kernel shown earlier, the
predicted performance value is 20.2% at 1.25/4= 0.202. The measured performance
ratio of the kernel was 1.6%, and the throughput of the memory was 10.4 GB/s with
test data consisting of 820,000 elements. Assuming that there is no penalty for list
access in the data storage on the left side because of ideal list access, the theoretical
value of the L1 cache miss rate is 3.125%, but the miss rate of the result was 21.3%.
The results indicate that the sparse matrix–vector product kernel is incurring a large
penalty for list accesses.

Based on these evaluation results, the penalty for the large list access has occurred,
which appears to be the problem limiting performance.

3.9.3 Modification of the Code for High Performance of FFB

We now discuss a detailed analysis of the sparse matrix–vector product when the
required B/F value is large and list vectors are used, as shown in Sect. 2.8.10.

Data storage format with full unrolling
According to D. Guo and colleagues, it has been reported that performance improve-
ment can be achieved by changing the matrix storagemethod from the CSR format to
the streamed-CSR (S-CSR) method, which extends the CSR format [16]. When we
tried to use it, the actual measurement result was improved as reported by Guo; how-

3 Case Studies of Performance Optimization of Applications 83

Fig. 3.25 Matrix–vector
product fully unrolled coding
of FFB

ever, the performance was improved by only about 7% for the hexahedron and about
10% for the tetrahedron. As shown in Fig. 3.25, we also adopted the data storage
format and coding that completely unrolled the inner loop. This method was applied
to the sparse matrix–vector product kernel used in the calculation of the overall rigid-
ity matrix. Figure 3.25 shows the code for the hexahedron; for the tetrahedron, the
number of unrollings was 24. For the hexahedron with this data storage format, if
the number of matrix elements is fewer than 27 for each row of the control variable
IP in the DO sentence in Fig. 3.25, the rest are filled with zeroes until there are 27
to fix the expansion number. The number of elements filled with zeroes is about
2% of the total for the hexahedron and about 35% for the tetrahedron. The memory
amount and the calculation amount increase; however, the calculation performance
still improves.

Reordering the vector data
We modified the ordering of the nodal points to reduce the access penalty for the
vector shown in Sect. 3.9.2. As shown on the left side of Fig. 3.26, the nodal point
numbers were remapped to 3D space using the 3D XYZ coordinates of the nodal
points. Next, the 3D space was divided in each axis direction. In Fig. 3.26, it was
divided into three; this time, it was divided into 10. Basically, the ordering of nodes
was changed so that the nodal points included in the divided box are consecutively
stored, and the numbers of the boxes are also taken from the order of XYZ, as shown

Fig. 3.26 Changing the ordering method of nodes

84 K. Minami and K. Kumahata

in the middle diagram of Fig. 3.26. The nodal points in the box were also divided
into inside and outside, as shown on the right side of Fig. 3.26, and the nodal points
included inside were ordered first, and then the nodal points included in the outer
circumference were ordered. In this way, by changing the ordering, the physically
close nodal points are assigned to close positions in the sequence of the array, and
eventually, the nodal point numbers constituting one element are also close.Adjusting
the size of one box with this tuning allows the data to be stored in the L1 cache for
many of the list accesses of the vector, thus greatly reducing the penalty for list
accesses. This method is applicable to the computational kernels for both the overall
rigidity matrix and the element-by-element method.

Tuning of the element pressure kernel
The element pressure kernel holds the nodal point numbers belonging to the element
as a list. In the element pressure kernel, the loop index is the element number. In
the loop, the calculation result for each node in each element is added to the array
of the nodal points. The neighboring elements may refer to the same nodal point
number to add values; in that case, there is a recurrence and it becomes impossible
to parallelize by threads. Therefore, a coloring process is performed to divide the
elements in which the data dependency occurs between different groups (colors). An
overview of this coloring is shown in Fig. 3.27. Because there is no recurrence within
each color, the thread parallelization is performed within each color. The colors are
arranged to be continuous in memory space, and the efficiency of memory access is
improved. We next implemented the ordering method of the vector data described
above. Through the above processing, the elements and nodal points referenced in
the innermost loop are localized in terms of space and memory, and the localization
of the memory access is realized.

The performance measurement at this stage revealed that the number of elements
included in the small area inner color decreased because of the combination of the
domain decomposition and coloring. This made the iteration count of the inner-
most loop insufficient, the efficiency of the computation scheduling decreased, and
performance deterioration was observed. Therefore, while taking advantage of the
localization of the memory access by using the domain decomposition and the nodal
point renumbering, and multithread execution by means of coloring, we changed the

Fig. 3.27 Ordering element by coloring

3 Case Studies of Performance Optimization of Applications 85

Fig. 3.28 Ordering block by coloring

object to be colored to avoid the small iteration count of the innermost loop. In other
words, as shown in Fig. 3.28, we changed the coloring target from the element to
the block, which is a set of elements [15]. In the previous version, there was no data
dependency for the operation of the innermost loop and SIMD vectorization (a.k.a
simdization) and software pipelining were applied by the compiler. In this improved
version, coloring was for small area units, and data dependencies occur in the calcu-
lation of the innermost loop, so the SIMD vectorization and the software pipelining
were not applied.

3.9.4 Results of Performance Improvement of FFB

Performance of the nodal pressure kernel
Table 3.13 shows the measurement results after tuning the nodal pressure kernel. The
numbers in the figure are the ratio of peak performance to 16 GFLOPS, the peak
performance of one core, and the ratio of peak performance to 128 GFLOPS for

Table 3.13 Performance of sparse matrix–vector product kernel

Hexahedron (ratio of peak
performance) (%)

Tetrahedron
(ratio of peak
performance)
(%)

Original code (1 core) 5.9 2.4

Full unroll code (1 core) 10.8 4.2

Full unroll code (8 core) 5.4 3.0

Full unroll + Reordering (1 core) 10.2 10.2

Full unroll + Reordering (8 core) 8.1 7.7

86 K. Minami and K. Kumahata

eight cores. With full unrolling, a performance improvement of about two times for
the tetrahedrons and the hexahedrons is obtained in the one core measurements. The
performance value close to 9%, which is the theoretical performance value when
the vector shown in Sect. 3.9.2 is ideally stored in the L1 cache, is obtained with
eight cores by changing the full unrolling and the nodal ordering. This shows that
the tuning method implemented here is effective.

The performance of the element pressure kernel
Figure 3.29 shows the source code after tuning the performance of the element
pressure kernel. When the coloring and the reordering of the elements were included
and the thread parallelization was performed, the peak performance ratio of 1.6%
was obtained. By changing the object of the coloring to block coloring, the peak
performance ratio of 3.78% was achieved. By applying the array fusion technique,
the performance upgraded to the peak performance ratio of 4.41%. By improving the
balance of the number of elements between the blocks, the peak performance ratio
of 4.58% and memory throughput of 41.2 GB/s were achieved. The list access for
storing data does not reach the theoretical performance value because the penalty for
cache misses is large.

Fig. 3.29 Improved kernel coding of element-by-element method

3 Case Studies of Performance Optimization of Applications 87

3.9.5 Total Performance of FFB

Figure 3.30 shows the results for FFB (version 7) with 40,000 and 80,000 parallel
paths with weak scaling. The final overall peak performance ratio including commu-
nication is 3.16%. TheMPI_ALLREDUCEcommunication time for scalar values for
the inner product calculation originally considered as the only problemwith high par-
allelization is represented by tddcom2 in each graph. The graph shows that tddcom2
is smaller than the total execution time. This is the performance obtained by using
high-speed, one-element MPI_ALLREDUCE communication, which is available in
the hardware assistance of the K computer.

Exercise
1. As shown in Table 3.8, confirm that the required B/F value matches the measured
value by programming Figs. 3.14, 3.15, and 3.16 and checking it. At that time, NX,
NY, and NZ should be set appropriately according to the L1 cache of the computer
environment to be used and the capacity of the last-level cache so that the data for
the difference term of the first dimension is placed in the L1 cache and the data for
the difference term of the second dimension is placed in the last-level cache.

Number of processes

Fig. 3.30 Measurement result of scaling of FFBver7

88 K. Minami and K. Kumahata

Acknowledgements The work to summarize our achievements described from Chaps. 1 to 3
is partially supported by the Grant-in-Aid for Scientific Research(B) 16H02822, “Facilitating
performance-aware programming with machine learning techniques.”

References

1. M. Yokokawa, F. Shoji, A. Uno, M. Kurokawa, T. Watanabe, in 2011 International Symposium
Low Power Electronics and Design (ISLPED), vol. 371 (2011)

2. M. Satoh, T. Matsuno, H. Tomita, H. Miura, T. Nasuno, S. Iga, J. Comput. Phys. (the Special
Issue on Predicting Weather, Climate and Extreme events) 227, 3486 (2008)

3. Y. Furumura, L. Chen, Parallel Comput. 31, 149 (2005)
4. T. Fukumura, “Earthquake 2” (in Japanese) 61, S83 (2009)
5. https://azuma.nims.go.jp/ (The software name “PHASE” changed to “PHASE/0” now.)
6. J. Iwata, D. Takahashi, A. Oshiyama, T. Boku, K. Shiraishi, S. Okada, J. Comput. Phys. 229,

2339 (2010)
7. 「Turbulent sound field analysis software FrontFlow/Blue」 (in Japanese), http://www.ciss.

iis.u-tokyo.ac.jp/rss21/theme/multi/fluid/fluid_softwareinfo.html
8. C. Kato, Y. Yamade, H. Wang, Y. Guo, M. Miyazawa, T. Takaishi, S. Yoshimura, Y. Takano,

Comput. Fluids 36, 53 (2007)
9. S. Aoki, K. Ishikawa, N. Ishizuka, T. Izubuchi, D. Kadoh, K. Kanaya, Y. Kuramashi, Y.

Namekawa, M. Okawa, Y. Taniguchi, A. Ukawa, N. Ukita, T. Yoshie, Phys. Rev. D 79, 034503
(2009)

10. FUJITSU「Feature:Supercomputer「K」」 (in Japanese) 63(3) (2012)
11. Y. Ajima, S. Sumimoto, T. Shimizu, IEEE Comput. 42, 36 (2009)
12. Y. Hasegawa, J. Iwata, M. Tsuji, D. Takahashi, A. Oshiyama, K. Minami, T. Boku, F. Shoji,

A. Uno, M. Kurokawa, H. Inoue, I. Miyoshi, M. Yokokawa, in Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis, SC
’11 (ACM, New York, 2011), p. 1:1

13. A. Kuroda, Y. Hasegawa, M. Terai, S. Inoue, S. Ichikawa, H. Komatsu, N. Ohi, T. Ando, T.
Yamazaki, T. Ohno, K. Minami, in Proceedings of High Performance Computing and Compu-
tational Science (in Japanese), vol. 144 (2012)

14. K. Kumahata, S. Inoue, K. Minami, Procedia Comput. Sci. 18, 2496 (2013)
15. K. Kumahata, S. Inoue, K. Minami, IPSJ Trans. Adv. Comput. Syst. (ACS) (in Japanese) 6, 31

(2013)
16. D. Guo, W. Gropp, IJHPCA 25, 115 (2011)

https://azuma.nims.go.jp/
http://www.ciss.iis.u-tokyo.ac.jp/rss21/theme/multi/fluid/fluid_softwareinfo.html

	3 Case Studies of Performance Optimization of Applications
	3.1 Applications for Demonstration of the Performance of the K Computer
	3.1.1 Outline of Application Groups

	3.2 System Outline of the K Computer
	3.2.1 Processor Features
	3.2.2 Outline of Tofu Interconnect
	3.2.3 6D Network

	3.3 Computer Environment for Performance Evaluation
	3.4 Outline of the Examples of High-Parallelization Performance Optimization
	3.4.1 Enhancement of the Parallelization Axis
	3.4.2 Improvement of Communication and Load Imbalances

	3.5 Performance Optimization of RSDFT
	3.5.1 Overview of RSDFT
	3.5.2 Understanding the Software Application Characteristics by Investigating the RSDFT Source Code
	3.5.3 Measurement of the Parallelization Features of RSDFT
	3.5.4 Evaluation of RSDFT Kernel and High-Parallelization Feature
	3.5.5 Code Modifications for High Performance of RSDFT
	3.5.6 Results of High Performance of RSDFT
	3.5.7 Total Performance of RSDFT

	3.6 Performance Optimization of PHASE
	3.6.1 Overview of PHASE
	3.6.2 Understanding the Application Characteristics by Investigating PHASE Source Code
	3.6.3 Modification of the Code for High Performance of PHASE
	3.6.4 Total Performance of PHASE

	3.7 Examples of Single-CPU Performance Optimization
	3.8 Single-CPU Performance Optimization of Seism3D
	3.8.1 Overview of Seism3D
	3.8.2 Evaluation of Single-CPU Performance of Seism3D
	3.8.3 Modification of the Code for Improved Performance of Seism3D
	3.8.4 Results for the High-Performance Version of Seism3D and the Total Performance

	3.9 Single-CPU Performance Optimization of FFB and an Example
	3.9.1 Overview of FFB
	3.9.2 Evaluation of Single-CPU Performance of FFB
	3.9.3 Modification of the Code for High Performance of FFB
	3.9.4 Results of Performance Improvement of FFB
	3.9.5 Total Performance of FFB

	References

