
Chapter 2
Performance Optimization
of Applications

Kazuo Minami

Abstract In this chapter, we present procedures for performance evaluation that
we have used for practical applications. The method is outlined in Sect. 2.1, and
Sects. 2.2–2.6 describe the details of the method. The classification of problems
related to high parallelism and the classification of applications from the viewpoint
of single-CPU performance are described. Sections 2.7 and 2.8 then describe perfor-
mance optimization techniques for each problem pattern related to high parallelism
and the techniques for single-CPU performance optimization according to applica-
tion classification.

2.1 Performance Evaluation Method

The performance evaluation of an application is divided into two parts: “highly par-
allel performance optimization” and “single-CPU performance optimization.” For
each part, the performance evaluation method has two working phases: “current state
recognition” and “understanding the problems.” The “current state recognition” is
common to both working phases and is divided into “source code investigation”
for analyzing the structure of source code, and “measurement of elapsed time” to
understand the current state of application performance. The final procedure in the
“current state recognition” is “calculation/communication kernel analysis,” in which
we evaluate the results of “source code investigation” and “measurement of elapsed
time.” The next phase of “current state recognition” begins with “problem evaluation
method” with working phases of “understanding the problems.” In the “problem
evaluation method” for “highly parallel performance optimization,” the problems
related to high parallelization are classified into six patterns. In the “problem eval-
uation method” for “single-CPU performance optimization,” applications are also
classified into six patterns.

Our approach is summarized in Table 2.1.

K. Minami (B)
RIKEN Center for Computational Science, RIKEN, Kobe, Hyogo, Japan
e-mail: minami_kaz@riken.jp

© Springer Nature Singapore Pte Ltd. 2019
M. Geshi (ed.), The Art of High Performance Computing
for Computational Science, Vol. 2,
https://doi.org/10.1007/978-981-13-9802-5_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9802-5_2&domain=pdf
mailto:minami_kaz@riken.jp
https://doi.org/10.1007/978-981-13-9802-5_2


12 K. Minami

Table 2.1 Outline of performance optimization method

Highly parallel performance
optimization

Single-CPU performance

Current state recognition Source code investigation

Measurement of elapsed time

Calculation/communication kernel analysis

Understanding the problems Problem evaluation methods

2.2 Current State Recognition: Source Code Investigation

As the first step in current state recognition, we investigate the source code of the
application.We investigate the structure of the source code and analyze the call struc-
ture of subroutines and functions. We also analyze the subroutines, the loop structure
in the functions, and the control structure of the IF blocks, and organize and visualize
the structure of the entire program. The visualized source code is divided into blocks
of calculation and communication processing according to the algorithms of physics
and mathematics used in the program, and the blocks are organized. We understand
the physical/mathematical processing content of each processing block. By com-
paring these aspects of the processing blocks with the results of the investigated
source code, the calculation characteristics for each calculation block are obtained.
The calculation characteristics describe the processing of a calculation block as non-
parallel, completely parallel, or partially parallel, and identify the calculation index
(e.g., number of atoms or number of meshes), whether the calculation amount in the
calculation block is proportional to N or proportional to N2 when the calculation
index is N, and so on. We also investigate the communication characteristics of each
communication block: whether the processing of the communication block is global
communication, adjacent communication, or whether the communication amount
depends on the calculation index. These investigations are shown in Fig. 2.1.

The purpose of the investigation of the source code is to understand the charac-
teristics of each processing block in the program. However, the visualization of the
loop structure from the start to the end of the program and that of the entire control
structure of the IF blocks mentioned here are large tasks if done manually. Therefore,
we use a visualization tool for program structure, such as K-scope [1, 2].

2.3 Current State Recognition: Measurement Methods

In the sequential calculation before parallelization in the simulation, the calculation
is sequentially performed for each calculation unit such as a mesh. To parallelize a
code, we divide a set of calculation units such as meshes into plurality sets, share the
divided sets among the processors, and perform the calculations in parallel. In such
parallel computation, adjacent communications are performed in every calculation
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Fig. 2.1 Investigation of source code

step to exchange data for parts of areas with neighboring processors. In addition,
when calculating inner products of scalar values for all areas, global communication
between all processors is required. An important point in achieving high parallelism
is to make the adjacent and global communication times as small as possible.

As described in Sect. 1.2.1, it is important in parallel computation, just like the
reduction of communication time, to make the nonparallel computing parts as small
as possible.

The next step of current status recognition is to conduct application performance
measurement. It is important for these measurements to be useful for investigating
parallel characteristics; that is, what kind of behaviors the adjacent and global com-
munication times described here show during highly parallel calculation, and where
nonparallel computing parts remain and their influence on behaviors in high paral-
lelism. Therefore, where performance measurement is possible, it is carried out as
follows.

In conducting application performance measurement as the next step of current
status recognition, it is important to conduct performance measurements that clarify
the parallel characteristics of applications: specifically, what kind of behaviors the
adjacent global communication times display during the highly parallel calculation,
which calculation parts are nonparallel, and how the nonparallel parts influence the
application’s behavior in highly parallel execution. For clarification of parallel char-
acteristics, where possible, the performance measurement is carried out as follows.

First, we define the problem to be solved, determine the number of parallel paths
in the problem, and create a test problem that has the same problem size with one
processor as the target problem that can be run with several levels of parallelism.
Next, we perform the performance measurement using the prepared test problem. In
the performance measurement, the execution time is measured for each process for
each calculation block and communication block, as defined in the previous section.
The parallel characteristics during parallel computation cannot be fully clarified by
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measuring the entire application. Each processing block’s influence on the paral-
lel characteristics differs depending on whether it includes a nonparallel part and
the number of parallel paths, and whether the communication time changes. There-
fore, it is essential to measure the performance of each processing block for each
process separately. These measurements allow us to identify the processing blocks
that degrade parallel performance. In addition, because the communication behav-
ior during parallel execution differs between adjacent and global communication,
it is necessary to measure them separately. The adjacent communication time has
the same value if the communication amount is the same, as described later, but
the global communication time tends to increase as the number of parallel paths
increases, even if the communication volume stays the same. Furthermore, because
communication times may include waiting times caused by load imbalance, it is also
important to measure the waiting time and the net communication time separately,
thus allowing us to distinguish whether the problem is caused by communication or
load imbalance. With respect to computation, simultaneously with the computation
time, the amount of computation and the computation performance are alsomeasured
for each processing block in each process.

2.4 Current State Recognition: Determination
of Computation and Communication Kernels

The analysis of the source code shows the correspondence between the physi-
cal/mathematical processing contents of each processing block and the source code,
and the calculation characteristics of each calculation block and the communica-
tion characteristics of each communication block. By matching these results with
measurement results, the calculation kernel and the communication kernel can be
identified.

For example, suppose there is a parameter N that determines the amount of com-
putation. Assume that the coefficient of computation amount proportional to the third
power of N is m1, the coefficient of computation amount proportional to N is m2,
and that m2 is considerably larger than m1. When N is relatively small, the amount
of computation for the two parts may be about the same. However, as N increases,
the amount of computation for the part proportional to the third power of N becomes
significantly larger, and the amount of computation for the part proportional to N
may become negligible.

Both the amount of computation and the computation time also vary depending
on the level of performance1 that can be obtained relative to the theoretical peak
performance. The essentially nonparallel parts may remain because of the adopted
parallelization method. By considering the size of the parameters of the problem to
be solved in this way, the parallelization method used, the parallelization method
that may be adopted in the future, the prospects for effective performance, and so on,

1Performance obtained by dividing the measured amount of computation by the execution time.
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Fig. 2.2 Identifying kernel of calculation and communication

and the kernels to be evaluated, are determined (see Fig. 2.2). The kernels selected
here can be reviewed at later stages of the evaluation.

2.5 Understanding the Problems: Evaluation
of High-Parallelism Problems

We explain how to evaluate the problems of high parallelism by carrying out the
measurements shown in Sect. 2.3 and how to measure parallel performance from
several parallel processes to about 100, about 1000, or several thousand, step by
step. There are two kinds of methods for measuring the performance by gradually
increasing the number of parallel processes: strong scaling measurement and weak
scaling measurement. Strong scaling measurement is a method of fixing the scale
of the problem to be solved and increasing the number of parallel processes: for
example, if the problem scale is fixed to N = 10,000, the number of parallel pro-
cesses and the problem size per processor change is 1 and 10,000, 2 and 5000, 4 and
2500, and so on, respectively. In contrast, weak scaling measurement is a method of
fixing the scale of the problem solved by each processor and increasing the number
of parallel processes. For example, if the problem scale is measured first at N =
1000, the problem size per processor and the number of parallel processes is 1000
and 2, respectively, and the total problem scale is N = 2000. If the problem scale
per processor and the number of parallel processes is 1000 and 4, the total problem
scale is increased to N = 4000. The feature of weak scaling measurement is, ide-
ally, that even when the number of parallel processes is increased, because the same
computation is performed, and the adjacent communication amount is not changed,
the execution time of the computation parts and the execution time of the adjacent
communications are not changed. When a nonparallel part is included in the com-
putation part, a significant increase in computation time should be measured, as the
number of parallel processes becomes large in weak scaling measurement.



16 K. Minami

For example, assume that the execution time of the parallelizable part during
sequential execution is Tp and the execution time of the nonparallelizable part dur-
ing sequential execution is Ts. The execution time T0 during sequential execution
is represented by T0 = Tp + Ts. The execution time when this problem is mul-
tiplied by N and executed sequentially is represented by N × T0 = N × Tp +
N × Ts. When this problem is executed in N parallel processes, it corresponds to
what we performed with weak scaling. If the execution time when executed in N
parallel processes is Twn, the parallelizable portion becomes N times faster but the
nonparallelizable portion does not become faster, so Twn = Tp + N × Ts, and the
term N × Ts increases. Incidentally, if Tsn is the execution time when run with
strong scaling, then Tsn = Ts + Tp/N.

Even when the adjacent communication time increases in accordance with the
number of parallel processes, it is easy to see that there are some problems in the
corresponding adjacent communications. The global communication time generally
increases in accordance with the number of parallel processes, and the increase can
be predicted from the data on the basic communication performance by comparing
the degree of increase with the predicted value. This can show whether there are
some problems in the corresponding global communications.

The method described here is shown in Fig. 2.3. The reason for using weak
scaling measurement in this way is that it is easy to find problems. However, in weak
scaling measurement, it is necessary to prepare separate execution data according
to the number of parallel processes, which may be troublesome. In a simulation in
which the amount of computation is proportional to the second or third power of
the problem size N, weak scaling measurement is sometimes difficult. In such a
case, strong scaling measurement is performed. For strong scaling measurement, it
is necessary to model the computation and communication times with the number
of parallel processes as a parameter, to predict these, and to compare the predictions
with the actual measured times so as to find any nonparallel parts or communication
problems. However, unlike weak scaling measurement, it is not necessary to prepare

Parallel number

Fig. 2.3 Measurement with weak scaling
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execution data according to the number of parallel processes. It is sufficient to prepare
only one type of data.

For the calculation of kernel, we compare and evaluate the trend of the predicted
computation amount as clarified in the investigation of the source code and the com-
putation amounts from the measurement results. For example, assume the computa-
tional amount of the kernel is proportional to the problem size N and is completely
parallelized and measured with weak scaling. Because the computational amount for
each process is constant regardless of the number of parallel processes, the calcula-
tion time for the total system is constant. In this case, the value obtained by dividing
the computational amount of the measurement result by N is the proportional coef-
ficient. If it can be evaluated with weak scaling, as described above, and if it is
possible to completely parallelize and there are no problems in the communication
part, even if the number of parallel processes is increased, the execution time of the
computation part will be constant, and the adjacent communication time will also
be constant and should not increase. If the execution time of the computation part
increases remarkably with the number of parallel processes, it is likely that some
nonparallel parts remain in the operation kernel. In addition, if the adjacent commu-
nication time increases significantly according to the number of parallels, it is likely
that some processing that is not adjacent communication is included in the com-
munication kernel. For example, there may be some global communication that is
used instead of adjacent communication to simplify programming. As for the global
communication, as described at the beginning of this section, its communication time
also increases as the number of parallel processes increases. However, because the
extent of the increase can be predicted from the basic communication performance
data, if the communication time increases significantly more than predicted, we can
consider that there is some problem in the corresponding global communication. In
the discussion of measurement methods, we described the method of measuring the
communication time and waiting time separately. This measured waiting time often
indicates some imbalance included in the computation part and communication part.

In parallel computing, some processing imbalance is physically unavoidable.
However, where the extent of the imbalance is remarkably large or if the imbalance
increases with the number of parallel processes, it is likely that some problem caus-
ing imbalance was introduced in the programming stage. In evaluations using strong
scaling, as described above, the existence of nonparallel parts and communication
problems are found by comparing the predicted computation and communication
times with the measured times. The predicted times are obtained by modeling them
with the parallel number N as a parameter.

For example, suppose that the computation of the kernel is proportional to the
third power of the system parameter N and the computation kernel is completely
parallelized. When measured with strong scaling, if the number of parallel processes
is doubled, then the computation of each process should be halved.

The total computation amount is the number of processes multiplied by the mea-
sured computational amount of each process and the parallel number M. The total
computational amount divided by the third power of M is the proportional coeffi-
cient for the third power of M. The investigation of these computational amounts
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and proportional coefficients is performed using many parallel measurement results,
and the evaluation is made as to whether the predicted value is consistent with the
measurement results. If the evaluation results are consistent, it means that the source
code is written according to the theory. If the evaluation results are not consistent
and there is an increase in computational amounts with the increase in the number
of parallel processes, it is likely that there is some problem such as the existence of
nonparallel parts in the source code. A similar evaluation is required for the adjacent
communications. For example, when a rectangular parallelepiped area is calculated
using twice the number of parallel processes, the length of one side of the allocated
area of each processor is 1/3 to the power of 1/2. The adjacent communication amount
for the adjacent faces is 2/3 to the power of 1/2. Therefore, assuming the same com-
munication performance, the communication time should also be 2/3 to the power of
1/2. For the global communication, a similarly modeled evaluation is required. As
for the evaluation of the imbalance, it is necessary to evaluate the results as for weak
scaling.

As repeatedly described, it is essential to carry out the evaluation shown here for
each computation and communication kernel. Some tools provided bymanufacturers
have functions to measure the execution time, the amount of computation, and the
computation performance for each subroutine or function, and it is usual to measure
performance using these tools. However, the subroutines and the functions of the
application do not generally match the range of the block, and because a function
may be called from different blocks several times in different ways, these tools may
not yield accurate measurement results for each block. Therefore, it is better to
performmeasurements on each block. However, this does not apply if the subroutine
or function is configured to match the block.

2.5.1 Classification of Problems Related to High Parallelism

In the HPCC benchmark, applications are classified by using two axes. The first axis
is defined by the locality versus nonlocality in the spatial direction of the data divided
among the processors. The second axis is defined by the locality versus nonlocality
in the temporal direction of data in the processors [3].

In addition, a study of application classification, the “Berkeley 13 dwarfs,” classi-
fied applications by the two axes of the communication and calculation patterns [4].
In this study, applications were classified among seven dwarfs in the HPC field, and
13 dwarfs by adding other fields.

In promoting performance optimization, we also classify the application and orga-
nize the execution performance optimization methods for applications based on the
classification. For high parallelism, the locality versus nonlocality of the data is
considered in the HPCC as one axis, and in the Berkeley 13 dwarfs, the pattern of
communication is considered as one axis. In this section, we focus on the kinds of
problems that occur and how we deal with those problems when optimizing the per-
formance of existing applications, and we classify them according to highly parallel
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patterns. The problems relating to high parallelism are classified into six patterns, as
shown in Table 2.2.

The main problems relating to high parallelism are caused by calculations and
communication. The first, second, and sixth problems are caused by calculation, and
the third, fourth, and fifth problems are caused by communication. The six patterns
are described as follows.

The first pattern is the mismatch of the degree of parallelism between applications
and hardware. Researchers want to solve a problem within a certain time; suppose
that to do so, it is necessary to use tens of thousands of parallel nodes on a super-
computer. For example, the K computer makes it possible to use more than 80,000
parallel nodes in terms of parallelism of the hardware. However, sometimes only
thousands of parallel nodes can be used because of the limitations of the application
parallelization. This is the mismatch of degree of parallelism between the application
and the hardware. When approaching the limitation of the parallelism of the appli-
cation, the computation time becomes extremely small, whereas the proportion of
communication time increases, leading to a deterioration of the parallel efficiency.

The second pattern is the presence of nonparallel parts. Asmentioned at the begin-
ning of this chapter, we can see that the parallel performance deteriorates because
of Amdahl’s law if nonparallel parts remain in the computation. Here, assuming that
the execution time of a certain application at the time of sequential execution is Ts

and the parallelization rate of the application is α, the nonparallelization ratio of the
application is 1 – α. When this application is executed using n parallel processes, the
execution time Tn is expressed as Tn = Ts (α/n + (1 – α)). For a parallelization effi-
ciency of 50%, the parallelization ratio α is required to be 99.99% when n = 10,000.
The easiest way to find remaining nonparallel parts is to measure the increase in
execution time of the calculation part using weak scaling measurement as described
above.

The third pattern is the occurrence of large communication sizes and frequent
global communication. Communication times, particularly for global communica-
tions, have a large impact on the parallel performance. Consider an example of
implementing the ALLREDUCE communication of M (bytes) between N nodes.
Assume that the ALLREDUCE communication is performed using a binary tree

Table 2.2 Bottlenecks in parallel performance

Bottleneck

1 Mismatch of the number of parallel processes between application and hardware
(insufficient parallelism of applications)

2 Presence of nonparallel part

3 Large communication size and the occurrence of frequent global communication

4 Global communication among all nodes

5 Large communication size and the occurrence of communication times in adjacent
communication

6 Load imbalances
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algorithm and the communication performance is Pt (bytes/s). The communication
time Tg for acquiring the total amount of M (bytes) after all nodes have commu-
nicated is Tg = m×log2 n

Pt
. To compare the global communications with the adjacent

communications, we consider an example in which N nodes perform the adjacent
communications ofM(bytes) to the next rank.When the communicationperformance
is matched with the above conditions, the communication time Ta to complete the
communication ofM (bytes) for all nodes is calculated by Ta = m

Pt
. When comparing

global and adjacent communications, it is found that the global communication time
is larger by the coefficient of log2 n. Global communication should be a minimum.

The fourth pattern is the occurrence of global communications among all nodes.
As described above, when the ALLREDUCE communication of M (bytes) is per-
formed between N nodes using the binary tree algorithm, the communication time
T is T = m×log2 n

Pt
assuming the communication performance to be Pt (bytes/s).

Because the communication time increases as the number of nodes N increases, it is
better to limit global communication among all nodes as much as possible. However,
calculation of inner products is inevitable in the iterative solution of simultaneous
linear equations and other problems, so it is impossible to eliminate all-node global
communication.

The fifth pattern is the occurrence of a large communication size and a large
number of communications in the adjacent communication. In terms of the commu-
nication time, adjacent communication tends to be faster than global communication.
However, useless adjacent communication, such as communicating data for the entire
area for one mesh to the adjacent mesh, are sometimes performed. Such code should
be reviewed and only communication of data on the adjacent surface should bemade.

The sixth pattern is the occurrence of load imbalances. Differences in the amount
of calculation for each node may occur, causing some load imbalance among nodes.
When the load imbalance deteriorates as the number of nodes increases, or when the
load imbalance is extremely large over a small number of nodes, it is a problem.

2.6 Understanding the Problems: Evaluation Methods
for Problems in Single-CPU Performance

2.6.1 Application Classification for Single-CPU Performance

As mentioned in Sect. 2.5, the developers of the HPCC benchmark [3] and the
Berkeley 13 dwarfs [4] classified applications. For the HPCC, applications were
classified using locality versus nonlocality of data in the temporal direction with
regard to the single-CPU performance. For the Berkeley 13 dwarfs, applications
were classified using the calculation pattern.

Similarly, in promoting the study of performance optimization, we also classify
applications and organize the application execution performance optimization tech-
niques based on the classification. In Sect. 1.2, from the viewpoint of the single-CPU



2 Performance Optimization of Applications 21

performance,wementioned that applications can roughly be classified into two types,
one with a low required B/F value and one with a high required B/F value. This idea
is close to the classification used for the HPCC. In this section, we will develop this
view and show the classification of applications into six types as shown in Table 2.3.

The calculations for which the required B/F value is small are the first to the fourth
types. The performance greatly varies depending on whether the DGEMM library
or manual cache blocking can be used, even for calculations with small required
B/F values. When cache blocking can be used, the performance varies depending
on whether the data structure and loop structure are simple, or the data structure is
slightly complicated such as using list vector indexing by integer arrays. Applications
with more complex loop structures often fail to achieve high performance. These
considerations led to the four types of calculations with small required B/F values.

The first type includes applications that can be rewritten as matrix–matrix product
calculations. This type has small B/F values because in principle it can perform the
calculations proportional to the third power of n by loading the data for a square of
size n from memory. An example of this type of calculation is the application of the
first principle quantum calculation based on density functional theory.

The second type includes applications that allow cache blocking although they
are not rewritable to the matrix–matrix product, but still have small required B/F
values. The calculation of the Coulomb interactions of molecular dynamics and the
calculation of the gravity interaction of the gravitational multiple-body problem are
examples. In both cases, by loading the data for n particles and performing cache
blocking, calculations proportional to the square of n can be performed, so that the
required B/F value is small. This type often uses list vector indexing by integer arrays
for the particle access, and the loop body2 is somewhat complicated.

The third type contains examples such as special high-precision stencil calcula-
tions,3 which make it possible to use the cache effectively, so the required B/F value

Table 2.3 Classification of applications from the standpoint of single-CPU performance

Classification Application examples

1 Rewritable to matrix–matrix products Density functional theory calculations

2 Cache blocking is possible Molecular dynamics, many-body gravity
problems

3 The required B/F value is small, and the
loop bodies are simple

Special stencil calculations

4 The required B/F value is small, but the
loop body is complex

Plasmas, physical processes of meteorology,
quantum chemical calculations

5 The required B/F value is large Mechanical processes of meteorology,
fluids, earthquakes, nuclear fusion

6 The required B/F value is large and list
accesses are used

Structural calculations using finite-element
methods, fluid calculations

2The code contained in the loop.
3The calculation using subscripts for differences such as i, i – 1 appearing in difference calculations.
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is small and the loop body is a simple calculation. Although this type of calculation
gives good performance, unfortunately there are few examples.

In the fourth type of calculations, the required B/F value is small, but the loop
body is complex. Some weather calculations have mechanical processes to calculate
the motion of a fluid and physical processes to calculate the microphysics of clouds;
this physical process corresponds to the fourth type of calculation. By using small
amounts of data loaded from the memory, complex and in-cache calculations are
performed, but the loop body tends to be long and complicated. The calculation of
the PIC method4 used for plasma calculations is also of this type. In this technique,
although the mesh data around the particle are cached, list vector indexing by integer
array is commonly used to access the particle data, resulting in complex program
codes. The body of the calculation loop also tends to be long. For this type, we expect
high performance because the data are cached, but in many cases we cannot obtain
the expected performance because of the complexity of the program code.

The fifth and sixth types of calculation have high required B/F values. Even for
program codes that have the same high required B/F values, the performance varies
greatly, depending on whether discontinuous access to lists is required. This is the
basis for classifying calculations with high required B/F values into the fifth and
sixth types.

The fifth type of calculations has high required B/F values and do not use list
accesses. There are many calculations of this type in the usual stencil calculation,
and there are many other examples such as the dynamic processes in weather cal-
culations described earlier, fluid calculations and calculations of earthquakes. The
sixth type of computation has high required B/F values and uses list accesses. Such
calculations occur frequently in engineering; examples are structural analysis and
fluid calculations using finite-element methods. List accessing is the weak point for
the modern scalar computer architecture because random accesses are required for
each element.

In general, single-CPU performance decreases in the order from type 1 to type 6
calculations. However, there is usually little difference between types 2 and 3.

2.6.2 Evaluation by Cutting Out the Computation Kernel

First, we cut out the calculation kernel to form an independent test program that can
be executed in one process. In cutting out the kernel, the following steps are carried
out.

(A) Dump the necessary data at the timeof executing the original program to prepare
the data such as arrays necessary for the execution of the test program. The
data used by the conditional statements are important. For the data used for
calculation, when only the performance is a problem, the appropriate data may
be set without using dumped data.

4Particle-in-cell method. A method for arranging particles in the calculation lattice.
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(B) Dump the data for verification at the time of executing the original program to
prepare the data such as arrays necessary for verification of the test program.

(C) Cut out the kernel as the test program. If necessary, add a function to read the
data from (A) to the test program and a function to write data to compare with
the data dumped in (C).

The reason for cutting out the kernel in this way is that it makes it easier to handle
in terms of execution time and the number of processes by allowing execution in one
process. It is also easier to rewrite and test program code such as merging arrays and
replacing indices.

Next, the various performance improvement techniques such as loop division,
loop fusion, array merging, and replacement of array indexes can be tried using the
cut-out kernel, and the effects of the changes are evaluated. When implementing a
performance improvement technique throughout the original program, the amount
of work may be increased. We identify work that affects the entire code when the
performance improvement techniques are implemented, and estimate the cost of
making those changes. We evaluate the trial results of the performance improvement
technique from both aspects of the performance improvement and the work volume,
and determine an accepted plan of performance improvement.

2.7 Performance Optimization Techniques Using Problem
Patterns for High Parallelism

For each highly parallel problempattern described in Sect. 2.5.1, we outline the appli-
cable performance optimization techniques. Specific applications of the performance
optimization techniques mentioned here are shown in Chap. 3.

2.7.1 Mismatch of Parallelism Between Application
and Hardware

One applicable solution to the mismatch of parallelism between the application and
the hardware is the extension of the parallelization axis. Some programs are paral-
lelized using only one parallelization axis, even though it may be physically possible
to adopt a plurality of parallelization axes. By extending this parallelization axis and
parallelizing it with a plurality of parallelization axes, it becomes possible to expand
the parallelism of the applications and to use more of the parallelism available in the
hardware. However, the expansion of the parallelization axis often requires extensive
rewriting of programs, and it is necessary to consider this increase in the programmer
workload.
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2.7.2 Remaining Nonparallel Part

If the parallelization adopted domain decomposition, many problems can be com-
pletely parallelized. However, as mentioned above, in spite of being physically able
to adopt a plurality of parallelization axes, some programs are parallelized using only
one parallelization axis. This may leave nonparallel parts in the program code. For
example, suppose that there are two parallelization axes, A and B, physically, and the
loop related to the B-axis is within the loop related to the A-axis. Of the two axes, if
only the B-axis is parallelized, the processing between the loop related to the A-axis
and related to the B-axis is not parallelized and nonparallel parts remain.

One way of dealing with the remaining nonparallel parts is to extend the paral-
lelization axis. This makes it possible to parallelize all the processing of the loops
concerning the A- and B-axes as described above. In the parallelization of sequen-
tial programs, it is important to create a solid parallelization design assuming full
parallelization. An incomplete parallelization design will leave nonparallel parts in
the parallel application.

2.7.3 Large Communication Size and Frequent Global
Communication

As an example of the occurrence of large communication size and frequent global
communication, consider an inner product with N × M elements distributed over
all nodes when the number of nodes is N and each node has a vector consisting
of M elements. For this processing, the inner-product processing of M vectors may
be performed after performing the ALLREDUCE5 communication of M vectors
between N nodes. In this case, if the ALLREDUCE communication for one element
between N nodes is executed after calculating the sum of M elements in each node
first, this can only be a global communication of one scalar element. In the former
case, the global communication is an ALLREDUCE communication of a vector with
M elements, and in the latter case it is anALLREDUCE communication of one scalar
element, which requires a shorter communication time. This kind of attention should
be paid to such selection errors in the communication processing.

The global communication time may also be sharply reduced by extending the
parallelization axis, as mentioned above. Figure 2.4 shows an outline of the improve-
ment in global communication by expanding the parallelization axis. The upper part
of Fig. 2.4 shows the state of the parallel execution of the original program. The
whole space is parallelized by six processes, and global communication between
the six processes occurs. The lower part of Fig. 2.4 shows the state of the parallel
execution of the program after expanding the parallelization axis to the two axes of
the space and energy band. It can be seen that the range of global communication of

5The global communication for holding calculation results such as sum of values of all nodes in
the group of data of each node.
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Fig. 2.4 Improvement effect of global communication by expanding the parallelization axis

the space is reduced from six processes to three processes. In principle, expanding
the parallelization axis converts the global communication among n processes to that
among n

1
2 processes, which allows a sharp reduction in the global communication

space.
We now consider the case in which a BROADCAST communication6 is per-

formed for N processes. If the message length to be communicated is M (bytes),
the communication performance is b (bytes/s), and the time for one communication
is T0; this is represented by T0 = M/b. Assuming the BROADCAST communica-
tion uses the binary tree algorithm, the communication time of the entire BROAD-
CAST is T0 × log2 N. By expanding the parallelization axis to two axes, global
communication between processes of N

1
2 is performed, so the communication time

is T0 × log2 N×N
1
2 = (1/2) ×T0 × log2 N, and the communication time is halved.

This tendency appears more prominently with ALLTOALL communication. Con-
sider the case in which the ALLTOALL communication is performed using a two-
dimensional torus. Let N be the total number of nodes, n be the number of nodes
in each dimension, and let N = n × n. Assuming that the message length that each
node communicates with one node of the communicating partner is m (bytes), the
message length communicated by each node is M = mN. The N nodes are divided
into two on the left and right, and the amount D to be transferred to the adjacent
region in each region is calculated. Each side includes (n/2) × n nodes. Because
the communication is performed between all the nodes included both left and right,
the amount of data to be transferred to the neighboring area is (n/2) × n × (n/2)
× n × m = n2 × (n/2)2 × m. This amount is transferred to left and right in two
directions, so the data amount D traversing between the boundaries divided into two

6The global communication that transmits data from one node to other nodes in the group.
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is represented by D = 2 × n2 × (n/2)2 × m. If each node can communicate in four
directions simultaneously, the bisection bandwidth7 BY of the system is represented
by 4 × n × b, where b is the communication bandwidth for one direction of one
node. When calculating the time t required for the communication, t is represented
by D/BY, so that t = (1/8) × (n3/b) × m = (1/8) × N × n × (m/b) = (1/8) × M
× (n/b). Thus, t is proportional to Mn. The message length M when executing the
ALLTOALL communication in the entire N node is calculated as M = mN = mn2.
However, in principle, when the parallelization axis is expanded to two axes, it is
possible to calculate the message length M of ALLTOALL communication as the
message length for one axis. Therefore, the message length M is calculated as M =
mN1/2 = mn.

We see that the communication time can be reduced from the order of n3 to the
order of n2. The discussion described here can also be applied to the communications
GATHER, ALLGATHER, SCATTER, and so on, of the type in which the message
length of the communication is M = mN.

Although the effect of parallelization of multiple axes has been described here,
this must be applied to all parts of the application. For example, suppose that the
application has two processing blocks, A and B, and that two parallelizing axes of
a and b can be adopted. Let us assume that both A and B contain calculations that
depend on a and b. Under this assumption, the parallelization of the N nodes with
respect to the a-axis (b-axis) is carried out for part A (B). This is expressed as A
(a/N, b), B (a, b/N). Then, between processing block A and processing block B, the
communication for returning a/N to a and for dividing b into b/N occurs. This usually
requires global communication between N nodes, which causes a large performance
degradation.

2.7.4 All-Node Global Communication

The calculation of the inner product appearing in the iterative method of solving
simultaneous linear equations cannot be avoided. Therefore, the global communica-
tion by ALLREDUCE of all nodes cannot be eliminated. We should therefore use
the high-speed ALLREDUCE communication provided by the hardware assistance
available in the K supercomputer and others.

For other communications, it is effective to adopt multiple parallelization axes as
described in Sect. 2.7.4. The reason is that the range of global communication can
be changed from all nodes to the square root of the number of nodes, as explained
above.

7The total bandwidth of the communication across the division plane that divides all nodes included
in the system into two.
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2.7.5 Large Communication Size in Adjacent
Communication, Communication Frequency

Even though an algorithm may only need to communicate the physical quantities of
the adjacent faces between the nodes, sometimes all the physical quantities within
the node are communicated because this simplifies the coding. If this is found, the
code should be rewritten, and communications should be restricted to the adjacent
surfaces.

In preprocessing for simultaneous linear equation solvers by the iterative method,
the adjacent communication time may increase by increasing the number of com-
munications between adjacent nodes. Methods using preprocessing localized in the
node are effective for reducing this; however, it is necessary to guard against an
increase in the number of iterations.

2.7.6 Load Imbalances

Differences in the amount of calculation for each node may occur, leading to some
load imbalance among nodes. There are no general countermeasures for large load
imbalances. The problem parts must be specified by the method shown in Sect. 2.5,
and the causes are investigated. Various examples of load imbalance are conceivable.
For example, an imbalance in the number of atoms between nodes may be caused
by atomic motion in molecular dynamics calculations. Similarly, particle motion in
the PIC method may produce imbalances in the number of particles between nodes.
An imbalance between nodes may occur because of the amounts of microsubstances
constituting a cloud in the physical process calculations for climate prediction. To
dealwith these imbalance problems, the adaptivemeshmethod8 or a similar approach
can be adopted.

2.8 Performance Optimization of Single-CPU Performance

2.8.1 Elements for Obtaining High Single-CPU Performance

To realize high single-CPU performance, it is important to achieve thread paralleliza-
tion. Once this has been established, the factors considered important for improving
the single-CPU performance are shown as follows:

(1) Effective utilization of prefetching
Prefetch is a function that reads data to cache memory before it is required.
Latency is the time of initial processing from the start of data access until the

8A method of dynamically changing the mesh division.
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Latency

Fig. 2.5 Effective utilization of prefetch

actual data access is started. In accesses from memory to the L2 cache and
from the L2 cache to the L1 cache, as shown in Fig. 2.5, effective prefetch
operations are important for achieving high-performance data accessing. When
a load instruction is executed without using a prefetch mechanism, the access
to memory and L2 cache causes a large latency penalty (see Fig. 2.5). If the
latency to the L1 cache is 1, the latency to the L2 cache from the L1 cache is
typically 10 and the latency to thememory from the L2 cache is typically 100. In
addition, if there is more computation than data accesses, not only the memory
accessing latency but also the access to memory itself may be hidden by using
prefetch mechanisms.

(2) Effective use of line accesses
In the CPU of the K computer, the data are accessed in line (128 bytes) units
between the memory and the L2 cache. To obtain high performance, it is impor-
tant to perform computations using as much as possible of each line of the data
loaded. If only eight bytes from each line can be used, it is necessary to access
the data of 16 lines to load 16 elements, which is a large penalty over using all
16 elements in one line. Therefore, the apparent memory access performance
would be 1/16 (Fig. 2.6).

(3) Effective use of the cache
Consider thematrix–matrix product calculation of (n× n)matrices. The number
of elements of the two matrices is 2n2 in total and the number of computational
operations is 2n3 in total for the product and the sum. If the 2n2 elements are
divided into multiple smaller sets of n′2 and each such element set is in the cache
when its computations are executed, 2n′2 pieces of data are reused and 2n′3 com-
putations can be executed. Such calculations can utilize the cache effectively
and can perform high-speed calculations. In principle, for calculations that can
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Access every 128 Bytes

Use all elements for 
calculation

Access every 128 Bytes

Use only one elements 
for calculation

Fig. 2.6 Effective utilization of cache line

Fig. 2.7 Effective utilization of cache memory

perform n2 computational operations using n data (or n3 computational calcula-
tions using n2 data), high-speed calculation is possible (Fig. 2.7). As mentioned
earlier, this technique is called cache blocking.
Although their capacity is much smaller than that of the L1 cache, there are
registers that provide high-speed data storage locations close to the computing
unit. There is thus a similar technique called register blocking in which data are
blocked in the registers, but the description is omitted here.

(4) Efficient instruction scheduling
The K computer is equipped with 256 floating-point registers. It is important
for performance improvement that the compiler schedule load, arithmetic, and



30 K. Minami

Ine

Fig. 2.8 Efficient instruction scheduling

store instruction belonging to different indexes of the loop index direction use
these floating-point registers effectively (Fig. 2.8). If the compiler cannot find
a good schedule, the performance may be improved by manually performing
loop division or loop expansion.

(5) Effective use of SIMD arithmetic units
The K computer CPU core has two sets of two product–sum computing units.
The product–sum operation (2 operations)× two product–sum computing units
× two sets allows a total of eight operations with one clock cycle. Because
the operation clock of the CPU is 2 GHz, 8 operations × 2 GHz = 16 G cal-
culation (16 GFLOPS) is the calculation peak performance per second in one
core. Each of the two product–sum computing units operates as a SIMD arith-
metic unit having a vector length of 2. Therefore, to realize high-performance
computation, it is important that the product–sum operation works as SIMD,
and that the two SIMD units operate simultaneously (Fig. 2.9).

2.8.2 Relationship Between Factors for High Performance
and Required B/F Values

From the viewpoint of single-CPU performance in Sect. 1.2, we showed that appli-
cations can be classified into two types in which the required B/F value is large or
small. For each of these types, we show the relationship between the type and five
elements for obtaining the high performance shown in Sect. 2.8.1.
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The closer to this condition, the 
calculation efficiency is higher.

SIMD Multi&Add arithmetic unit

Peak performance of a core
8FLOPS/Clock 2GHz =16GFLOPS

2 2

Fig. 2.9 Effective utilization of SIMD unit

For applications with small required B/F values, high memory data transfer per-
formance (memory bandwidth) is not necessary in principle. It is most important to
code the program to cache the data as shown in point (3) above. Next, because the
L2 cache is accessed line by line, coding the program to utilize the data on each line
of the L2 cache effectively (that is, point (2) above) is important (it is not necessary
if the data are in the L1 cache). After realizing points (2) and (3), points (4) and (5)
become important.

For applications with large required B/F values, it is important that the memory
bandwidth should be utilized as fully as possible. It is more important to use the full
memory bandwidth than to maximize the CPU computing performance. For these
applications, the most important points are (1) and (2) above for obtaining the high
performance shown in Sect. 2.8.1. It may be possible to reuse some cached data
even though most data are accessed from memory, in which case point (3) becomes
important. When points (1) to (3) are satisfied and the data necessary for calculation
are supplied to the computing unit effectively, it is important to achieve efficient
instruction scheduling in order to use these data efficiently and make effective use
of the SIMD arithmetic units (points (4), (5)).

As seen here, the method required for the performance tuning varies depending
on the required B/F value.

2.8.3 Thread Parallelization Common to Large and Small
Required B/F Values

Regardless of whether the required B/F value is large or small, thread parallelization
is indispensable for improving the single-CPU performance. Thread parallelization
is impossible if there is a dependency relationship in the target loop, so the coloring
method has been studied to eliminate dependencies. However, the coloring method
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sometimes leads to the deterioration of single-CPU performance by increasing the
number of iterations. The coloring method is explained in detail in Chap. 3.

2.8.4 When the Required B/F Value Is Small: DGEMM
Conversion

As in the Gram–Schmidt orthogonalization shown below, it is sometimes pos-
sible to rewrite processes that use matrix–vector products in the normal coding
to use matrix–matrix products. As described in Sect. 2.6, because the required
Gram–Schmidt processingof thematrix–vector product program is large, high single-
CPU performance cannot be expected. However, if it can be rewritten as a matrix—
matrix product, the required B/F value can be reduced, and higher single-CPU per-
formance can be expected. By using this matrix–matrix product as the mathematical
library BLAS level 3 subroutine DGEMM, it becomes possible to calculate with very
high performance optimized for each computer [5].

If we code the Gram–Schmidt orthogonalization algorithm straightforwardly, it
becomes an algorithm to calculate the vector (ψ ′

1, ψ
′
2, . . . , ψ

′
i , . . .) as the orthogo-

nalization of the vector (ψ1, ψ2, . . . , ψ
′
i , . . .), as shown in Fig. 2.10. This algorithm

is coded with the matrix–vector product of the matrix
〈
ψ ′
i |ψ j

〉
and vector

∣∣ψ ′
i

〉
. The

indices 1, 2, …, i are parallelized for each process.
Consider dividing this algorithm into a triangular part and a rectangular part,

as shown in Fig. 2.11. Each rectangular part in the direction (ψ1, ψ2, . . . , ψ
′
i , . . .)

is parallelized for each process. First, in the process responsible for the triangu-
lar part, we use the original matrix–vector product algorithm. In the example in
Fig. 2.11, the calculation of triangles for calculating ψ1 and ψ2 corresponds to this
explanation. Using the calculated (ψ1, ψ2) data and calculating the square part in
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Fig. 2.10 Original processing of Gram–Schmidt orthogonalization
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Fig. 2.11 Matrix–matrix productization of Gram–Schmidt orthogonalization

each process, this calculation can use the matrix–matrix product. In the example in
Fig. 2.11, the calculation of the square in the left column using ψ1 and ψ2 corre-
sponds to this explanation. The second triangular part is calculated using the original
matrix–vector product algorithm. Similarly, ψ3 and ψ4 can be calculated perfectly
in the example of Fig. 2.11. By repeating this process, it becomes possible to cal-
culate the Gram–Schmidt orthogonalization using the matrix–matrix product. In the
actual algorithm, the triangular part is recursively divided into a rectangular part and
a triangular part as shown in Fig. 2.11, so that the matrix–matrix product calculation
can be used as much as possible.

2.8.5 When the Required B/F Value Is Small: Cache
Blocking

As described in Sect. 2.6, high single-CPU performance can be obtained by per-
forming cache blocking, as in the matrix–matrix multiplication. The Coulomb force
calculation in classical MD is one example. In this calculation, however, discontinu-
ous list access is required to specify the particle pair, which degrades the single-CPU
performance. Changing the blocking by rearranging the discontinuous data using
the following procedure improves the single-CPU performance. This procedure is
illustrated in Fig. 2.12.

(1) Copy the N discontinuous data to a continuous area to enable blocking in the
cache.

(2) Perform the calculation N2 times using N pieces of data.
(3) Copy and return continuous calculated results to the discontinuous area.
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(1)

(2)

(3)

N

N

Fig. 2.12 Cache blockzation

In general, the copies of (1) and (3) require order-N processing, so the processing
time is smaller than the computation time of order N2. Therefore, even if the copy is
troublesome, a reduction in total execution time may be obtained.

2.8.6 When the Required B/F Value Is Small and the Loop
Body Is Complex

When the loop body of a code is complex, the compiler may not be able to correctly
interpret the required processing. In this case, more arrays are used in the loop, so
more registers corresponding to the arrays are required, and there is a tendency for
register shortage to occur. For these reasons, this type of application often fails to
provide adequate performance evenwhen the data are in the cache. There is no general
solution for this problem, and we can only rewrite the code to achieve loop division,
array index replacement, or array integration individually for each application.
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2.8.7 Optimizing the Single-CPU Performance: When
the Required B/F Value Is Large

The procedure for improving the single-CPU performance is shown in Fig. 2.13.

(1) Profiler measurements
Modern supercomputers are equipped with a profiler for acquiring performance
information. The K computer has an excellent profiler function that can acquire
abundant and useful information relating to the memory, cache, and arithmetic
unit. This profiler should be used to measure the performance of the application
kernel.

(2) Detection of problems using the profiler’s measurement results
Analyze the problem by looking at the profiler measurements. As described in
Sect. 2.8.2, in applications that cannot efficiently utilize the caches, the impor-
tant point for achieving high single-CPU performance is to use the memory
performance fully. The profiler information includes the memory bandwidth
used, and we can analyze the cause of the problem if the memory performance
is poor.

(3) Performance estimation
Estimate the performance of the kernel using the performance estimation model
(see Sect. 2.8.8). If the actual measurement results do not reach the estimation
results, extend the analysis of step (2). Performance estimation is very important
to judge the extent of tuning work required and where to stop.

Fig. 2.13 Steps for improving performance



36 K. Minami

(4) Performance tuning
We consider the available performance improvement methods and perform tun-
ing work based on the results of the analysis of step (2). Work continues until
the estimated performance is achieved.

(5) Predict the performance of the improved version
Consider further methods of performance improvement and perform more tun-
ingwork. The performance of the kernel after further tuning is estimated accord-
ing to the roof-line model (see Sect. 2.8.8).

(6) Further performance tuning
Measure performance and analyze the results for the revised code after tuning.
This cycle is repeated until the estimated result is approached.

2.8.8 Performance Estimation: When the Required B/F
Value Is Large

Here, the performance estimation method when the required B/F value is large is
described. The roof-line performance prediction model is used when data access
is limited to the memory accesses and data access from the cache memory is not
considered [6].

We define the theoretical memory bandwidth of the hardware as B, and the theo-
retical peak performance is defined as F. If the operational intensity of the application
using the required FLOP value f of the application and the required byte value b of
the application is X= f/b, the effective performance of the application is represented
by min {F, BX}. The operational intensity is the reciprocal of the B/F value. In this
performance estimation model, an application that has the same operational intensity
as the hardware can achieve peak performance. If the predicted performance of the
application requires an operational intensity smaller than the operational intensity of
the hardware, the model is proportional to the operational intensity required by the
application. What we have described here is shown in Fig. 2.14. The performance
of a memory-intensive application with a high required B/F value can be estimated

Operational intensity(Flop/Byte) of application 
<Reciprocal of B/F value>

Peak 
performance 
of hardware

Peak operational 
intensity of hardware

Fig. 2.14 Roofline model
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more accurately by replacing the theoretical memory bandwidth of this model with
the effective memory bandwidth [7].

2.8.9 Performance Optimization of the Sparse Matrix–Vector
Product: When the Required B/F Value Is Large

A typical application with high required B/F value is the sparse matrix–vector prod-
uct. This calculation often appears when discretizing partial differential equations.
The features of the sparse matrix–vector product are shown below.

In general, when solving physical three-dimensional problems, the coefficients
are three-dimensional and occupy sparse matrices to form three-dimensional arrays.
However, these arrays may be expressed as one-dimensional or two-dimensional
arrays for coding. In either case, the required memory capacity is large, so it is com-
mon to consume the memory bandwidth. However, the coefficient matrices may also
be expressed not in three dimensions but in one- or two-dimensional arrays, or the
coefficients may be represented as scalar quantities. In these cases, the calculation
of the product of a sparse matrix and a vector does not consume as much memory
bandwidth and the arrays can be stored in caches or registers. While the vectors are
generally three-dimensional arrays when solving three-dimensional problems phys-
ically, they may, like the sparse matrices, be expressed as one- or two-dimensional
arrays to simplify coding. An important feature of the vector arrays is that there is M
or aroundM reusabilitywhen the average number of elements included in each rowof
thematrix isMand the dimension of the vector is L.Because the number of operations
for the sparse matrix–vector products is M × L for each addition and multiplication,
and the number of elements of vectors being used for performing operations is L,
one element of the vector is referred to on average M times. Therefore, the memory
bandwidth capacity of the vector is about 1/M of the memory bandwidth capacity
of the matrix. Although access to the vectors also consumes memory bandwidth, the
efficient utilization of the cache using the M reusability shown here is important for
improving single-CPU performance.

2.8.10 Performance Optimization of the Sparse
Matrix–Vector Product: Required B/F Value Is Large
and List Vectors Used

For the sparse matrix–vector product discussed in Sect. 2.8.9, a stencil calculation in
which the vector is continuously accessed is assumed. In addition to having the high
required B/F value, there are applications for which the vectors are accessed using
a list. In this case as well, because the vectors are reusable, it is important to make
effective use of the cache. However, because the vector is not continuously accessed,
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it is difficult to use cache memory effectively. For such applications, the cache can
be utilized more efficiently by rearranging the order of the discrete points according
to their physical positions, as discussed in the section on FFB in Chap. 3.

Exercises

1. Show that numerical solutions of differential equations by discretization are
obtained using simultaneous linear equations, where A is a square matrix and x
and b are vectors:

Ax = b. (2.1)

2. Show that the simultaneous linear Eq. (2.1) can be transformed to:

x = Bx + b, (2.2)

where B is a square matrix. When considering x0, x1, x2, that satisfy Eq. (2.3),
if the column of vectors converges to vector x, show that the vector x satisfies
Eq. (2.1):

x (m+1) = Bx (m) + b (2.3)

3. The method of solving Eq. (2.2) as Eq. (2.3) is called an iterative method. One
suchmethod is the Jacobimethod. If the equation to be solved is (2.1), the formula
for the Jacobi iterative method is expressed as (2.4) and (2.5).

x(m+1) = D−1(E + F)x(m+1) + D−1b (2.4)

aii x
(m+1)
i = −

∑
a(m)
i j + b j

x (m+1)
i = −

n∑

j=1, j �=i

(
ai j
aii

)
x (m)
i j + b

aii
, (2.5)

where D, E, and F contain the diagonal elements of A, the lower triangular matrix
of A, and the upper triangular matrix of A, respectively. Derive (2.4) and (2.5),
which are expressions of the Jacobi method.

4. Code the Jacobi method in an appropriate programming language and parallelize
it with MPI and/or OpenMP and investigate the parallelization efficiency. (The
code for the nonparallel version of the Jacobi method can be found in textbooks
or on several websites.)
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