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Preface

This is the second of two volumes that are written about the basics of paral-
lelization, the foundation of numerical analysis, and related techniques. Even if it is
mentioned as a foundation, we do not assume a novice here completely in this field,
so if you would like to know from the beginning of programming, you should learn
from another book suitable for that. For readers, those who have learned physics,
chemistry, biology (earth sciences, space science, weather, disaster prevention,
manufacturing, etc.) are assumed. Furthermore, we assume those who use numer-
ical calculation and simulation as research methods. In particular, we assume those
who develop software code. Many of them have not learned systematically about
programming and numerical calculation, but from the information science experts,
many parts are included as contents of the undergraduate level.

This Volume 2 includes advanced techniques based on concrete applications of
software applications for several fields, in particular, the field of materials science.
Chapter 1 outlines supercomputers including a brief explanation of the history of
hardware. Chapter 2 details a program tuning procedure. Chapter 3 describes
concrete tuning results on the K computer for several software applications: RSDFT
[1] and PHASE [2] (now the official name changes to PHASE/0) in materials
science, nanoscience, and nanotechnology; Seism3D in earth science;
FrontFlow/Blue in engineering. The above chapters are more practical than Chaps.
1–5 in the Volume 1. Chapter 4 explains how to reduce the computational cost of
density functional theory (DFT) calculation from O(N3) to O(N), so-called order-N
method. This method is implemented in the software application, OpenMX [3].
Chapter 5 explains acceleration techniques of classical molecular dynamics
(MD) simulations, for example, general techniques for hierarchical parallelization
on the latest general-purpose supercomputers, in particular, connected by means of
a three-dimensional torus network. These techniques are implemented in the soft-
ware applications, MODYLAS [4]. This chapter also introduces the software
application, GENESIS [5], which is developed for investigating the long-term
dynamics of biomolecules by simulating a huge biomolecule system by using an
efficient structure search method such as the extended ensemble method. Chapter 6
explains techniques for large-scale quantum chemical calculation techniques
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including the order-N method. These techniques are implemented in software
applications, DC-DFTB-K [6] and SMASH [7]. You can download and use some
of them. MaterApps [8] is useful for finding software applications in the field of
material science. This website introduces software applications from around the
world as well as software applications made in Japan.

This book is revised and updated from the Japanese book published by Osaka
University Press in 2017, The Art of High Performance Computing for
Computational Science 2 (Masaaki Geshi Ed., 2017). This book is based on the
lectures, “Advanced Computational Science A” and “Advanced Computational
Science and B”, broadcasted to maximally 17 campuses through videoconference
systems from 2013. All the texts and videos are published on websites (only in
Japanese). These were parts of the human resource development programs that we
have tackled as part of the project of the Computational Materials Science Initiative
(CMSI) organized by the Ministry of Education, Culture, Sports, Science and
Technology (SPIRE) field 2 <New materials/energy creation>, so-called the project
of K computer. These lectures are aiming to contribute to developing young human
resources, centering on basic techniques that will not change for a long time being
even though it is a computer that progresses day by day. These lectures were offered
from the Institute for NanoScience Design, Osaka University. We have gathered up
to about 150 participants per lecture. Participants exceeded 6500 net people in the
past 6 years. The videos of the lectures and lecture materials are opened to the
public on the web, and anyone can learn the content at any time in Japanese. Now
we are using cloud-based video meetings service that connects many users across
different devices to make it easier for more people to participate. These lectures
continue to distribute with slightly changing the organizational structure even after
the project ends.

I would like to express my deep appreciation to the authors, who cooperated in
the writing of the series of books as an editor. I would like to thank the staff of
Springer for publishing the English version. I think that the techniques cultivated in
the project of K computer of Japan contain many useful contents for future HPC.
I hope it will be shared in the world and it will contribute to the development of
HPC and the development of science.

Osaka, Japan
April 2019

Masaaki Geshi
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Chapter 1
Supercomputers and Application
Performance

Kazuo Minami

Abstract Before the advent of modern supercomputers, single processors were
approaching the limit of improvement in operating frequency, and there was a mem-
ory wall problem. Even if the computing capacity of a single processor could be
increased, the data supply capacity of the memory could not match the computing
capacity. The increase in operating frequency also caused the problem, that is, power
consumption increased faster than performance improvement. In other words, the
limit of performance improvement of a single processor was becoming apparent.
To solve these problems, parallel architectures, in which many single processors
are connected by a communication mechanism, have been used. The two points,
“programming conscious of parallelism” and “programming conscious of execu-
tion performance”, are very important for users, researchers, and programmers to
make effective use of the present supercomputers equipped with tens of thousands
of processors.

1.1 What Is a Supercomputer?

In this section, we first describe the development of computers and the changes in
the usage technologies of supercomputers in Sect. 1.1, and in Sect. 1.2 we describe
two important points for developing high-performance applications. Computational
science, which elucidates scientific phenomena by using numerical simulation, has
long been described as the third science alongside theory and experiments, and in
recent years, innovative scientific technology research and development using super-

1http://www.riken.jp/en/research/environment/kcomputer/.
2The Institute of Physical and Chemical Research (http://www.riken.jp/en/).
3https://www.top500.org/.

K. Minami (B)
RIKEN Center for Computational Science, RIKEN, Kobe, Hyogo, Japan
e-mail: minami_kaz@riken.jp

© Springer Nature Singapore Pte Ltd. 2019
M. Geshi (ed.), The Art of High Performance Computing
for Computational Science, Vol. 2,
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2 K. Minami

computers has been active all over the world. In Japan, the K computer
1
developed

by RIKEN
2
in 2011 won the top 500

3
ranking for two consecutive terms.

The application of supercomputers in Japan is an innovative way to elucidate var-
ious natural phenomena over a vast scale from the extremely fine quantum world to
the universe, including an enormous number of galaxies, and the discoveries made
are expected to contribute to society. For example, on the very small scale of ten to
the minus several powers of meters, we expect to understand the behavior of viruses,
liposomes (consisting of several hundred thousand atoms), and other organic phe-
nomena through long-running simulations, and this is expected to contribute to the
medical field, inexpensive biofuels, and new energy fields. On a slightly larger scale,
we expect to accelerate innovation in next-generation electronics through design
simulation of entire next-generation semiconductor nanodevices and the creation of
new functional nonsilicon materials such as nanocarbons. On the scale of human
society from several tens of meters to several hundreds of kilometers, we expect to
contribute to detailed disaster-prevention planning by seismic simulation, combin-
ing seismic wave propagation and structure response. On a global scale of several
thousand kilometers to several tens of thousands of kilometers, we expect to present
high-resolution global weather forecasts and accurate predictions of the course and
intensity of typhoons by climate simulation, and to contribute to climate change
research. On the larger scale of more than 10 to the 20th power of meters, we expect
to elucidate cosmic phenomena, such as the generation of stars and analysis of the
behaviors of galaxies.

As described earlier, various applications are expected for supercomputers, but
what is a supercomputer in the first place?

Although there is no clear definition of a supercomputer, it is regarded as a com-
puter with extremely high speed and outstanding computing capacity, compared with
the general computers of its era. For example, a supercomputer is defined in present
government procurement in Japan (2016) as a computer capable of 50 trillion ormore
floating point operations per second (50 TFLOPS)4: This number is reviewed as nec-
essary. In the mid-1940s, one of the first digital computers, named the ENIAC (an
abbreviation of Electronic Numerical Integrator and Computer), appeared. In 1976,
the CRAY-1, which was described as the world’s first supercomputer, appeared; its
theoretical computing performance was 160 MFLOPS. The performance of a per-
sonal computer using a Pentium IV in 2002 was about 6.4 GFLOPS: about 40 times
the performance of the CRAY-1. At that time, the performance of the Earth Sim-
ulator, which was Japan’s fastest supercomputer in 2002, was 40 TFLOPS, which
was about 250,000 times the performance of the CRAY-1. The K computer, which
achieved the world’s fastest performance in 2011, achieves 10 PFLOPS, about 62.5
million times the performance of CRAY-1.

Computers have achieved these drastic performance improvements, but how?

4FLOPS denote a unit of calculation speed. One FLOPS is the execution of one floating point
calculation per second. Thus, 160 MFLOPS is equivalent to 160 million floating point operations
per second.
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Early computers had a single processor. After the technology changed from vac-
uum tubes to semiconductors, the improvement of the frequency of the semiconduc-
tor devices promoted the performance improvement of the CPU and improved the
performance of the computer. The memory was composed of one or more memory
banks, and a memory bank could not be accessed until a certain time had elapsed
after a previous access. The waiting time for memory accesses remains several tens
of nanoseconds even now. However, until the 1970s, because the operating frequency
of the computer was low and the operation of the computing unit was slow, memory
access times were not a major problem. It was an era when the computation speed
was the bottleneck rather than the memory transfer performance.

Since then, while the waiting time for memory access of several tens of nanosec-
onds has not reduced much, the number of cycles the CPU must wait for memory
access has increased with the improvement in CPU operating frequency. Moreover,
because of the miniaturization of the semiconductor process, more computing units
can be mounted in one CPU. As a result, the data transfer capability of the memory
reduces the computing capacity of the computing unit. This is called the memory
wall problem.

Between the latter half of 1970 and the 1980s, although it was based on a single
processor, a vector architecture was developed that enabled high-speed computation
using vector pipelines, treating data that could be processed in parallel by paying
attention to the parallelism within loops. To solve the memory wall problem in the
vector computer, the number of memory banks was increased, and the CPU read
data from different memory banks cyclically to supply data to the computing unit
continuously. The problem of the waiting time to access the same memory bank was
thus overcome. By adopting this mechanism, it was possible for the vector computer
to balance the data supply capability of the memory and the calculation ability of the
computing unit.

At that time, the processor’s operating frequency was several tens of MHz or
more, and as described earlier, more computing units could be added because of the
progress in the miniaturization of the semiconductor process. This increase, together
with the increased operating frequency of the computing unit, contributed to the
realization of high-speed vector computers. Although the vector system was fast,
the manufacturing cost and power consumption increased because of the expensive
memory bank mechanism described above.

Around the same time as the development of the vector architecture, the computing
unit of the scalar architecture also becameRISC5 andwas pipelined, taking advantage
of the increases in processing units and operating frequency. The scalar architecture
evolved into a superscalar architecture with multiple computing units. Furthermore,
by using SIMD6 and other techniques, high-speed computation was made possible
by utilizing advanced parallelism hidden in the program.

5Reduced instruction set computing.
6Single instruction multiple data: A class of parallel processing that applies one instruction to
multiple data.
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In the scalar architecture, to cope with the memory wall problem, a countermea-
sure other than the vector architecture was taken: a cache with high data supply
capability was placed between the memory and the computing unit without increas-
ing the number of memory banks. As much of data as possible was placed in the
cache, and the data were reused to compensate for the limited data supply capacity of
the memory to the computing unit. Although this method has performance disadvan-
tages, it has benefits in terms of cost and power consumption over the multiple-bank
method of the vector architecture.

The single processor was approaching the limits of improvement of the operating
frequency and the memory wall problem remained. Even if the computing capacity
of the single processor could be increased, the data supply capacity of the memory
could not catch up with the computing capacity. Furthermore, with the increases in
operating frequency, we also faced the problem of power consumption increasing
faster than the improvement in performance. In otherwords, the limits of performance
improvement of single processors were becoming apparent.

To solve this problem, a parallel architecture in which many single processors are
connected by a communication mechanism has appeared. Without this development,
it would be impossible to obtain the necessary computing power with realistic power
consumption.

At present, hybrid, massively parallel computers are emerging, in which multiple
calculation cores are built in a processor and thousands to tens of thousands of
processors are connected by a communication network.

Although each node of a supercomputer is basically the same as an ordinary
computer, computing capacity and computing performance in total are extremely
high, and high-speed interconnection performance is required. Further, because low-
power performance of the total system is required, it is essential that power saving
is implemented at the processor level. Because the number of parts constituting the
system is very large, extremely high reliability is required for individual parts, and
high reliability of the total system is required.

Up to this point, we have explained the development of hardware. As the hardware
evolved, how has its usage changed so that the performance of the hardware can be
fully utilized?

In the early days of computers, the processing speed was a bottleneck compared
with the memory transfer performance with a single processor, so development envi-
ronments such as high-level languages and compilers emerged. It was common for
researchers and programmers to reproduce formalized and discretized theoretical
model equations in code. High-speed processing was realized by developing com-
pilers that could interpret the parallelism hidden in the program.

From the latter half of 1970 to the 1980s, when vector architectures used multiple
memory banks to cope with the memory wall problem, the parallel nature of loop
indices was exploited and parallel-processable data were pipelined.

As a programming technique in the age of vector architecture, it was necessary to
guarantee the parallel nature of loops. Eliminating recurrence (regression references)
became an essential performance optimization technique.
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In the scalar architecture, as described earlier, by dealing with a cache with high
data supply capability, we coped with the memory wall problem. In addition, in the
scalar architecture, SIMDwas introduced and effectively used simplified instructions
with RISC, superscaling with multiple operation pipelines, and software pipelining
by compiler.

Similar changes were introduced for the scalar architecture as well. It was nec-
essary to guarantee the parallelism of the loop index, and SIMD vectorization has
become a performance optimization technique that requires eliminating recurrence.
Efficient cache usage technology has also become indispensable.

After the limits of performance improvement of a single processor were seen and
supercomputers changed to a parallel architecture, with parallelism among several to
several hundred cores in theCPU, parallelism among thousands and tens of thousands
of CPUs has been realized by introducing it explicitly in programs. In other words, it
becomes necessary for the programmer to parallelize the code in consideration of the
parallelism among the cores and the parallelism among the CPUs, and to program
with consideration of the distribution of the data used by the cores and CPUs for
calculation. In addition, a communication system usage technique that exploits the
network topology between the nodes where the processes are located has become
necessary.

As described earlier, modern computers still have the memory wall problem in
which the computing capacity of the computing unit is increased but the data supply
capacity of the memory is relatively insufficient. To cope with this problem, cache
memories (level 1, level 2, and level 3) with high data supply capability are provided,
and the data are placed in the cache and reused many times while performing a
calculation.7 Thus, compared with programming on older computers, the necessity
of programmingwith attention tomultilevelmemory structures such as cache became
obvious. However, many programs cannot reuse data as described here. Because the
capacity of the computing unit cannot then be fully used, programs may require the
use of high-speed data access mechanisms such as prefetch.

1.2 What Is a High-Performance Application?

The two points mentioned in Sect. 1.1, “programming conscious of parallelism” and
“programming conscious of execution performance” must be recognized by users,
researchers, and programmers who use the present supercomputers equipped with
tens of thousands of processors and containing various enhancements and new func-
tions. Thus, high-performance applications require “performance optimization with
high parallelism” and “performance optimization of single CPUs”. In Chaps. 1–3,
these are the performance-optimizing techniques used to exploit the performance of
modern supercomputers.

7This approach is called cache blocking.
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1.2.1 Important Points in Optimizing High Parallelism

Parallelization is briefly described first. The basic idea is simple.As shown in Fig. 1.1,
if a problem that is sequentially computed using one processor is computed in parallel
using four processors, the computation should be four times faster and it should be
executed in a quarter of the original calculation time.

In simulations of fluids and structural analysis, a mesh is constructed in the spatial
direction, and calculations are performed for each mesh point. High parallelization
is briefly explained by using this example.

To parallelize the calculation, the mesh is divided into multiple regions. These
regions are distributed among the processors and the calculations are performed in
parallel. Such a parallelization method is called a domain decomposition method
and is depicted in Fig. 1.2. In this figure, after executing the calculation using four
processors, data are exchanged using the communication network to achieve con-
sistency of the calculations proceeding in parallel; these steps are then repeated to
continue the calculation. As described earlier, in the parallel computation by domain
decomposition, adjacent communications are performed to exchange the data of a
part of the domain with the adjacent processors. When an inner-product calculation
is performed over all the domains, global communication is required to obtain the
sum of the data for all processors. An important point in achieving high parallelism
is to minimize the amounts of adjacent and global communications mentioned here.

It is also important to make the calculation times for each processor as equal as
possible. Differences in calculation time are called load imbalances.

Elapsed time

Sequential 
calculation

Parallel 
calculation

Processor
1

Processor
1

Processor
1

Processor
1

Processor
1

Processor
2

Processor
3

Processor
4

Elapsed time

Fig. 1.1 Parallel calculation
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Processor
1

Processor
2

Processor
3

Processor
4

Calculation
time

Communication 
time

Calculation
time

Communication 
time

Communication 

Communication 

Communication 

Fig. 1.2 Parallel calculation by domain decomposition

Next, the parallelization rate and parallelization efficiency will be described.
Assume that 99%of a sequential calculation can be performed as parallel calculations
but that the remaining 1% of the sequential calculation cannot be made parallel; the
parallelization rate of this calculation is 99%. Assume that the sequential calculation
time is 100 s in total, and the parallel computation is performed using 100 processors.
The parallel computation time for the parallelizable component will then be 99 s/100
= 0.99 s; 1 s of nonparallel computing time must then be added, so the calculation
time with 100 processors is 1.99 s. Thus, the original calculation is 100 s and about
1/50 of that with 100 processors, so the parallelization efficiency is 50%.

In the same way, for 1000 processors, the calculation time is about 1/91. That is,
if even 1% of the calculation is nonparallel, efficient parallel calculation cannot be
performed no matter how many processors are used. This limit on the benefits of
parallelization is known as Amdahl’s law. From this, as well as minimizing the com-
munication time, it is important to minimize the nonparallel computing component
as much as possible.
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1.2.2 Important Points for Single-CPU Performance
Optimization

From the viewpoint of single-CPU performance, applications can be roughly divided
into two types according to the ratio of the number of bytes of memory accessed to
the number of floating point operations required to execute the application. In one
type, the data transfer requests (in bytes) are small compared with the number of
floating point operations (in FLOPS). Such calculations are called computations
with small required byte/FLOP (B/F) values. For example, for the matrix–matrix
product calculation shown in Fig. 1.3, in principle the B/F value is 1/N when the data
movement amount is represented by the number of elements. In general, because
the amount of data movement is represented by the number of bytes, for double
precision calculations, the movement amount is multiplied by eight, so that it is 8/N,
and in principle the B/F value becomes smaller as N increases. In real programs (see
Fig. 1.4), if N becomes a certain size and (a) the access direction is continuous in
memory, (a) is in the cache but (b) is not in the cache. Therefore, using a technique
called blocking, we divide the matrix into small matrices so that both (a) and (b)
are in the cache. Applications with small required B/F values like the matrix–matrix
product shown can achieve high single-CPU performance by reusing the data placed
in the cache many times.

2N3

calculations
N2

 pieces of data

Calculation of matrix-matrix product
(Small required B/F value)

(a) (b)

N2

 pieces of data

Fig. 1.3 Example of matrix–matrix product (1)

(a) (b)

Fig. 1.4 Example of matrix–matrix product (2)
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＝

(a) (b)
2N 2

calculations

N2

 pieces of data
N

 pieces of data

Fig. 1.5 Example of matrix–vector product

In the other type of application, the data transfer requests from memory are large
compared with the number of floating point operations required to execute the appli-
cation. These calculations are called calculationswith large requiredB/F values. Such
calculations have problems in effectively using the high performance of the CPU
because it is difficult to use the cache effectively. For example, for the matrix–vector
product calculation shown in Fig. 1.5, in principle, the B/F value is approximately
1/2 when the data movement is expressed by the number of elements. As above, for
a double precision calculation, the movement amount is multiplied by 8 bytes, so
becomes 8/2 = 4; therefore, the B/F value is large when compared with the matrix
–matrix product. In this way, as a viewpoint for improving the performance of the
single CPU, the required B/F value of the application is important.

Exercises

1. Describe the memory wall problem, which is an important problem for single
processors, and describe the characteristics of recent supercomputers.

2. There are various benchmark tests (BMTs) to evaluate the performance of super-
computers. The most famous BMT is the top 500 (https://www.top500.org/),
which is evaluated by the performance of LINPACK, but there are others as well.
For some other BMTs, discuss the relationship between the evaluation method
and the field in which the evaluation is important.

https://www.top500.org/


Chapter 2
Performance Optimization
of Applications

Kazuo Minami

Abstract In this chapter, we present procedures for performance evaluation that
we have used for practical applications. The method is outlined in Sect. 2.1, and
Sects. 2.2–2.6 describe the details of the method. The classification of problems
related to high parallelism and the classification of applications from the viewpoint
of single-CPU performance are described. Sections 2.7 and 2.8 then describe perfor-
mance optimization techniques for each problem pattern related to high parallelism
and the techniques for single-CPU performance optimization according to applica-
tion classification.

2.1 Performance Evaluation Method

The performance evaluation of an application is divided into two parts: “highly par-
allel performance optimization” and “single-CPU performance optimization.” For
each part, the performance evaluation method has two working phases: “current state
recognition” and “understanding the problems.” The “current state recognition” is
common to both working phases and is divided into “source code investigation”
for analyzing the structure of source code, and “measurement of elapsed time” to
understand the current state of application performance. The final procedure in the
“current state recognition” is “calculation/communication kernel analysis,” in which
we evaluate the results of “source code investigation” and “measurement of elapsed
time.” The next phase of “current state recognition” begins with “problem evaluation
method” with working phases of “understanding the problems.” In the “problem
evaluation method” for “highly parallel performance optimization,” the problems
related to high parallelization are classified into six patterns. In the “problem eval-
uation method” for “single-CPU performance optimization,” applications are also
classified into six patterns.

Our approach is summarized in Table 2.1.

K. Minami (B)
RIKEN Center for Computational Science, RIKEN, Kobe, Hyogo, Japan
e-mail: minami_kaz@riken.jp

© Springer Nature Singapore Pte Ltd. 2019
M. Geshi (ed.), The Art of High Performance Computing
for Computational Science, Vol. 2,
https://doi.org/10.1007/978-981-13-9802-5_2
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Table 2.1 Outline of performance optimization method

Highly parallel performance
optimization

Single-CPU performance

Current state recognition Source code investigation

Measurement of elapsed time

Calculation/communication kernel analysis

Understanding the problems Problem evaluation methods

2.2 Current State Recognition: Source Code Investigation

As the first step in current state recognition, we investigate the source code of the
application.We investigate the structure of the source code and analyze the call struc-
ture of subroutines and functions. We also analyze the subroutines, the loop structure
in the functions, and the control structure of the IF blocks, and organize and visualize
the structure of the entire program. The visualized source code is divided into blocks
of calculation and communication processing according to the algorithms of physics
and mathematics used in the program, and the blocks are organized. We understand
the physical/mathematical processing content of each processing block. By com-
paring these aspects of the processing blocks with the results of the investigated
source code, the calculation characteristics for each calculation block are obtained.
The calculation characteristics describe the processing of a calculation block as non-
parallel, completely parallel, or partially parallel, and identify the calculation index
(e.g., number of atoms or number of meshes), whether the calculation amount in the
calculation block is proportional to N or proportional to N2 when the calculation
index is N, and so on. We also investigate the communication characteristics of each
communication block: whether the processing of the communication block is global
communication, adjacent communication, or whether the communication amount
depends on the calculation index. These investigations are shown in Fig. 2.1.

The purpose of the investigation of the source code is to understand the charac-
teristics of each processing block in the program. However, the visualization of the
loop structure from the start to the end of the program and that of the entire control
structure of the IF blocks mentioned here are large tasks if done manually. Therefore,
we use a visualization tool for program structure, such as K-scope [1, 2].

2.3 Current State Recognition: Measurement Methods

In the sequential calculation before parallelization in the simulation, the calculation
is sequentially performed for each calculation unit such as a mesh. To parallelize a
code, we divide a set of calculation units such as meshes into plurality sets, share the
divided sets among the processors, and perform the calculations in parallel. In such
parallel computation, adjacent communications are performed in every calculation
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Fig. 2.1 Investigation of source code

step to exchange data for parts of areas with neighboring processors. In addition,
when calculating inner products of scalar values for all areas, global communication
between all processors is required. An important point in achieving high parallelism
is to make the adjacent and global communication times as small as possible.

As described in Sect. 1.2.1, it is important in parallel computation, just like the
reduction of communication time, to make the nonparallel computing parts as small
as possible.

The next step of current status recognition is to conduct application performance
measurement. It is important for these measurements to be useful for investigating
parallel characteristics; that is, what kind of behaviors the adjacent and global com-
munication times described here show during highly parallel calculation, and where
nonparallel computing parts remain and their influence on behaviors in high paral-
lelism. Therefore, where performance measurement is possible, it is carried out as
follows.

In conducting application performance measurement as the next step of current
status recognition, it is important to conduct performance measurements that clarify
the parallel characteristics of applications: specifically, what kind of behaviors the
adjacent global communication times display during the highly parallel calculation,
which calculation parts are nonparallel, and how the nonparallel parts influence the
application’s behavior in highly parallel execution. For clarification of parallel char-
acteristics, where possible, the performance measurement is carried out as follows.

First, we define the problem to be solved, determine the number of parallel paths
in the problem, and create a test problem that has the same problem size with one
processor as the target problem that can be run with several levels of parallelism.
Next, we perform the performance measurement using the prepared test problem. In
the performance measurement, the execution time is measured for each process for
each calculation block and communication block, as defined in the previous section.
The parallel characteristics during parallel computation cannot be fully clarified by
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measuring the entire application. Each processing block’s influence on the paral-
lel characteristics differs depending on whether it includes a nonparallel part and
the number of parallel paths, and whether the communication time changes. There-
fore, it is essential to measure the performance of each processing block for each
process separately. These measurements allow us to identify the processing blocks
that degrade parallel performance. In addition, because the communication behav-
ior during parallel execution differs between adjacent and global communication,
it is necessary to measure them separately. The adjacent communication time has
the same value if the communication amount is the same, as described later, but
the global communication time tends to increase as the number of parallel paths
increases, even if the communication volume stays the same. Furthermore, because
communication times may include waiting times caused by load imbalance, it is also
important to measure the waiting time and the net communication time separately,
thus allowing us to distinguish whether the problem is caused by communication or
load imbalance. With respect to computation, simultaneously with the computation
time, the amount of computation and the computation performance are alsomeasured
for each processing block in each process.

2.4 Current State Recognition: Determination
of Computation and Communication Kernels

The analysis of the source code shows the correspondence between the physi-
cal/mathematical processing contents of each processing block and the source code,
and the calculation characteristics of each calculation block and the communica-
tion characteristics of each communication block. By matching these results with
measurement results, the calculation kernel and the communication kernel can be
identified.

For example, suppose there is a parameter N that determines the amount of com-
putation. Assume that the coefficient of computation amount proportional to the third
power of N is m1, the coefficient of computation amount proportional to N is m2,
and that m2 is considerably larger than m1. When N is relatively small, the amount
of computation for the two parts may be about the same. However, as N increases,
the amount of computation for the part proportional to the third power of N becomes
significantly larger, and the amount of computation for the part proportional to N
may become negligible.

Both the amount of computation and the computation time also vary depending
on the level of performance1 that can be obtained relative to the theoretical peak
performance. The essentially nonparallel parts may remain because of the adopted
parallelization method. By considering the size of the parameters of the problem to
be solved in this way, the parallelization method used, the parallelization method
that may be adopted in the future, the prospects for effective performance, and so on,

1Performance obtained by dividing the measured amount of computation by the execution time.
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Fig. 2.2 Identifying kernel of calculation and communication

and the kernels to be evaluated, are determined (see Fig. 2.2). The kernels selected
here can be reviewed at later stages of the evaluation.

2.5 Understanding the Problems: Evaluation
of High-Parallelism Problems

We explain how to evaluate the problems of high parallelism by carrying out the
measurements shown in Sect. 2.3 and how to measure parallel performance from
several parallel processes to about 100, about 1000, or several thousand, step by
step. There are two kinds of methods for measuring the performance by gradually
increasing the number of parallel processes: strong scaling measurement and weak
scaling measurement. Strong scaling measurement is a method of fixing the scale
of the problem to be solved and increasing the number of parallel processes: for
example, if the problem scale is fixed to N = 10,000, the number of parallel pro-
cesses and the problem size per processor change is 1 and 10,000, 2 and 5000, 4 and
2500, and so on, respectively. In contrast, weak scaling measurement is a method of
fixing the scale of the problem solved by each processor and increasing the number
of parallel processes. For example, if the problem scale is measured first at N =
1000, the problem size per processor and the number of parallel processes is 1000
and 2, respectively, and the total problem scale is N = 2000. If the problem scale
per processor and the number of parallel processes is 1000 and 4, the total problem
scale is increased to N = 4000. The feature of weak scaling measurement is, ide-
ally, that even when the number of parallel processes is increased, because the same
computation is performed, and the adjacent communication amount is not changed,
the execution time of the computation parts and the execution time of the adjacent
communications are not changed. When a nonparallel part is included in the com-
putation part, a significant increase in computation time should be measured, as the
number of parallel processes becomes large in weak scaling measurement.
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For example, assume that the execution time of the parallelizable part during
sequential execution is Tp and the execution time of the nonparallelizable part dur-
ing sequential execution is Ts. The execution time T0 during sequential execution
is represented by T0 = Tp + Ts. The execution time when this problem is mul-
tiplied by N and executed sequentially is represented by N × T0 = N × Tp +
N × Ts. When this problem is executed in N parallel processes, it corresponds to
what we performed with weak scaling. If the execution time when executed in N
parallel processes is Twn, the parallelizable portion becomes N times faster but the
nonparallelizable portion does not become faster, so Twn = Tp + N × Ts, and the
term N × Ts increases. Incidentally, if Tsn is the execution time when run with
strong scaling, then Tsn = Ts + Tp/N.

Even when the adjacent communication time increases in accordance with the
number of parallel processes, it is easy to see that there are some problems in the
corresponding adjacent communications. The global communication time generally
increases in accordance with the number of parallel processes, and the increase can
be predicted from the data on the basic communication performance by comparing
the degree of increase with the predicted value. This can show whether there are
some problems in the corresponding global communications.

The method described here is shown in Fig. 2.3. The reason for using weak
scaling measurement in this way is that it is easy to find problems. However, in weak
scaling measurement, it is necessary to prepare separate execution data according
to the number of parallel processes, which may be troublesome. In a simulation in
which the amount of computation is proportional to the second or third power of
the problem size N, weak scaling measurement is sometimes difficult. In such a
case, strong scaling measurement is performed. For strong scaling measurement, it
is necessary to model the computation and communication times with the number
of parallel processes as a parameter, to predict these, and to compare the predictions
with the actual measured times so as to find any nonparallel parts or communication
problems. However, unlike weak scaling measurement, it is not necessary to prepare

Parallel number

Fig. 2.3 Measurement with weak scaling
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execution data according to the number of parallel processes. It is sufficient to prepare
only one type of data.

For the calculation of kernel, we compare and evaluate the trend of the predicted
computation amount as clarified in the investigation of the source code and the com-
putation amounts from the measurement results. For example, assume the computa-
tional amount of the kernel is proportional to the problem size N and is completely
parallelized and measured with weak scaling. Because the computational amount for
each process is constant regardless of the number of parallel processes, the calcula-
tion time for the total system is constant. In this case, the value obtained by dividing
the computational amount of the measurement result by N is the proportional coef-
ficient. If it can be evaluated with weak scaling, as described above, and if it is
possible to completely parallelize and there are no problems in the communication
part, even if the number of parallel processes is increased, the execution time of the
computation part will be constant, and the adjacent communication time will also
be constant and should not increase. If the execution time of the computation part
increases remarkably with the number of parallel processes, it is likely that some
nonparallel parts remain in the operation kernel. In addition, if the adjacent commu-
nication time increases significantly according to the number of parallels, it is likely
that some processing that is not adjacent communication is included in the com-
munication kernel. For example, there may be some global communication that is
used instead of adjacent communication to simplify programming. As for the global
communication, as described at the beginning of this section, its communication time
also increases as the number of parallel processes increases. However, because the
extent of the increase can be predicted from the basic communication performance
data, if the communication time increases significantly more than predicted, we can
consider that there is some problem in the corresponding global communication. In
the discussion of measurement methods, we described the method of measuring the
communication time and waiting time separately. This measured waiting time often
indicates some imbalance included in the computation part and communication part.

In parallel computing, some processing imbalance is physically unavoidable.
However, where the extent of the imbalance is remarkably large or if the imbalance
increases with the number of parallel processes, it is likely that some problem caus-
ing imbalance was introduced in the programming stage. In evaluations using strong
scaling, as described above, the existence of nonparallel parts and communication
problems are found by comparing the predicted computation and communication
times with the measured times. The predicted times are obtained by modeling them
with the parallel number N as a parameter.

For example, suppose that the computation of the kernel is proportional to the
third power of the system parameter N and the computation kernel is completely
parallelized. When measured with strong scaling, if the number of parallel processes
is doubled, then the computation of each process should be halved.

The total computation amount is the number of processes multiplied by the mea-
sured computational amount of each process and the parallel number M. The total
computational amount divided by the third power of M is the proportional coeffi-
cient for the third power of M. The investigation of these computational amounts
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and proportional coefficients is performed using many parallel measurement results,
and the evaluation is made as to whether the predicted value is consistent with the
measurement results. If the evaluation results are consistent, it means that the source
code is written according to the theory. If the evaluation results are not consistent
and there is an increase in computational amounts with the increase in the number
of parallel processes, it is likely that there is some problem such as the existence of
nonparallel parts in the source code. A similar evaluation is required for the adjacent
communications. For example, when a rectangular parallelepiped area is calculated
using twice the number of parallel processes, the length of one side of the allocated
area of each processor is 1/3 to the power of 1/2. The adjacent communication amount
for the adjacent faces is 2/3 to the power of 1/2. Therefore, assuming the same com-
munication performance, the communication time should also be 2/3 to the power of
1/2. For the global communication, a similarly modeled evaluation is required. As
for the evaluation of the imbalance, it is necessary to evaluate the results as for weak
scaling.

As repeatedly described, it is essential to carry out the evaluation shown here for
each computation and communication kernel. Some tools provided bymanufacturers
have functions to measure the execution time, the amount of computation, and the
computation performance for each subroutine or function, and it is usual to measure
performance using these tools. However, the subroutines and the functions of the
application do not generally match the range of the block, and because a function
may be called from different blocks several times in different ways, these tools may
not yield accurate measurement results for each block. Therefore, it is better to
performmeasurements on each block. However, this does not apply if the subroutine
or function is configured to match the block.

2.5.1 Classification of Problems Related to High Parallelism

In the HPCC benchmark, applications are classified by using two axes. The first axis
is defined by the locality versus nonlocality in the spatial direction of the data divided
among the processors. The second axis is defined by the locality versus nonlocality
in the temporal direction of data in the processors [3].

In addition, a study of application classification, the “Berkeley 13 dwarfs,” classi-
fied applications by the two axes of the communication and calculation patterns [4].
In this study, applications were classified among seven dwarfs in the HPC field, and
13 dwarfs by adding other fields.

In promoting performance optimization, we also classify the application and orga-
nize the execution performance optimization methods for applications based on the
classification. For high parallelism, the locality versus nonlocality of the data is
considered in the HPCC as one axis, and in the Berkeley 13 dwarfs, the pattern of
communication is considered as one axis. In this section, we focus on the kinds of
problems that occur and how we deal with those problems when optimizing the per-
formance of existing applications, and we classify them according to highly parallel
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patterns. The problems relating to high parallelism are classified into six patterns, as
shown in Table 2.2.

The main problems relating to high parallelism are caused by calculations and
communication. The first, second, and sixth problems are caused by calculation, and
the third, fourth, and fifth problems are caused by communication. The six patterns
are described as follows.

The first pattern is the mismatch of the degree of parallelism between applications
and hardware. Researchers want to solve a problem within a certain time; suppose
that to do so, it is necessary to use tens of thousands of parallel nodes on a super-
computer. For example, the K computer makes it possible to use more than 80,000
parallel nodes in terms of parallelism of the hardware. However, sometimes only
thousands of parallel nodes can be used because of the limitations of the application
parallelization. This is the mismatch of degree of parallelism between the application
and the hardware. When approaching the limitation of the parallelism of the appli-
cation, the computation time becomes extremely small, whereas the proportion of
communication time increases, leading to a deterioration of the parallel efficiency.

The second pattern is the presence of nonparallel parts. Asmentioned at the begin-
ning of this chapter, we can see that the parallel performance deteriorates because
of Amdahl’s law if nonparallel parts remain in the computation. Here, assuming that
the execution time of a certain application at the time of sequential execution is Ts

and the parallelization rate of the application is α, the nonparallelization ratio of the
application is 1 – α. When this application is executed using n parallel processes, the
execution time Tn is expressed as Tn = Ts (α/n + (1 – α)). For a parallelization effi-
ciency of 50%, the parallelization ratio α is required to be 99.99% when n = 10,000.
The easiest way to find remaining nonparallel parts is to measure the increase in
execution time of the calculation part using weak scaling measurement as described
above.

The third pattern is the occurrence of large communication sizes and frequent
global communication. Communication times, particularly for global communica-
tions, have a large impact on the parallel performance. Consider an example of
implementing the ALLREDUCE communication of M (bytes) between N nodes.
Assume that the ALLREDUCE communication is performed using a binary tree

Table 2.2 Bottlenecks in parallel performance

Bottleneck

1 Mismatch of the number of parallel processes between application and hardware
(insufficient parallelism of applications)

2 Presence of nonparallel part

3 Large communication size and the occurrence of frequent global communication

4 Global communication among all nodes

5 Large communication size and the occurrence of communication times in adjacent
communication

6 Load imbalances
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algorithm and the communication performance is Pt (bytes/s). The communication
time Tg for acquiring the total amount of M (bytes) after all nodes have commu-
nicated is Tg = m×log2 n

Pt
. To compare the global communications with the adjacent

communications, we consider an example in which N nodes perform the adjacent
communications ofM(bytes) to the next rank.When the communicationperformance
is matched with the above conditions, the communication time Ta to complete the
communication ofM (bytes) for all nodes is calculated by Ta = m

Pt
. When comparing

global and adjacent communications, it is found that the global communication time
is larger by the coefficient of log2 n. Global communication should be a minimum.

The fourth pattern is the occurrence of global communications among all nodes.
As described above, when the ALLREDUCE communication of M (bytes) is per-
formed between N nodes using the binary tree algorithm, the communication time
T is T = m×log2 n

Pt
assuming the communication performance to be Pt (bytes/s).

Because the communication time increases as the number of nodes N increases, it is
better to limit global communication among all nodes as much as possible. However,
calculation of inner products is inevitable in the iterative solution of simultaneous
linear equations and other problems, so it is impossible to eliminate all-node global
communication.

The fifth pattern is the occurrence of a large communication size and a large
number of communications in the adjacent communication. In terms of the commu-
nication time, adjacent communication tends to be faster than global communication.
However, useless adjacent communication, such as communicating data for the entire
area for one mesh to the adjacent mesh, are sometimes performed. Such code should
be reviewed and only communication of data on the adjacent surface should bemade.

The sixth pattern is the occurrence of load imbalances. Differences in the amount
of calculation for each node may occur, causing some load imbalance among nodes.
When the load imbalance deteriorates as the number of nodes increases, or when the
load imbalance is extremely large over a small number of nodes, it is a problem.

2.6 Understanding the Problems: Evaluation Methods
for Problems in Single-CPU Performance

2.6.1 Application Classification for Single-CPU Performance

As mentioned in Sect. 2.5, the developers of the HPCC benchmark [3] and the
Berkeley 13 dwarfs [4] classified applications. For the HPCC, applications were
classified using locality versus nonlocality of data in the temporal direction with
regard to the single-CPU performance. For the Berkeley 13 dwarfs, applications
were classified using the calculation pattern.

Similarly, in promoting the study of performance optimization, we also classify
applications and organize the application execution performance optimization tech-
niques based on the classification. In Sect. 1.2, from the viewpoint of the single-CPU
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performance,wementioned that applications can roughly be classified into two types,
one with a low required B/F value and one with a high required B/F value. This idea
is close to the classification used for the HPCC. In this section, we will develop this
view and show the classification of applications into six types as shown in Table 2.3.

The calculations for which the required B/F value is small are the first to the fourth
types. The performance greatly varies depending on whether the DGEMM library
or manual cache blocking can be used, even for calculations with small required
B/F values. When cache blocking can be used, the performance varies depending
on whether the data structure and loop structure are simple, or the data structure is
slightly complicated such as using list vector indexing by integer arrays. Applications
with more complex loop structures often fail to achieve high performance. These
considerations led to the four types of calculations with small required B/F values.

The first type includes applications that can be rewritten as matrix–matrix product
calculations. This type has small B/F values because in principle it can perform the
calculations proportional to the third power of n by loading the data for a square of
size n from memory. An example of this type of calculation is the application of the
first principle quantum calculation based on density functional theory.

The second type includes applications that allow cache blocking although they
are not rewritable to the matrix–matrix product, but still have small required B/F
values. The calculation of the Coulomb interactions of molecular dynamics and the
calculation of the gravity interaction of the gravitational multiple-body problem are
examples. In both cases, by loading the data for n particles and performing cache
blocking, calculations proportional to the square of n can be performed, so that the
required B/F value is small. This type often uses list vector indexing by integer arrays
for the particle access, and the loop body2 is somewhat complicated.

The third type contains examples such as special high-precision stencil calcula-
tions,3 which make it possible to use the cache effectively, so the required B/F value

Table 2.3 Classification of applications from the standpoint of single-CPU performance

Classification Application examples

1 Rewritable to matrix–matrix products Density functional theory calculations

2 Cache blocking is possible Molecular dynamics, many-body gravity
problems

3 The required B/F value is small, and the
loop bodies are simple

Special stencil calculations

4 The required B/F value is small, but the
loop body is complex

Plasmas, physical processes of meteorology,
quantum chemical calculations

5 The required B/F value is large Mechanical processes of meteorology,
fluids, earthquakes, nuclear fusion

6 The required B/F value is large and list
accesses are used

Structural calculations using finite-element
methods, fluid calculations

2The code contained in the loop.
3The calculation using subscripts for differences such as i, i – 1 appearing in difference calculations.
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is small and the loop body is a simple calculation. Although this type of calculation
gives good performance, unfortunately there are few examples.

In the fourth type of calculations, the required B/F value is small, but the loop
body is complex. Some weather calculations have mechanical processes to calculate
the motion of a fluid and physical processes to calculate the microphysics of clouds;
this physical process corresponds to the fourth type of calculation. By using small
amounts of data loaded from the memory, complex and in-cache calculations are
performed, but the loop body tends to be long and complicated. The calculation of
the PIC method4 used for plasma calculations is also of this type. In this technique,
although the mesh data around the particle are cached, list vector indexing by integer
array is commonly used to access the particle data, resulting in complex program
codes. The body of the calculation loop also tends to be long. For this type, we expect
high performance because the data are cached, but in many cases we cannot obtain
the expected performance because of the complexity of the program code.

The fifth and sixth types of calculation have high required B/F values. Even for
program codes that have the same high required B/F values, the performance varies
greatly, depending on whether discontinuous access to lists is required. This is the
basis for classifying calculations with high required B/F values into the fifth and
sixth types.

The fifth type of calculations has high required B/F values and do not use list
accesses. There are many calculations of this type in the usual stencil calculation,
and there are many other examples such as the dynamic processes in weather cal-
culations described earlier, fluid calculations and calculations of earthquakes. The
sixth type of computation has high required B/F values and uses list accesses. Such
calculations occur frequently in engineering; examples are structural analysis and
fluid calculations using finite-element methods. List accessing is the weak point for
the modern scalar computer architecture because random accesses are required for
each element.

In general, single-CPU performance decreases in the order from type 1 to type 6
calculations. However, there is usually little difference between types 2 and 3.

2.6.2 Evaluation by Cutting Out the Computation Kernel

First, we cut out the calculation kernel to form an independent test program that can
be executed in one process. In cutting out the kernel, the following steps are carried
out.

(A) Dump the necessary data at the timeof executing the original program to prepare
the data such as arrays necessary for the execution of the test program. The
data used by the conditional statements are important. For the data used for
calculation, when only the performance is a problem, the appropriate data may
be set without using dumped data.

4Particle-in-cell method. A method for arranging particles in the calculation lattice.
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(B) Dump the data for verification at the time of executing the original program to
prepare the data such as arrays necessary for verification of the test program.

(C) Cut out the kernel as the test program. If necessary, add a function to read the
data from (A) to the test program and a function to write data to compare with
the data dumped in (C).

The reason for cutting out the kernel in this way is that it makes it easier to handle
in terms of execution time and the number of processes by allowing execution in one
process. It is also easier to rewrite and test program code such as merging arrays and
replacing indices.

Next, the various performance improvement techniques such as loop division,
loop fusion, array merging, and replacement of array indexes can be tried using the
cut-out kernel, and the effects of the changes are evaluated. When implementing a
performance improvement technique throughout the original program, the amount
of work may be increased. We identify work that affects the entire code when the
performance improvement techniques are implemented, and estimate the cost of
making those changes. We evaluate the trial results of the performance improvement
technique from both aspects of the performance improvement and the work volume,
and determine an accepted plan of performance improvement.

2.7 Performance Optimization Techniques Using Problem
Patterns for High Parallelism

For each highly parallel problempattern described in Sect. 2.5.1, we outline the appli-
cable performance optimization techniques. Specific applications of the performance
optimization techniques mentioned here are shown in Chap. 3.

2.7.1 Mismatch of Parallelism Between Application
and Hardware

One applicable solution to the mismatch of parallelism between the application and
the hardware is the extension of the parallelization axis. Some programs are paral-
lelized using only one parallelization axis, even though it may be physically possible
to adopt a plurality of parallelization axes. By extending this parallelization axis and
parallelizing it with a plurality of parallelization axes, it becomes possible to expand
the parallelism of the applications and to use more of the parallelism available in the
hardware. However, the expansion of the parallelization axis often requires extensive
rewriting of programs, and it is necessary to consider this increase in the programmer
workload.
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2.7.2 Remaining Nonparallel Part

If the parallelization adopted domain decomposition, many problems can be com-
pletely parallelized. However, as mentioned above, in spite of being physically able
to adopt a plurality of parallelization axes, some programs are parallelized using only
one parallelization axis. This may leave nonparallel parts in the program code. For
example, suppose that there are two parallelization axes, A and B, physically, and the
loop related to the B-axis is within the loop related to the A-axis. Of the two axes, if
only the B-axis is parallelized, the processing between the loop related to the A-axis
and related to the B-axis is not parallelized and nonparallel parts remain.

One way of dealing with the remaining nonparallel parts is to extend the paral-
lelization axis. This makes it possible to parallelize all the processing of the loops
concerning the A- and B-axes as described above. In the parallelization of sequen-
tial programs, it is important to create a solid parallelization design assuming full
parallelization. An incomplete parallelization design will leave nonparallel parts in
the parallel application.

2.7.3 Large Communication Size and Frequent Global
Communication

As an example of the occurrence of large communication size and frequent global
communication, consider an inner product with N × M elements distributed over
all nodes when the number of nodes is N and each node has a vector consisting
of M elements. For this processing, the inner-product processing of M vectors may
be performed after performing the ALLREDUCE5 communication of M vectors
between N nodes. In this case, if the ALLREDUCE communication for one element
between N nodes is executed after calculating the sum of M elements in each node
first, this can only be a global communication of one scalar element. In the former
case, the global communication is an ALLREDUCE communication of a vector with
M elements, and in the latter case it is anALLREDUCE communication of one scalar
element, which requires a shorter communication time. This kind of attention should
be paid to such selection errors in the communication processing.

The global communication time may also be sharply reduced by extending the
parallelization axis, as mentioned above. Figure 2.4 shows an outline of the improve-
ment in global communication by expanding the parallelization axis. The upper part
of Fig. 2.4 shows the state of the parallel execution of the original program. The
whole space is parallelized by six processes, and global communication between
the six processes occurs. The lower part of Fig. 2.4 shows the state of the parallel
execution of the program after expanding the parallelization axis to the two axes of
the space and energy band. It can be seen that the range of global communication of

5The global communication for holding calculation results such as sum of values of all nodes in
the group of data of each node.
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Fig. 2.4 Improvement effect of global communication by expanding the parallelization axis

the space is reduced from six processes to three processes. In principle, expanding
the parallelization axis converts the global communication among n processes to that
among n

1
2 processes, which allows a sharp reduction in the global communication

space.
We now consider the case in which a BROADCAST communication6 is per-

formed for N processes. If the message length to be communicated is M (bytes),
the communication performance is b (bytes/s), and the time for one communication
is T0; this is represented by T0 = M/b. Assuming the BROADCAST communica-
tion uses the binary tree algorithm, the communication time of the entire BROAD-
CAST is T0 × log2 N. By expanding the parallelization axis to two axes, global
communication between processes of N

1
2 is performed, so the communication time

is T0 × log2 N×N
1
2 = (1/2) ×T0 × log2 N, and the communication time is halved.

This tendency appears more prominently with ALLTOALL communication. Con-
sider the case in which the ALLTOALL communication is performed using a two-
dimensional torus. Let N be the total number of nodes, n be the number of nodes
in each dimension, and let N = n × n. Assuming that the message length that each
node communicates with one node of the communicating partner is m (bytes), the
message length communicated by each node is M = mN. The N nodes are divided
into two on the left and right, and the amount D to be transferred to the adjacent
region in each region is calculated. Each side includes (n/2) × n nodes. Because
the communication is performed between all the nodes included both left and right,
the amount of data to be transferred to the neighboring area is (n/2) × n × (n/2)
× n × m = n2 × (n/2)2 × m. This amount is transferred to left and right in two
directions, so the data amount D traversing between the boundaries divided into two

6The global communication that transmits data from one node to other nodes in the group.
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is represented by D = 2 × n2 × (n/2)2 × m. If each node can communicate in four
directions simultaneously, the bisection bandwidth7 BY of the system is represented
by 4 × n × b, where b is the communication bandwidth for one direction of one
node. When calculating the time t required for the communication, t is represented
by D/BY, so that t = (1/8) × (n3/b) × m = (1/8) × N × n × (m/b) = (1/8) × M
× (n/b). Thus, t is proportional to Mn. The message length M when executing the
ALLTOALL communication in the entire N node is calculated as M = mN = mn2.
However, in principle, when the parallelization axis is expanded to two axes, it is
possible to calculate the message length M of ALLTOALL communication as the
message length for one axis. Therefore, the message length M is calculated as M =
mN1/2 = mn.

We see that the communication time can be reduced from the order of n3 to the
order of n2. The discussion described here can also be applied to the communications
GATHER, ALLGATHER, SCATTER, and so on, of the type in which the message
length of the communication is M = mN.

Although the effect of parallelization of multiple axes has been described here,
this must be applied to all parts of the application. For example, suppose that the
application has two processing blocks, A and B, and that two parallelizing axes of
a and b can be adopted. Let us assume that both A and B contain calculations that
depend on a and b. Under this assumption, the parallelization of the N nodes with
respect to the a-axis (b-axis) is carried out for part A (B). This is expressed as A
(a/N, b), B (a, b/N). Then, between processing block A and processing block B, the
communication for returning a/N to a and for dividing b into b/N occurs. This usually
requires global communication between N nodes, which causes a large performance
degradation.

2.7.4 All-Node Global Communication

The calculation of the inner product appearing in the iterative method of solving
simultaneous linear equations cannot be avoided. Therefore, the global communica-
tion by ALLREDUCE of all nodes cannot be eliminated. We should therefore use
the high-speed ALLREDUCE communication provided by the hardware assistance
available in the K supercomputer and others.

For other communications, it is effective to adopt multiple parallelization axes as
described in Sect. 2.7.4. The reason is that the range of global communication can
be changed from all nodes to the square root of the number of nodes, as explained
above.

7The total bandwidth of the communication across the division plane that divides all nodes included
in the system into two.
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2.7.5 Large Communication Size in Adjacent
Communication, Communication Frequency

Even though an algorithm may only need to communicate the physical quantities of
the adjacent faces between the nodes, sometimes all the physical quantities within
the node are communicated because this simplifies the coding. If this is found, the
code should be rewritten, and communications should be restricted to the adjacent
surfaces.

In preprocessing for simultaneous linear equation solvers by the iterative method,
the adjacent communication time may increase by increasing the number of com-
munications between adjacent nodes. Methods using preprocessing localized in the
node are effective for reducing this; however, it is necessary to guard against an
increase in the number of iterations.

2.7.6 Load Imbalances

Differences in the amount of calculation for each node may occur, leading to some
load imbalance among nodes. There are no general countermeasures for large load
imbalances. The problem parts must be specified by the method shown in Sect. 2.5,
and the causes are investigated. Various examples of load imbalance are conceivable.
For example, an imbalance in the number of atoms between nodes may be caused
by atomic motion in molecular dynamics calculations. Similarly, particle motion in
the PIC method may produce imbalances in the number of particles between nodes.
An imbalance between nodes may occur because of the amounts of microsubstances
constituting a cloud in the physical process calculations for climate prediction. To
dealwith these imbalance problems, the adaptivemeshmethod8 or a similar approach
can be adopted.

2.8 Performance Optimization of Single-CPU Performance

2.8.1 Elements for Obtaining High Single-CPU Performance

To realize high single-CPU performance, it is important to achieve thread paralleliza-
tion. Once this has been established, the factors considered important for improving
the single-CPU performance are shown as follows:

(1) Effective utilization of prefetching
Prefetch is a function that reads data to cache memory before it is required.
Latency is the time of initial processing from the start of data access until the

8A method of dynamically changing the mesh division.
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Latency

Fig. 2.5 Effective utilization of prefetch

actual data access is started. In accesses from memory to the L2 cache and
from the L2 cache to the L1 cache, as shown in Fig. 2.5, effective prefetch
operations are important for achieving high-performance data accessing. When
a load instruction is executed without using a prefetch mechanism, the access
to memory and L2 cache causes a large latency penalty (see Fig. 2.5). If the
latency to the L1 cache is 1, the latency to the L2 cache from the L1 cache is
typically 10 and the latency to thememory from the L2 cache is typically 100. In
addition, if there is more computation than data accesses, not only the memory
accessing latency but also the access to memory itself may be hidden by using
prefetch mechanisms.

(2) Effective use of line accesses
In the CPU of the K computer, the data are accessed in line (128 bytes) units
between the memory and the L2 cache. To obtain high performance, it is impor-
tant to perform computations using as much as possible of each line of the data
loaded. If only eight bytes from each line can be used, it is necessary to access
the data of 16 lines to load 16 elements, which is a large penalty over using all
16 elements in one line. Therefore, the apparent memory access performance
would be 1/16 (Fig. 2.6).

(3) Effective use of the cache
Consider thematrix–matrix product calculation of (n× n)matrices. The number
of elements of the two matrices is 2n2 in total and the number of computational
operations is 2n3 in total for the product and the sum. If the 2n2 elements are
divided into multiple smaller sets of n′2 and each such element set is in the cache
when its computations are executed, 2n′2 pieces of data are reused and 2n′3 com-
putations can be executed. Such calculations can utilize the cache effectively
and can perform high-speed calculations. In principle, for calculations that can
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Access every 128 Bytes

Use all elements for 
calculation

Access every 128 Bytes

Use only one elements 
for calculation

Fig. 2.6 Effective utilization of cache line

Fig. 2.7 Effective utilization of cache memory

perform n2 computational operations using n data (or n3 computational calcula-
tions using n2 data), high-speed calculation is possible (Fig. 2.7). As mentioned
earlier, this technique is called cache blocking.
Although their capacity is much smaller than that of the L1 cache, there are
registers that provide high-speed data storage locations close to the computing
unit. There is thus a similar technique called register blocking in which data are
blocked in the registers, but the description is omitted here.

(4) Efficient instruction scheduling
The K computer is equipped with 256 floating-point registers. It is important
for performance improvement that the compiler schedule load, arithmetic, and
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Ine

Fig. 2.8 Efficient instruction scheduling

store instruction belonging to different indexes of the loop index direction use
these floating-point registers effectively (Fig. 2.8). If the compiler cannot find
a good schedule, the performance may be improved by manually performing
loop division or loop expansion.

(5) Effective use of SIMD arithmetic units
The K computer CPU core has two sets of two product–sum computing units.
The product–sum operation (2 operations)× two product–sum computing units
× two sets allows a total of eight operations with one clock cycle. Because
the operation clock of the CPU is 2 GHz, 8 operations × 2 GHz = 16 G cal-
culation (16 GFLOPS) is the calculation peak performance per second in one
core. Each of the two product–sum computing units operates as a SIMD arith-
metic unit having a vector length of 2. Therefore, to realize high-performance
computation, it is important that the product–sum operation works as SIMD,
and that the two SIMD units operate simultaneously (Fig. 2.9).

2.8.2 Relationship Between Factors for High Performance
and Required B/F Values

From the viewpoint of single-CPU performance in Sect. 1.2, we showed that appli-
cations can be classified into two types in which the required B/F value is large or
small. For each of these types, we show the relationship between the type and five
elements for obtaining the high performance shown in Sect. 2.8.1.
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2 2 2  = 8
The closer to this condition, the 
calculation efficiency is higher.

SIMD Multi&Add arithmetic unit

Peak performance of a core
8FLOPS/Clock 2GHz =16GFLOPS

2 2

Fig. 2.9 Effective utilization of SIMD unit

For applications with small required B/F values, high memory data transfer per-
formance (memory bandwidth) is not necessary in principle. It is most important to
code the program to cache the data as shown in point (3) above. Next, because the
L2 cache is accessed line by line, coding the program to utilize the data on each line
of the L2 cache effectively (that is, point (2) above) is important (it is not necessary
if the data are in the L1 cache). After realizing points (2) and (3), points (4) and (5)
become important.

For applications with large required B/F values, it is important that the memory
bandwidth should be utilized as fully as possible. It is more important to use the full
memory bandwidth than to maximize the CPU computing performance. For these
applications, the most important points are (1) and (2) above for obtaining the high
performance shown in Sect. 2.8.1. It may be possible to reuse some cached data
even though most data are accessed from memory, in which case point (3) becomes
important. When points (1) to (3) are satisfied and the data necessary for calculation
are supplied to the computing unit effectively, it is important to achieve efficient
instruction scheduling in order to use these data efficiently and make effective use
of the SIMD arithmetic units (points (4), (5)).

As seen here, the method required for the performance tuning varies depending
on the required B/F value.

2.8.3 Thread Parallelization Common to Large and Small
Required B/F Values

Regardless of whether the required B/F value is large or small, thread parallelization
is indispensable for improving the single-CPU performance. Thread parallelization
is impossible if there is a dependency relationship in the target loop, so the coloring
method has been studied to eliminate dependencies. However, the coloring method
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sometimes leads to the deterioration of single-CPU performance by increasing the
number of iterations. The coloring method is explained in detail in Chap. 3.

2.8.4 When the Required B/F Value Is Small: DGEMM
Conversion

As in the Gram–Schmidt orthogonalization shown below, it is sometimes pos-
sible to rewrite processes that use matrix–vector products in the normal coding
to use matrix–matrix products. As described in Sect. 2.6, because the required
Gram–Schmidt processingof thematrix–vector product program is large, high single-
CPU performance cannot be expected. However, if it can be rewritten as a matrix—
matrix product, the required B/F value can be reduced, and higher single-CPU per-
formance can be expected. By using this matrix–matrix product as the mathematical
library BLAS level 3 subroutine DGEMM, it becomes possible to calculate with very
high performance optimized for each computer [5].

If we code the Gram–Schmidt orthogonalization algorithm straightforwardly, it
becomes an algorithm to calculate the vector (ψ ′

1, ψ
′
2, . . . , ψ

′
i , . . .) as the orthogo-

nalization of the vector (ψ1, ψ2, . . . , ψ
′
i , . . .), as shown in Fig. 2.10. This algorithm

is coded with the matrix–vector product of the matrix
〈
ψ ′
i |ψ j

〉
and vector

∣∣ψ ′
i

〉
. The

indices 1, 2, …, i are parallelized for each process.
Consider dividing this algorithm into a triangular part and a rectangular part,

as shown in Fig. 2.11. Each rectangular part in the direction (ψ1, ψ2, . . . , ψ
′
i , . . .)

is parallelized for each process. First, in the process responsible for the triangu-
lar part, we use the original matrix–vector product algorithm. In the example in
Fig. 2.11, the calculation of triangles for calculating ψ1 and ψ2 corresponds to this
explanation. Using the calculated (ψ1, ψ2) data and calculating the square part in
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Fig. 2.11 Matrix–matrix productization of Gram–Schmidt orthogonalization

each process, this calculation can use the matrix–matrix product. In the example in
Fig. 2.11, the calculation of the square in the left column using ψ1 and ψ2 corre-
sponds to this explanation. The second triangular part is calculated using the original
matrix–vector product algorithm. Similarly, ψ3 and ψ4 can be calculated perfectly
in the example of Fig. 2.11. By repeating this process, it becomes possible to cal-
culate the Gram–Schmidt orthogonalization using the matrix–matrix product. In the
actual algorithm, the triangular part is recursively divided into a rectangular part and
a triangular part as shown in Fig. 2.11, so that the matrix–matrix product calculation
can be used as much as possible.

2.8.5 When the Required B/F Value Is Small: Cache
Blocking

As described in Sect. 2.6, high single-CPU performance can be obtained by per-
forming cache blocking, as in the matrix–matrix multiplication. The Coulomb force
calculation in classical MD is one example. In this calculation, however, discontinu-
ous list access is required to specify the particle pair, which degrades the single-CPU
performance. Changing the blocking by rearranging the discontinuous data using
the following procedure improves the single-CPU performance. This procedure is
illustrated in Fig. 2.12.

(1) Copy the N discontinuous data to a continuous area to enable blocking in the
cache.

(2) Perform the calculation N2 times using N pieces of data.
(3) Copy and return continuous calculated results to the discontinuous area.
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(1)

(2)

(3)

N

N

Fig. 2.12 Cache blockzation

In general, the copies of (1) and (3) require order-N processing, so the processing
time is smaller than the computation time of order N2. Therefore, even if the copy is
troublesome, a reduction in total execution time may be obtained.

2.8.6 When the Required B/F Value Is Small and the Loop
Body Is Complex

When the loop body of a code is complex, the compiler may not be able to correctly
interpret the required processing. In this case, more arrays are used in the loop, so
more registers corresponding to the arrays are required, and there is a tendency for
register shortage to occur. For these reasons, this type of application often fails to
provide adequate performance evenwhen the data are in the cache. There is no general
solution for this problem, and we can only rewrite the code to achieve loop division,
array index replacement, or array integration individually for each application.
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2.8.7 Optimizing the Single-CPU Performance: When
the Required B/F Value Is Large

The procedure for improving the single-CPU performance is shown in Fig. 2.13.

(1) Profiler measurements
Modern supercomputers are equipped with a profiler for acquiring performance
information. The K computer has an excellent profiler function that can acquire
abundant and useful information relating to the memory, cache, and arithmetic
unit. This profiler should be used to measure the performance of the application
kernel.

(2) Detection of problems using the profiler’s measurement results
Analyze the problem by looking at the profiler measurements. As described in
Sect. 2.8.2, in applications that cannot efficiently utilize the caches, the impor-
tant point for achieving high single-CPU performance is to use the memory
performance fully. The profiler information includes the memory bandwidth
used, and we can analyze the cause of the problem if the memory performance
is poor.

(3) Performance estimation
Estimate the performance of the kernel using the performance estimation model
(see Sect. 2.8.8). If the actual measurement results do not reach the estimation
results, extend the analysis of step (2). Performance estimation is very important
to judge the extent of tuning work required and where to stop.

Fig. 2.13 Steps for improving performance
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(4) Performance tuning
We consider the available performance improvement methods and perform tun-
ing work based on the results of the analysis of step (2). Work continues until
the estimated performance is achieved.

(5) Predict the performance of the improved version
Consider further methods of performance improvement and perform more tun-
ingwork. The performance of the kernel after further tuning is estimated accord-
ing to the roof-line model (see Sect. 2.8.8).

(6) Further performance tuning
Measure performance and analyze the results for the revised code after tuning.
This cycle is repeated until the estimated result is approached.

2.8.8 Performance Estimation: When the Required B/F
Value Is Large

Here, the performance estimation method when the required B/F value is large is
described. The roof-line performance prediction model is used when data access
is limited to the memory accesses and data access from the cache memory is not
considered [6].

We define the theoretical memory bandwidth of the hardware as B, and the theo-
retical peak performance is defined as F. If the operational intensity of the application
using the required FLOP value f of the application and the required byte value b of
the application is X= f/b, the effective performance of the application is represented
by min {F, BX}. The operational intensity is the reciprocal of the B/F value. In this
performance estimation model, an application that has the same operational intensity
as the hardware can achieve peak performance. If the predicted performance of the
application requires an operational intensity smaller than the operational intensity of
the hardware, the model is proportional to the operational intensity required by the
application. What we have described here is shown in Fig. 2.14. The performance
of a memory-intensive application with a high required B/F value can be estimated

Operational intensity(Flop/Byte) of application 
<Reciprocal of B/F value>

Peak 
performance 
of hardware

Peak operational 
intensity of hardware

Fig. 2.14 Roofline model
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more accurately by replacing the theoretical memory bandwidth of this model with
the effective memory bandwidth [7].

2.8.9 Performance Optimization of the Sparse Matrix–Vector
Product: When the Required B/F Value Is Large

A typical application with high required B/F value is the sparse matrix–vector prod-
uct. This calculation often appears when discretizing partial differential equations.
The features of the sparse matrix–vector product are shown below.

In general, when solving physical three-dimensional problems, the coefficients
are three-dimensional and occupy sparse matrices to form three-dimensional arrays.
However, these arrays may be expressed as one-dimensional or two-dimensional
arrays for coding. In either case, the required memory capacity is large, so it is com-
mon to consume the memory bandwidth. However, the coefficient matrices may also
be expressed not in three dimensions but in one- or two-dimensional arrays, or the
coefficients may be represented as scalar quantities. In these cases, the calculation
of the product of a sparse matrix and a vector does not consume as much memory
bandwidth and the arrays can be stored in caches or registers. While the vectors are
generally three-dimensional arrays when solving three-dimensional problems phys-
ically, they may, like the sparse matrices, be expressed as one- or two-dimensional
arrays to simplify coding. An important feature of the vector arrays is that there is M
or aroundM reusabilitywhen the average number of elements included in each rowof
thematrix isMand the dimension of the vector is L.Because the number of operations
for the sparse matrix–vector products is M × L for each addition and multiplication,
and the number of elements of vectors being used for performing operations is L,
one element of the vector is referred to on average M times. Therefore, the memory
bandwidth capacity of the vector is about 1/M of the memory bandwidth capacity
of the matrix. Although access to the vectors also consumes memory bandwidth, the
efficient utilization of the cache using the M reusability shown here is important for
improving single-CPU performance.

2.8.10 Performance Optimization of the Sparse
Matrix–Vector Product: Required B/F Value Is Large
and List Vectors Used

For the sparse matrix–vector product discussed in Sect. 2.8.9, a stencil calculation in
which the vector is continuously accessed is assumed. In addition to having the high
required B/F value, there are applications for which the vectors are accessed using
a list. In this case as well, because the vectors are reusable, it is important to make
effective use of the cache. However, because the vector is not continuously accessed,
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it is difficult to use cache memory effectively. For such applications, the cache can
be utilized more efficiently by rearranging the order of the discrete points according
to their physical positions, as discussed in the section on FFB in Chap. 3.

Exercises

1. Show that numerical solutions of differential equations by discretization are
obtained using simultaneous linear equations, where A is a square matrix and x
and b are vectors:

Ax = b. (2.1)

2. Show that the simultaneous linear Eq. (2.1) can be transformed to:

x = Bx + b, (2.2)

where B is a square matrix. When considering x0, x1, x2, that satisfy Eq. (2.3),
if the column of vectors converges to vector x, show that the vector x satisfies
Eq. (2.1):

x (m+1) = Bx (m) + b (2.3)

3. The method of solving Eq. (2.2) as Eq. (2.3) is called an iterative method. One
suchmethod is the Jacobimethod. If the equation to be solved is (2.1), the formula
for the Jacobi iterative method is expressed as (2.4) and (2.5).

x(m+1) = D−1(E + F)x(m+1) + D−1b (2.4)

aii x
(m+1)
i = −

∑
a(m)
i j + b j

x (m+1)
i = −

n∑

j=1, j �=i

(
ai j
aii

)
x (m)
i j + b

aii
, (2.5)

where D, E, and F contain the diagonal elements of A, the lower triangular matrix
of A, and the upper triangular matrix of A, respectively. Derive (2.4) and (2.5),
which are expressions of the Jacobi method.

4. Code the Jacobi method in an appropriate programming language and parallelize
it with MPI and/or OpenMP and investigate the parallelization efficiency. (The
code for the nonparallel version of the Jacobi method can be found in textbooks
or on several websites.)
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Chapter 3
Case Studies of Performance
Optimization of Applications

Kazuo Minami and Kiyoshi Kumahata

Abstract In 2006, 7-year’s project of MEXT (the Ministry of Education, Culture,
Sports, Science andTechnology) of the development andutilization of state-of-the-art
high-performance supercomputers usually called the next-generation supercomputer
project started. RIKEN undertook its main development, and the name “K computer”
was determined. At the end of September 2010, the first K computer enclosure was
carried into a building inKobe, and the installation of the entire systemwas completed
bySeptember 2011 [1]. TheKcomputerwas completed in June 2012 after adjustment
and improvement of the system software, and public use began in September 2012.
Prior to the operation of the K computer, RIKEN had begun developing a set of tuned
applications to demonstrate the system performance. We began programming and
developed the high-performance computing technique to achieve high parallelization
and fully utilize the enhanced functions introduced in the processor. The author was
engaged in this application development work as a team leader. In this chapter, we
first outline the set of tuned applications to demonstrate the system performance of
the K computer. Next, we outline the K computer system, which is the premise of
the subsequent section. Concrete examples of the applications mentioned in Chap. 2
are then described.

3.1 Applications for Demonstration of the Performance
of the K Computer

3.1.1 Outline of Application Groups

The application group for the performance demonstration of the K computer was
selected to demonstrate that applications in various fields can have a high perfor-
mance by making full use of the versatility of the K computer. It also demonstrated
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computer science characteristics that could be useful for future computer develop-
ment. The term “computer science characteristics” as used hereinmeans, specifically,
two aspects:

(a) in the parallelization, whether it is easy to obtain high-parallelization perfor-
mance with relatively simple parallelization methods, or whether complicated
methods must be used;

(b) in the single-CPU performance, whether it is difficult or easy to obtain high
single-CPU performance because of the high or low required B/F value of the
application, and so on.

Using these two issues as a basis, we evaluated target applications, adding the
evaluation based on the analysis of parallelization characteristics described later, and
selected several applications that could be expected to result in high-parallelization
performance. The selected applications are listed in Table 3.1. Specifically, we
selected two applications in the earth sciences field (NICAM [2] and Seism3D
[3, 4]), two in the nanoscience field (PHASE [5] and RSDFT [6]); one in the
engineering field (FrontFlow/Blue (FFB) [7, 8]); and one application in the basic
physics field (LatticeQCD [9]) for a total of six applications. For our purposes, these
have the following characteristics.

(A) Earth sciences field (NICAM, Seism3D)

(a) For high parallelization, a relatively simple domain decompositionmethod
is used. Because most communications are adjacent, high-parallel perfor-
mance tends to be obtained relatively easily, even at high parallelization.
(b) For single-CPUperformance, theEarth Simulator (vector-parallel com-
puter), shows high performance of about 40% peak performance ratio and
tends to require high memory bandwidth performance. On the other hand,
for scalar parallel computerswith relatively lowmemorybandwidthperfor-
mance relative to the computational peak performance, these applications
require careful programming to obtain high performance. For this rea-
son, it is essential to utilize the newly introduced high-speed computing
mechanism in the K computer, including the effective use of cache.

(B) Nanoscience/nanotechnology field (PHASE, RSDFT)

(a) For high parallelization, we found it difficult to adapt to the paralleliza-
tion in the K computer with tens of thousands of nodes with the current
parallelization method, following an analysis of the parallelization char-
acteristics. Reviewing the fundamental parallelization method is the key
point. (b) For single-CPU performance, high performance was expected
by replacing the main processing with the processing of the matrix–matrix
product.



3 Case Studies of Performance Optimization of Applications 43

Ta
bl
e
3.
1

A
pp
lic
at
io
ns

fo
r
th
e
pe
rf
or
m
an
ce

de
m
on
st
ra
tio

n
of

th
e
K
co
m
pu
te
r

N
am

e
Fi
el
d

O
ut
lin

e
of

ap
pl
ic
at
io
n

C
om

pu
ta
tio

na
ls
ci
en
tifi

c
fe
at
ur
es

of
co
de

Ph
ys
ic
al
m
od

el
/m

et
ho

d

N
IC
A
M

E
ar
th

sc
ie
nc
es

G
lo
ba
lh

ig
h-
re
so
lu
tio

n
at
m
os
ph

er
ic
ge
ne
ra
lc
ir
cu
la
tio

n
si
m
ul
at
io
n

Fo
r
E
Sa
,t
he

pe
ak

pe
rf
or
m
an
ce

ra
tio

is
40
%
.F

or
pr
og
ra
m
m
in
g,

it
is
es
se
nt
ia
lt
o
us
e
hi
gh

-s
pe
ed

ar
ith

m
et
ic
m
ec
ha
ni
sm

s
su
ch

as
ef
fe
ct
iv
e
us
e
of

th
e
ca
ch
e
to

m
ee
t

B
/F

pe
rf
or
m
an
ce

A
tm

os
ph
er
ic
ge
ne
ra
l

ci
rc
ul
at
io
n/
FD

M

Se
is
m
3D

E
ar
th

sc
ie
nc
es

Se
is
m
ic
pr
op
ag
at
io
n/
st
ro
ng

vi
br
at
io
n
si
m
ul
at
io
n

Fo
r
E
S,

th
e
pe
ak

pe
rf
or
m
an
ce

ra
tio

is
40
%
.F

or
pr
og
ra
m
m
in
g,

it
is
es
se
nt
ia
lt
o
us
e
hi
gh

-s
pe
ed

ar
ith

m
et
ic
m
ec
ha
ni
sm

s
su
ch

as
ef
fe
ct
iv
e
us
e
of

th
e
ca
ch
e
to

m
ee
t

B
/F

pe
rf
or
m
an
ce

Se
is
m
ic
w
av
e/
FD

M

PH
A
SE

N
an
os
ci
en
ce
,n

an
ot
ec
hn
ol
og
y

Fi
rs
tp

ri
nc
ip
le
s
of

m
ol
ec
ul
ar

dy
na
m
ic
s
ba
se
d
on

D
FT

w
ith

pl
an
e
w
av
e
ex
pa
ns
io
n

T
he

im
pr
ov
em

en
to

f
si
ng
le
-u
ni
t

pe
rf
or
m
an
ce

m
ay

be
po
ss
ib
le
by

re
pl
ac
in
g
th
e
m
ai
n
pr
oc
es
si
ng

w
ith

th
e
pr
oc
es
si
ng

of
m
at
ri
x–

m
at
ri
x
pr
od

uc
ts
.

H
ow

ev
er
,t
o
se
cu
re

pe
rf
or
m
an
ce

in
ul
tr
ah
ig
h
pa
ra
lle

lis
m
,i
ti
s

ne
ce
ss
ar
y
to

in
cr
ea
se

th
e
nu
m
be
r

of
at
om

s
co
ns
id
er
ab
ly

an
d
it
is

ne
ce
ss
ar
y
to

co
ns
id
er

hi
gh

pa
ra
lle

liz
at
io
n

D
FT

/p
la
ne

w
av
e
m
et
ho
d (c
on
tin

ue
d)



44 K. Minami and K. Kumahata

Ta
bl
e
3.
1

(c
on
tin

ue
d)

N
am

e
Fi
el
d

O
ut
lin

e
of

ap
pl
ic
at
io
n

C
om

pu
ta
tio

na
ls
ci
en
tifi

c
fe
at
ur
es

of
co
de

Ph
ys
ic
al
m
od

el
/m

et
ho

d

R
SD

FT
N
an
os
ci
en
ce
,n

an
ot
ec
hn
ol
og
y

Fi
rs
tp

ri
nc
ip
le
s
of

m
ol
ec
ul
ar

dy
na
m
ic
s
ba
se
d
on

D
FT

w
ith

re
al
-s
pa
ce

di
ff
er
en
ce

m
et
ho

d

T
he

im
pr
ov
em

en
to

f
si
ng
le
-u
ni
t

pe
rf
or
m
an
ce

m
ay

be
po
ss
ib
le
by

re
pl
ac
in
g
th
e
m
ai
n
pr
oc
es
si
ng

w
ith

th
e
pr
oc
es
si
ng

of
m
at
ri
x–

m
at
ri
x
pr
od

uc
ts
.

H
ow

ev
er
,i
ti
s
ne
ce
ss
ar
y
to

in
cr
ea
se

th
e
nu
m
be
r
of

m
es
he
s

co
ns
id
er
ab
ly

to
se
cu
re

pe
rf
or
m
an
ce

in
ul
tr
ah
ig
h

pa
ra
lle

lis
m

an
d
it
is
ne
ce
ss
ar
y
to

co
ns
id
er

hi
gh

pa
ra
lle

liz
at
io
n

D
FT

/r
ea
l-
sp
ac
e
m
et
ho

d

L
at
tic

eQ
C
D

Ph
ys
ic
s

E
le
m
en
ta
ry

pa
rt
ic
le
nu

cl
ea
r

an
al
ys
is
us
in
g
L
at
tic

e
Q
C
D

si
m
ul
at
io
n

A
dv
an
ce
d
pa
ra
lle

liz
at
io
n
tu
ni
ng

th
at
co
ns
id
er
s
co
m
m
un

ic
at
io
n

to
po
lo
gy

an
d
m
ea
su
re
s
to

im
pr
ov
e
si
ng
le
-u
ni
tp

er
fo
rm

an
ce

th
at
ar
e
co
ns
ci
ou
s
of

ac
tu
al

m
ac
hi
ne
s
ar
e
in
di
sp
en
sa
bl
e

Q
C
D
/p
at
h
in
te
gr
al
m
et
ho

d

Fr
on
tF
lo
w
/

B
lu
e
(F
FB

)
E
ng
in
ee
ri
ng

U
ns
te
ad
y
flo

w
an
al
ys
is
ba
se
d
on

la
rg
e
ed
dy

si
m
ul
at
io
n
(L
E
S)

Fo
r
E
S,

th
e
pe
ak

pe
rf
or
m
an
ce

ra
tio

is
25
%
.F

or
pr
og
ra
m
m
in
g,

hi
gh

B
/F

pe
rf
or
m
an
ce

is
re
qu
ir
ed
,a
nd

fo
r
lis
ta
cc
es
s
it
is

es
se
nt
ia
lt
o
us
e
a
hi
gh

-s
pe
ed

ar
ith

m
et
ic
m
ec
ha
ni
sm

su
ch

as
th
e
ef
fe
ct
iv
e
us
e
of

th
e
ca
ch
e
an
d

to
im

pr
ov
e
th
e
ef
fic
ie
nc
y
of

da
ta

ac
ce
ss

Fl
ui
d/
FE

M

a E
S
E
ar
th

Si
m
ul
at
or



3 Case Studies of Performance Optimization of Applications 45

(C) Engineering field (FFB)

(a) For high parallelization, the domain decomposition method, which is rel-
atively easy to parallelize, is used. However, because the unstructured
grid method is adopted, the parallelization becomes somewhat more com-
plicated than that for applications in the earth science field that use the
structural grid method. From the parallelization characteristics analysis,
we found that adjacent communication does not become a large load even
when it is highly parallelized; however, the time for global communica-
tion tends to increase with high parallelization. (b) For the single-CPU
performance when using the Earth Simulator, about 20% of peak perfor-
mance could be obtained. However, high memory bandwidth performance
is required. Because the main part of the calculation requires list accesses,
in a scalar computer with low memory bandwidth performance relative to
the peak performance, it tends to be very difficult to obtain high perfor-
mance.

(D) Physics field (Lattice QCD)
This application has the same characteristics as (A). However, because it was
adjusted to make effective use of the cache by reducing the problem scale
executed on one node, the application has the following features. (a) For high
parallelization, the domain decomposition method as in (A) was used, which
made it easy to achieve high parallelization. However, because the problem
size in one node is small, more communication is required compared with the
computation, and the number of communications also increases. Therefore, this
application has intermediate properties between (A) and (B). The parallelization
characteristics analysis confirmed the above characteristics, and an advanced
parallelizationmethod aware of the utilizationof the communication topology is
required. (b) For the single-CPU performance, this application tends to require
high B/F performance as in (A), and in principle, it is difficult to obtain high
performance on the scalar architecture. Because the problem size in one node
is small, it is easy to make effective use of the cache, and the application again
has intermediate properties between (A) and (B). However, the programming is
complicated, and this application requires measures to improve the single-CPU
performance in accordance with the architecture of K computer.

The features described here are shown in Fig. 3.1.
In this chapter, we describe examples from two points of view. One is the evalua-

tion method of the highly parallel characteristics and the examples of the ultrahigh-
parallelization methods found to solve the problems. The other is the evaluation
method of the single-CPU performance and the examples of the improvement of the
CPU performance to solve the problems. For the former, we mainly discuss RSDFT
and PHASE from the applications shown in this section; for the latter, we mainly
discuss Seism3D and FFB.
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Fig. 3.1 Computer science
characteristics of
applications for the
performance demonstration
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3.2 System Outline of the K Computer

In this section, we outline the system of the K computer as a basis for discussion.

3.2.1 Processor Features

We first describe the features and give a system outline of the processor of the K
computer. First, we describe the outline of the CPU of the K computer [10]. One
compute node consists of one CPU (SPARC 64 TMVIII fx, manufactured by Fujitsu
Limited), 16 GB of memory, and an interconnect LSI (interconnect controller, ICC),
which performs data transfers between compute nodes. The CPU has eight processor
cores, a shared secondary cache memory (6 MB, 12-way write-back cache), and a
memory control unit. CPU chips are 22.7 mm × 22.6 mm. Each core has an L1 data
cache (32 KB, 2-way write-back cache), four product–sum operation units, and 256
double-precision floating-point registers. With one SIMD instruction, two produc-
t–sum operation units can be operated at the same time. By executing two SIMD
instructions simultaneously, one core can perform eight floating-point operations
per clock cycle. Therefore, the theoretical performance of each core is 16 GFLOPS,
and the theoretical performance of the CPU (eight cores) is 128 GFLOPS for both
single and double precision. The CPU also has various mechanisms for scientific
and technical calculations, such as a hardware barrier mechanism for synchroniz-
ing the parallel processing between the cores, a prefetch mechanism for taking data
necessary for calculation into the cache in advance, and a sector cache mechanism
enabling programmable cache control. The theoretical bandwidth of the memory is
64 GB/s, and the B/F value is 0.5. The theoretical bandwidth of the L2 cache is
256 GB/s and the B/F value is 2.0. The theoretical bandwidth of the L1 cache is
64 GB/s, and the B/F value is 4.0. The memory and the L2 cache are accessed by
lines of 128 bytes. The DGEMM performance of the CPU is 123.6 GFLOPS (exe-
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cution efficiency 96.6%), and the hardware barrier performance between the cores is
49 ns. The memory access performance by a triad of the STREAM benchmark code
is 46.6 GB/s.

We now describe the outline of the system. The complete K computer is a very
large system composed of more than 80,000 CPUs, with the aforementioned node
as the smallest structural unit. Four nodes are mounted on one system board, and 24
system boards are mounted in a computer rack. The entire K computer consists of
864 computer racks and has computing performance of 10 PFLOPS or more and the
memory capacity is 1 PB or more. The K computer has also realized excellent power-
saving performance (at the beginning of system operation) and high reliability. The
SPARC64 TMVIII fx provides 128 GFLOPS per chip while the power consumption
is only 58 W. It has excellent power-saving performance compared with the CPUs
used in other supercomputers (at the beginning of system operation). This is realized
by various technologies for power saving, such as a low operating frequency (2 GHz)
(at the beginning of system operation) and a mechanism for cutting power to unused
circuits. The operating temperature of this CPU is about 30 °C, which is extremely
low (compared with the CPUs installed in other supercomputers), contributing to the
reduction of the failure rate.

The execution time of the LINPACK benchmark program took about 28 h and
no malfunction occurred even though the system operated with a high load for that
time. This is an outstandingly large value compared with other supercomputers,
and it shows the low failure rate and high reliability of the K computer. In this
way, the K computer has not only the world’s best computing performance but also
various functions to improve utilization as a shared system, such as power-saving
performance, reliability, availability, and operability.

3.2.2 Outline of Tofu Interconnect

In the K computer, the Tofu (torus fusion) interconnect [10, 11] was adopted to
construct a communication network between the nodes, and the communication
among the 82,944 nodes is realized in the whole system. Each node is equipped with
an ICC, which has four Tofu network interfaces (TNIs) and a Tofu network router
(TNR); simultaneous communication in up to four directions is possible with the
TNI.

The TNR has ten links. Four of them handle communications for a three-
dimensional (3D)mesh/torus networkwithin 12 nodes (Tofu units), which is the basic
unit of Tofu. The remaining six links handle communications for a 3D mesh/torus
network between Tofu units. A six-dimensional (6D) mesh/torus network consists
of two 3D mesh/torus networks.
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3.2.3 6D Network

The physical coordinate axes in the 6D mesh/torus network are denoted as (x, y,
z, a, b, c) [10, 11]. The three dimensions a, b, and c consist of 12 nodes of 2 × 3
× 2, which is a unit of Tofu, and are arranged in physically close positions in the
rack. The three dimensions x, y, and z are configured over several racks. In the K
computer, the node allocation is carried out in units of Tofu to reduce the load of the
job scheduler. With this combination of three dimensions plus three dimensions, the
communication can avoid faulty nodes and the construction of the 3D torus network
by job unit becomes possible [10]; this arrangement allows high availability1 and
flexibility to meet various operational needs. Users can specify the dimensions for
assigning the nodes when submitting jobs to the K computer. Here, we call it “node
shape”. Node shapes may be one-dimensional (1D), two-dimensional (2D), or 3D,
and it is possible to construct a torus network by job unit. For example, when the
node shape is specified as 3D, it is realized by a combination of six dimensions
((xa), (yb), (zc)). The MPI environment of the K computer is based on OpenMPI.
For the collective communication function of MPI, in addition to the communication
algorithmderived fromOpenMPI, a communication algorithmoptimized for theTofu
interconnect (Tofu-dedicated algorithm) was developed and high-communication
performance is realized. For example, for MPI_ALLREDUCE communication in a
3D torus network, we have adopted an algorithm called Trinaryx 3, which realizes
high performance by 3-way simultaneous communication, by dividing amessage into
three. Of the OpenMPI algorithm and the Tofu-dedicated algorithm, the optimum
one is automatically selected according to the size of the message at the time of
communication.

3.3 Computer Environment for Performance Evaluation

In the examples described below, the K computer was mainly used once it was
completed. However, before its completion, we used the T2 K-Tsukuba system of
the University of Tsukuba and the RIKEN integrated cluster of clusters (RICC)
system, which was the largest computer system in Japan at that time. We also used
the FX1 system as a small parallel computer environment. The CPU configuration,
the theoretical performance, and themainmemory of each of these computer systems
are shown below.

(1) T2K-Tsukuba

CPU configuration: Opteron Barcelona B 8000 648 node (quad-core × 4 sock-
ets/node)

1Here, availability means the ability of the system to operate continuously.
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Theoretical performance: 2.3 GHz × 4 arithmetic × 4 cores × 4 sockets =
147.2 GFLOPS/node, 95.3 TFLOPS for the system
Main memory: 32 GB/node = 20.7 TB/system

(2) RICC parallel cluster

CPU configuration: Intel Xeon × 2048 CPUs (8192 core) (1024 units)
Theoretical performance: 2.93 GHz × 4 operations × 8192 cores = 96.0
TFLOPS
Main memory: 12.0 TB (12 GB × 1024 units)

(3) Fujitsu FX 1

CPU configuration: SPARC64 VII (2.5 GHz) 4 core/CPU, 1 CPU/node, 32
nodes
Theoretical performance: 40 GFLOPS/node, 1280 GFLOPS/system
Main memory: 32 GB/node.

3.4 Outline of the Examples of High-Parallelization
Performance Optimization

3.4.1 Enhancement of the Parallelization Axis

As described later in Sect. 3.5.4 for RSDFT and in Sect. 3.6.2 for PHASE, problems
arise when a software application cannot use the full parallelism of the hardware or
the global communication time increases. For PHASE, another problem is the large
residue of nonparallel parts. As described in Sect. 2.7 as a countermeasure against
these problems, the enhancement of the parallelization axis is adopted.

Details of the enhancement of the parallelization axis for RSDFT are given in
Sect. 3.5.5, and the results are shown in Sect. 3.5.6. Similarly, the enhancement of
the parallelization axis was applied to PHASE as shown in Sect. 3.6.3, and the results
are shown in Sect. 3.6.4.

3.4.2 Improvement of Communication and Load Imbalances

For RSDFT, the problems of the increasing global communication time are described
later in Sect. 3.5.4, and load imbalance problems in the Gram–Schmidt calculation
and the eigenvalue calculation are described in Sect. 3.5.6.
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To deal with the increased global communication of the former, the enhancement
of the parallelization axis was adopted as described in Sect. 2.7. By applying the
optimum Tofu mapping method together with the enhancement of the parallelization
axis, significant performance improvement in communications was obtained. Details
of its application are given in Sect. 3.5.5, and the results are shown in Sect. 3.5.6.

3.5 Performance Optimization of RSDFT

3.5.1 Overview of RSDFT

RSDFT is a program to perform electronic state calculations based on density func-
tional theory [6]. It aims to elucidate quantum theory phenomena at the nanoscale
based on first principles and to predict nanomaterials and structures having new func-
tions. For example, themagnitude of leakage current of conventional semiconductors
has become a problem as the process becomes finer. To solve these problems, RSDFT
is used for a simulation to investigate the characteristics of new semiconductors with
low power consumption.

The Kohn–Sham (KS) equation expressed as follows is derived from density
functional theory within a local density approximation (LDA):

[
−1

2
∇2 + ve f f

]
ψi

(−→r ) = εiψi
(−→r )

, (3.1)

ve f f = Vnucl
(−→r ) + ∫ n

(−→r ′)∣∣−→r − −→r ′∣∣d
−→
r ′ + δExc[n]

δn
(−→r ) , (3.2)

n
(−→r ) =

∣∣∣∑ ψi
(−→r )∣∣∣2. (3.3)

In Eq. (3.1), i represents the quantum number of an energy band, ψi represents a
wave function, and r represents a space coordinate. Equation (3.1) is the eigenvalue
equation that will be solved. From the wave function ψi , i is obtained by solving
the eigenvalue equation and the electron density n

(−→r )
is calculated using Eq. (3.3).

The calculation is performed repeatedly until the input electron density matches
the output electron density within a certain range (self-consistent field calculation
(SCF)). RSDFT adopts the real-space method, which introduces a 3D lattice of
the real space into the eigenvalue equation and solves discretized physical property
values on each lattice as a difference equation. The lattice forming the 3D space is
divided into equal parts, ML1, ML2, and ML3, and the KS equation is solved as the
Hermitian eigenvalue problem with dimension ML (=ML1 × ML2 × ML3). The
parallel processing is implemented by dividing the space lattice into several small
areas and assigning each small area to a node.
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3.5.2 Understanding the Software Application
Characteristics by Investigating the RSDFT Source
Code

Examination of the RSDFT source code showed that the main parts of the software
program are as follows: DTCG, which implements the conjugate gradient method;
GS, which carries out the standard Gram–Schmidt orthogonalization; and DIAG,
which carries out partial diagonalization. The main part of the calculations and the
update of the electronic density and potential are repeated until the condition of self-
consistent field (SCF) is satisfied. Figure 3.2 shows the calculation flow of RSDFT.

Fig. 3.2 Calculation flow of
RSDFT Read initial atomic configuration

Construct initial density
and initial potentials

Generate initial orbitals

Construct ionic pseudo potentials

Update orbitals 
using Conjugate-Gradient (CG)

Perform Gram-Schmidt ortho-normalization (GS)

Update density

Update Hartree and 
exchange-correlation potentials

Perform subspace diagonalization (SD)

Has SCF converged ?

end

No

Yes
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Table 3.2 Investigation results of RSDFT source code

Name Explanation of processing Amount of computation

DTCG MB eigenvalues and eigenvectors of a
symmetric ML*ML matrix calculated with
a conjugate gradient method in order from
the smallest eigenvalues

O(ML × ML)

O
(
N 2

)

Gram–Schmidt Orthogonalization O
(
ML × MB2

)
O

(
N 3

)
DIAG Diagonalization of Hamiltonian limited to

a subspace of ML dimension

Creating matrix elements (MatE) O
(
ML × MB2

)
O

(
N 3

)
Solving eigenvalues (pdsyevd) O

(
MB3

)
O

(
N 3

)
Calculation of rotating (RotV) O

(
ML × MB2

)
O

(
N 3

)

DIAG consists of three parts: MatE, which generates matrix elements; pdsyevd,
which performs the eigenvalue calculation; and RotV, which performs rotation cal-
culation. Table 3.2 shows the processing and the amount of computation found in
the investigation of the source code. Here, ML represents the number of grids and
MB represents the number of energy bands. Because MB and ML are proportional
to the number of atoms N, the amount of computation in DTCG is of the order of
N2, while the amount of computation in Gram–Schmidt is of the order of N3. MatE,
pdsyevd, and RotV were also found to require computation of the order of N3. These
investigation results are consistent with the theoretical background.

As a supplement to these results, the cost distribution was measured under the
following conditions.

Measurement computer: RICC parallel cluster
Calculation parameters: number of atoms 8000, grid size 120 × 120 × 120
Number of energy bands: 16,000
Parallelism: 8 × 8 × 8 = 512, space parallel only

The following cost distribution was obtained. As described in the survey results
of the source code, the cost analysis also confirmed that DTCG, Gram–Schmidt, and
DIAG together form the main calculation part.

Initialization: 0.4%
SCF part (assuming SCF 100 times): 99.6%
DIAG: 30.5%
DTCG: 27.4%
Gram–Schmidt: 38.6%
Mixing and output of intermediate result: 3.1%.
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3.5.3 Measurement of the Parallelization Features of RSDFT

Scalability measurements were performed on the three blocks found to be the main
computing parts: DTCG, Gram–Schmidt, and DIAG. The T2 K-Tsukuba of the Uni-
versity of Tsukuba and the PGI compiler were used, andmvapich2-mediumwas used
as a communication library. Five block divisions were used in the spatial direction:
128, 256, 512, 1024, and 2048. The calculation system used for the measurement
was 4096 atoms of Si, with 8192 energy bands and 96 × 96 × 96 grids for each
block. The calculation time, the global communication time, and the adjacent com-
munication timewere separated andmeasured using strong scaling. Figure 3.3 shows
the measurement results for each block, including calculation and communication
time. DTCG, Gram–Schmidt, and DIAG have good scalability only up to about 256

Fig. 3.3 Scalability of each
calculation block of RSDFT
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Fig. 3.4 Scalability of each calculation/communication block of RSDFT

parallel paths. Figure 3.4 shows the measurement results for each block divided into
the calculation, the global communication, and the adjacent communication times.
For each block of DTCG, Gram–Schmidt, and DIAG, the calculation time shows
good scaling up to 1024 parallel paths but shows a deterioration in scaling from
2048 parallel paths. We found that the global communication time increased as the
number of parallel paths increased for DTCG and DIAG.

3.5.4 Evaluation of RSDFT Kernel and High-Parallelization
Feature

For RSDFT, the calculation and communication kernel was evaluated. From the
investigation of the source code shown in Sect. 3.5.2, when targeting 100,000 atomic
systems, we found that the calculation parts of Gram–Schmidt, MatE, pdsyevd, and
RotV, with computation of the order of N3, computationally formed a kernel. From
the measurement results of the parallelization characteristics shown in Sect. 3.5.3,
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we found that DTCG, which causes increases in communication time in accordance
with the increase of the number of nodes, is also the kernel.

First, we consider the parallelization characteristics for computation time. By
dividing the number of grids shown in the calculation scheme in Sect. 3.5.2 by the
number of parallel paths, 96 × 96 × 96/2048 = 432 is obtained. It turns out that the
parallelization characteristics of the operationworsen at 432 grids per process. At this
point, assuming that the target problem of 100,000 atoms is solved using all 82,944
nodes of the K computer, 100,000× 216= 21,600,000 grids are required. When this
value is divided by the number of nodes, 82,944, the value becomes 260.4, which is
much smaller than the number of grids, 432 per process, at which the parallelization
characteristics worsen. This means that for the target problem, in the parallelization
of the current grid space, there is a problem that not all nodes of the K computer
can be used; that is, there is a mismatch in the number of parallel paths between the
hardware and the application.

Next, we consider the high-parallelization characteristics of the communication
time. For the twokernels,DTCGandDIAG, the global communication time increases
drastically, and for DIAG and Gram–Schmidt the global communication time for
2048 parallels is almost the same as the computation time. For DTCG, the global
communication time for 2048 parallel paths is nearly four times larger than the
computation time. This is a major problem when aiming for high parallelization.
The parallelization characteristics of each kernel are summarized in Table 3.3.

3.5.5 Code Modifications for High Performance of RSDFT

Enhancement of the parallelization axis
As described in Sect. 3.5.4, the first problem for the high parallelization of RSDFT
is to deal with the limited parallelism of RSDFT compared with the hardware. The
second problem is the high global communication time.

RSDFT solves the eigenvalue equation of Eq. (3.1). In the original RSDFT code,
the variable r representing the space in this eigenvalue equation is parallelized. This
equation contains the quantum number of the energy band i, and because there is
no dependence between different energy bands, in principle it is also possible to
parallelize by i. By enhancing the parallelization axis as described in Sect. 2.7,
it is possible to increase the parallelization of the application. At this point, the
parallelizationwas carried out for the energy bands in addition to the spatial direction,
to enhance the parallelization axis, allowing us to use several tens of thousands of
parallel paths rather than 1000, as shown later.

Investigation of the communication time after enhancing the parallelization axis
As shown in Sect. 2.7, the enhancement of the parallelization axis may eliminate an
increase in global communication time, which is the second problem of RSDFT. An
outline of the communication used in RSDFT is shown below. The underlined steps
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show the communication in the direction of the energy band, which is necessary
because of the enhancement of the parallelization axis.

• Global communication
• MPI_ALLREDUCE

– Gram–Schmidt: inner product array, normalization variable
– DTCG: scalar variable

• MPI_REDUCE

– DIAG (MatE)

• MPI_BCAST

– DIAG (Rot V)
– Gram–Schmidt: Deliver the updated wave functions of the triangle parts in Fig.
3.5

• MPI_ALLGATHERV

– DIAG
– Gram–Schmidt

• Adjacent communication
• Exchange of the boundary data: BCAST
• Nonlocal term calculation: HPSI
• Exchange the symmetric block data: DIAG (MatE)

Because of the enhancement of the parallelization axis, new communication pro-
cessing on the enlarged energy band axis is required. Figure 3.5 shows the outline
of the MPI_BCAST communication related to the Gram–Schmidt calculation as a

Fig. 3.5 MPI_BCAST communication related to the Gram–Schmidt calculation on the energy
band axis
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typical example of the new communication processing on the energy band axis. First,
we perform the calculation of the triangle parts with rank 0. Next, we transfer the
calculation result to other ranks where the transferred data is used to calculate the
rectangle parts using DGEMM. After these, the procedure is repeated.

As described in Sect. 2.7.3, a reduction in communication time can be
expected for MPI_ALLREDUCE or MPI_BCAST by applying the enhancement
of the parallelization axis, but this reduction is less than the reduction effect for
MPI_ALLGATHERV and MPI_ALLTOALL. This means that if new communica-
tions of the types MPI_ALLGATHERV and MPI_ALLTOALL are required in the
code, the penalty for the addition of the communication may be large. The above
outline of the communication used inRSDFT shows that the center of the global com-
munication of the original RDFT code isMPI_ALLREDUCE andMPI_BCAST, and
MPI_ALLGATHERV and MPI_BCAST are additions. That is, the effect of reduc-
ing the communication time is not large, and the penalty may actually increase.
Therefore, the amount of communication and the number of each communication
were investigated. Part of the result is shown in Table 3.4. The portions of the com-
munication added are indicated by hatching in this table. This table shows that for
MPI_ALLGATHERV, which carries a large penalty, neither the amount of commu-
nication nor the number of communications is large. We can also see that neither the
amount nor the number of communications is large for MPI_BCAST.

Evaluation of the parallelization and communication by the enhancement of the
parallelization axis of RSDFT
To verify the results of these investigations, we implemented the energy band paral-
lelization and evaluated the increase in parallelization and the communication time.
Table 3.5 shows themeasurement patterns used for the evaluation. Normally, increas-
ing the number of atoms increases the number of energy bands. Here, to measure
the weak scaling, we performed the measurement while fixing the number of energy
bands to 19,200, the number of parallel paths for the energy band to eight, and the
number of energy bands in parallel to 2400. For the parallelization with respect to
the grid, the number of grids per process was fixed to 12 × 12 × 12, the number of
parallel processes was 4 × 4 × 4 = 64, 5 × 5 × 5 = 125, 6 × 6 × 6 = 216, or 8
× 8 × 8 = 512. Finally, the measurement was performed using the four parallelism
numbers 64 × 8 = 512, 125 × 8 = 1000, 216 × 8 = 1728, and 512 × 8 = 4096.

In the measurements, data were acquired for each of the four blocks GS, DTCG,
MatE/DIAG, and RotV/DIAG. Figure 3.6 shows the evaluation results. The calcula-
tion time is shown as “CALCULATION”, the global communication time for space
is shown as “COMMSGLOBAL”, the global communication time for energy bands
is shown as “COMM B GLOBAL”, and the adjacent communication time for space
is shown as “COMM S NEIGHBOR”. The execution times of the four blocks are
shown as the name of each process: “GS”, “DTCG”, “MatE”, and “RotV”.

There was no significant increase in global communication with respect to space,
as seen in Sect. 3.5.3, and no significant increase in the global communication with
respect to the newly added energy bands was observed. We also measured with weak
scaling, and no increase in the computation time was observed for any process-
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Table 3.4 Communication size and number of communication times of RSDFT

Name MPI function Type Data size Number of
communications

Gram–Schmidt mpi_allgatherv mpi_real8 MB/NPB 1

mpi_allreduce mpi_real8 MBLK*NBLK ~
(NBKL1+1) *
(NBLK1+1)

MB/NBLK *
MBLK/NPB +
Int(log(NBLK/NBLK1))
* (MB/NBLK/NPB)

mpi_allreduce mpi_real8 NBLK1~1 NBLK1 *
(MB/NBLK/NPB)

mpi_allreduce mpi_real8 1 MB/NBLK *
MB/NBLK/NPB +
Int(log(NBLK/NBLK1))
* (MB/NBLK/NPB) +
NBLK1 *
(MB/NBLK/NPB)

mpi_bcast mpi_real8 MLO*NBLK MB/NBLK/NPB

DIAG mpi_allgatherv mpi_real8 MB/NPB 1

mpi_reduce mpi_real8 MBLK*MBLK (MB/MBLK *
MB/MBLK)/NPB

isend/irecv mpi_real8 MBLK*MBLK 1

Omit communication
in Scalapack (pdsyevd)

mpi_bcast mpi_real8 MSIZE*NBSIZE (MB/MBSIZE *
MB/NBSIZE)/NPB

HPSI mpi_isend mpi_real8 lma_nsend(irank) *
MBLK

6 * NCNONL *
MB/MBLK/NPB

mpi_irecv mpi_real8 lma_nsend(irank) *
MBLK

6 * NCNONL *
MB/MBLK/NPB

mpi_waitall – MB/MBLK/NPB

BCAST mpi_isend mpi_real8 Md*MBLK 6*MB/MBLK/NPB

mpi_irecv mpi_real8 Md*MBLK 6*MB/MBLK/NPB

mpi_waitall – MB/MBLK/NPB

MB Number of energy Band, NBLK Max size of DGEMM, NBLK1 Minimum size of DGEMM, MBSIZE Row
block size of MB × MB matrix, NBSIZE Column block size of MB × MB matrix, MBLK min(MBSIZE,
NBSIZE), Md Order of higher order finite difference, lma_nsend Number of nonlocal terms, NPB Number
of energy band parallelism, MLO Number of grids processed by one process, NCNONL Number of adjacent
communications in nonlocal term calculation for each direction

ing block, and no increase in the adjacent communication time was observed. The
absence of an increase in the computation time for the weak scaling measurements
implies that there is no nonparallel part in the computation, and the absence of an
increase in the adjacent communication time means that there are no problems in the
adjacent communication.
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Table 3.5 Evaluation pattern of parallel axis expansion effect

Number of atoms Number of space
grids

Number of energy
bands

Number of
processes

Pattern1 512 48 × 48 × 48 19,200 512 (4 × 4 × 4 ×
8)

Pattern2 1000 60 × 60 × 60 19,200 1000 (5 × 5 × 5 ×
8)

Pattern3 1728 72 × 72 × 72 19,200 1728 (6 × 6 × 6 ×
8)

Pattern4 4096 96 × 96 × 96 19,200 4096 (8 × 8 × 8 ×
8)
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Fig. 3.6 Evaluation result of effect expanding the parallelization axis
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Fig. 3.7 Process mapping using for RSDFT on Tofu topology

By dividing the number of grids used for this evaluation by the number of parallels,
we obtained 96 × 96 × 96/4096 = 216, which is the same value as that for the target
problemevaluated inSect. 3.5.3.Wecan conclude that the scalability up to about 4000
parallel paths is secured while satisfying the (grid number/parallelization number)
value of the target problem by enhancing the parallelization axis.

3.5.6 Results of High Performance of RSDFT

Adoption of optimal Tofu mapping
In RSDFT, global communications such as MPI_BCAST and MPI_ALLREDUCE,
occur, and have large message lengths. They require efficient communication. In
dealing with the above extremely massive parallelization of RSDFT, the product
of the grid points and the number of divisions of energy bands is allocated to all
compute nodes through the two-axes parallelization.

In the K computer, a manually prepared rankmapping file2 can allow the optimum
mapping of the addresses of the network topology to the rank numbers. In this stage of
the performance tuning of RSDFT, we used this feature andmapped the computation
nodes to the Tofu network, as shown in Fig. 3.7. In this figure, “orbital” represents
an orbital corresponding to an energy band. When all the compute nodes are divided
into three parts, as shown in Fig. 3.7, the compute nodes in each part can always

2This is specified with the parameters at the job execution.
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be connected in a torus network, thanks to the 6D Tofu network. Orbitals can be
partitioned almost equally into the same number of orbital groups as the number
of parts and each orbital group is allocated to each part. The parallelized tasks at
the grid points are executed within the part. With this allocation, communication
among the parallel tasks in the grid points is kept within a part and does not affect
the communications within other parts. The number of parts is increased to the
number of parallel paths in the orbitals. By adopting this mapping, the performance
improvement shown in Fig. 3.8 is obtained. By optimizing the mapping, the optimal
communication algorithm is applied for the Tofu topology, and the communications
are about 4.5 times faster.

Improving communication performance through two-axes parallelization
An analysis of silicon nanowires using 19,848 silicon atoms was carried out to verify
the improvement in communication performance through two-axes parallelization.
The number of energy bands was 41,472. We used 12,288 nodes of the K computer
and 98,304 cores. The number of grids used for the calculation was 320 × 320 ×
120 = 12,288,000. Figure 3.9 shows the comparison between the computation and
the communication time for space-only parallel processing for each processing block
and for two-axes parallel processing. The number of grid divisionswhen using space-
only parallelization was 12,288, and each node handled 1000 grids. With two-axes
parallelization of space and energy band, there were 4096 grid divisions and each
node handled 3000 grids. The energy band blocks were divided into three, and each
node handled 13,664 energy bands. The figure shows the great reduction in global
communication time that can be achieved for any processing block.

Without process mapping With optimal process mapping

number of atoms 19848
number of space grids 320 320 120
number of energy bands 41472
number of processes 12288

-space grids 2048(32 32 2)
-enrgy bands 6

torus : 32 32 12
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ec
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Fig. 3.8 Process mapping effect using for RSDFT on Tofu topology
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Fig. 3.9 Improving effect of communication performance by expanding the parallelization axis

3.5.7 Total Performance of RSDFT

Figure 3.10 shows the strong scaling performance of RSDFT with two-axes paral-
lelization. The number of block-parallel divisions in the space was fixed to 1536,
and the energy band blocks were divided into 1, 2, 3, and 6 groups. Therefore, the
total parallelization was 1536, 3072, 4608, and 9216, respectively. The numbers of
cores used were 12,288, 24,576, 36,864, and 73,728, respectively. The horizontal
axis in Fig. 3.10 shows the number of cores and (a), (b), (c), and (d) show the cal-
culation and communication times for each processing block of GS, CG, MatE/SD,
and RotV/SD. The dashed line with open circles indicates the theoretical calculation
time, and the solid line with black squares indicates the measured calculation time.
They are consistent with each other, which shows that good scalability is obtained
with two-axes parallelization. It is also clear that there is no problem because, for
both the space and the energy band, the global communication and adjacent com-
munication times decrease as the number of parallel paths increases or when their
absolute values are small. The graphs in Fig. 3.10 show the good effects of two-axes
parallelization using the space and the energy bands.
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Fig. 3.10 Strong scaling performance of RSDFT with two-axes parallelization

For the total performance verification, silicon nanowires were analyzed using
107,292 silicon atoms. The number of energy bands was 229,824. The number of
nodes of the K computer used was 55,296 with 442,368 cores. The number of grids
used for the calculation was 576 × 576 × 192 = 63,700,992, with 18,432 grid block
divisions, and each node handled 3456 grids. The energy band blocks were divided
into three groups, and each node handled 76,608 energy bands. The total performance
of this system is shown in Table 3.6. The complete SCF calculation achieved 3.08
PFLOPS, achieving apeakperformance ratio of 43.6%.This experimentwas awarded
the Gordon Bell Award at SC’11, which is a large international conference related
to supercomputers [12].
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3.6 Performance Optimization of PHASE

3.6.1 Overview of PHASE

PHASE [5] performs electronic structure calculations based on density functional
theory, like RSDFT. It clarifies quantum theory phenomena at the nanoscale from
first principles and predicts nanomaterials and nanostructures with new functions.
The purpose of PHASE is to calculate structural relaxation and dynamics from first
principles and to calculate various physical properties of the structures obtained.

Solving the Kohn–Sham equation obtained from density functional theory is ulti-
mately equivalent to solving the eigenvalue equation:

Hψik

(−→
G

)
= εiψik

(−→
G

)
. (3.4)

Here,ψik represents thewave function defined in the periodic boundary condition,
i represents the quantum number of the energy band,

−→
G represents the reciprocal

lattice vector, and k represents the kth point in the reciprocal lattice space. In contrast
to RSDFT, PHASE uses a periodic boundary condition and the wave function is
expressed as a function of the reciprocal lattice vector

−→
G . To solve the Kohn–Sham

equation, fast Fourier transformation (FFT) is used. Plane waves are employed as the
basis function and the wave function is expressed by a linear combination of plane
waves.

3.6.2 Understanding the Application Characteristics
by Investigating PHASE Source Code

Because RSDFT and PHASE have parts in common, we will briefly describe the
programming of the parts that are different from RSDFT.

Our investigation of the source code of PHASE showed that the program is divided
into 11 blocks. When these processing blocks are categorized according to their cal-
culation characteristics, they can be classified into three kinds of processing blocks:

• Blocks that can be rewritten as matrix–matrix products;
• Blocks including FFT;
• Blocks that perform the diagonalization of matrices.

The first group of processes can be rewritten as matrix–matrix products, as
in RSDFT, as Gram–Schmidt orthonormalizations (described in Sect. 2.8.4). The
amount of computation of these processes is of the order of N3, as in RSDFT.

The second group of processes involves FFT, which is not in RSDFT. PHASE
performs the FFT processing from the reciprocal lattice space to the real space
once while calculating the product of Hamiltonian and wave functions in solving
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the Kohn–Sham equation, and performs inverse FFT processing after inner product
processing in the real space. In PHASE, using the discretization in the reciprocal
lattice space, the second group of processes appears frequently. The calculation
amount of the FFT processing is of the order of N 2 × log2 N .

The third group of processes performs diagonalizations, and these are also present
in RSDFT. The amount of computation of the diagonalization processing is of the
order of N3.

In PHASE, as with RSDFT, there is no dependency on the energy band quan-
tum number i (Eq. (3.4)), and this independence is used to parallelize the energy
bands. There is also a part parallelized for the reciprocal lattice (G in Eq. (3.4)).
The transpose operation is used, so the wave functions parallel to the energy bands
before G-parallelization can be G-parallelized. In addition, the transpose operation
for returning the wave functions parallelized in G is parallel to the energy band par-
allelization after the G-parallel calculation has completed. The transpose operation
shown inFig. 3.11 is the global communication between all nodes (MPI_ALLTOALL
type), and both the transfer amount and the transfer count are large contributors to
the increase in the communication cost.

From the source code investigation, the loop structure of block 2 is shown in
Fig. 3.12. This loop structure is displayed in a simplified form; originally, it was a
more complicated structure, but the essential parts are shown here. The innermost
energy band parallel part is the loop originally parallelized in PHASE. There is a

Fig. 3.11 Transpose
operation in PHASE

G

i G

i

Fig. 3.12 Loop structure of
PHASE block 2



68 K. Minami and K. Kumahata

loop for atoms outside this loop, which also contains the heavy processing for the
reciprocal lattice. The loop between this atomic number loop and the energy band
parallel part was not parallelized in the original PHASE code. We found that there
is a nonparallel part in section 2, so that the whole is partially parallelized.

The domain decomposition is in many cases completely parallelized. However,
as in PHASE, in spite of physically being able to adopt multiple parallelization axes,
if only one axis is used, nonparallel parts may remain.

3.6.3 Modification of the Code for High Performance
of PHASE

The problem with the high parallelization of PHASE was the limited parallelization
of the applications compared with the number of cores, as with RSDFT. PHASE
solves the eigenvalue equation of Eq. 3.4. Basically, in the original PHASE, the par-
allelizationwas implemented for the variable i representing the energy band quantum
number in the eigenvalue equation. For the Gram–Schmidt diagonalization process-
ing, for example, parallelization through the reciprocal lattice (G) was implemented.
In principle, the equations used in PHASE can be parallelized completely for all
energy bands i and the reciprocal lattices G for all parts. As described in Sect. 2.7.3,
enhancement of the parallelization axis allows an increase in the parallelization of
the application to match the number of hardware cores. At this time, the full par-
allelization of two axes has been implemented for all parts concerning the energy
bands and the reciprocal lattice. By thus enhancing this parallelization axis, we have
extended the number of parallel paths to several tens of thousands from 1000, as
shown later.

In Sect. 3.6.2, the high parallelization of PHASE showed that there was a remain-
ing nonparallel part, which was sandwiched between the head of the atomic number
loop and the energy band parallel part shown in Fig. 3.12. This part performs the
calculation on the reciprocal lattice. Therefore, in addition to the energy bands, by
parallelizing through the reciprocal lattice (G), this remaining nonparallel part can
be parallelized.

As described in Sect. 2.8.4, it is also possible to rewrite the calculation of the non-
local term and the calculation of the Gram–Schmidt orthogonalization as matrix—
matrix products, as with RSDFT. This revision can reduce the required B/F value,
and high performance of a single CPU can be expected. Furthermore, by using the
matrix–matrix product BLAS level 3 subroutine DGEMM from the mathematical
library, it becomes possible to calculate with very high performance optimized for
a particular machine [5]. Because PHASE did not implement the algorithm using
this matrix–matrix product, we have applied this algorithm and have evaluated the
results [13].
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3.6.4 Total Performance of PHASE

Table 3.7 shows the execution time and the execution efficiency while calculating the
amorphous system of HfSiO2 with 1536 atoms, as measured in the K computer using
2048 cores. The parts rewritten using the BLAS library achieved efficiencies of more
than 50%, and we have achieved execution efficiency exceeding 20% throughout the
SCF loop. Moreover, from measuring an SiC system with 3800 atoms using from
48 to 12,288 parallel paths, we confirmed that the scaling can be secured up to
parallelization numbers much larger than the number of atoms. This could not be
calculated using the conventional parallelizationmethod because of the finer division
granularity.

3.7 Examples of Single-CPU Performance Optimization

In this section, we outline the performance optimizations related to the single-CPU
performance as described in Sect. 2.8, using Seism3D and FFB. For Seism3D, we
describe the effective use of the cache shown in Sect. 2.8.9. The effective use of the
cache is shown in Sect. 3.8.3 and the results are shown in Sect. 3.8.4 [7]. We also
describe the cache validation method for applications using list access in Sect. 2.8.10
for FFB. Section 3.9.3 shows the method and Sect. 3.9.4 shows the result [7, 14, 15].

Again using FFB as the example, we describe the block coloring method for
recurrence elimination, targeting the unstructured grid shown in Sect. 2.8.3. The
method is shown in Sect. 3.9.3 and the results are shown in Sect. 3.9.4 [7, 14, 15].
Using Seism3D and FFB as examples, we describe the performance estimation using

Table 3.7 Performance of amorphous 1536 atomic system in 2048 processes (K computer)

Block name Elapsed time (s) Ratio of peak
performance (%)

SCF 39.79 20.11

Block1 (FFT) 0.02 2.19

Block2 (BLAS) 6.89 53.53

Block3 (FFT) 3.99 3.56

Block4 (BLAS) 1.88 64.76

Block5 (BLAS, comm.) 2.53 17.32

Block6 (FFT) 1.24 5.15

Block8 (FFT, BLAS) 4.16 16.56

Block9 (BLAS,
ScaLAPACK)

12.31 3.88

Block10 (BLAS) 1.89 64.30

Block11 (FFT) 5.05 4.78
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the roofline model described in Sect. 2.8.8. The results for Seism3D are shown in
Sect. 3.8.2 and those for FFB in Sect. 3.9.2 [7].

3.8 Single-CPU Performance Optimization of Seism3D

3.8.1 Overview of Seism3D

Seism3D [3, 4] is a large-scale parallelization program that solves earthquake prop-
agation and tsunamis in conjunction with each other by the time evolution of the
viscoelastic equation using the finite difference method (staggered lattice difference
method). Seism3D is composed of the following six calculation kernels:

(a) Stress spatial difference calculation
(b) Velocity spatial difference calculation
(c) Stress–time integral calculation
(d) Stress–time integral absorption calculation
(e) Velocity–time integral calculation
(f) Velocity–time integral absorption calculation.

There are two versions of Seism3D. The initial version did not implement steps
(d) and (f) and used 3D domain decomposition for the parallelization. This version
only dealt with earthquake simulation. Figure 3.13 shows the calculation flow of the
initial version. The full version was then developed by implementing the physical
properties of water on top of the mesh to simulate tsunamis as well as earthquakes. In
this version, to overcome the imbalance of calculation times between earthquake and
tsunami, a 2D domain decomposition in the horizontal direction was adopted, and
the processing of (d) and (f) was included. Calculations in this version required large
B/F values, and the communications were only in the halo region in the horizontal
direction.

Fig. 3.13 Calculation flow
of Seism3D Stress spatial difference

integral
integral 

absorption

Velocity MPI communication

Velocity spatial difference

integral
integral 
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Stress MPI communication

Tim
e S
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The results of the investigation of the program flow for the original version of
Seism3D are described below. Seism3D can explicitly obtain the propagation of the
seismicwaves in a heterogeneous underground structure from the equations ofmotion
(stress–equilibrium equation) and the constituent equations of stress–distortion by
using the difference calculation method (time: second-order accuracy, space: fourth-
order accuracy). The equations of motion are

ρüx = ∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
+ fx , (3.5)

ρü y = ∂σyx

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
+ fy, (3.6)

ρüz = ∂σzx

∂x
+ ∂σzy

∂y
+ ∂σzz

∂z
+ fz. (3.7)

Here, ü is an acceleration, σ is stress, ρ is a density, and f is an external force.
The stress–strain constitutive equation (Hooke’s law) is

σpq = λ
(
exx + eyy+ + ezz

)
δepq + 2μepq). (3.8)

Here, e is a distortion, λ and μ are constants of Lame, δ is the Kronecker delta,
and the distortion can be found from

exx = ∂ux

∂x
, ey = ∂uy

∂y
, ez = ∂uz

∂z
, (3.9)

exy = 1

2

(
∂ux

∂y
+ ∂σ y

∂x

)
, eyz = 1

2

(
∂uy

∂z
+ ∂u z

∂y

)
, ezx = 1

2

(
∂uz

∂x
+ ∂ux

∂z

)
.

(3.10)

3.8.2 Evaluation of Single-CPU Performance of Seism3D

We mentioned in Sect. 2.8.9 that the sparse matrix–vector product often appears
when a partial differential equation is discretized. It appears in Seism3D. The sparse
matrix is a type of scalar value and the vector is represented as a 3D array. Because
only a few elements appear in each row of the sparse matrix, the reusability of the
vector elements is limited to the same number.

The performance prediction from the roofline model shown in Sect. 2.8.8 is
described. Among the six calculation blocks shown in Sect. 3.8.1, the same cal-
culations are performed for the spatial differential calculations of (a) and (b). As
our example, we use the coding of the velocity difference term in the Z-direction
in (a) and (b) of Fig. 3.14. This coding is the sparse matrix–vector product and the
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Fig. 3.14 Velocity finite
difference calculation of
Z-direction

do J = 1, NY
do I = 1, NX

do K = 3, NZ-1
DZV (k,I,J) = (V(k,I,J) -V(k-1,I,J))*R40 &

- (V(k+1,I,J)-V(k-2,I,J))*R41
end do

end do
end do

sparse matrix is the scalar type. In this loop, thread parallelization through the block
division is implemented in the J loop of the outermost loop. Here, NZ = 4000,
NX = 60, and NY = 80. This program is coded in single precision. Therefore, the
size of the entire array of V and DZV is 76.8 MB, the size of the K axis × I axis is
960 KB, and the size of the K axis is 16 KB. The entire array is too large to store
in the cache, though one occurrence of the K axis × I axis is small enough to store
in the L2 cache, and the K axis can be stored in the L1 cache. In this example, the
FLOP value is 5,3 and the B/F value required is obtained from the coding as follows.
First, we calculate the required byte value. V(K – 2, I, J) is loaded from the memory
first. Assuming that V(K – 1, I, J), V(K, I, J), and V(K+ 1, I, J) are in the same cache
line at this time, these data do not need to be loaded separately from the memory but
can be loaded from the L1 cache because they are stored together in the L1 cache.
DZV(K, I, J) is loaded once frommemory and then stored in memory. Therefore, the
number of loads and stores from memory is 3.4 The number of required FLOPS is 5
when counting the number of operations from Fig. 3.14. In the roofline model, only
memory accesses are considered without considering cache accesses. Therefore, the
byte value required from the coding in Fig. 3.14 is 12 bytes in 3 × 4 bytes, and the
required B/F value is 12/5 = 2.4. In the roofline model, the estimated performance
is obtained by dividing the required B/F value by the hardware B/F value. The B/F
value of the hardware of K computer can be obtained by dividing 64 GB/s by 128
GFLOPS. Using this value, 0.5/2.4 = 0.208, so 20.8% is the predicted performance.

Performance prediction of Seism3D
We found that the estimation accuracy can be improved by using the effective peak
performance without using the theoretical peak performance of the memory band-
width. The effective memory bandwidth between the CPU and memory of K com-
puter is 46 GB/s; the B/F value of the hardware (0.5) is multiplied by the ratio,
0.72 (=46/64), between the theoretical memory bandwidth (64 GB/s) and the effec-
tive memory bandwidth (46 GB/s); and the effective B/F value of the hardware is
obtained as 0.36. Therefore, the predicted performance value is 0.36/2.4 = 0.15, and
it can be predicted that the performance of 15% of the peak performance ratio is the
maximum performance of this coding.

3In this case, we consider “add” as 3 and “multiply” as 2.
4In this case, we consider “store” as 1 and “load” as 2.
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Next, the coding of two difference calculations in the X- and Y- direction is shown
in Figs. 3.15 and 3.16. The performance prediction in the X-direction is almost the
same as that for the Z-direction. The difference is that three V elements out of the
four V loads are predicted, as the data are stored in the L1 cache in the Z-direction
calculation, whereas in theX-direction calculation, because it is in the range of 16KB
× 4 = 64 KB, it is predicted to be stored in either the L1 cache or the L2 cache.
In either case, no memory access occurs, so the required B/F value is 2.4 as in the
Z-direction difference and the predicted performance is 15%.

The performance prediction in the Y-direction is rather different from the predic-
tion in the Z or X-direction. The size of theK axis× I axis is 960KB, and considering
that thread parallelization is applied on the J axis, none of the four elements of V
will remain in the cache. Therefore, there are six load/stores from memory and the
24 bytes are required bytes, so the required B/F value becomes 24/5 = 4.8, and the
predicted performance becomes 7.5%.

Measurement results and evaluation of the space differential calculation of
Seism3D
Table 3.8 summarizes the required B/F values and the predicted performance value
shown in Sect. 3.8.2, together with the measured values. Table 3.8 shows that the
predicted value is consistent with the measured value. From the coding shown in
Sect. 3.8.2, the basic pattern is that prefetch works because the data are accessed
continuously, and it seems that condition (1) in Sect. 2.6 and the effective use of

Fig. 3.15 Velocity finite
difference calculation of
X-direction

do J = 1, NY
do I = 1, NX

do K = 1, NZ
DXV (k,I,J) = (V(k,I,J)  -V(k,I-1,J))*R40&

- (V(k,I+1,J)-V(k,I-2,J))*R41
end do

end do

Fig. 3.16 Velocity finite
difference calculation of
Y-direction

do J = 1, NY
do I = 1, NX

do K = 1, NZ
DYV (k,I,J) = (V(k,I,J)  -V(k,I,J-1))*R40 &

- (V(k,I,J+1)-V(k,I,J-2))*R41
end do

end do
end do

Table 3.8 Velocity finite difference calculation of Seism3D

Z-direction X-direction Y-direction

Required B/F value 2.4 2.4 4.8

Predicted performance value (%) 15.0 15.0 7.5

Measured performance value (%) 15.3 15.1 7.6
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prefetch are satisfied. Because it is a continuous access, it also satisfies condition
(2), that is, the effective use of line accesses. Because these conditions are satisfied,
it is reasonable that the predicted value is consistent with the measured value. We
concluded that there are no performance problems with this coding.

3.8.3 Modification of the Code for Improved Performance
of Seism3D

In this section, detailed examples of tuning the sparse matrix–vector product shown
in Sect. 2.8.9 are described.

Cyclic division thread parallelization
As a further tuning method, we first consider the loop fusion of each loop of ZXY.
Because there are references to the elements of V(K, I, J) in each of the three loops,
by fusing loops it may be possible to halve the load of V(K, I, J) overall. Next, we can
change the outermost J loop from thread parallelization by the block division method
to thread parallelization by the cyclic division method. In the J-axis loop, V(K, I, J)
is loaded from memory. However, for the sequence V(K, I, J – 1), V(K, I, J – 2),
and V(K, I, J + 1), the thread parallelization by cyclic division of the J-axis can be
expected to use the elements of V loaded into the L2 cache by both the neighboring
threads. This takes advantage of the characteristics of the K computer in which the
L2 cache is shared by the eight cores. Figure 3.17 shows the code after tuning.

We consider the predicted performance value of this post-tuning coding. First, the
FLOP value is 15. As before, one element of V is loaded from memory. At that time,
the other 11 elements of V are thought to be stored in the L1 or L2 cache. DZV(K,
I, J), DXV(K, I, J), and DYV(K, I, J) are loaded once from memory and then stored
in memory. Therefore, there are seven load/stores from the memory. The coding in
Fig. 3.17 requires 7 × 4 bytes = 28 bytes, and the required B/F value is 28/15 =
1.86. The predicted performance value is therefore 19% from 0.36/1.86 = 0.19.

Fig. 3.17 Coding of cyclic
division thread
parallelization

!$OMP DO SCHEDULE(static,1),PRIVATE(I,J,K)
do J = 1, NY

do I = 1, NX
do K = 3, NZ-1

DZV (k,I,J) = (V(k,I,J) -V(k-1,I,J))*R40 &
- (V(k+1,I,J)-V(k-2,I,J))*R41

DXV (k,I,J) = (V(k,I,J)  -V(k,I-1,J))*R40&
-(V(k,I+1,J)-V(k,I-2,J))*R41

DYV (k,I,J) = (V(k,I,J)  -V(k,I,J-1))*R40 &
- (V(k,I,J+1)-V(k,I,J-2))*R41

end do
end do

end do
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Table 3.9 Result of applying
cyclic division thread
parallelization method

Required B/F value 28/15 = 1.86

Predicted performance value 0.36/1.86 = 0.19

Measured performance value 17.7%

Table 3.10 Result of stress
time integral calculation

Required B/F value 252/175 = 1.44

Predicted performance value 0.36/1.44 = 0.25

Measured performance value 17.4%

Table 3.9 summarizes the performance predictions and the measured results for
this coding. The performance of about 18% is obtained for all of ZXY, and the
predictions and measurements are consistent. The tuning effort has improved the
original performance.

Performance prediction and measurement of stress–time integral calculation
Among the six calculation blocks shown in Sect. 3.8.1, the performance prediction
and the measurement result of the stress–time integral calculation of (c) are shown
in Table 3.10. Because there is no difference calculation such as –1,+1 that has been
evaluated so far, the stress calculation section is an examplewith no vector reusability,
even in the sparse matrix–vector product. All the arrays are accessed with indexes
(K, I, J) as the accesses of DXV, DYV, and DZY that appeared in the ZXY difference
calculation. Therefore, all the arrays are accessed from memory. Because the coding
length is about 100 rows, although not described here, an evaluation similar to the
previous discussion was carried out and the required B/F value and the predicted
performance value were obtained. Table 3.10 shows that the measured value is much
lower than the predicted value.

Tuning of stress–time integral calculation
Based on this result, we investigated whether there was a prospect of improving the
performance. When we examined the profile data in detail, the measured result for
the memory bandwidth was about 35 GB/s, which shows that it does not satisfy
the condition (1) shown in Sect. 2.6. When looking at the prefetching situation, we
found that the hardware prefetching was not used efficiently. We reduced the number
of streams by fusing several sequences and reducing the number of sequences to
increase the efficiency of the hardware prefetching. With this tuning, the execution
performance improved from17.4 to 21.8%and approaches the predicted performance
value, and the memory bandwidth value is also 42.4 GB/s, which is close to the
46 GB/s effective value.



76 K. Minami and K. Kumahata

3.8.4 Results for the High-Performance Version of Seism3D
and the Total Performance

Similar evaluations and tuning were carried out for all of (a)–(f) shown in Sect. 3.8.1.
Table 3.11 summarizes the results of solving the L1 cache conflict and so on. The
results show the peak performance of the original and tuned code including the
communication, and that the performance has improved from 10.3% to 15.3%. For
the differential/integral calculation, we show the single-CPU performance without
the communications, and the performance improvement is confirmed in either case.
By further tuning such as the use of theXFILL5 control statement for the efficiency of
the data store, the single-CPU performance without communications was improved
up to 17.5%.

Finally, Fig. 3.18 shows the results of measuring the performance with weak
scaling from 16 nodes to 82,944 nodes. Good weak scalability up to 80,000 nodes is
obtained, and the total performance of all nodes is 2.1 PFLOPS, achieving the peak
performance ratio of 19.7%.

Table 3.11 Performance improvement result of Seism 3D(1)

Original Tuned code

Elapsed
time (s)

Ratio of
peak per-
formance
(%)

Elapsed
time (s)

Ratio of
peak per-
formance
(%)

Overall 75.5 10.3 52.9 15.3

Stress spatial difference calculation 13.0 10.4 9.2 14.7

Velocity spatial difference calculation 13.4 10.1 7.7 17.7

Stress–time integral calculation 12.8 17.0 11.5 21.8

Stress–time integral absorption
calculation

12.5 7.6 10.3 10.2

Velocity–time integral calculation 9.7 7.5 3.0 23.0

Velocity–time integral absorption
calculation

7.9 15.3 6.9 17.5

5Control statement for streamlining array access without loading.
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Fig. 3.18 Total performance of Seism3D

3.9 Single-CPU Performance Optimization of FFB
and an Example

3.9.1 Overview of FFB

FFB [7] is a general-purpose fluid analysis application based on large eddy simulation
(LES) that can predict the unsteady flow of uncompressed fluids with high accuracy.
It can predict the noise generated from fluid machines such as fans or pumps by
adopting discretization using the finite element method with excellent shape confor-
mity, unsteady turbulent flow around complex shapes, and flow. There are two types
of calculation methods in the finite element method. The first constructs an over-
all stiffness matrix and solves the matrix using the implicit method, and the other
advances the calculation using only the element rigidity matrix without constructing
the overall configuration matrix (element-by-element method). The new version of
FFB is compatible with both the solvers.

Figure 3.19 shows the processing flow of the FFB solver. The calculation of the
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velocity predictor, the calculation of pressure, and the velocity correction calculation
are the main parts of this calculation. The flow of the subroutines called from the
calculation of the velocity predictor is shown in Fig. 3.20. The main parts of the
calculation are bcgs2x and calaxc, which calculate the matrix–vector product. The
configuration of the subroutines called from the calculation of pressure is shown in
Fig. 3.21. This calculation has a nodal pressure mode in which an entire stiffness
matrix is constructed and solved by the implicit method, and an element pressure
mode in which the calculation is advanced using the element-by-element method.
The center of the calculation of the nodal pressure mode is calaxc, which is also
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Fig. 3.19 Calculation flow of FFB

vel3d1
(Velocity prediction)

N
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(Velocity correction)

e2pmat Constructs an overall stiffness matrix
ddcomx Adjacent communication
dgnscl Diagonal scaling
ddcomx Adjacent communication
clrcrs Setting Dirichlet condition
bcgs2x     Velocity prediction of UVW (Bi-CGSTB)

calaxc Calculate Ax
ddcomx Adjacent communication(Ax)
ddcom2 Allreduce (r0 rk)

ddcom2 Allreduce (b b)

calaxc Calculate Apk

ddcomx Adjacent comm. (Apk)

ddcom2 Allreduce(r0 Apk)

calaxc Calculate Atk

ddcomx Adjacent comm. (Atk)

ddcom2 Allreduce (Atk Tk)

ddcom2 Allreduce(Atk Atk) 

Loop

Fig. 3.20 Calculation flow of velocity prediction
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Fig. 3.21 Calculation flow of pressure calculation

the center of the calculation of vel3d1. The center of the calculation of the element
pressure mode is callap.

3.9.2 Evaluation of Single-CPU Performance of FFB

Investigation of the execution characteristics of FFB
Figure 3.22 shows the execution time distribution of the subroutines when 100,000
tetrahedron elements are calculated. The gradient calculations of the tetrahedral ele-
ments (callap) required 14.1 s (30%) and 4.8 s (10%), and the sparse matrix–vector
products (calaxc) required 13.0 s (27%). As shown in Figs. 3.20 and 3.21, the main
communication processing within the FFB time integration loop is of the following
two types. The first performs the global communication in the subroutine ddcom2,
and MPI_ALLREDUCE (MPI_SUM) is called in all MPI ranks. The second per-

Fig. 3.22 Execution time
distribution of FFB
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forms the adjacent communication in the subroutine ddcomx. The communication
of physical quantities on the nodes shared with adjacent regions is performed in each
region of the domain decomposition processing. The communication processing uses
the following procedure:

– Packing of the communication data to the transmission buffer
– Asynchronous communication (MPI_ISEND, MPI_IRECV) call
– Waiting for the asynchronous communication (MPI_WAITALL)
– Adding the communication data from the receive buffer to the actual array.

From the configuration of these subroutines,we found that the center of calculation
is calaxc and callap, and the center of communication is ddcomx and ddcom2.

Sparse matrix–vector product of FFB
FFB is a fluid calculation program using the finite element method. As described
above, the finite element method includes two types of calculations; one builds the
entire rigidity matrix, and the other is an element-by-element method that advances
calculation with only the element rigidity matrix without constructing the entire
configuration matrix. First, we describe the sparse matrix–vector product kernel
used to build the overall rigidity matrix. The coding of the kernel of the sparse
matrix–vector product of FFB is shown in Fig. 3.23. The general compressed sparse
row (CSR) format6 is used for thematrix data storage. The vectors are accessed using
a list array that stores the surrounding nodal numbers for calculating a certain node.
Because the average number of elements in each row of the sparse matrix is about
30, the reusability of the vector elements is about 30.

Next, we describe the computational kernel used to calculate the element-by-
element method. The coding of the kernel is shown in Fig. 3.24. In this example, the
finite element approximation is

∇p = ∂p

∂xi
=

∑
j=1

∂N j

∂xi
pe. (3.11)

It is calculated for the tetrahedral elements. The shape function stored in DNX
and the others and the value of the pressure stored in S are continually referenced.
The gradient value of the pressure represented by FX and the others appearing on

Fig. 3.23 Matrix–vector
product coding of FFB

6A method for storing only the nonzero elements of a sparse matrix.
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Fig. 3.24 Kernel coding of
element-by-element method

the right side are stored in each node, and the nodal number is accessed by a list
arrangement with the element number as an index.

Performance prediction of FFB
First, we describe the sparse matrix–vector product kernel used to build the overall
rigidity matrix. This evaluation uses hexahedron elements with at most 27 adjacent
nodal points and tetrahedral elements with at most 24 adjacent nodal points. Because
in this coding we use list access to obtain the vector data, the latency of the memory
access occurs when referring to the vector element and a large penalty is caused by
using only one element out of one line. A remarkable performance deterioration is
predicted. Even when the elements of the vector are stored in the L2 cache, they do
not decrease memory accesses much, and similar penalties occur in the L2 cache.
If the data of the vector used for the calculation can be stored in the L1 cache, the
penalty for the latency and the line access will be eliminated and the access penalty
to the vector memory can be ignored. In this case, 8 bytes are required for 2 elements
× 4 bytes and the FLOP value is 2, so the required B/F value is 4. Using the effective
B/F value of 0.36, the predicted performance is 0.36/4 = 0.09, that is 9%.

Next, we describe the computational kernel used to calculate the element-by-
element method. Again, suppose that the data defined by a nodal point such as FX
are stored in the L1 cache. In this case, 16 elements× 4 bytes× (9/4)+ 1 element×
4 bytes = 148 bytes are required, and the required FLOP value is 24, so the required
B/F value is 148/24 = 6.17. The factor (9/4) is included because nine elements are
declared in the first dimension of DNX. Using the effective B/F value of 0.36, the
predicted performance is 0.36/6.17 = 0.058, that is 5.8%.
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Table 3.12 Performance of
matrix–vector product of FFB

Hexahedron (ratio of
1 core peak
performance)

Tetrahedron (ratio of
1 core peak
performance)

Original code 5.9% 2.4%

Measurement results and evaluation of FFB kernel performance
First, we describe the sparse matrix–vector product kernel used to build the overall
rigidity matrix. Initially, because the original code kernel was not thread parallelized,
it was measured with one core and the results are shown in Table 3.12. The numerical
value is the ratio of the peak performance to the peak performance 16 GFLOPS of
one core. The result for the STREAM benchmark when occupying the memory
bandwidth with one core is 20 GB/s. Therefore, the theoretical hardware B/F value
is 1.25 at 20 GB/16 GFLOPS. Because the required B/F value is 4, as shown in
Sect. 3.9.2, the predicted performance value is 31% at 1.25/4 = 0.31. The value
in Table 3.12 is much smaller than this predicted value. The cause is presumed to
be inefficient instruction scheduling given that the iteration count of the innermost
loop is at most 27, in addition to the large penalty of vector accesses described in
Sect. 3.9.2.

Next, we describe the computational kernel used to calculate the element-by-
element method. Because the kernel of the original code was also not thread paral-
lelized, it was measured with one core. When predicting the performance of one core
in the same way as for the sparse matrix–vector product kernel shown earlier, the
predicted performance value is 20.2% at 1.25/4= 0.202. The measured performance
ratio of the kernel was 1.6%, and the throughput of the memory was 10.4 GB/s with
test data consisting of 820,000 elements. Assuming that there is no penalty for list
access in the data storage on the left side because of ideal list access, the theoretical
value of the L1 cache miss rate is 3.125%, but the miss rate of the result was 21.3%.
The results indicate that the sparse matrix–vector product kernel is incurring a large
penalty for list accesses.

Based on these evaluation results, the penalty for the large list access has occurred,
which appears to be the problem limiting performance.

3.9.3 Modification of the Code for High Performance of FFB

We now discuss a detailed analysis of the sparse matrix–vector product when the
required B/F value is large and list vectors are used, as shown in Sect. 2.8.10.

Data storage format with full unrolling
According to D. Guo and colleagues, it has been reported that performance improve-
ment can be achieved by changing the matrix storagemethod from the CSR format to
the streamed-CSR (S-CSR) method, which extends the CSR format [16]. When we
tried to use it, the actual measurement result was improved as reported by Guo; how-
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Fig. 3.25 Matrix–vector
product fully unrolled coding
of FFB

ever, the performance was improved by only about 7% for the hexahedron and about
10% for the tetrahedron. As shown in Fig. 3.25, we also adopted the data storage
format and coding that completely unrolled the inner loop. This method was applied
to the sparse matrix–vector product kernel used in the calculation of the overall rigid-
ity matrix. Figure 3.25 shows the code for the hexahedron; for the tetrahedron, the
number of unrollings was 24. For the hexahedron with this data storage format, if
the number of matrix elements is fewer than 27 for each row of the control variable
IP in the DO sentence in Fig. 3.25, the rest are filled with zeroes until there are 27
to fix the expansion number. The number of elements filled with zeroes is about
2% of the total for the hexahedron and about 35% for the tetrahedron. The memory
amount and the calculation amount increase; however, the calculation performance
still improves.

Reordering the vector data
We modified the ordering of the nodal points to reduce the access penalty for the
vector shown in Sect. 3.9.2. As shown on the left side of Fig. 3.26, the nodal point
numbers were remapped to 3D space using the 3D XYZ coordinates of the nodal
points. Next, the 3D space was divided in each axis direction. In Fig. 3.26, it was
divided into three; this time, it was divided into 10. Basically, the ordering of nodes
was changed so that the nodal points included in the divided box are consecutively
stored, and the numbers of the boxes are also taken from the order of XYZ, as shown

Fig. 3.26 Changing the ordering method of nodes
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in the middle diagram of Fig. 3.26. The nodal points in the box were also divided
into inside and outside, as shown on the right side of Fig. 3.26, and the nodal points
included inside were ordered first, and then the nodal points included in the outer
circumference were ordered. In this way, by changing the ordering, the physically
close nodal points are assigned to close positions in the sequence of the array, and
eventually, the nodal point numbers constituting one element are also close.Adjusting
the size of one box with this tuning allows the data to be stored in the L1 cache for
many of the list accesses of the vector, thus greatly reducing the penalty for list
accesses. This method is applicable to the computational kernels for both the overall
rigidity matrix and the element-by-element method.

Tuning of the element pressure kernel
The element pressure kernel holds the nodal point numbers belonging to the element
as a list. In the element pressure kernel, the loop index is the element number. In
the loop, the calculation result for each node in each element is added to the array
of the nodal points. The neighboring elements may refer to the same nodal point
number to add values; in that case, there is a recurrence and it becomes impossible
to parallelize by threads. Therefore, a coloring process is performed to divide the
elements in which the data dependency occurs between different groups (colors). An
overview of this coloring is shown in Fig. 3.27. Because there is no recurrence within
each color, the thread parallelization is performed within each color. The colors are
arranged to be continuous in memory space, and the efficiency of memory access is
improved. We next implemented the ordering method of the vector data described
above. Through the above processing, the elements and nodal points referenced in
the innermost loop are localized in terms of space and memory, and the localization
of the memory access is realized.

The performance measurement at this stage revealed that the number of elements
included in the small area inner color decreased because of the combination of the
domain decomposition and coloring. This made the iteration count of the inner-
most loop insufficient, the efficiency of the computation scheduling decreased, and
performance deterioration was observed. Therefore, while taking advantage of the
localization of the memory access by using the domain decomposition and the nodal
point renumbering, and multithread execution by means of coloring, we changed the

Fig. 3.27 Ordering element by coloring
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Fig. 3.28 Ordering block by coloring

object to be colored to avoid the small iteration count of the innermost loop. In other
words, as shown in Fig. 3.28, we changed the coloring target from the element to
the block, which is a set of elements [15]. In the previous version, there was no data
dependency for the operation of the innermost loop and SIMD vectorization (a.k.a
simdization) and software pipelining were applied by the compiler. In this improved
version, coloring was for small area units, and data dependencies occur in the calcu-
lation of the innermost loop, so the SIMD vectorization and the software pipelining
were not applied.

3.9.4 Results of Performance Improvement of FFB

Performance of the nodal pressure kernel
Table 3.13 shows the measurement results after tuning the nodal pressure kernel. The
numbers in the figure are the ratio of peak performance to 16 GFLOPS, the peak
performance of one core, and the ratio of peak performance to 128 GFLOPS for

Table 3.13 Performance of sparse matrix–vector product kernel

Hexahedron (ratio of peak
performance) (%)

Tetrahedron
(ratio of peak
performance)
(%)

Original code (1 core) 5.9 2.4

Full unroll code (1 core) 10.8 4.2

Full unroll code (8 core) 5.4 3.0

Full unroll + Reordering (1 core) 10.2 10.2

Full unroll + Reordering (8 core) 8.1 7.7
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eight cores. With full unrolling, a performance improvement of about two times for
the tetrahedrons and the hexahedrons is obtained in the one core measurements. The
performance value close to 9%, which is the theoretical performance value when
the vector shown in Sect. 3.9.2 is ideally stored in the L1 cache, is obtained with
eight cores by changing the full unrolling and the nodal ordering. This shows that
the tuning method implemented here is effective.

The performance of the element pressure kernel
Figure 3.29 shows the source code after tuning the performance of the element
pressure kernel. When the coloring and the reordering of the elements were included
and the thread parallelization was performed, the peak performance ratio of 1.6%
was obtained. By changing the object of the coloring to block coloring, the peak
performance ratio of 3.78% was achieved. By applying the array fusion technique,
the performance upgraded to the peak performance ratio of 4.41%. By improving the
balance of the number of elements between the blocks, the peak performance ratio
of 4.58% and memory throughput of 41.2 GB/s were achieved. The list access for
storing data does not reach the theoretical performance value because the penalty for
cache misses is large.

Fig. 3.29 Improved kernel coding of element-by-element method
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3.9.5 Total Performance of FFB

Figure 3.30 shows the results for FFB (version 7) with 40,000 and 80,000 parallel
paths with weak scaling. The final overall peak performance ratio including commu-
nication is 3.16%. TheMPI_ALLREDUCEcommunication time for scalar values for
the inner product calculation originally considered as the only problemwith high par-
allelization is represented by tddcom2 in each graph. The graph shows that tddcom2
is smaller than the total execution time. This is the performance obtained by using
high-speed, one-element MPI_ALLREDUCE communication, which is available in
the hardware assistance of the K computer.

Exercise
1. As shown in Table 3.8, confirm that the required B/F value matches the measured
value by programming Figs. 3.14, 3.15, and 3.16 and checking it. At that time, NX,
NY, and NZ should be set appropriately according to the L1 cache of the computer
environment to be used and the capacity of the last-level cache so that the data for
the difference term of the first dimension is placed in the L1 cache and the data for
the difference term of the second dimension is placed in the last-level cache.

Number of processes

Fig. 3.30 Measurement result of scaling of FFBver7
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Chapter 4
O(N) Methods

Taisuke Ozaki

In this chapter, we will discuss O(N ) methods for first-principles calculations based
on density functional theory (DFT) which provides a first-principles framework
enabling us to efficiently calculate electronic structures of materials with quantitative
accuracy, where N is the number of atoms. In general, the computational complexity
of the DFT calculations scales as the third power of the number of atoms, which may
hamper its applications to large-scale systems. The O(N ) methods discussed here
extend the applicability of DFT to large-scale systems by reducing the computational
complexity from O(N 3) to O(N ).

4.1 Density Functional Theory (DFT)

Let us review history and theoretical framework of DFT as background of O(N )

methods before discussing theories and the practical aspects of the O(N ) methods.
In chemistry and condensed matter physics computational methods of electronic
structures of materials have been developed individually after the fundamental equa-
tions in quantum mechanics were founded by Schrödinger and Dirac. DFT is the
first-principles method originated from the field of condensed matter physics, and
the early prototypes were rather intuitively devised to treat condensed matters con-
sisting of atoms whose number is in the order of Avogadro’s number. Nowadays,
the basic but crude idea can been seen in the Wigner-Seitz method [1], which is
the one of earliest prototypes, and it is now regarded as semi-empirical method.
In 1951, Slater proposed Xα method which employs a local exchange potential
obtained from an average of non-local exchange potential [2]. The basic equation in
the Xα method is nearly equivalent to an equation of Kohn and Sham which is the
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basis equation in the present DFT. Though the Xα method has been found to be a
considerably accurate method in describing electronic structures of condensed mat-
ters and the success has been somewhat a surprise, the approach has not been regarded
as a first-principles method because of insufficiency of the theoretical foundation.
Being motivated by the success of the semi-empirical method by Slater, in 1964
Hohenberg and Kohn provided a mathematical proof which founds a theoretical jus-
tification [3]. They proved that the total energy of a ground state is expressible as a
functional of electron density given by

E[n] =
∫

n(r)vex(r)dr + F[n], (4.1)

where n(r) is the electron density of the many electron system, and vex(r) is an
external potential such as atomic nucleus potential. F[n] is a density functional
related to the kinetic energy and electron–electron interaction. The mathematical
proof, provided by Hohenberg and Kohn, and Levy later, guarantees that a universal
functional F[n] exists, which can be applied to any many electron system. However,
a study to find a concrete form of the functional has been left to later investigation.
The second theorem proven by Hohenberg and Kohn is a variational principle with
respect to electron density defined by

E = min
n

E[n]. (4.2)

With the theorem the total energy for the ground state of an arbitrary system charac-
terized by an external potential vex is obtained by minimizing the density functional
of Eq. (4.1) with respect to electron density, and the electron density giving the min-
imum energy is found to be equivalent to the true electron density of the many
electron system. Following the proof of the existence theorem of DFT, in 1965 Kohn
and Sham proposed a practical method to perform calculations based on DFT [4].
The central equation in the method is nowadays known as Kohn-Sham (KS) equa-
tion. In the O(N ) methods the KS equation plays also a central role, and therefore
let us explain the approach of Kohn and Sham. They have proposed that the total
energy of a many electron system can be expressed by the following formula:

E[n] = Ts + Een[n] + Eee[n] + Exc[n], (4.3)

where Ts, Een, Eee, and Exc are the kinetic energy of a fictitious noninteracting system
{ψ}, classical Coulomb interaction energy between electrons and nuclei potential,
classical Coulomb interaction energy between electrons, and exchange-correlation
energy which is a quantum mechanical Coulomb interaction energy between elec-
trons, respectively. Except for Exc, they are explicitly given by
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Ts =
occ∑
μ

∫
ψ∗

μ(r)(−
1

2
�)ψμ(r)dr, (4.4)

Een[n] =
∫

n(r)vex(r)dr, (4.5)

Eee[n] = 1

2

∫ ∫
n(r1)n(r2)
|r1 − r2| dr1dr2, (4.6)

where the summation in Eq. (4.4) is taken over occupied states. By considering
a correspondence of Eqs. (4.3) and (4.1), it turns out to be F[n] = Ts + Eee[n] +
Exc[n]. If we simply follow the idea of DFT, the kinetic energy should also be
expressed by a density functional. In fact density functionals of the kinetic energy
have been proposed, typified by the Thomas-Fermi model which is derived from
analysis of electron gas. However, the inaccuracy of such kinetic energy functionals,
poor description of shell structure in atoms and large underestimation of binding
energies of atoms, had already been pointed out before the proposal of Kohn and
Sham in 1965.On the other hand, it had been known that theXαmethodof Slater has a
considerable quantitative accuracy over the density functionals of the kinetic energy,
while the theoretical foundation may not be sufficient. Therefore, Kohn and Sham
have expressed the many electron wave function with a single Slater determinant by
introducing the fictitious noninteracting system that the physical substance may not
be clear. They expected that the majority part of the true kinetic energy is covered
by the kinetic energy Ts of the noninteracting system calculated from the Slater
determinant. It is also noted that all the quantum mechanical effects arose from the
many electron interaction are included in Exc, since Een and Eee are both the classical
Coulomb interaction energies and Ts is the kinetic energy of noninteracting system.

In the method of Kohn and Sham, the electron density n is also calculated using
the Slater determinant of the noninteracting system {ψ} as

n(r) =
occ∑
μ

ψ∗
μ(r)ψμ(r), (4.7)

where the summation is taken over occupied states as in Eq. (4.4). Noting from
Eq. (4.7) that n is written by {ψ}, and considering δE/δψ∗ = 0 under the orthonor-
malization constraint for {ψ}, we obtain the following equations:

ĥKS|ψμ〉 = εμ|ψμ〉, (4.8)

ĥKS = −1

2
� + veff(r), (4.9)

veff(r) = vex(r) + vH + vxc(r), (4.10)

where the Hartree potential is defined by vH(r) ≡ ∫ n(r′)
|r−r′ |dr

′, and the exchange-
correlation potential vxc(r) ≡ δExc/δn(r). The KS equation is defined by Eqs. (4.8)–
(4.10), and it is found that the many electron problem can be cast to a single particle
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problem under an effective potential veff . Since veff consists of electron density which
is originally obtained by solving Eq. (4.8), we need to solve the equations until a self-
consistent condition (SCF) is achieved, i.e., an output electron density nout is equal
to the input electron density nin. As we discussed already, the electron density n is
the variational parameter in the variational principle, Eq. (4.2), of Hohenberg and
Kohn. On the other hand, {ψ} is the variational parameter in the derivation of the KS
equation. Thus, it is not apparent that Eq. (4.2) is hold in the KS framework. So, let
us now consider δE/δn. By expressing the kinetic energy of noninteracting system
with Eq. (4.8) as Ts = ∑

μ εμ − ∫
n(r)veff(r)dr, and considering the variation of

each term in Eq. (4.3) for a small variation δn, we can obtain the following equation:

δE[n] =
∫

δn(r)
(

vex(r) +
∫

n(r′)
|r − r′|dr

′ + δExc

δn(r)
− veff(r)

)
dr. (4.11)

If the SCF condition is reached in the iterative calculation of the KS equation, the
sum of terms in the parenthesis becomes zero.1 Thus, we see δE/δn = 0 leading
to the fact that the variational principle is satisfied even for the electron density n.
Although it is not guaranteed that an obtained electron density n gives the lowest
energy of the functional even if δE/δn = 0 is hold, it might be generally considered
that the obtained n corresponds to the true density for the ground state except for a
case that there are many low-lying states. In the method of Kohn and Sham, a many
body problem is transformed to a one-body problem with an effective potential
by introducing the fictitious noninteracting system, and the total energy of ground
state and the true electron density satisfying the variational principle δE/δn = 0 are
obtained in a rigorous sense by solving the KS equation self-consistently. It would
be understood that the method of Kohn-Sham provides an ingenious and practical
theoretical framework.

So far we have proceeded our discussionwithout touching the details of functional
form of the exchange-correlation energy Exc. It is apparent that the discussion above
is all valid for the case of the exact functional Exc. However, it should be noted that
the discussion above is valid even for the case of an approximate functionalExc, since
we have never asked whether Exc is exact or approximate in these derivations. The
fact makes DFT so useful in practical calculations.Widely used approximations are a
local density approximation (LDA) and generalized gradient approximation (GGA).
In LDA, the exchange-correlation functional is approximated by taking account of
the local electron density via an exchange-correlation energy density of electron
gas [5, 6], while in GGA the local electron density and its gradient are taken into
account to calculate the approximate exchange-correlation energy [7]. Here we show
a functional form of GGA:

Exc[n↑, n↓] =
∑

σ

∫
nσ(r)fxc(n↑, n↓,∇n↑,∇n↓)dr. (4.12)

1Note that the second and third terms in the parenthesis are calculated using the output charge
density nout, while the fourth term is calculated using the input charge density nin.
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The exchange-correlation potential vxc(r) in LDA or GGA can be constructed
by only the semi-local information, electron density and its gradient at each spatial
point, and thereby the computational cost to construct is also marginal. In recent
years many ideas developed in quantum chemistry have been employed for develop-
ment of approximate exchange-correlation functionals [8], while it was pointed out
in the beginning of the section that DFT has been developed initially in the field of
condensed matter physics. Along with the improvement of accuracy of the approx-
imate exchange-correlation functionals, the applicability of DFT has been widely
extended beyond chemistry and condensed matter physics more than expected.

4.2 Nearsightedness of Electron

In the method of Kohn and Sham discussed in the previous section, the KS orbitals
{ψ} are used to calculate the kinetic energy Ts of noninteracting system. Thus, let
us explicitly write the total energy as E[ψ, n]. Though the expression E[ψ, n] of
total energy is the starting point of conventional DFT calculations, there are other
expressions of the total energy which clearly exhibits the nearsightedness of electron
being important for development of O(N ) methods.

The KS orbitals {ψ} for occupied states can be transformed by a unitary transfor-
mation into Wannier functions {w} which are localized in real space:

|wν〉 = V

(2π)3

∫
BZ

dk
occ∑
μ

Uμν |ψkμ〉 exp(−ik · R), (4.13)

where V is the volume of the primitive cell, k is the k-vector, and the integration
is performed over the first Brillouin zone. Also, R is the lattice vector. Due to the
property of unitary transformation, it is noted that the subspace spanned by the
Wannier functions {w} is equivalent to that by the KS orbitals {ψ}. The feature
allows us to write the total energy using {w} instead of {ψ}, i.e., E[ψ, n] → E[w, n].

Next let us consider to expand the KS orbitals using local basis functions {χ} such
as atomic basis functions or finite element basis functions as

ψkμ(r) = 1√
Nc

∑
R

eiR·k ∑
iα

ckμ,iαχiα(r − τi − R), (4.14)

where Nc is the number of unit cells, and note that χiα(r − τi − R) is localized in
real space at the center of (τi + R). Inserting Eq. (4.14) into Eq. (4.7) and considering
the integration over the first Brillouin zone as well as the summation over occupied
states, we obtain the following formulae:

n(r) =
∑
R

∑
iα,jβ

ρ(R)

iαjβχiα(r − τi)χjβ(r − τj − R), (4.15)
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ρ(R)

iαjβ = 1

VB

∫
BZ

dk
occ∑
μ

eiR·kc∗
kμ,iαckμ,jβ . (4.16)

It is found from the expression that the total energy of a system can be rewritten using
ρ instead of n, since the electron density n is a function of first-order reduced density
matrix ρ. In addition to this, the kinetic energy Ts of noninteracting system can be
expressed by ρ and a matrix representation Hkin of the kinetic operator as tr(ρHkin).
Therefore, we see E[ψ, n] → E[ρ]. Though the discussion above is nothing but
mathematically a transformation of variables, the change of variable describing the
total energy has a significant impact physically. Recall that the Wannier functions w

and the first-order reduced density matrix ρ are localized in real space [9, 10], while
the KS orbitals ψ are delocalized. The localized properties of w and ρ are called
nearsightedness of electron. One may be able to largely reduce the computational
cost by explicitly taking account of the locality and introducing the cutoff scheme that
only the matrix elements within a given cutoff radius are included in the calculation.
This is a basic idea behind many O(N ) methods developed so far.

According to a chemical intuition that many chemists have commonly, the elec-
tronic structure, such as charge state, of a certain atom in a system is mainly deter-
mined by atomic arrangement and a kind of elements in the vicinity of the atom.
Remembering that chemical properties of a functional group in molecules are pre-
determined group by group, such a chemical intuition might be justified. Although
it is not apparent up to here how the localized properties of w and ρ can be related to
such a chemical intuition, a mathematical justification of the chemical intuition will
be provided and the physical meaning of nearsightedness will become more clear
when ρ is expressed using a Green function in the later discussion.

4.3 Localized Orbital Method

Compared to post Hartree-Fock methods based on many body wave functions, the
mathematical structure of theKS equation is rather simple, and the one body equation
only has to be solved iteratively. The feature of the KS equation enables us to address
complicated systems such as surfaces, interfaces consisting of difference materials,
and liquid. Nevertheless, it is not still an easy task to treat large-scale systems includ-
ing more than a few thousand atoms. In general the computational complexity scales
as the third power of the number of atoms, requiring 1000 times computational cost
for a 10 times large system. In this section, we introduce numerical localized basis
function which will play a crucial role for realization of O(N ) methods.

Let us first estimate the computational complexity to solve the KS equation. In
Eqs. (4.8)–(4.10) we have two differential equations. One is the KS equation given by
Eq. (4.8), and the other is the Poisson equation to calculate the Hartree potential. The
computational complexity in solving the Poisson equation using fast Fourier trans-
form (FFT) is O (N log(N )), and the computational cost is relatively small. Thus,
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we do not discuss it anymore. An expansion method using basis functions is gener-
ally employed for solution of the KS equation. It might be possible to choose either
delocalized plane wave basis functions or localized basis functions. Considering the
compatibility to O(N ) methods and large-scale parallelization on massive parallel
computers, the localized basis functions will be advantageous, since the calculation
can be performed locally in real space. In addition, the existence ofWannier functions
infers that accurate localized basis functions can be constructed. With these consid-
erations, we expand the KS orbitals ψ using atomic basis functions or finite element
basis functions as in Eq. (4.14). Inserting Eq. (4.14) into Eq. (4.8), and rewriting it in
a form of matrix equation, we have the following generalized eigenvalue problem:

Hcμ = εμScμ, (4.17)

where k is dropped for simplicity of notation. cμ is a vector consisting of linear
combination coefficients. The matrix elements for H and S are given by

Hiαjβ = 〈χiα|ĥKS|χjβ〉, (4.18)

Siαjβ = 〈χiα|χjβ〉. (4.19)

If the tail of localized orbitals becomes completely zero beyond a cutoff radius,
the overlap integral Siαjβ is nonzero within a finite range, and thereby the number of
nonzero elements in the overlapmatrix is exactly proportional to the number of atoms,
leading to a sparse matrix withO(N ) nonzero elements. As well, the KS matrixH in
the case of semi-local functionals such as LDA and GGA has also the same sparse
structure as in the overlapmatrix S. In the case of hybrid functionals beyond the semi-
local treatment, the sparse structure of theKSmatrixH differs from that of the overlap
matrix, and the number of nonzero elements largely increases.2 Since we restrict
our discussion within the semi-local functionals, the computational complexity in
evaluating the matrices H and S is O(N ). The computational complexity to solve
the generalized eigenvalue problem of Eq. (4.17) is O(N 3), since the number of
basis functions is proportional to that of atoms, and matrix multiplications constitute
the basic operation in the computation. Considering that the electron density n is
calculated by Eq. (4.15), and that terms in the summation only have to be included if
the product of two basis functions χiαχjβ is nonzero, the computational complexity
is found to be O(N ). In short, the computational complexity in solving the KS
equation is governed by the eigenvalue problem, and thereby it is O(N 3) as a whole.
Figure4.1 summarizes the computational flow of SCF calculation and computational
complexity of each step.

2Even if the overlap between the associated localized orbitals is zero, the two-electron exchange
integral is not zero. Thus, strictly speaking all the elements are nonzero for hybrid functionals.
Even in the case of hybrid functionals with a screened Coulomb interaction, the number of nonzero
elements largely increases compared to semi-local functionals, while the resultant matrix will be
sparse due to the limited interaction.
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Fig. 4.1 Computational flow of SCF calculation and computational complexity of each step

The choice of basis functions is a crucial step in reducing the computational
cost, since reducing the matrix size in the eigenvalue problem will directly lead to
reduction of the computational cost.What kind of localized basis functions should be
employed while reducing the matrix size and keeping accuracy of the calculation?
In addition to Gaussian functions widely used in the field of quantum chemistry,
there are a wide variety of choices for localized functions. Among these choices,
numerical pseudo-atomic orbital (PAO) functions [11] are atomic like functions for
pseudopotentials, which has a large degree of freedom due to its numerical form.
Though finite element methods and finite difference methods are also regarded as
localized basis method, the matrix size will be relatively large compared to that in the
PAO functions, while the computational accuracy can be systematically controlled.
Here let us introduce the PAO functions [11] which reduces the number of basis
functions by making full use of the degree of freedom in the numerical form, while
keeping the accuracy. The PAO function χ is defined by

χα(r) = Ym
l (r̂)Rlp(r), (4.20)

where Y and R are a solid spherical harmonic function and radial function, respec-
tively, and α is a composite index which denotes a set of three indices (plm). The
radial function R is generated by the following two steps: (1) primitive radial func-
tions R(p) are calculated from an atomic problem under a confinement potential. (2)
the radial function R is expressed by a linear combination of primitive functions R(p),
and the contraction coefficients are optimized so that the total energy can be mini-
mized. In the first step, an atomic DFT calculation is performed with a confinement
potential, for wave functions to localize within a radius rc, defined by

Vcore(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− Z
r r ≤ r1,

3∑
n=0

bnr
n r1 < r ≤ rc,

h rc < r,

(4.21)



4 O(N ) Methods 97

where b0, b1, b2, and b3 are determined so that the potential are continuous up to its
first derivative at both r1 and rc. After getting the SCF solution of the atomic problem,
a pseudopotential is generated with the confinement potential for each L-channel.
Then, radial functions of the ground and excited states for the pseudopotential with
the confinement potential are numerically calculated, which are the primitive radial
functions R(p). If a large h is used for the calculation, the radial functions are fully
localized within the confinement radius rc in double precision even for the excited
states. In Fig. 4.2a, a pseudopotential with the confinement potential and correspond-
ing radial functions are shown for the case of l = 0 of a carbon atom. The radial
function having no node corresponds to the ground state, and the others are related
to the first, second, and higher excited states as the number of nodes increases. The
primitive functions may not be optimal for molecular and solid state systems, since
the functions are obtained from the atomic calculation. Thus, we expand the radial
functions R using the primitive ones R(p), and optimize variationally contraction
coefficients a so that R can be optimized for molecular and solid state systems.

R(r) =
∑
q

aqR
(p)
q (r). (4.22)

The gradients ∂E/∂a of the total energy with respect to a can be analytically evalu-
ated, and thereby the contraction coefficients a are optimized by the same procedure
as for geometry optimization [11]. In Fig. 4.2b, we show the total energy of car-
bon in the diamond structure as a function of the number of basis functions. It is
found that the total energy converges at a smaller number of optimized functions.

(a) (b)

(c)

Fig. 4.2 a A pseudopotential with a confinement potential and corresponding radial functions for
the case of l = 0 of a carbon atom. b Total energy in the carbon diamond as a function of basis
functions. c Radial functions of p-orbitals which corresponds to the calculations of (b). Reprinted
figure with permission from [11]. Copyright (2017) by the American Physical Society
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Figure 4.2c shows primitive and optimized radial functions of p-orbitals. The opti-
mization method allows us to pre-optimize basis functions by properly choosing a
set of reference systems, while it is also possible to optimize the contraction coeffi-
cients a for every material. After pre-optimizing basis functions, a single optimized
basis set is constructed via Gram-Schmidt orthogonalization for every element. The
advantage in the numerical form of basis functions can be seen in Eq. (4.22). Once
the contraction coefficients a are optimized, the summation of Eq. (4.22) can be per-
formed numerically, leading to a single numerical table. Therefore, the evaluation
of matrix elements, which are calculated by the Fourier transform and a numerical
quadrature method using the Fourier mesh [12], becomes much easier than the case
of analytic functions which require all the evaluations of matrix elements associated
with primitive functions. As the reference systems for the pre-optimization, a single
atom, a dimer, and a bulk structure such as face centered cubic can be selected, which
are expected to reflect a variety of chemical environments. In general the optimized
orbital R tends to localize in real space as the coordination number increases, i.e.,
it delocalizes for a single atom, and localizes for bulks. The property of optimized
functions can be understood by the quantum mechanical virial theorem. According
to the virial theorem, we have a relation 〈T 〉 = −1/2〈V 〉 at an equilibrium structure,
which tells us that the kinetic energy 〈T 〉 becomes positively large as the potential
energy 〈V 〉 becomes negatively large. As the coordination number increases, the
superposition of the nuclei potential leads to a deeper external potential, and as a
result the kinetic energy 〈T 〉 increases. As can be seen in Fig. 4.2c, the increase of
kinetic energy is nothing but the localization of wave function. The optimization of
radial functions reflects partly the consequence of the virial theorem. Another factor
in determining the optimized shape of radial function is the charge state of atom in
molecules and bulks. The optimization leads to localized and delocalized functions
for a positively and negatively charged atom, respectively. The optimized basis set
generated by the procedure experiences three different chemical environments at
least, and it is confirmed from a series of benchmark calculations that they provide
nearly convergent results for a wide variety of systems.

Here let us introduce a study concerning accuracy of the localized orbital method.
In recent years many DFT codes have been developed and released for public use.
Because of the difference of details in the implementation, computation results may
vary depending on DFT codes even if the same exchange-correlation functional is
employed. A method, which is called � gauge method, has been developed [13] to
validate the accuracy of the implementation, and compare the accuracy among DFT
codes, where the � gauge is defined by

�(A,B) =
√∫ 1.06V0

0.94V0
(EB(V ) − EA(V ))2 dV

0.12V0
. (4.23)

The total energy of an elemental bulk is calculated using two different DFT codes A
and B by varying the volume within ±6% with respect to an equilibrium volume V0,
and the difference between the two codes in the volume-energy curve (EA and EB) is
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evaluated by the integration after setting the lowest energy in each case to the energy
origin. The � gauge of GGA by Perdew et al. [7] is found to be 23.5 meV/atom on
average for 58 elemental bulks by comparison between highly accurate all electron
calculations and experimental data. Therefore, it is desirable that the numerical error
arising from basis functions, pseudopotentials, and numerical integration is less than
10% of that arising from an exchange-correlation functional. The � gauge of the
localized orbital method discussed in the section is 2.0 meV/atom on average for 71
elemental bulks compared to reference data calculated by a full potential linearized
augmented plane wave method, which is considered to be enough accuracy for most
of the purposes.

4.4 O(N) Methods

4.4.1 Representation of Total Energy and Approximations

In Sect. 4.3 we argued that the computational complexity of the DFT calculations is
governed by the eigenvalue problem, and scales as O(N 3) for the number of atoms
N . In this section, we discuss how the computational complexity can be reduced
from O(N 3) to O(N ) by introducing approximations based on the nearsightedness
of electron. Remember that the Wannier functions w and the first-order reduced
density matrix ρ are localized in real space as discussed in the Sect. 4.2. Therefore,
let us consider to perform a calculation of the total energy using either E[w, n] or
E[ρ] instead ofE[ψ, n]. AnO(N )method based onE[w, n] has been known as orbital
minimization method [14, 15] in which the total energy E is minimized with respect
to the Wannier functions w under a constraint that the localization range of non-
orthogonal generalized Wannier functions is imposed. By ignoring the contribution
beyond the localization range, the computational complexity becomesO(N ). Several
O(N )methods have been proposed based onE[ρ], and among them the densitymatrix
method has been a widely used approach [16, 17]. In the method, the total energy
is minimized with respect to ρ under a constraint that the first-order reduced density
matrix ρ has idempotency. Once a termination of ρ in real space is introduced, and the
contribution beyond the termination range is ignored, the computational complexity
becomes O(N ). The generalization to non-orthogonal basis functions such as finite
element methods and the localized orbital method discussed in the Sect. 4.3 needs
be considered in order to take account of the overlap matrix S. Such generalizations
have been already proposed for both the orbital minimization and density matrix
methods, and implemented in DFT codes such as FEMTECK [18], CONQUEST
[19], and ONETEP [20] with a wide variety of applications. An O(N ) method using
Green functions is also based on E[ρ] [21]. It has been known that the O(N ) method
can be applied to not only gapped systems, but also metals. In the section, we discuss
the O(N ) method based on the Green function.



100 T. Ozaki

4.4.2 Recursion Method for Orthogonal Basis Set

We start to consider a simple tight binding model in which each atom has only a
single s-orbital, and the overlap matrix is set to S = I . Thus, the eigenvalue problem
of Eq. (4.17) is simplified as

Hcμ = εμcμ. (4.24)

The Green function for Eq. (4.24) is defined by

G(Z) ≡ (ZI − H )−1,

=
∑

μ

|ψμ〉〈ψμ|
Z − εμ

, (4.25)

where Z is a complex variable. Taking Z = E + i0+, whereE is a real number and 0+
is a positive infinitesimal, for 1/(Z − εμ) in Eq. (4.25), and considering the imaginary
part, we obtain a Lorentzian function centered at εμ. Therefore, the reduced density
matrix ρ can be calculated using the Green function as

ρ = − 2

π

∫ EF

−∞
ImG(E + i0+)dE, (4.26)

where EF is the Fermi energy, and the factor of 2 is due to spin multiplicity. The
recursionmethod developed byHaydock et al. is an earliestO(N )method to calculate
the Green function [22], and it is possible to directly calculate ρ using Eq. (4.26)
without diagonalizing the matrix.

In the recursion method the matrix H is tri-diagonalized by a Lanczos method,
and the Green function is evaluated using a continued fraction formula. The Lanczos
algorithm is derived as follows. First, let us assume that an arbitrary Hermitian
matrixH can be converted by a unitary transformation into a tri-diagonalized matrix
HTD = U †HU . Then, by inversely solving UHTD = HU , the following Lanczos
algorithm is derived:

αn = 〈un|H |un〉, (4.27)

|rn〉 = H |un〉 − |un−1〉βn − |un〉αn, (4.28)

βn+1 = 〈rn|rn〉1/2, (4.29)

|un+1〉 = |rn〉/βn+1. (4.30)

Starting froman initial vector |u0〉 at n = 0, and proceeding the calculation repeatedly
toward the increase ofn, theHermitianmatrixH is transformed to the tri-diagonalized
matrix HTD:
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HTD =

⎛
⎜⎜⎜⎜⎜⎜⎝

α0 β1 0β1 α1 β2

. . . . . .

. . . . . .

βN−1 αN−1 βN0 βN αN

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.31)

If we start the Lanczos algorithm with a certain atomic site i as 〈u0| = (1, 0, 0, . . .),
it is found that Gii = G(TD)

00 . Therefore, G(TD)
00 can be calculated using the tri-

diagonalized matrix HTD. Defining a determinant to be Dn for a matrix which is
obtained by excluding the 1 ∼ n-th rows and the 1 ∼ n-th columns from a matrix
(ZI − HTD), we have a relation G(TD)

00 = D1/D0 from the Cramer formula. Further,
using a recurrence formula derived from the Laplace expansion for a determinant:

Dn = (Z − αn)Dn+1 − β2
n+1Dn+2 (4.32)

we finally obtain the following continued fraction formula:

G(TD)
00 (Z) = 1

Z − α0 − β2
1

Z − α1 − β2
2

Z − α2 − β2
3

. . .

. (4.33)

The continued fraction formula enables us to directly calculate G(TD)
00 (= Gii). Once

we obtainGii, the integration of Eq. (4.26) can be performed by a contour integration
technique without diagonalizing the matrixH . Amethod to evaluate the off-diagonal
terms of Green functions has been known as bond-order potential methods in which
the initial vector |u0〉 is specially chosen [23] or a recurrence formula is employed
[24] to calculate the off-diagonal terms.

The computational complexity of the recursion method is mainly governed by the
matrix-vector multiplication in Eq. (4.28). The matrix H represented by localized
basis functions has a sparse structure, and the number of nonzero elements is O(N ).
Thus, the computational complexity of the multiplication H |un〉 is O(N ). If we take
the number of Lanczos steps being proportional to the number of atoms N , we have
the computation cost in O(N 2) for each atomic site i, leading to the computational
cost in O(N 3) in total. We now consider to reduce the computational complexity by
introducing approximations. When the matrix H is truncated around an atomic site i
in the multiplication H |un〉, the computational cost of the Lanczos algorithm for the
atomic site i is found to beO(1), leading to no dependency on the number of atomsN .
By summingup the contributions of all the atomic sites, the computational complexity
becomesO(N ) in total. The procedure, that a truncated matrix is introduced for each
atomic site and the total Green function is constructed by a patchwork of the fragment
of Green function, is a kind of divide-conquer method [25].
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Let us illustrate the recursion method with a simple analytic model where the
hopping integral is nonzero only for the nearest interaction. The Hamiltonian is
given by

Hij =
⎧⎨
⎩

ε i = j,
t i and j are the nearest,
0 else.

(4.34)

Starting from an arbitrary atomic site 〈u0| = (. . . , 0, 0, 0, 1, 0, 0, 0, . . .), we have
the following results:

α0 = ε, (4.35)

〈r0| = (. . . , 0, 0, t, 0, t, 0, 0, . . .), (4.36)

β1 = √
2t, (4.37)

〈u1| = 1√
2
(. . . , 0, 0, 1, 0, 1, 0, 0, . . .), (4.38)

α1 = ε, (4.39)

〈r1| = (. . . , 0, t, 0, 0, 0, t, 0, . . .), (4.40)

β2 = t, (4.41)

〈u2| = 1√
2
(. . . , 0, 1, 0, 0, 0, 1, 0, . . .). (4.42)

We see that the calculation after Eq. (4.42) is a duplication, and that the nonzero
elements in the vector u hop to outer sites from the starting site step by step as shown
in Fig. 4.3. Noting that βn(2 ≤ n) = t, and the same nested structure can be seen in
the continued fraction for 2 ≤ n, we obtain from Eq. (4.33) the following formula:

G(TD)
00 (Z) = 1√

(Z − ε)2 − 4t2
. (4.43)

We see the Van Hove singularity at E = ε ± 2t which is a characteristic feature of a
one-dimensional system.

The analysis for the chain model draws an important picture that Lanczos vectors
{u} develops toward the outer region starting from the central site. Recalling that the

Fig. 4.3 Development of Lanczos vectors on an infinite chain
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Lanczos process is terminated at a finite level even for an infinite system, we see
that the information are included from the neighborhood to the distance regions step
by step. The fact implies a relation to the nearsightedness of electron discussed in
Sect. 4.2. So, we shall see the relation in more details. Noting that the central step
in the Lanczos algorithm is the matrix-vector multiplication H |un〉 in Eq. (4.28), it
turns out that a set of the Lanczos vectors {u} spans the following Krylov subspace:

UK = {|u0〉,H |u0〉,H 2|u0〉,H 3|u0〉, . . . ,Hq|u0〉}. (4.44)

It is noted that calculating the Green function in the subspace UK is equivalent to
diagonalizing the matrix in the same subspace. Representing the Hamiltonian with
vectors spanning the subspace UK, we have the following equation:

H (K)
mn = 〈um|H |un〉,

= 〈u0|Hm+n+1|u0〉,
= 〈u0|μ(m+n+1)|u0〉, (4.45)

where μ(p) is called the p-th moment, and defined by

μ(p) = Hp = cεpc†, (4.46)

where c is a matrix whose columns consist of eigenvectors cμ for the eigenvalue
problem of Eq. (4.24), and ε is a diagonal matrix whose diagonal elements consist
of the eigenvalues εμ. Thus, the effective Hamiltonian H (K) includes the first to
(2q + 1)-thmoments when the Lanczos algorithm is iterated up to the q-th step. If we
diagonalize H (K) and construct an approximate Green function, it is concluded that
the Green function also consists of the first to (2q + 1)-th moments. We shall obtain
the same conclusion by rewriting Eq. (4.25). Expanding as 1

(Z−E)
= ∑∞

p
Ep

Zp+1 under
a condition of |E/Z| < 1, and inserting it into Eq. (4.25), we obtain the following
moment representation of Green function:

G(Z) =
∞∑
p=0

μ(p)

Zp+1
. (4.47)

Comparing Eq. (4.45) to Eq. (4.47), we see a one-to-one correspondence between the
step in the Lanczos algorithm and the accuracy of Green function. By considering
that the second and third order moments H 2 and H 3 correspond to two- and three-
step hoppings, respectively, we see that the local Green function is constructed from
the neighborhood to the distance regions step by step. Thus, we now understand
that the nearsightedness of electron discussed in Sect. 4.2 is described by the Green
function. It is also worth noting that the idea of nearsightedness can be utilized in
developing model potentials [26]. Embedded atom method (EAM) potentials and
Tersoff potential can derived from the second order moment.
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4.4.3 Generalization to First-Principles Calculations

We next generalize the recursion method for first-principles calculations. The gen-
eralization requires us to take account of the overlap matrix S and multiple basis
functions allocated to each atom. The Green function to be evaluated is modi-
fied as G(Z) = (ZS − H )−1. A way to evaluate the Green function is to modify
G(Z)(ZS − H ) = I as follows:

G(Z)S(Z − S−1H ) = G(L)(Z)(ZI − H ′) = I , (4.48)

where G(L)(Z) = G(Z)S andH ′ = S−1H . The resultant formula looks similar to the
orthogonal case. However, H ′ is not a Hermitian matrix H anymore, and thereby H ′
is transformed to a tri-diagonal matrix using a two-sided Lanczos algorithm [27].
Although themethod is theoretically interesting, we do not discuss the details further,
since the two-sided Lanczos algorithm tends to be seriously influenced by numerical
round-off error. Therefore, let us consider an alternative method without using the
tri-diagonalization of H or H ′ [21]. Remembering that the essential ingredient in
the formalism for the orthogonal case is to generate a proper set of vectors spanning
a Krylov subspace, we generate a set of vectors even for the non-orthogonal case.
Note that the form of the p-the moment is modified by taking account of the overlap
matrix S as

μ(p) = cεpc†,

= cc†Hcc†Hc · · · c†Hcc†,
= (S−1H )pS−1, (4.49)

where the third line is obtained by using cc† = S−1. On the other hand, the form of
the moment representation for the Green function is the same as Eq. (4.47) for the
orthogonal case. Therefore, for the non-orthogonal case a set of vectors spanning
the Krylov subspace can be generated by multiplying S−1H . A practical algorithm
is summarized as follows:

set |W0), (4.50)

|Rn+1) = S−1H |Wn), (4.51)

|W ′
n+1) = |Rn+1) −

n∑
m=0

|Wm)(Wm|S|Rn+1), (4.52)

(Bn+1)
2 = (W ′

n+1|S|W ′
n+1), (4.53)

(λn+1)
2 = T †

n+1(Bn+1)
2Tn+1, (4.54)

(Bn+1)
−1 = Tn+1(λn+1)

−1, (4.55)

|Wn+1) = |W ′
n+1)(Bn+1)

−1. (4.56)
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It should benoted that a block algorithm is introduced to take account ofmultiple basis
functions allocated to each atom. In the block algorithm, the initial state |W0) consists
of a set of vectors, e.g., all basis functions on an atom iwe focus are chosen as |W0) =
(|i1〉, |i2〉, ..., |iMi〉). Also, the underline of B means that the element is a matrix. A
central operation in the algorithm is a multiplication of matrices by Eq. (4.51) to
expand the Krylov subspace. The S-orthogonalization of a set of generated vectors
to the other vectors is performed by Eq. (4.52), while Eqs. (4.53)–(4.56) correspond
to the S-orthonormalization of a set of vectors generated by Eq. (4.52). Once a set of
vectors spanning the Krylov subspace {|W0), |W1), |W2), ..., |Wq)} is generated, the
Green function is constructed for the atom i after the KS Hamiltonian represented
by the vectors is diagonalized as follows:

Giαjβ(Z) =
∑

μ

|ψ(i)
μ 〉〈ψ(i)

μ |
Z − ε(i)

μ

. (4.57)

As well as the orthogonal case, the computational cost for each atom is found to be
O(1) by introducing the truncation for S and H , and the total computational cost
becomes O(N ) by considering the contributions of all the atoms in total. Figure4.4a
shows the computational flow of the O(N ) Krylov subspace method. For each atom,
(i) construction of truncatedH and S, (ii) generation of the Krylov subspace, and (iii)
diagonalization of the effective Hamiltonian are performed. After the calculations
(i)–(iii) for all the atoms are completed, a common chemical potential is determined
to conserve the total number of electrons in the whole system, and the calculation
of density matrix follows by Eq. (4.26). In Fig. 4.4b, the convergence of error in

(a) (b)

Fig. 4.4 a Schematic computational flow of the O(N ) Krylov subspace method. b Absolute error
in the total energy of lithium in the body centered cubic structure calculated by the O(N ) Krylov
subspace method, where the reference energy is calculated by the conventional diagonalization, and
the number 113, 259, and 537 are the number of atoms in the truncated cluster. Reprinted figure
with permission from [21]. Copyright (2017) by the American Physical Society
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the total energy is shown for lithium in the body-centered cubic structure. We see
that the computational accuracy is controlled by the size of truncated cluster and
the dimension of Krylov subspace. It should be noted that the dimension of Krylov
subspace to achieve sufficient convergence for each truncated cluster is much smaller
than the number of basis functions in the truncated cluster. The feature of the O(N )

Krylov subspace method allows us to reduce the computational cost, while keeping
the accuracy.

4.5 A Method of Massive Parallelization

As well as the development of efficient computational methods, it is important to
make full use of parallel computers to realize more realistic simulations including
more than a few thousand atoms. The calculation in the O(N ) Krylov subspace
method discussed in the previous section can be nearly independently performed for
each atom, which makes the method suitable for the parallel calculation intrinsically.
However, it is not obvious how the parallel efficiency can be improved for an arbitrary
system with a complicated 1D, 2D, or 3D structure. In this section, we address a
general method to partition a system to a set of small fragments for improvement
of efficiency in massive parallelization. The method can be applied to not only the
O(N ) Krylov subspace method, but also other simulations.

The purpose of parallel calculations is to reduce the computational elapsed time
as much as possible by dividing the calculations, and assigning them to computer
processes. In order to improve the parallel efficiency, it is crucial for data in each
process to be localized and for communication among processes to be minimized.
The communication itself takes a considerable amount of time, and the delay of
calculations is also induced by the communication. The load balancing of compu-
tational amount is also important. Once the computational elapsed times becomes
non-uniform over all the processes, most of processes wait for a process which is
most loaded, resulting in the reduction of parallel efficiency.

In the parallelization of the O(N ) Krylov subspace method, we need to consider
how a system and integration meshes can be partitioned to a set of small fragments
so that these requirements can be fulfilled as much as possible. Since the partitioning
of integration meshes largely depends on details of implementation, here we focus
on the partitioning of atoms in a system, and discuss a method based on a modified
recursive bisection method and an inertia moment tensor [28]. The method discussed
in the section may be applied to a wide variety of simulations other than the O(N )

method. The method consists of (i) a step that a given number of computational
processes is mapped to a binary tree using a modified recursive bisection method,
(ii) a step that atoms in a domain of atoms we focus are projected onto a principal
axis which is calculated by diagonalizing an inertia moment tensor, (iii) a step that
the atoms are partitioned on the principal axis using the binary tree constructed in
the step (i). As shown in Fig. 4.5, it is possible to partition atoms in the system to
a set of small fragments by performing the steps (ii) and (iii) recursively using the
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Fig. 4.5 Partitioning of a system to a set of small fragments. Reprinted figure with permission from
[28]. Copyright (2017) by the Elsevier

binary tree constructed in the step (i). It is worth noting that the resultant partitioning
fulfills the requirements of the locality of information and the load balancing, and
the computational effort for the partitioning is negligible compared to the other parts.
Let us explain details of each step below.

(i) Partitioning of processes by a binary tree

Suppose that the number of computational processes is 19, then we can construct a
binary tree as shown in Fig. 4.6 using the modified recursive bisection method. Note
that a binary tree structure can be certainly constructed by a recursive procedure
regardless of an even, odd, or prime number. Considering the usability of code, it
would be better for a code to be able to deal with any number of processes. This is
the step (i).
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19
901

5 5 5 4
3 2 3 2 3 2 2 2

2 1
1 1

1 1 2 2
1 1

1 1 1
1 1

1 1 1 11 1 1

Fig. 4.6 Binary tree structure of computational processes by a modified recursive bisection method

(ii) Determination of a principal axis

A principal axis for a domain which includes Na atoms is given by

r = C + at, (4.58)

where r = (x, y, z), a = (ax, ay, az), C = (Cx,Cy,Cz). The center of inertia C is
calculated using atomic coordinates ri in the domain we focus as follows:

C = 1

Na

Na∑
i=1

riwi. (4.59)

Note that the weightw is not the atomicmass, and will be discussed later on. Because
of the fact that atoms distribute three-dimensionally in general, how to partition the
atoms may not be straightforward. Thus, we consider a projection of atoms onto
the principal axis, and transform the three-dimensional distribution of atoms to a
one-dimensional one. An equation for the projection is given by

ti = ax(xi − Cx) + ay(yi − Cy) + az(zi − Cz). (4.60)

How should we determine a in Eq. (4.60)? A proper a can be obtained bymaximizing
the following function F with the Lagrange multiplier method.

F =
∑
i

wit
2
i − λ(|a|2 − 1). (4.61)

Considering ∂F/∂a = 0, we have the following eigenvalue problem:

Ta = λa (4.62)

T =
⎛
⎝

∑
i wi(Y 2

i + Z2
i ) −∑

i wiXiYi −∑
i wiXiZi

−∑
i wiYiXi

∑
i wi(X 2

i + Z2
i ) −∑

i wiYiZi
−∑

i wiZiXi −∑
i wiZiYi

∑
i wi(X 2

i + Y 2
i )

⎞
⎠ , (4.63)

where (Xi,Yi,Zi) = (xi − Cx, yi − Cy, zi − Cz). If we choose the atomic mass for
the weight w, T is nothing but the inertia tensor of the domain. By diagonalizing
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Eq. (4.63), and choosing an eigenstate which maximizes the function F , we have the
sparsest distribution of atoms on the axis.

(iii) Partitioning of atoms

The one-dimensionally distributed atoms on the axis are partitioned using the binary
tree structure constructed by the step (i) so that the following condition:

left side∑
i

wi :
right side∑

i

wi = # in the left side : # in the right side (4.64)

can be fulfilled as much as possible, where # means the number of processes. In the
case of Fig. 4.6, the first partitioning is performed with the ratio of 10 : 9 by referring
the top stage of the binary tree. Summing up weights w starting from both the edges,
and finding a point which is closest to the ratio of 10 : 9, we can partition the domain
into two sub-domains. Furthermore, the same procedure is applied to each of the two
sub-domains. We repeat the procedure recursively until we reach at the lowest stage
of the binary tree. Here we return to the issue how the weight w should be chosen. In
order to improve the load balance, we should choose the computational elapsed time
for each atom. The computational elapsed time of each atom can be monitored in
geometry optimization and molecular dynamics (MD) simulations at everyMD step.
Thus, the load balance might be improved by employing the elapsed time obtained
at the previous MD step as the weight w. Also, note that atoms with small and large
w tend to be located around the center of inertia C and far from C, respectively,
because of the definition of Eq. (4.61). Since the atoms with small w gather around
the point at which the partitioning is performed, the condition by Eq. (4.61) might be
well satisfied. Figure4.7 shows partitioning of diamond structure by 19 processes.
In spite of the use of 19 processes, we see that the system is properly partitioned in
such a way to keep the locality.

Fig. 4.7 Partitioning of diamond structure by 19 processes (Left: a top view, Right: bird-eye view).
Atoms with the same color are allocated to a same process. Reprinted figure with permission from
[28]. Copyright (2017) by the Elsevier
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4.6 Applications of the O(N) Method

O(N ) methods have been applied to a wide variety of materials such as interfaces,
electronic devices, electrodes in lithium-ion batteries, and liquids [10]. Herewe intro-
duce an application related to a structural material using the O(N ) Krylov subspace
method [29].

Figure4.8 shows an optimized interface structure in a semi-coherent precipitation
consisting of body-centered cubic (BCC) iron andNbC. The precipitation of carbides
in steel is one of the important means to control the strength of steel. Experimentally
it is known that the strength of steel depends on the diameter of precipitating carbide.
A possible cause might be attributed to change of the interface structure between the
BCC iron and carbide. The coherent and semi-coherent interface structures are found
experimentally for a small and large diameter of precipitating carbide, respectively,
and the interface structure is considered to be determined by a subtle balance between
the interface energy and a strain energy induced in the BCC iron being the matrix.
If the interface energy and strain energy can be accurately evaluated, it might be
possible to estimate how the critical radius, at which the transition from the coherent
to semi-coherent interface structure occurs, varies depending on a kind of carbides.
However, a large supercell is required for calculations of the semi-coherent interface,
e.g., a cell including 1463 atoms, consisting of 14 layers (7 iron layers and 7 NbC

Fig. 4.8 Optimized interface structure in a semi-coherent precipitation consisting of body-centered
cubic (BCC) iron and NbC calculated by the O(N ) Krylov subspace method. In the interface
structure, the BCC iron (100) and NbC(100) in the NaCl structure forms semi-coherent interface
structure in the Baker-Nutting relation: [010]NbC//[011]Fe, [001]NbC//[01̄1]Fe. Reprinted figure
with permission from [29]. Copyright (2017) by the IOP Publishing



4 O(N ) Methods 111

layers), has to be considered even for a carbide of NbC with a large lattice mismatch
for the BCC iron. It is found from the optimized structure shown in Fig. 4.8 that
iron atoms approach to carbon atoms by a strong interaction between carbon and
iron atoms, resulting in large structural distortion in the BCC iron. The transition
from the coherent to semi-coherent interface structure is estimated to 1.6 nm by a
series of calculations [29], which is well compared to an experimental value. The
example demonstrates that such a rather macroscopic problem, the strength of steel,
has started to be addressed from an electronic structure level, suggesting that its
future progress is highly expected.

4.7 Numerically Exact Low-Order Scaling Methods

In Sect. 4.3, it was argued that the computational cost of the KS equation is mainly
governed by the eigenvalue problem, and the complexity is O(N 3). Also, we dis-
cussed in Sect. 4.4 that the computational cost can be reduced to O(N ) if approx-
imations are introduced based on the nearsightedness of electron. Then, it would
be natural to consider whether a numerically exact low-order scaling method can be
developed. In fact, such methods have been proposed [30, 31], suggesting a new pos-
sibility toward accurate large-scale DFT calculations. In this section, let us introduce
a numerically exact low-order scaling method [31] based on a contour integration of
Green function and a nested dissection method.

The method is composed of two ideas. The first idea is to directly evaluate neces-
sary elements of the density matrix using the contour integration of Green function,
and the second idea is to calculate only necessary elements of Green function using
a set of recurrence formulae derived from a nested dissection method. The recur-
rence formulae are derived by recursively applying the LDLt decomposition to a
hierarchical structured matrix which is obtained by a nested dissection method. The
computational complexity of the method is found to be O(N (log2N )2), O(N 2), and
O(N 7/3) for 1D, 2D, and 3D systems, respectively, without introducing approxima-
tions. One of the characteristic features of themethod is that not only gapped systems,
but also metals can be treated by the method on the same footing.3 Each of the two
ideas will be explained below.

(i) Contour integration of the Green function

Recalling that only elements of the density matrix ρ corresponding to nonzero over-
lap between basis functions contribute to the electron density n due to Eq. (4.15), we
only have to calculate the necessary elements of ρ. Thus, the number of elements
which need to be calculated is O(N ). The necessary elements of ρ is directly cal-
culated by the Green function using Eq. (4.26). The integral of Eq. (4.26) might be
efficiently evaluated using a contour integration with the following continued frac-
tion representation of the Fermi function derived from a hypergeometric function
[32]:

3The formulation does not rely on the band gap of a systems.
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1
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= 1
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3 + ( x2 )
2

5 + ( x2 )
2

· · ·
(2M − 1)+ ...

) (4.65)

Although the continued fraction of Eq. (4.65) is similar to the Matsubara summation
in a sense that it has poles on the imaginary axis, the interval between adjacent poles
becomes sparse as the distance between a pole and the real axis increases. Because
of the special pole structure, the contour integration is significantly accelerated. In
addition to this, it is proven that the number of poles required for the convergence
is independent of the number of atoms N . Thus, the computational complexity is
determined by the calculation of the Green function.

(ii) Nested dissection and LDLt factorization

Any sparse matrix can be transformed to a hierarchical structured matrix using a
nested dissection method. As an example of the case, we show in Fig. 4.9 how a
Hamiltonian matrix for a finite chain of 10 atoms can be transformed to a hierar-
chical structured matrix. When the index is assigned from the left-hand side, the
Hamiltonian matrix becomes a tri-diagonal form as shown in Fig. 4.9a. In a case that
the index of 10 is assigned for a central atom, the Hamiltonian matrix is transformed
in such a way that the 5 atoms in the left-hand side interact with the 4 atoms in the
right-hand side via the central atom with the index of 10 as shown in Fig. 4.9b. By
applying the procedure repeatedly, we obtain the last case as shown in Fig. 4.9c. We
see that the interaction in the last case is mapped to the hierarchical binary tree as
shown in Fig. 4.9d. Remembering that the Green function is the inverse of (ZS − H ),
and that (ZS − H ) is a sparse matrix, we first transform (ZS − H ) to a hierarchi-
cal structured matrix by the nested dissection method. Then, we can obtain a set of
recurrence formulae by applying repeatedly the LDLt factorization from the bottom
of the matrix in upward direction. Here we show a part of the recurrence formulae.

V T
p,m+1,n =

⎛
⎜⎝

V T
p,m,2n

V T
p,m,2n+1

0

⎞
⎟⎠ +

⎛
⎜⎝

LTm,2n

LTm,2n+1
−I

⎞
⎟⎠QT

p,m+1,n. (4.66)

Note that it is possible to calculate only the necessary elements of ρ using the
recurrence formulae. The computational complexity might be reduced, since the set
of recurrence formulae is derived by making use of the sparseness of the Hamilto-
nian matrix. In fact, the detailed analysis results in the computational complexity
of O(N (log2N )2), O(N 2), and O(N 7/3) for 1D, 2D, and 3D systems, respectively
[31]. The numerically exact low-order scaling method is a promising direction, and
thereby the further investigation would be highly expected.
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(a)

(b)

(c)

(d)

Fig. 4.9 Idea of the nested dissection. Reprinted figure with permission from [31]. Copyright
(2017) by the American Physical Society

4.8 Remarks

The usefulness of DFT has been widely recognized, and applications for more chal-
lenging subjects have been ongoing. TheO(N )methods discussed in the chapter will
extend the frontier of challenging DFT simulations. The underlying idea behind the
development of O(N ) methods is the nearsightedness of electron. The idea plays an
important role for not only the development of the eigenvalue problem, but also an
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accurate exchange functional [33]. Though the developments ofO(N )methods have
been active since the early of 1990s, there would be still a plenty of room for the
improvement from the theoretical aspect. It would be nice if the chapter provides a
hint toward further development.

4.9 Exercises

1. Derive the KS equation of (4.8)–(4.10).
2. Show that the solution of KS equation satisfies the variational principle δE/δn

for electron density.
3. Derive the expression (4.15) for electron density n. Also, show that the calculation

of n needs only O(N ) elements of the density matrix ρ.
4. Derive the continued fraction formula (4.33) of the Green function.
5. Derive the Green function (4.43) of the infinite chain model.
6. Discuss the one-to-one correspondence between the step in the Lanczos algorithm

and the accuracy of Green function using moments.
7. Explain the relationship between the local electronic structure of an atom and

O(N ) methods.
8. Derive the eigenvalue equation of (4.63) for determining the principal axis.
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Chapter 5
Acceleration of Classical Molecular
Dynamics Simulations

Y. Andoh, N. Yoshii, J. Jung and Y. Sugita

Abstract In this chapter, we describe the acceleration and parallelization in classical
molecular dynamics simulations. As electrostatic interactions are computationally
intensive, the importance of the particle mesh Ewald (PME) method and the fast
multipole method (FMM) will increase. These methods will be described here. In
addition, general techniques for hierarchical parallelization on the latest general-
purpose supercomputers (especially connected by a three-dimensional torus net-
work), together with the critical importance of the data array structure, are explained.
We show the optimization and benchmark results in the parallel environments of the
molecular dynamics calculation programs, MODYLAS and GENESIS.

5.1 Classical Molecular Dynamics Simulations

Molecular dynamics (MD) calculation is a method to investigate the thermodynamic
properties, structures, and dynamics of molecular assemblies, such as liquids, solids,
gases, glasses, polymers, and biomolecules. By numerically solving the equations of
motion of all atoms andmolecules in the system, we directly obtain their trajectories.
When themotion of the atoms follows the equation ofmotion as described by classical
mechanics (Newtonian mechanics), it is called classical MD calculation.

To solve the equations of motion of atoms, it is necessary to obtain the force acting
on each atom. When the force is sufficiently accurate and a numerical solution of the
equation of motion is obtained with sufficient precision, it can be regarded that the

Y. Andoh · N. Yoshii (B)
Center for Computational Science, Graduate School of Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
e-mail: yoshii@ccs.engg.nagoya-u.ac.jp

N. Yoshii
Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya,
Aichi 464-8603, Japan

J. Jung · Y. Sugita
RIKEN Advanced Institute for Computational Science, Kobe, Japan

© Springer Nature Singapore Pte Ltd. 2019
M. Geshi (ed.), The Art of High Performance Computing
for Computational Science, Vol. 2,
https://doi.org/10.1007/978-981-13-9802-5_5

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9802-5_5&domain=pdf
mailto:yoshii@ccs.engg.nagoya-u.ac.jp
https://doi.org/10.1007/978-981-13-9802-5_5


118 Y. Andoh et al.

trajectory of the atom is equivalent to that of the real system. Various thermodynamic
quantities and statistical mechanical functions can be obtained from the trajectories
of the atoms. We can discuss the physics and chemistry of the target system.

Due to the recent widespread use of highly parallel computers, target systems for
MD calculations become larger. MD calculations are now used in various fields,
including materials science and bioscience. The development of high-precision
general-purpose potential functions, such as AMBER [1], CHARMM [2], OPLS
[3], and the development of high performance and multifunctional free software,
such as GROMACS [4], NAMD [5], LAMMPS [6], has made it easier to perform
high-quality MD calculations. However, using massively parallel machines with
more than 1,000 nodes, it is difficult to efficiently execute these programs because
of the reduction in parallelization efficiency caused by internode communication. It
is necessary to choose algorithms and optimize data structures in programs to main-
tain high parallel efficiency in highly parallel environments. By applying various
techniques, we can use the high performance of a massively parallel computer. In
this chapter, we will explain the various algorithms and schemes used in the MD
calculation software, MODYLAS [7], and GENESIS [8] developed by the authors,
suitable for the massively parallel computers.

5.1.1 Molecular Dynamics Calculation Flow

Here,we outline theMDcalculationflow (Fig. 5.1). First,we set the initial conditions.
The coordinates and velocities of atoms are input as an initial condition.When atomic
coordinates are obtained experimentally, their structures should be used as the initial
coordinates. As a preparation for MD calculation, addition of the solvent molecules
and energy optimization is applied, if necessary. In the simulation of liquids, we
first prepare a lattice structure as an initial configuration. We obtain the equilibrated
liquid structure byperforming ahigh-temperatureMDsimulation. The initial velocity
of each atom is assigned to reproduce a Maxwell distribution corresponding to the
target temperature. In addition,wemust set up the calculation conditions for eachMD
calculation, such as the parameters for mass and intermolecular interaction of each
atom, statistical ensembles concerning temperature and pressure control, number of
MD steps, time steps, and so on.

Next, we calculate the forces acting on each atom, which are assigned to
intramolecular interactions acting through chemical bonds within the molecule and
intermolecular interactions acting between atoms in different molecules or distant
atoms in the same molecule. This intramolecular interaction consists of stretching
potential which is a two-body interaction acting between bonded atoms, bending
potential which is a three-body interaction, torsional potential which is a four-body
interaction, and so on. The computational complexity of these interactions is O(N ),
where N is the number of atoms in the system. However, the calculation amount for
intermolecular interactions, such as electrostatic and van der Waals interactions, is
O(N 2). As a system becomes large, the computational amount increases drastically.
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Fig. 5.1 MD calculation flow

The intermolecular interaction is the important factor in determining the size of the
target system.Various techniques have beendeveloped to accelerateMDcalculations.
This chapter focuses on the acceleration of intermolecular interaction calculations.

The numerical integration of the equation of motion is performed using the inter-
molecular force at time t, and the newvelocity andposition of the atoms at time t + �t
are obtained. Difference approximation and predictor-corrector methods have been
often used as numerical integration algorithms for the equation of motion [9, 10]. In
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Sect. 5.1.4 , we discuss the reference system propagator algorithm (RESPA) method,
which enables multiple time steps and efficient numerical integration.

In the numerical integration of the equation of motion, rapid intramolecular
degrees of freedom are often removed. For example, stretching and bending motions
in water molecules are not so important, and they are often treated as rigid molecules
that eliminate intramolecular degrees of freedom. The motion of the water molecules
can be decomposed as the translational motion of the center of mass and rotational
motion around the center of mass. Each motion can be obtained by numerically
integrating Newton’s equation of motion and Euler’s equation [9, 10]. Alternatively,
constraint dynamics may be used where the equations of motion are numerically
solved with distance- or angle-constraints among atoms. By these methods, it is pos-
sible to introduce a larger time step �t, which greatly improves the efficiency of the
numerical integration of equations of motion in MD simulations. In Sect. 5.1.5, we
discuss the constraint dynamics.

The physical quantity can be calculated using the position and velocity obtained
from MD calculations. If the MD calculations reach an equilibrium state where
the physical quantity of interest fluctuates around a certain value, the equilibration
from the initial configuration is completed. The MD calculations are continued and
we output the molecular trajectory and physical quantity at each step. If sufficient
statistics are obtained, the MD calculations are terminated.

5.1.2 Algorithms to Reduce the Calculation Amount
for Nonbonded Interactions

In general, the amount of calculation for nonbonded interactions is considerably
larger than that for bonded interactions. The Lennard-Jones (LJ) interaction is com-
posed of (1/rij)12 and (1/rij)6, where both converge rapidly to zero with rij and rij
is the distance between the atom i and j. The LJ interaction can be truncated if rij is
greater than a cutoff distance rcut. Typically, rcut is chosen to be 3σ − 4σ, where σ
is the LJ parameter that corresponds to the diameter of the atom.

By using a cutoff technique, most of the candidate j atoms located in a region
distant from the i atom can be omitted without calculating the rij values. There are
two established methods for this purpose: i.e., the Verlet neighbor list and linked-list
cell (LLC) methods [11].

In the Verlet neighbor list method, a list for candidate j atoms is stored for each
i atom by using a longer cutoff radius, r′

cut = rcut + �rcut, than the actual rcut. The
list is updated per tens of MD steps. In the LLC method, a calculation unit cell
is divided into subregions (subcells). Each atom is assigned to one of the subcells
according to its position. The subcells where the candidate j atoms may be included
are listed using the distance between subcell centers, which can reduce the search
range of the candidate j atoms. The interaction is calculated between i and j atoms by
applying a cutoff. These two methods are widely used in MD calculation programs
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in which the LLC method is sometimes used in preprocessing to create the neighbor
list effectively.

However, the electrostatic interaction is a function of (1/rij), which converges
very slowly to zero with rij. Thus, the cutoff technique causes serious artifacts in the
calculation results [12], even though a relatively large rcut value is chosen. To date,
some algorithms to reduce the calculation cost of the electrostatic interaction have
been suggested without losing the accuracy of the calculated potential energy and
forces. We will explain some of these algorithms below.

5.1.3 Acceleration of Electrostatic Interactions

InmostMDcalculations including all biomolecular systems, the electrostatic interac-
tion calculation is the largest hot spot.When the electrostatic interaction is calculated
directly, the calculation complexity is O(N 2). If a cutoff is used, the computational
cost becomes O(N ), but a discontinuous and large change of force and potential
appears at the cutoff length, and a significant artifact occurs in the calculation result.
Therefore, it is not permissible to use the cutoff.

The Ewald method has been used for a long time to evaluate the electrostatic
interaction under periodic boundary conditions efficiently [9, 11]. In this method,
the electrostatic potential 1/r is multiplied by the error and complementary error
functions. The sum of these two functions becomes 1. With increasing x, the error
function, erf(x), attenuates slowly and the complementary error function, erfc(x),
attenuates quickly. The cutoff can be used for the latter. For the former, the function
can be expressed as a sum of wavenumber vectors by a Fourier series. The sum of
this Fourier series is obtained through fast convergence and does not require so many
terms. However, the calculation amount increases as O(N 2/3) ∼ O(N 2). Therefore,
it is difficult to apply to large-scale systems. Currently, the particle mesh Ewald
(PME)method,which efficiently performsFourier series, partly using the fast Fourier
transform (FFT), is the mainstream technique [13, 14]. In the PMEmethod, the point
charges distributed in the MD cell are allocated lattice points using the interpolation
technique to reproduce the electrostatic potential in the system. The contribution of
the reciprocal-space of the Ewald method can be evaluated by the computational
complexityO(N logN ) by using the FFT for the charge on this lattice. However, care
must be taken when executing the FFT in a highly parallel environment. Generally,
the FFT requires all-to-all communication. In massively parallel computers of 1,000
nodes or more, all-to-all communication is often a major hurdle. This problem is
successfully overcome by the GENESIS software described later, which achieves
high performance [8]. On the other hand, the FMM [15] and multilevel summation
method [16] were developed as non-FFT algorithms. The FMM with a periodic
boundary condition is described in detail in Appendix.
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5.1.4 Acceleration by Multiple Time Steps

In the numerical integration of the equation of motion, the time span for MD steps
is determined by the fastest atomic motion in the system. Slow degrees of freedom
must also be integrated by small time steps, which is quite inefficient. It is desirable
to separate the degrees of freedom according to the rapidity of the molecular motion
and integrate the equations of motion separately according to their suitable time
steps. Multiple time steps enable this calculation.

First, the RESPA method [10], which is a numerical integration method that
enables multiple time steps, is described. mi, ri, and pi are the mass, coordinate, and
momentum of atom i, respectively. V (rN ) is the potential energy of the system.When
the Hamiltonian is given by

H (rN , pN ) =
N∑

i=1

pi
2

2mi
+ V (rN ), (5.1)

the Liouville operator corresponding to Eq. (5.1) is

iL =
N∑

i=1

(
pi
mi

∂

∂ri
+ Fi

∂

∂pi

)
. (5.2)

The time evolution operator for time step �t is given by eiL�t [10]. The above Liou-
ville operators are composed of two noncommutative operators iL1 = ∑N

i=1
pi
mi

∂
∂ri

and iL2 = ∑N
i=1 Fi

∂
∂pi

. When the time evolution operator eiL1�t+iL2�t is symmetri-
cally decomposed by Suzuki-Trotter expansion, it can be approximated as

e(iL1+iL2)�t = eiL2
�t
2 eiL1�teiL2

�t
2 + O(�t3). (5.3)

By applying this to ri(0) and pi(0) at time t = 0, the well-known velocity Verlet
method,

ri(�t) = ri(0) + �t
pi(0)
mi

+ �t2
Fi(0)

mi
(5.4)

pi(�t) = pi(0) + �t
Fi(0) + Fi(�t)

mi
(5.5)

is obtained. For Hamiltonian dynamics systems, the numerical solution as described
above becomes a symplectic integrator. The coordinates and the momentum are the
canonical variables, and the discretized expression (5.4) has the conservative quantity
called shadow Hamiltonian. Numerical integration is known to be stable over a long
period of time [9, 10].

Next, iL is divided into fast iLfast and slow degrees of freedom iLslow. Then, the
time evolution operator eiL�t in Eq. (5.4) can be divided as
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e(iL1+iL2)�t ≈ eiLfast
�t
2 eiLslow�teiLfast

�t
2

=
(
eiLfast

δt
2

)n
eiLslow�t

(
eiLfast

δt
2

)n
(5.6)

where �t = nδt, δt is the time step for the fast degree of freedom, and �t is the
time step for the slow degree of freedom. In Eq. (5.6), on the one hand, the fast part
is divided into n so that we calculate the fast motion in a small time step. On the
other hand, the part that moves slowly does not calculate the interaction. In general,
the calculation cost of the slow part is higher; therefore, multiple time steps are
very efficient. With respect to eiLfast

�t
2 and eiLslow�t in Eq. (5.6), ri and pi are updated

according to the formula of the velocity Verlet method represented by Eq. (5.4).
Here, division of the Liouville operator can be done for each degree of freedom.

However, there is no restriction on this division. For example, it is possible to separate
total force acting on an atom into fast changing force caused by stretching, bending,
and torsionalmotions, and a slowly changing one by LJ and electrostatic interactions.

In multiple time steps, a force acts on the atom for every δt and another force
acts for each �t. A certain node in the system may resonate with the force acting on
every �t. Some atomic motions may become unstable or the trajectory may greatly
differ from the original trajectory [17]. In recent years, various schemes have been
proposed to avoid this phenomenon [18]. It is necessary to pay attention to whether
such things have happened.

5.1.5 Constraint Dynamics

The degrees of freedom in the molecule are often removed and the molecule is
treated as a rigid body. For example, water molecules have three intramolecular
degrees of freedom. By fixing the distance between oxygen and hydrogen atoms,
the OH stretching motion can be removed. Furthermore, when the distance between
the two hydrogen atoms is fixed, we can remove the bending motion of ∠HOH. By
constraining these degrees of freedom, �t can be increased and efficient calculation
can be performed.

There are two methods to constrain the intramolecular degree of freedom. One is
to handle amolecule as a rigid rotormodel and the other is to use constraint dynamics.
Here we describe constraint dynamics, which is applicable to various constraints and
widely used in general-purpose MD calculation software.

Now, we consider that there is a chemical bond in a molecule and its bond length
is fixed. In constraint dynamics, a constraint condition, i.e., the distance between
atoms i and j is constant, is imposed. The binding force between atoms is considered
to act on atoms to satisfy the constraint condition,

g = (
ri − rj

)2 − dij
2 = 0. (5.7)
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The constraint condition expressed by Eq. (5.7) is called a holonomic constraint. The
equation of motion of the atom is

mi
d2ri
dt2

= Fi + λ
∂g

∂ri
, (5.8)

which includes the constraint force λ ∂g
∂ri

by the constraint condition g. Here, λ is
an undetermined Lagrange multiplier. When this equation of motion is numerically
integrated according to the velocity Verlet method, the position coordinate at time
t = �t is

ri(�t) = ri(0) + �t
pi(0)
mi

+ �t2

2mi

{
Fi(0) + λ

∂g

∂ri

}

= r′i(�t) + �t2

2mi
λ

∂g

∂ri
(5.9)

where r′i(�t) = ri(0) + �t pi(0)mi
+ �t2

2mi
Fi(0). The new position ri(�t) must satisfy

the constraint condition g. By substituting ri(�t) into Eq. (5.7), we have

g =
[{

r′i(�t) + �t2

2mi
λ

∂g

∂ri

}
−

{
r′j(�t) + �t2

2mj
λ

∂g

∂rj

}]2

− d2
ij = 0. (5.10)

Since this is a quadratic equation for λ, we can evaluate the constraint force λ ∂g
∂ri

by
solving for λ.

This is a simple case where the constraint on each atom is one. In the case of two
or more constraints on one atom, the Eq. (5.10) is replaced by simultaneous quadratic
equations including the same number of undeterminedmultipliers λ as the number of
constraints. When the target molecule becomes large, such as macromolecules and
proteins, the constrained atoms are connected to each other; therefore, the simul-
taneous equations are increased and the calculation cost for obtaining λ becomes
very high. Thus, in general, Eq. (5.10) is linearized by ignoring the λ2 term. Iterative
calculations are performed until the constraint condition g is satisfied. This is the
SHAKE method [19], which is widely used in general-purpose MD software. Var-
ious schemes to accelerate the convergence of iterative calculations in the SHAKE
method have been proposed [20].

In addition, the velocity constraint was also obtained by differentiating Eq. (5.7)
with respect to time. A constraint algorithm, the RATTLE method [21] for velocity
similarly to the SHAKE method, was developed to satisfy the constraint condition.

Accelerated algorithms for constraint dynamics designed for water molecules,
such as LINCS [22] and SETTLE [23], have been developed and are used widely.

These techniques can be introduced separately to the site to be constrained. It is
not necessary to introduce new coordinates (e.g., Euler angle, quaternion), which
are necessary for a rigid rotor model. Therefore, it is possible to keep the structure
of the program simple; it is widely used for many general-purpose MD software. In
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contrast, a rigid rotor model can increase the time step �t in MD calculations [24].
As described above, several methods for constraining the intramolecular degree of
freedom are available; therefore, we must choose an effective method for the target
system.

5.1.6 Developments of Classical MD Simulations Related
with HPC

5.1.6.1 Development of Parallelization

The main bottleneck in MD is the evaluation of nonbonded interactions, i.e., elec-
trostatic and van der Waals interactions. Fortunately, the van der Waals interaction
decreases rapidly as the interparticle distance increases. Therefore, if a sufficiently
large cut-off distance is assigned, energy and force values in the van der Waals
interaction can be regarded as zero when the interparticle distance is greater than
the defined cutoff distance. Using Ewald summation description for electrostatic
energy/force, interactions can be split into those in real- and reciprocal-space, and
cutoff value can be assigned like van derWaals case [13, 14]. To dealwith interactions
with long-range distance, we perform energy and force calculation using fast Fourier
transform (FFT) in the reciprocal-space. Therefore, it is necessary to consider par-
allelization of nonbonded interactions in both real- and reciprocal-spaces. Basically,
there are three parallelization schemes for the real-space interactions: atomic, force,
and spatial decompositions. Parallelization based on the atomic decomposition is
a relatively simple algorithm, and historically introduced earliest in MD programs.
The algorithm of parallelization based on spatial decomposition is more complicated
than the atomic decomposition, but it is currently introduced in most MD programs
because of high parallel efficiency. Detailed parallelization schemes based on spatial
decomposition are slightly different in each program. NAMD applies a paralleliza-
tionmethod combining spatial and force decomposition in the real-space interactions,
and furthermore it schedules interactions between subdomains by CHARMM++ [5].
In addition, pencil (two-dimensional) decomposition is used to parallelize the FFT
calculation that is required in the reciprocal-space calculation. In DESMOND, spa-
tial decomposition based on the midpoint method is applied for parallelization in the
real-space interaction. In addition, all-to-all communications are replaced by but-
terfly communications in one-dimensional FFT for the reciprocal-space interaction
[25, 26]. Parallelization scheme of the real-space interaction in BLUE MATTER is
similar toDESMOND, but the volumetric decomposition (three-dimensional decom-
position) scheme is used for parallelizing the reciprocal-space interaction [27]. In
GENESIS, the midpoint cell method [8] was introduced to improve the performance
from the midpoint method, and FFT is parallelized using volumetric decomposition
with one-dimensional all-to-all communications [28]. In addition, hybrid paralleliza-
tion scheme combining OpenMP and MPI is introduced. In CHARMM and GRO-
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MACS, a spatial decomposition method based on the eighth-shell scheme is adopted
and non-bonded interactions in the real-space and reciprocal-space are performed in
different CPU nodes [29, 30]. CHARMM only performs MPI communication, but
GROMACS can make use of a hybrid parallelization combining MPI and OpenMP.
In some programs, PME is replaced by another long-range force calculation method
to increase the parallel efficiency. MODYLAS showed excellent parallelization effi-
ciency on the K computer by introducing the fast multipole method (FMM) [7].
Recently, NAMD introduces a new scheme called multilevel summation method to
increase parallelization efficiency [14].

5.1.6.2 Development of MD in Specialized Platforms

In recent years, dedicated computers have become a great influence for speeding up
theMDenergy/force calculation.MDGRAPE-3 acceleratesMDby using specialized
hardware in computing non-bonded interactions [31]. In ANTON [32], developed
by D. E. Shaw Research, specialized hardware is used for the entire MD simula-
tion. Reciprocal-space interactions are accelerated by using theGaussian-split Ewald
method. By such a contrivance, ANTON achieved 100 times faster performance.
However, MD calculation using ANTON has limitations on the size of the molecular
system. It is difficult to calculate a large-scale molecular system exceeding 1 mil-
lion atoms with ANTON. In the latest ANTON 2, this restriction was relaxed, and
high-speed calculation was possible for 2 million atoms system [33].

5.1.6.3 Development of MD for GPUs

An important development in MD from the viewpoint of hardware utilization is
the use of a graphics processing unit (GPU). GPUs were originally developed as
arithmetic chips dedicated to graphics, but today they have been used for various
scientific and technical calculations. MD program using GPUs is roughly divided
into two categories. The first one is to send all necessary information to GPU and
perform all operations withGPUs. Thismethod is adopted inAMBER [34], ACEMD
[35], OpenMM [36],MOIL [37], DESMOND, and so on. Despite this method is very
efficient when single node is used, there are restrictions in the system size that can be
calculated due to the memory limitation of the GPU. It is also difficult to parallelize
on multiple computers. The other method is to divide the overall calculation into a
computation-intensive part, that is, calculation of the real-space non-bonded inter-
actions and a communication-intensive part including reciprocal-space interaction
with FFT. The former is mainly computed by GPUs and the latter is computed by
CPUs. In this case, communication between the CPU and the GPU is required at
every integration step. NAMD [38], GROMACS [39], and GENESIS [40] adopt this
method. In this method, parallelization across multiple computers can be performed,
so it is possible to handle a large molecular system. On the other hand, when using a
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single node, the calculation speed of the latter is slower than computing using only
GPUs.

5.2 Hierarchical Parallelization in the Latest
Supercomputers

5.2.1 Hierarchical Hardware Structure

The latest supercomputers have a hierarchical structure for not only their calculation
units, but also their devices to store calculation data.

Calculation units are composed of thousands or tens of thousands of calculation
nodes, which are connected by a high-speed internode network. A calculation node
sometimes has plenty of CPUs. The independent arithmetic units inside the CPUs are
called the cores. In each core, units to execute various kinds of arithmetic operations
are installed. Modern CPUs are also equipped with vector operation units (the same
arithmetic operations on inputted multiple data), which work by single-instruction-
multiple-data (SIMD)processing.Acoprocessor to accelerate a part of the calculation
is optionally installed onto the PCI-e bus at the same level as the CPUs, which is
beyond the scope of this section.

As data storage devices, the main memory or random-access memory (RAM)
devices (with tens of gigabytes (GB) of memory) are installed on each calculation
node and accessed by the CPU(s). When one node has more than two CPUs, the
access speed from each CPU to each main memory is mostly nonuniform; this is
called nonuniform memory access (NUMA) architecture. In each CPU, a small but
high-speed data storage device called cachememory is shared by several of the cores.
These caches have levels: i.e., the level 1 cache with tens of kilobytes (kB) is the
nearest cache from the arithmetic unit, and the level 2 cache with hundreds of kB
is the second nearest one. The lowest data storage module is a processor register,
which connects directly to the arithmetic units in the CPU, such as floating-point
arithmetic unit (FPU). The data access speed of this module is the fastest, but it only
stores a fixed amount of one integer or floating-point data. Vector registers can treat
a large amount of data for SIMD operations.

Any parallelized software aiming at high parallelization efficiency must be
designed considering the hierarchical structures of both calculation units and data
storage devices in modern supercomputer systems.

5.2.2 Parallelization Strategy

Parallel execution between calculation nodes involves a distribution of calculation
data onto the main memory devices on each calculation node. In standard operations,
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such a parallelized execution is realized by the message-passing interface (MPI) by
inserting additional MPI functions onto the original code. The unit of parallelization
by the MPI is called the MPI process. In the case of several CPUs in one node or one
CPU with the NUMA structure, allocating one MPI process onto one CPU or one
NUMA unit often provides better parallelization efficiency.

Next, in parallel execution between the cores, the required calculation data on
the cache(s) can be shared between the cores. This style of parallelized execution is
usually realized by the OpenMP language extension, which is a standard component
of modern Fortran/C language compilers. By adding a set of OpenMP directives
before and after a DO loop (Fortran) or for loop (C), the arithmetic operations in the
loop are distributed among the parallelized units (threads). Typically, one thread is
assigned to one physical core.

Finally, when the CPU equips vector arithmetic devices, parallel execution by
the SIMD instruction is possible for the deepest loops. For highest parallelization
efficiency, it is essential to code a series of arithmetic operations at hot spots by
vectorized assembler language or in the intrinsic instructions, although this requires
high coding skills. A second-best method is to use the compiler’s automatic SIMD
parallelization function, in addition to the vectorized messages provided by the com-
piler. From these messages, we can observe which loops are vectorized, and if not
vectorized, what elements inhibit SIMD parallelization of the loop. Better SIMD
efficiency could be obtained by modifying the loop structure of problematic loops
repeatedly.

Consider that hierarchical parallelization starts from the lowest MPI level, fol-
lowed by the thread level, to the SIMDprocessing because the efficiency of the higher
level parallelization is strongly restricted by the manner of implementation of the
lower level parallelization. In particular, the parallelization efficiency of the code is
dominated not by arithmetic efficiency (i.e., equal partitioning of tasks among par-
allelized units), but by the data transfer efficiency between hierarchical data devices.
If the access time to data on a register is 1, it is 10 for data on the cache(s), and
100 on the main memory. Therefore, without establishing a smoothed data-flow path
from the main memory to the register, an ideal parallelization efficiency could not
be obtained at higher levels. Arithmetic devices waste time waiting for data to be
calculated.

Section5.3.2 describes an example of a sophisticated data structure that enables
a smoothed data-flow path for MPI/OpenMP/SIMD hierarchical parallelization on
supercomputer systems with a three-dimensional (3D) torus network.
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5.2.3 Parallelization Techniques Based on Torus Network
Characteristics

5.2.3.1 A Torus Network

A torus network is a network to connect calculation nodes in series and circularly
along one direction. A 3D torus network is comprised of calculation nodes placed
at 3D lattice points connected by a torus network along the x, y, and z axes. There
can be more than three dimensions of network connections; e.g., the Tofu intercon-
nect developed by Fujitsu Co. Ltd. provides a six-dimensional torus network for
supercomputer systems with high fault tolerance to network troubles. A torus net-
work is superior to other network structures, such as fat-tree networks from the
following perspectives.

• High-speed and low-latency data transfer to first neighbor nodes along each axis.
• High affinity to MPI parallelization in spatial domain decomposition style.

However, it also has the following disadvantages:

• Need for relay nodes for communication with nodes other than the nearest neigh-
bors.

• Increase of communication count, if software requires wide range communication.
• Frequent occurrence of collisions between twodata transfers in opposite directions,
if without a communication procedure design.

As schematically shown in Fig. 5.2a, a direct communication with calculation nodes
on the diagonal line can be made possible by a two-step communication; i.e., the
first communication along the x-axis followed by y-axis communication with a relay
node. The situation becomes more severe when the target node is more distant from
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Fig. 5.2 Problems that can occur in a torus network. a Increase in communication count and b
occurrence of collisions between two data transfers in opposite directions
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the source node. The integer numbers in Fig. 5.2a indicates a communication count
required for data transfer to the centered myrank from each rank. In total, 60 counts
of communication are necessary to gather data from the surrounding hashed region
to myrank. On the other hand, as shown in Fig. 5.2b, if each communication is not
scheduled, collisions of two data transfers in opposite directions occur frequently
everywhere. The occurrence of a collision event delays communication time signif-
icantly because one communication started after the other communication ended.

For parallelized calculations aiming at strong scalability, such asMDcalculations,
these delays in communication due to collisions are fatal. Thus, it is strongly desirable
to implement MPI parallelization algorithms to minimize the communication counts
without any collision events on the 3D torus network.

5.2.3.2 MPI Function Suited to a Torus Network

TheMPI_SENDRECV is aMPI function to hide the disadvantages of a torus network
as described above and to realize highly effective parallelization by the MPI.

call MPI_SENDRECV (sendbuf,scount,stype,dest,stag,
recvbuf,rcount,rtype,source,rtag,comm,status,ierr)

sendbuf : initial address of send buffer
scount : element number in sendbuf
stype, stag : type of elements in sendbuf, send tag
recvbuf : initial address of receive buffer
rcount : element number in recvbuf
rtype, rtag : type of elements in recvbuf, receive tag
dest, source : rank of destination, rank of source
comm, status, ierr : communicator, status code, error status

This function executes MPI_SEND and MPI_RECV in one call; i.e., myrank sends
scount elements of sendbuf with stype to dest rank, while it receives rcount elements
of recvbuf with rtype from source rank. By calling this subroutine from every MPI
process along one axis on a torus network, a circularly shifted communication is
realized.

Figure5.3 shows how the MPI_SENDRECV function can hide the disadvantages
of a torus network in a two-dimensional (2D) case. Assuming that data on ranks 0–
24, except for rank 12 (myrank), are transferred to the myrank. First, by calling the
MPI_SENDRECV function, data on each rank are shifted along the +x direction.
Integer numbers below s and d in squares are values for rank of source and rank of
destination as set in subroutine arguments, respectively. In this process, the function
is called from all ranks simultaneously. As a result of these collective MPI commu-
nications, any collision events do not occur. Second, after the communication, the
transferred data are merged with the originally owned data. The merged data are
then shifted again along the +x direction by calling the MPI_SENDRECV function.
By applying the same communications along the −x direction, distributed data on
the ranks along the x-axis are gathered to the centered ranks (ranks 2, 7, 12, 17,
and 22). Third, the merged data within each x line are shifted twice along the +y
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direction by calling the MPI_SENDRECV function twice with setting source and
destination numbers as shown in the right panel of Fig. 5.3. Finally, by shifting the
merged data along the −y direction twice in the same manner, all data on ranks 0–24
are transferred to myrank without any collision events.

In this technique, the communication count required to gather the data is only 8,
which is 13% of the count for a series of fundamental one-to-one communications as
shown in Fig. 5.2a. In a 3D case, the degree of reduction ismore remarkable, i.e., from
450 to 12, which is a reduction rate of 97%. Furthermore, with this style of collective
communication, all involved MPI processes gather the same range of data at once,
which is in most cases a favorable situation for the subsequent arithmetic operations.
If the torus network equipment has bidirectional communication architecture, such
as the Tofu interconnect, the communication count can be further reduced to half.

For example, MODYLAS [7] software implements this kind of collective com-
munication routine to gather the data of atom coordinates and coefficients of mul-
tipole expansions required to calculate potential energy and forces. The same type
of communication algorithm is available in a process to send data back to the orig-
inal processes, such as a scattering of reaction forces by the nonbonded two-body
interactions.

The communication technique described here is widely applicable to any MPI
parallelized software on a 3D torus network.

5.2.4 Necessity of Sophisticated Data Structure for Highly
Efficient Parallelization

As described briefly in Sect. 5.2.2, the parallelization efficiency of hybrid paral-
lelization is determined by the smoothness of data transfers between memory stor-
age devices. First, an element controlling the smoothness of data flow is the data
array structure, followed by proper coding at each parallelization level. An ideal
data structure for hierarchical parallelization should have the following properties
simultaneously:

1. Data are sequentially accessed at the time of arithmetic operation.
2. Data are localized, compartmentalized by small areas, and a data-blocking tech-

nique can be applied without using temporary arrays.
3. No data sorting and copying operations are required through a series of MPI

communications.

Property 1 is important for the working efficiency of arithmetic units by smoothed
data transfer from the cache(s) to registers. If not, software pipelining cannot be
applied; therefore, the units waste time waiting for input data. If vector units are
assumed, data sequentiality is more important to realize highly efficient vectorized
operations.Data sequentiality is not normally achieved in particle-based calculations,
such as MD calculations. For example, when the Verlet neighbor list method is
adopted for pairwise additive LJ interaction calculations, the access to coordinate
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Collective communication 
       along +x direction

Collective communication
        along +y direction

Data flow Data flow

Fig. 5.3 An example of a circularly shifted communication on a 2D torus network realized by the
MPI_SENDRECV function. First collective communication along the±x-axis (left) and successive
collective communications along the±y-axis (right). In each stage, data are shifted by twice to plus
or minus direction. Consequently, data on ranks 0–24 are transferred to rank 12 with 4 counts of
communication

data based on a list of candidate j atoms becomes random in general, as shown in
Fig. 5.4. This is because an arrangement of coordinate data on memory devices does
not consider the relative distance between atoms. Much effort is needed to realize
sequential access to coordinate data with the Verlet neighbor list method. In contrast,
when the cell-linkmethod is used, sequential access on data can be realized relatively
easily with a well-designed data structure as described in Sect. 5.3.2.

Property 2 is important from the perspective of effective utilization of data on the
cache(s) without reloading data from the main memory. In a calculation hot spot, it
is desirable to load the data required for a series of arithmetic operations just once
from the main memory to the cache. An established method, e.g., the data-blocking
technique, is usually adopted for this purpose. The data-blocking technique assumes
that a whole data set, such as atom coordinates stored in myrank, is subdivided into
smaller data sets. The manner of division is chosen so that accesses to data in one
data set are concentrated and data loading is performed with a unit of each data set.
Unnecessary data reloading can be reduced by applying some modifications to the
nested loop structures.

Property 3 is important from the perspective of strong scaling at process-level par-
allelization by omitting essentially unnecessary data sorting and duplication opera-
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tions. Some types of parallelized calculations, such as MD calculations, in their scal-
ability to MPI process number with a fixed problem size (strong scalability) is more
important than the scalability by making problem size per process constant (weak
scalability). Decreasing the overall elapsed time with large MPI process numbers,
an accumulation of small times costed for pre- and post-processing of interprocess
communications by the MPI functions could become a rate-determining process in
parallelized calculations. This extra wasted time comes from the implementation
style, which can be removed by devising the data structure appropriately.

Various data structures could have all of the features listed above, depending on
the degree of hierarchy of hardware, kind of interconnections between calculation
nodes, and whether coprocessors are used or not. Section5.3.2 shows an example of
the data structure suitable for MD calculations, which is hierarchically parallelized
on multicore CPU nodes connected by a 3D torus network.

5.3 MODYLAS

This section introduces general techniques of a hybrid parallelization of large-scale
calculations by MPI, OpenMP, and SIMD suited for supercomputers connected by
a 3D torus network, with practical examples of implementation of the techniques on
MD calculations that adopts the FMM (see Appendix) to calculate the long-range
electrostatic interaction under a 3Dperiodic boundary condition.With a sophisticated
data structure, it becomes possible to perform massively parallelized calculations
with excellent parallelization and arithmetic efficiency [7].

Coordinate data originally 
distributed to myrank

rcut

Random access to
j atom coordinates

i atom

j atom

Coordinate data
repeatedly reloaded
from main memory

DO iatom
DO k=Verlet-list(iatom)
   jatom=list(k)
   rij = |riatom-rjatom|
   calculate potential
   calculate forces
ENDDO
ENDDO

Coordinate data received 
from other ranks 

Heading&Sorting of data

Potential rate-determining 
process in strong scaling 
problem

j atom

i atom

Fig. 5.4 General issues to inhibit efficient hierarchical parallelization with standard data structure
for atom coordinates
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5.3.1 Parallelization Characteristics of the FMM

From the perspective of massive parallelization, the FMM is superior to the PME
method in the following aspects.

First, the data required to calculate both short- and long-range interaction are spa-
tially localized at each level by its nested structure. Thus, adjacent communications
can be used by the MPI instead of all-to-all type communications. In particular, if
a 3D torus network is installed onto a supercomputer, the techniques described in
Sect. 5.2.3 are directly applicable byminimizing a number of hops and avoiding data-
transfer collisions. Second, the boundary of twokinds of potential energy calculations
(P2P and L2P operations) is not spherical as in the Ewald method; therefore, access
to rj does not require a list of candidates of rjs. List access could become a barrier to
achieving highly efficient vectorized arithmetic operations with SIMD instructions.
Third, the FMM assumes a partitioning of a calculation unit cell into subcells; thus,
the established LLC method (Sect. 5.1.2) can be used for the P2P operation. Fur-
thermore, because atoms have metadata of the relative position of their belonging
subcells, continuous access to data of atom coordinates rjs is possible with their
well-designed data structure as shown in Sect. 5.2.4. Finally, since its calculation
order is O(N ), there is a greater possibility to treat a much larger number of atoms
in MD calculations using over 10,000 calculation nodes of exascale supercomputers
[41] without losing calculation accuracy. The techniques described in this section
can be the basis for such massively parallelized calculations in the near future.

5.3.2 A Metadata Structure of Coordinates and Multipoles

The interatomic interactions treated in MD calculations are distance dependent and
reduce to zero with increasing distance between the source and destination atoms.
Most of these interactions become completely zero at ten and a few angstroms,
except for the electrostatic interaction. Therefore, it is beneficial to add supplemen-
tary information about spatial decomposition onto the atom coordinate data, which
is one of the metadata sets. These metadata are also useful for other primary data
used in electrostatic interaction calculations, such as multipoles in the FMM and grid
charges in the PME method.

Figure 5.5 shows the data structure of atom coordinates meta_xyz with meta-
data of the relative distances between each subcell. Relative indices rather than
absolute indices of each subcell are more favorable as metadata for homogeneous
coding among different myranks. The data are represented in two ways: i.e., a one-
dimensional representation as a copy of the original array (left panel of the figure) and
a multidimensional representation emphasizing the metadata of the relative address
of each subcell (right panel of the figure). The data originally stored by myrank are
placed in a continuous manner not at the top of the array, but at the center of the
array. The blanks arranged above and below the data are storage regions to receive
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 meta_xyz(1,1)

meta_xyz(3,n)

 X
Y 

(1,1)     (2,1)     (3,1)     (4,1)     (5,1)

(1,2)     (2,2)     (3,2)     (4,2)     (5,2)

(1,3)     (2,3)     (3,3)     (4,3)     (5,3)

(1,4)     (2,4)     (3,4)     (4,4)     (5,4)

(1,5)     (2,5)     (3,5)     (4,5)     (5,5)

tag(3,3)

na_per_cell(3,3)

(X,Y): Relative indices of subcells

Two dimensional representation

 meta_xyz(3,n) 

Coordinate data originally
distributed to myrank 

 meta_xyz(1,1)

Empty region to 
receive coordinate
data transferred 
from other ranks

One dimensional representation

(3,1)
(2,1)
(1,1)

(3,3)

(5,5)
(4,5)
(3,5)

Mapped onto X-Y plane

Fig. 5.5 Two kind of data array representations for atom coordinates with metadata structure

coordinates transferred from other surrounding MPI processes. In the multidimen-
sional representation, blanks form a square halo in a 2D representation and a cubic
halo in a 3D representation.

Access to the data is always performed usingmetadata by preparing two additional
arrays. The first is a tag array, which stores initial addresses of a series of coordinate
data included in each subcell (tag in Fig. 5.5), and the second is a counter array,
which stores the number of atoms packed in each subcell (na_per_cell in Fig. 5.5).
The dimensions of these arrays are the same as themetadata information; e.g., (5,5) in
Fig. 5.5. With these arrays, the data originally distributed to myrank with an address
of (3,3) are accessed by

DO i0=tag(3,3), tag(3,3)+na_per_cell(3,3)-1
meta_xyz(1:3, i0)

ENDDO

Data to be transferred by a series of MPI communications are stored as shown in
Fig. 5.6. These data are spatially localized around the original myrank data according
to the following series of MPI communications. First, data transferred along the ±x-
axis are placed at both sides of the original data by connecting its left (+x) and
right (−x) end to the original data. As a result, data blocks are laid along the x-axis
in which all coordinate data are arranged serially. Next, data transferred along the
±y-axis with data-block units from (1,3) to (5,3) are placed at the top and bottom
of the line at address 3, where voids at both sides of the block are also transferred
to avoid any heading and sorting of data in each communication process. With tag
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 meta_xyz(3,n)

 X

Y 

Y , 

Y

tag(1,1)

na_per_cell(5,1)

tag(5,1)

Coordinate data originally
distributed to myrank 

One dimensional representation

(1) Data transfer
along X axis

(2) Data transfer
along Y axis

Data received from 
ranks along + X axis

Data received from 
ranks along - X axis

Data received from ranks along + Y axis

Data received from ranks along + Y axis

Data received from ranks along - Y axis

Data received from ranks along - Y axis

(3,3) (3,3)

(1,5) (5,5)

(1,1) (5,1)

Two dimensional representation

(1,3) (5,3)

(5,3)

(3,3)

(1,3)

(5,1)

(1,1)

(5,3)

(3,3)

(1,3)

(5,5)

(1,5)

Fig. 5.6 Storage style for coordinate data transferred from other ranks

and na_per_cell reconstructed after the communications, any data stored in the halo
region can be accessed in the same way as a method to access data on (3,3). For
example, the coordinate data packed in a set of five subcells at line address 1 are
accessed by

DO i0=tag(1,1), tag(5,1)+na_per_cell(5,1)-1
meta_xyz(1:3, i0)

ENDDO

with a completely serial access favorable for the following vectorized arithmetic oper-
ations. In addition, a set of five subcells designated according to tag and na_per_cell
with the start and end address of subcell block can be a data-blocking unit without
introducing any temporary arrays.

Generally, several subcells are distributed to each rank, depending on the given
total subcell number and MPI process. In such a case, the coordinate data are sepa-
rately stored with a unit of a line along one axis, which is chosen as same as the first
axis in a series of MPI communications optimized for a 3D torus network described
in Sect. 5.2.3.2 and Fig. 5.3.

For the multipole data, a similar data structure with metadata of relative indices
of subcells or supercell addresses is considered.

The M2M operation refers to multipoles on eight subcells or supercells with
the same parent cell. The M2L operation requires multipoles on surrounding 875
(=103 − 23) subcells or supercells for each level where interactions with centered
23 cells are calculated at the lower level. Within this range of multipole information,
the other operation is available. In the torus network and collective communications
described in Sect. 5.2.3.2, data not only on target ranks, but also on intermediate
ranks, are automatically gathered to myrank. Therefore, it is more efficient to receive
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 X
Y  meta_wm0(1:(nmax+1)2,5,5) 

 meta_wm0(1:(nmax+1)2,6,5) 
 meta_wm0(1:(nmax+1)2,5,6) 
 meta_wm0(1:(nmax+1)2,6,6)

 meta_wm0(1:(nmax+1)2,1:10,9:10) 
 meta_wm0(1:(nmax+1)2,1:10,7:8) 
 meta_wm0(1:(nmax+1)2,1:10,5:6) 
 meta_wm0(1:(nmax+1)2,1:10,3:4) 
 meta_wm0(1:(nmax+1)2,1:10,1:2) 

(1,1) (10,1)

(10,1)                                                                            (10,10)

(5,5)  (6,5)

(5,6)  (6,6)

Multipole data originally distributed to myrank 

Multipole data receieved from other myranks 

(X,Y): Relative indices of subcells

(1) Data transfer along X axis

(2) Data transfer along Y axis

Data received from ranks along + Y axis

Data received from ranks along + Y axis

Data received from ranks along - Y axis

Data received from ranks along - Y axis

Data received 
from ranks along
+ X axis

Data received 
from ranks along
- X axis

Fig. 5.7 Two-dimensional representations of data array for multipoles with metadata structure

redundant multipoles on surrounding 103 cells than to extract multipoles on 875 (for
M2L) and 8 (for M2M) cells explicitly.

Figure5.7 shows the data structure of multipoles at level 0 (meta_wm0) in a
2D representation where multipoles on four subcells at (5,5), (6,5), (5,6), and (6,6)
addresses are distributed to myrank. The FMM is based on a hierarchical partitioning
of a calculation unit cell where metadata of relative distance among subcells or
supercells are equipped originally. Unlike the case of atomic number, the number of
elements for each cell is constant, which corresponds to the number of expansion
terms (nmax + 1)2. Thus, it is not necessary to prepare additional arrays to store the
metadata of data numbers for each cell.

In meta_wm0 array, data are serially packed along the X -axis in each line.
Data transferred from other ranks along the ±X -axis by MPI communications
are placed at both sides of data in myrank. A data block in each line, e.g.,
meta_wm0(1:(nmax + 1)2,1:10,5) is sent to the adjacent rank by a MPI communi-
cation along the +Y -axis, receiving a data block meta_wm0(1:(nmax + 1)2,1:10,4)
from the adjacent rank in −Y direction. By repeating send/receive communications,
the empty region in the halo area is filled with multipole data necessary for the M2M
and M2L operations.
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5.3.3 Techniques to Realize Highly Effective Arithmetic
Operations

5.3.3.1 Data Blocking

Data blocking is a general method to utilize the data on the cache(s). The data to be
calculated are partitioned into a group of patches,which are small enough to be placed
on the cache, especially level 1 cache (a few 10 kBs). It is desirable for calculation
efficiency that the same data are loaded from the main memory to the cache only
once. In other words, the data loaded on the cache are consumed thoroughly without
flowing back.

In MD calculations, a data-blocking target is the coordinate data in the pairwise
additive interaction calculations. If the FMM is adopted for the calculation method
of the long-range electrostatic interaction, the multipole data on each subcell or
supercell and partial elements of the transformation matrix in the M2L operation are
to be blocked.

An issue in the pairwise additive interaction calculation by the LLC method is
summarized in Fig. 5.8a. In the usual implementations of the LLC method, DO loop
for i-cells owned by myrank is located at the outermost position, followed by j-cells
loop. Inside these cell loops, loops for i atoms in the i-cell and j atoms in one specified
j-cell are included. This loop structure is easy to understand, although there is a large
amount of wasted time loading the coordinate data of j atoms; i.e., the range of access
is determined separately by the position of each i-cell and most of them overlap each
other. Thus, the same data of the j atom coordinates are repeatedly loaded from the
main memory to the caches.

On the other hand, Fig. 5.8b shows a DO loop structure considering the data
blocking of j atom coordinates. The outermost DO loop orders a shift of blocked
data, i.e., jcell_line in the figure. A length of the jcell_line is five subcells in the
direction where data are stored serially. The second inner loop orders a shift of i-cells
in a direction vertical to the jcell_line within the decomposed domain (icell_line).
The third DO loop selects i atoms in each subcell, followed by the fourth DO loop,
which selects j atoms in each jcell_line. With this DO loop structure, coordinate
data in each jcell_line are loaded only once, and all relevant pairwise interactions
are calculated properly.

In typical biological systems, if a side length of subcell is about 6–7Å, the number
of atoms in each subcell is nearly 40. Thus, the data size of atom coordinates in each
jcell_line is about 5 kB, which is small enough to be placed in the level 1 cache
(typically, 32 kB in modern CPUs). For calculations of the LJ and electrostatic
interactions, the force field parameters (σ, ε, and q) are also required. In general, the
same parameters are reused for different atoms; therefore, the required data size for
these is relatively small. The data size for i atoms is one fifth of j atoms, which costs
only a few kBs of data.

In the case of M2L operation, the same loop structure is adopted for a blocked
arithmetic operation, as shown in Fig. 5.9. In the conventional loop structure, desti-
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myrank

do icell(myrank) 
do jcell
  do iatom=tag(icell),  
                tag(icell)+na_per_cell(icell)-1 
  do jatom=tag(jcell), 
                tag(jcell)+na_per_cell(jcell)-1 

  enddo 
  enddo 
enddo 
enddo

icell

myrank

do jcell_line 
do icell(myrank) [shift icell along icell_line ] 
  do iatom=tag(icell), 
                  tag(icell)+na_per_cell(icell)-1  
  do jatom=tag(jcell),  
          tag(jcell+4)+na_per_cell(jcell+4)-1 

  enddo 
  enddo 
enddo 
enddo

jcell_line

tag(jcell)

tag(jcell+4)+ 
na_per_cell(jcell+4)-1

Move jcell blok loop to outermost

Range of 
jcell access

Region where coordinate data 
were transfered

Calculate potential and forces
between iatom and jatom

Calculate potential and forces 
between iatom and jatom

Region where coordinate data 
were transfered

icell_line

(a)

(b)

Fig. 5.8 An example of the data blocking in the pairwise additive calculation of interatomic inter-
actions

nation cells are shifted by the outermost DO loop, followed by a shift of source cells.
For each selected cell pair, matrix (M2L transformation matrix) times vector (mul-
tipole elements) arithmetic operations are executed. However, in the data-blocking
arithmetic operations, the multipole data on the surrounding 875 subcells or super-
cells are partitioned into a set of small patches. Similarly to the blocked pairwise
additive calculation, the outermost DO loop shifts a patch of source cells. The sec-
ond inner DO loop shifts a destination cell within the domain distributed to myrank.
After selecting source and destination cell pairs, a matrix-times-vector operation is
executed. The optimal size of each block depends on the truncated degree of multi-
pole expansions nmax. The expansion coefficient and translation matrix elements are
complex numbers (16 bytes (B) in double precision), and the required data size for
blocks is an integer multiple of 16 B × (nmax + 1)2, which should be less than the
cache size on the hardware used.
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When the data-blocking technique is adopted, the data in each block are also
required to be serially packed on the main memory to reduce the frequency of data
transfer to the cache and for the following vectorized arithmetic operations by SIMD
instructions. An easy way is to prepare a temporary array for blocked arithmetic
operations by copying the original data to the temporary arraywith partitions between
each block. However, as described below, the time consumed in a data copy operation
from the original array to the temporary array could become a rate-determining
process when the elapsed time is greatly reduced by hierarchical parallelization of a
code. With the metadata structure of coordinate data as described in Sect. 5.3.2, the
temporary array and copy operation are omitted completely because the coordinate
data are already partitioned based on small units (subcells) and data are serially
packed along one axis by a series of MPI communications. Consequently, the atom
coordinates in an arbitrary number of subcells in onedirection canbe serially accessed
by a combination of tag and na_per_cell.

In conclusion, the metadata structure is excellent from the perspectives of not
only low latency MPI communications, but also the data-blocking technique for the
following arithmetic operations.

5.3.3.2 Thread-Level Parallelization

Thread-level parallelization is realized by the OpenMP language extension, which
is activated by adding the OpenMP directives. Since the latest hardware develop-
ment trend is toward many cores and wide SIMD architectures, it becomes critically
important to apply efficient thread-level parallelization at every hot spot.

Briefly, the range of thread-level parallelization in a Fortran code is defined by
a pair of !$omp parallel and !$omp end parallel directives (#pragma omp parallel
and #pragma omp end parallel in a C code). In a defined parallelized region, any
DO loops sandwiched by !$omp DO and !$omp end DO directives are the target of
thread-level parallelization (#pragma omp for in a C code, without end statement).
In addition, a proper compile option to a compiler (e.g., -fopenmp for gfortran, or
-qopenmp for ifort, -mp for pgfortran) is required to interpret the inserted directives.
Modern compilers are equipped with the auto thread-level parallelization function,
which is activated by the defined option (-parallel for ifort, -Mconcur for pgfortran).
In practice, however, it is only applicable to simple codes, such as setting of initial
array values because the compiler assigns priority to keep the auto parallelized code
accurate. Therefore, an explicit thread-level parallelization of calculation hot spots
by inserting the OpenMP directives is required.

A general point to be noted for efficient thread-level parallelization is the uniform
load balancing between threads. The easiest but effective way is to elongate the
length of the target loop for thread-level parallelization compared with a given thread
number. By default, a block of a whole loop length divided by Nt is assigned to each
thread. Thus, the longer the loop, the smaller the load imbalance between threads
becomes. Frequently, a fusion technique of two or more loops is used to elongate the
loop length. The collapse clause in the OpenMP is prepared for this purpose; i.e.,
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do iblk =1,nblock
do icy = icyblkst (iblk ),icyblkend (iblk ) 
do icx =icxblkst (iblk ),icxblkend (iblk ) 
do icell (myrank ) 
if( icx,icy is within 2 nearest neighbors) cycle 
do m1=1,(nmax+1)2

do m2=1,(nmax+1)2

wl(m1) =wl(m1)+ m2l (m1,m2)* wm(m2)
enddo  
enddo  
enddo  
enddo  
enddo  
enddo

icxblkst(1) icxblkend(1)

icyblkend(1)

icyblkst(1)

iblk=2

iblk=3 iblk=4

iblk=1

iblk=1
M2L

myrank

!$omp parallel
!$omp do

!$omp end do
!$omp end parallel

Fig. 5.9 Blocked arithmetic operations parallelized with the OpenMP directives in the M2L oper-
ation

multiple loops are merged into one loop in the compiling process and thread-level
parallelization is performed on the merged loop.

The next method is to design the size of loop blocks assigned to each thread
explicitly, if possible, considering blocked arithmetic operations. In addition, it is
desirable that the number of blocks is integer times the number of threads from
the perspective of load balancing of parallelized calculations between threads. This
method achieves excellent loadbalancing, especiallywhen the amount of calculations
between each pair of source block and destination patch is uniform.

Figure5.9 shows an example of the blocked arithmetic operations parallelized
with the OpenMP directives in the M2L operation. The outermost loop with DO
variable iblk shifts the block of source cells with a total nblock number (nblock = 4
in this case). If given thread numberNt is 4 (determined by an environmental variable
of operation system OMP_NUM_THREADS when a code is executed), one block
composed of 25 cells is assigned to each thread. The block shape is controlled by the
index arrays icxblkst, icxblkend, icyblkst, and icyblkend with an argument, iblk. In
a 3D case, an additional two index arrays are introduced, iczblkst and iczblkend.

When the amount of calculations is not uniform for each block, which is the gen-
eral case for pairwise additive interaction calculations, a more sophisticated thread-
level parallelization algorithm is required to achieve high parallelization efficiency
with good load balancing.

5.3.3.3 Vectorized Arithmetic Operations

For operations within the innermost loop, vectorized arithmetic operations could be
applied by the SIMD instructions on modern CPU architectures. Its prerequisite is
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that the same kinds of operations are performed on a series of input data. In MD cal-
culations, e.g., pairwise additive calculations of the LJ and electrostatic interactions
fully satisfy this prerequisite. That is, the data of atom coordinates and force field
parameters for j atoms in the jcell_line and i atoms in i-cell are loaded, and then
the potential energy and force are calculated by the equations in the same functional
form. The M2L operation is also a good candidate for vectorized arithmetic oper-
ations because multiplications of the coefficient matrix and multipole element row
are repeated for each pair of source and destination subcells or supercells.

There are several ways to implement vectorized arithmetic operations. The easiest
way is to use the compilers’ auto-SIMD optimization or autovectorized functions,
which are activated by adding specific compiler options (e.g., -msse for gfortran,
-vec for ifort, or -fastsse for pgfortran). Compilers are also equipped with an option
to output vectorized reports of a code, sometimes with a function annotating the ele-
ments to inhibit the generation of vectorized instructions (e.g., -qopt-report for ifort).
Performance of vectorized arithmetic operations in a calculation hot spot could be
improved step by step, modifying the code beingmore suited to vectorized arithmetic
operations based on a vectorized report. Directives for SIMD optimization (!$OMP
SIMD [42]) are now prepared from the OpenMP 4.0, which are activated in another
compiler option (e.g., -qopenmp-simd for ifort). With these SIMD directives, more
detailed information to enhance autovectorization can be added to the compiler.

The second, but highly professional way is to use SIMD’s intrinsic functions [43].
An optimized set of vectorized codes for basic mathematical operations are prepared
for each vector technology (e.g., SSE, AVX, AVX-512) and precision. However,
intrinsic coding does not always result in highly effective vectorization of a hot spot. It
is only validwhen the code is rate-limited by arithmetic operations themselves: If not,
vectorized arithmetic units waste most of the time waiting for input data. Therefore,
in advance of optimization for vectorized arithmetic operations, hierarchical coding
based on a sophisticated data structure must be realized to achieve excellent total
parallelization efficiency of the code. For example, our proposed metadata structures
for coordinates and multipoles satisfy the condition for well-vectorized arithmetic
operations. The blocked coordinate data for j atoms in jcell_line or multipoles on
source cells are placed serially in the level 1 cache without delays in loading time
for data from the main memory.

We outline the general considerations for highly efficient vectorized operations
as follows. First, the serial dependency between elements in data arrays should be
removed bymodifying a code or the algorithm itself. In general, backward or forward
reference to data, such as

DO
a[i]=a[i-1]+b[i]

ENDDO

or

DO
a[i]=a[i+1]+b[i]
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ENDDO

where loop index i is difficult to be vectorized because the present arithmetic oper-
ation for a[i] depends on the past a[i-1] or future a[i+1] data with the possibility of
being updated. It is also difficult to vectorize a code effectively when a loop contains
an indirect access to a data array element by introducing an index list array, such as

DO
a[list(i)]=a[list(i)]+b[i]

ENDDO

with loop index i. There are some established tricks to overcome these difficulties,
whereas the bestway is to adopt an alternative algorithmwithout backward or forward
reference to data.

Second, the type of arithmetic operation to input data in the target loop is as uni-
form as possible; e.g., in the calculation of the LJ interactions in MD calculations,
a cutoff technique (Sect. 5.1.2) is usually adopted. Its execution depends on the dis-
tance between i and j atoms. Usually, an IF sentence may be introduced into the
target loop of vectorized arithmetic operations, which makes arithmetic operations
in the loop nonuniform. Another example inMD calculations is an exclusive calcula-
tion of interatomic interactions in the same molecule. Since interatomic interactions
between atoms separated by one chemical bond (the so-called 1–2 interaction) and by
two chemical bonds (the 1–3 interaction) are evaluated by bonded potential terms and
angled potential terms, they must be eliminated from interatomic LJ and electrostatic
interaction calculations to avoid a duplicated estimation of interactions. In addition,
a scaled calculation (or calculation with special parameters) of an interatomic inter-
action between atoms separated by thee chemical bonds (the 1–4 interaction) in the
same molecule should be considered in longer molecules, since the interaction is
partially evaluated by dihedral potential terms. In the former, the code can be made
uniform by introducing a cutoff variable with a value of 0 (if rij > rcut) or 1 (else)
multiplied by the calculated potential and forces. In the latter, it may be possible to
use a redundant calculation and removal technique that calculates all pair interac-
tions once, and then eliminates the pair interactions from the total. In most cases,
the removal process code is complicated and does not suit vectorization. However,
since the calculation amount is much higher in the uniform calculation than the latter
removal calculation, this method greatly improves the total performance. An issue is
that a large round off could produce errorswhen subtracting repulsive 12-power terms
in the LJ interaction. The error is acceptable with a double-precision floating-point
calculation, while it is not acceptable in the case of a single-precision calculation. In
such a case, another technique, such as mask processing to avoid the 1–2 and 1–3
calculations should be implemented to keep the MD calculations accurate.

Third, the loop length is long enough to conceal the pre- and post-processing time
for vectorized arithmetic operations and enhance the software pipeline. It is also
desirable from the perspective of load balancing between vector lines. An easy way
to elongate a loop length is a fusion of the loop with upper loop(s) as in the case
for thread-level parallelization by the OpenMP directives described above. However,
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do jcell_line
do icell [along icell_line] 

do iatom=tag(icell), 
                tag(icell)+na_per_cell(icell)-1  
  do jatom=tag(jcell),  
          tag(jcell+4)+na_per_cell(jcell+4)-1 
    rij=rij(ri,rj) 

if(rij rcut) LJ_epsilon=0d0
nonbond= nonbond+ ij

f(i)=f(i)+Fi 
f(j)=f(j)+Fj 

  enddo 
enddo 

enddo 
enddo

do iatom=tag(icell), 
                tag(icell)+na_per_cell(icell)-1  
  do jatom=1,voidpair123(iatom) 
    rij=rij(ri,rj) 

nonbond= nonbond– ij

f(i)=f(i) – Fi 
f(j)=f(j) – Fj 

 enddo 
  do jatom=1,scalepair14(iatom) 
    rij=rij(ri,rj) 

x=1-s 
nonbond= nonbond–x* ij

f(i)=f(i) – x*Fi 
f(j)=f(j) – x*Fj 

 enddo 
enddo 

This “if sentence” is 
replaced by a mask 
processing
by Fujitsu compiler

Calculate once the  potential energy
and force for the all pairs without 
distinguishing 1-2, -3, -4, and others

Removel of 1-2 and 1-3 
interactions to be omited

Removal of scaled 1-4 
interactions with scaling 
factor s 

Target do loop for 
vectorized arithmetics  

!$omp parallel

!$omp end parallel

!$omp do

!$omp end do

!$omp parallel
do icell [along icell_line]
!$omp do

!$omp end do
enddo
!$omp end parallel

Fig. 5.10 Vectorized arithmetic operations of the pairwise additive LJ and electrostatic interactions
for a molecular system, which includes the 1–2 and 1–3 interactions to be omitted and the 1–4
interactions to be scaled in the same molecule

it usually involves an introduction of an index list that relates the loop variable of
a fused new loop to the loop variables in the original loops. As stated above, an
indirect access by an index list makes it difficult to create an optimized vectorized
code using a compiler because the data dependency between loops becomes opaque
for a compiler. In any case, the best way is to elongate the target loop in the original
code from the perspective of calculation algorithms.

Figure5.10 shows an example of the SIMD-optimized code for pairwise additive
calculations of the LJ and electrostatic interactions, including thread-level paral-
lelization by the OpenMP directives adopted by the MODYLAS [7] software. The
left block of the program is executed first, followed by the right block. The third
DO loop with DO variable iatom in the left block is the target of thread-level paral-
lelization. The innermost DO loop with DO variable jatom is the target of vectorized
arithmetic operations; its loop length is determined as the [average number of atoms
in each subcell (about 40)]×[number of subcells in jcell_block (5)]≈ 200 for typical
biological systems. The cutoff processing of the LJ interaction is performed by the IF
sentence, which is replaced bymask processing in the compiling process by Fujitsu’s
Fortran compiler. The potential energy and forces are removed from their total by
the third DO loop in the right block, which detects the atoms of the 1–2 and 1–3
interaction sources for each iatom. Similarly, the fourth DO loop in the right block
detects the 1–4 interaction source for each iatom in which the calculated interaction
multiplied by x = 1 − s (s: original scaling factor) is removed from the total.

By a performance measurement on the K computer, which has a 128-bit SIMD
with for double-precision floating-point calculations and eight cores (eight threads
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execution) in each CPU, the left program block gives over a 95% SIMD instruction
fraction to floating-point arithmetic operations with a very low cache miss rate at
less than 1% and nearly 0% for the level 1 and 2 caches. In addition, the distributed
memory parallelization by theMPI keeps scalability up to 65,536 (216) processeswith
an input of a 10 million atom system when the long-range electrostatic interactions
are calculated by the FMM [7].

5.3.4 Future Prospects

In the exascale era, general-purpose supercomputers with many cores and vectorized
units with wider SIMD widths will be installed. The quality of not only thread-
level parallelization, but also vectorized arithmetic operations becomes more critical
in performing highly effective parallelized calculations on such supercomputers.
Obviously, points to note for achieving highly effective parallelization are a good
load balance and the uniformity of arithmetic operations between parallelized units.
These are realized by temporarily applying some established methods, although the
best way is to modify the calculation algorithm at the hot spot itself as we recently
proposed for the P2P operation [44]. New algorithms for parallelization should be
continuously invented to adopt to future supercomputer architectures.

5.4 GENESIS

5.4.1 Main Features of GENESIS for Optimization and
Parallelization

To extend the simulation system size and time is a great challenge inMD due to small
integration time step and required long simulation time. GENESIS (Generalized-
Ensemble Simulation System) is implemented to address these challenges by opti-
mizing the program and developing efficient algorithms for ensemble generations
[8]. In this section, we focus on the developments in GENESIS from the point of
view of optimization. Because the electrostatic interaction in GENESIS is based on
particle mesh Ewald (PME), we will discuss optimization on two points: efficient
parallelization of three-dimensional Fast Fourier Transform (FFT) and evaluations
of finite-range interactions in the real-space.

5.4.1.1 Inverse Lookup Table [45]

In MD, the major bottleneck is the calculation of non-bonded interactions including
van der Waals or electrostatics. Especially in the PME method, much of the opera-
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tion cost is spent on the square root function and the error function evaluations. MD
software, therefore, usually employs a calculation method that avoids calling these
mathematical functions. Instead, a numerical lookup table obtained by performing
numerical interpolation is generated in advance and used for non-bonded interac-
tions. The feature of GENESIS’s lookup table is that the numerical interpolation
is performed evenly in proportion to the reciprocal of the distance squared. Using
this lookup table, it is possible to accurately calculate the interaction energy and the
force at short distance since many interpolation points are used. As for the large dis-
tance interaction, it is possible to increase the performance by using a small number
of interpolation points. Given the interaction distance r and the cutoff distance rv ,
respectively, it is possible to define the interpolation point coordinates L using the
interpolation point density D,

L = INT

(
D × r2ν

r2

)
(5.11)

Then, the energy function E(r) using the lookup table can be written as

E(r) = Etab(L) + t(Etab(L + 1) − Etab(L)) (5.12)

t = D × r2ν
r2

− L (5.13)

By using the lookup table scheme with Eqs. (5.11)–(5.13), which we named inverse
lookup table, CPU cache memory can be used efficiently, so high-speed nonbonded
interaction evaluation can be performed. Even using small number of interpolation
points, it provides accurate energy and force calculation.

5.4.1.2 Spatial Decomposition Scheme in GENESIS

In GENESIS, there are two MD simulators: ATDYN (ATomic decomposition
DYNamics) and SPDYN (SPatial decomposition DYNamics). ATDYN is paral-
lelized based on the atomic decomposition, and each MPI processor has all informa-
tion of the system, such as coordinates, velocities, charges, and so on. Parallelization
of SPDYN is based on the spatial decomposition scheme. SPDYN is particularly
designed for large-scale MD simulations suitable for recent multicore CPUs. There-
fore, in this section, we introduce the parallelization method of GENESIS, limited to
SPDYN. In SPDYN, the simulation space is divided into the same subdomain as the
number of MPI processors. Subdomain is further divided into smaller unit domains
called cell. The length of cell in each dimension is limited to a size greater than half of
the cutoff distance. Particle data like coordinates or velocities are grouped according
to cell indices. Pairwise interactions are grouped by cell pairs which are distributed
over OpenMP threads by shared memory parallelization scheme using OpenMP.
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(1) Midpoint cell method [8]

The midpoint cell method is an extension of the existing midpoint method for hybrid
parallelization of MPI and OpenMP. In the midpoint method, the non-bonded inter-
action between a particle pair is evaluated in the subdomain containing the midpoint
of the particle pair. Therefore, a particle pair interaction is often performed in a
subdomain where none of the particles exist. In the case of using the cut-off dis-
tance or pairlist cutoff distance, rv , it is sufficient to import coordinate data within a
distance of rv/2 from each subdomain using the midpoint scheme. In the midpoint
cell method, particle data are grouped cell-wise and the interaction subdomain is not
decided from the midpoint of each particle pair but from the midpoint cell of each
cell pair in which each particle resides. The midpoint cell is sometimes not uniquely
defined. For example, in Fig. 5.11, themidpoint cell of the cell pair a and b is uniquely
determined. On the other hand, there are two possibilities for the midpoint cell of the
cell pair c and d. In such a case, the midpoint cell is determined considering the load
balance in the actual operation. In the case of using the midpoint cell method, it is
only necessary to communicate from/to the adjacent cells of each subdomain. In both
midpoint and midpoint cell methods, communication cost is reduced by increasing
the number of processors, enabling high parallel efficiency. In the existing midpoint
method, it is necessary to determine the subdomains including the midpoints for all
particle pairs every step or whenever pairlist is rewritten. On the other hand, in the
midpoint cell method, midpoint cells are decided before running MD simulation.

(2) Volumetric decomposition FFT [28]

By using the PME method, the amount of computation required for the non-bonded
interaction decreases from O(N 2) to O(N logN ) when the total number of parti-
cles is N . However, since the FFT calculation in PME requires global all-to-all
communications, FFT becomes a main bottleneck in MD when using very large
number of processors. In NAMD and GROMACS, slab (one-dimensional) or pen-
cil (two-dimensional) decomposition schemes are used, whereas GENESIS uses a
parallelizationmethod based on volumetric (three-dimensional) decomposition. Vol-
umetric decomposition FFT requiresmore frequent all-to-all communication than the
case of using slab or pencil decompositions, but the number of processors involved in
each communication is minimized. For this reason, FFT calculation using volumetric
decomposition is generally suitable for MD simulations of big systems using many
processors. Furthermore, by applying the same node topology as volumetric decom-
position, volumetric decomposition can be useful for supercomputers equipped by
torus network type like K.When the midpoint cell method and volumetric decompo-
sition FFT are combined to each other, all-to-all communication of charge informa-
tion can be skipped. For example, in Fig. 5.12a, the information of the charge in the
reciprocal-space held by the processor 10 can be obtained without any communica-
tion from the information held by the same processor in the real-space. If different
decomposition scheme is done between the real- and reciprocal-spaces, shown in
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Fig. 5.11 Spatial
decomposition scheme in
GENESIS SPDYN

Fig. 5.12b, the charge information in the reciprocal-space in the processor 10 can be
obtained by communication among processors 3, 7, 11, and 15.

5.4.2 Benchmark Performance of GENESIS

Here we introduce the benchmark results of GENESIS using PC clusters and the K
computer. As for the PC clusters, we used 32 nodes, each of which consists of two
Intel Xeon E5-2670 CPUs. Since the number of cores included in this CPU is 8, the
number of cores in a node is 16, so the PC cluster consists of 512 CPU cores. We
used three molecular systems for the benchmark, which are listed as followings:

(1) Main porin fromMycobacterium smegmatis (MSPA, 216, 726 atoms in 126.933
× 126.933 × 131.063 Å3 box)

(2) Satellite tobacco mosaic virus (STMV, 1,066,628 atoms in 216.83 × 216.83 ×
216.83 Å3 box)

(3) 27 STMV (28, 798, 956 atoms in 650.49 × 650.49 × 650.49 Å3 box)

The third molecular system is obtained by magnifying three times in each dimension
from (2). The number of FFTgrids are (144, 144, 144), (256, 256, 256), and (512, 512,
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Fig. 5.12 a There is no communication between real- and reciprocal-space if we assign identical
spatial decompositions, but b communication is necessary if different spatial decomposition is
assigned

512), respectively. The cutoff distance and the pairlist cutoff distancewere (12Å, 13.5
Å) for (1) and (10 Å, 11.5 Å) for (2) and (3). Water molecules were treated as rigid
bodies using the SETTLE method, and intramolecular bonds containing hydrogen
atoms were subjected to be constrained using the SHAKE/RATTLE algorithms. The
time step in MD simulation is set to 2 fs. Figure5.13 shows the benchmark results of
MSPA and STMV on the PC clusters. Parallelization efficiency is not lowered up to
512 cores despite we do not use multiple time step (MTS) integration. The maximum
speeds of MSPA and STMV on the PC clusters are 17.79 ns/day and 5.87 ns/day,
respectively.

Next, the performance using the K computer for STMV and 27 STMV is shown
in Fig. 5.14. For STMV, the speed efficiency does not decrease up to 4096 nodes,
and the maximum speed is 37.61 ns/day. When using RESPA MTS integration, the
maximum speed has reached 47.77 ns/day. For 27 STMV, the speed efficiency does
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not decrease up to 16,384 nodes, and the maximum speeds using the velocity Verlet
and RESPA MTS integrations are 14.60 ns/day and 17.51 ns/day, respectively.

Our benchmark results show excellent parallelization efficiency of GENESIS.
Despite executing FFT calculation including all-to-all communication every step,
high parallelization efficiency is maintained both in PC cluster and K. The perfor-
mance ofGENESIS shows even better values usingRESPAMTS integration scheme.

Exercises

1. Process number calculation: MD calculations are often performed under the
three- dimensional periodic boundary condition. In a circularly shifted commu-
nication using theMPI_SENDRECV function described in Sect. 5.2.3.2, it is nec-
essary to determine process numbers dest and sourcewith taking into account of
the periodic boundary condition. Given that the total number of MPI processes
is NPROCS = 2n (n ≥ 1), and the number of processes assigned along the x, y,

Fig. 5.13 Performance of a MSPA and b STMV systems on K computer

Fig. 5.14 Performance of a STMV and b 27 STMV systems on K computer
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and z axis are 2nx , 2ny and 2nz (i.e., n = nx + ny + nz). Then, derive an equation to
calculate dest and source for any myrank.

2. Reduction of array: Code a program that takes a reduction of array parallelized
by threads, without using the reduction clause prepared in OpenMP language
extension (i.e., !omp reduction (+:a)).

3. Performance measurement of vectorized operation: (1) Specify an option to
enable automatic SIMD vectorization, by applying “man” linux command to a
compiler. Its name depends on a kind of fortran compiler. (2) Evaluate rate of
acceleration by vectorized SIMD operations, comparing elapsed time of a code
by vectorized operation with that by normal (non-vectorized) operation, by using
“time” linux command.With adding “-O0” option for compilers, completely non-
vectorized executable is created. Note that the latest compilers do optimization
of a code to some extent at default, and that “-O0” option disables such hidden
optimizations.

Appendix: FMM

The principle of the fast multipole method (FMM) is briefly explained in this
Appendix. See Ref. [15] for exact mathematical treatment of the transformation of
multipole moment and local expansion coefficients, such as M2M, M2L, and L2L.

Fundamentals of Multipole Expansion

As shown inFig. 5.15, the atom i of the charge qi in a certain area forms the potential at
a distant pointQ. The reciprocal 1/ri of the distance between two points is calculated
using the distance �ri from the origin O to the atom i in the region, the distance r
from the origin O to the point Q, and the angle γi formed by the points �ri and r
with the point O. This can be expressed as

1

ri
= 1√

r2 − 2r�ri cos γi + �r2i

= 1

r
√
1 − 2�ri

r cos γi +
(

�ri
r

)2 (5.14)

from the cosine theorem. When this equation is rewritten by Taylor expansion, it
becomes

1

ri
= 1

r
+ �ri

r2
cos γi + �r2i

2r3
(
3 cos2 γi − 1

) + �r3i
2r4

(
5 cos3 γi − 3 cos γi

) + · · ·

= 1

r

∑

n

Pn(cos γi)

(
�ri
r

)n

, (5.15)
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Fig. 5.15 Multipole
expansion of electrostatic
interaction

wherePn(cos γi) is a Legendre polynomial. This Eq. (5.15) is calledmultipole expan-
sion. Pn(cos γi) is written as

Pn(cos γi) =
n∑

m=−m

Y−m
n (θi,φi)Y

m
n (θ,φ) (5.16)

using the spherical harmonics, Ym
n (θ,φ) for spherical coordinates (�ri, θi,φi) and

(r, θ,φ) of the two vectors �ri and r. In Eq. (5.16), the coordinate variables of atom
i and point Q are completely separated into two factors. Therefore, the sum with
respect to the charges in a region can be represented independently of the position
of the point Q. The sum

Mm
n =

∑

i

qiY
−m
n (θi,φi)�ri

n (5.17)

is the multipole moment formed by the charge in the region. The electrostatic field
formed by all charges in the region can be expressed as

∑

i

qi
ri

= 1

rn+1

∑

n=0

n∑

m=−n

Mm
n Ym

n (θ,φ). (5.18)

Division of Unit Cells

In FMM, unit cells are divided into small spaces (subcells). As described in the next
section, the interaction calculation is performed using these subcells. There are sev-
eral ways to divide unit cells into subcells; however, an octree structure is commonly
used, in which each side of the unit cell is divided into two equal parts and the whole
is divided into eight subcells (Fig. 5.16). This division is repeated until the subcell
reaches the desired size of small subcells, i.e., level 0 for the unit cell and level 1 after
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Fig. 5.16 Division of unit cell

dividing once. The number of subcells of level n is 8n. In practical use, tens of atoms
are assigned to the smallest subcell. This smallest subcell is a unit of regional divi-
sion.We assign subcells to compute nodes and cores to perform parallel calculations.

Interaction Calculation by FMM

We assume that the unit cell is divided to level 4, as shown in Fig. 5.17. We now
calculate the potential of an atom in region A. First, we evaluate the electrostatic
interaction directly up to the second nearest neighbor (B) of region A of level 4. For
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Fig. 5.17 Interactions between atoms and subcell

subcells beyond region B, the interaction calculation is performed using multipole
moments.

Region C is within the second nearest neighbor of the subcell of level 3, but
excluding region B. The interaction calculation with region C is performed using
the multipole moment of level 4. Region D is within the second nearest neighbor
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of the subcell of level 2, but excluding region C. The interaction calculation with
region B is performed using the multipole moment of level 3. Hereinafter, regions
E and F are determined in the same manner. Subcells beyond region F (image cell
of third or further nearest neighbor of the unit cell) are treated as those of level 0.
Thus, the interactions can be calculated for each region without excess or deficiency.
By using small subcells for interactions with neighboring regions and large subcells
for interactions with distant regions, it is possible to efficiently perform interaction
calculations without decreasing accuracy.

Multipole Expansion and Local Expansion

The procedure for determining the potential acting on the i atom in region A is shown
(Fig. 5.18). First, the contributions from regions A and B is obtained by direct cal-
culation. This procedure is called particle to particle (P2P) in FMM. For region C,
the multipole moment is calculated in level 4 subcells according to Eq. (5.17). This
operation is called particle to multipole (P2M). Next, the center of the multipole
moment is moved to the center of subcell A. The expression obtained by this trans-
formation is the form of Taylor expansion at the center of subcell A, which is called
local expansion. This shift operation of the expansion center is called multipole to
local (M2L). By using the local expansion coefficient and the relative position from
the center subcell of atom i, its potential, force, and virial can be calculated, which
is called local to particle (L2P). For the further subcell D, the multipole moment
of the level 4 subcell is obtained by P2M similarly to C. The expansion center of
the multipole moment is shifted to the center position of the level 3 subcell (i.e.,
multipole to multipole (M2M)). Similarly, with respect to the other seven subcells,
the center of expansion is shifted by M2M. The obtained multipole moments are
summed to obtain a multipole moment of level 3, which is transformed to the local
expansion coefficient of the level 3 subcell, including subcell A, by M2L operation.
The local expansion coefficient is shifted to the center of the subcell of level A (i.e.,
local to local (L2L)). The contributions from the previously obtained subcell C and
the subcells D are summed and then the interaction is evaluated by L2P. The contri-
bution from image cells more distant than region F in Fig. 5.17 can be included by
applying Ewald’s method to the multipole moment of image cells [46].

Accuracy of FMM

FMM is a strictly formulated analytical method that includes error evaluation. The
error depends on the expansion order of the multipole moment; i.e., as the order
increases, the calculation accuracy monotonically increases. Table5.1 shows the
benchmark results of potential and force in a system consisting of 10,125,000 atoms
using MODYLAS software. The accuracy of FMM was evaluated by comparison
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Fig. 5.18 Interaction between atoms and subcell
Table 5.1 Potential and force obtained by FMM

Expansion degree V /10−13 J Fx/10−10 N Fy/10−10 N Fz /10−10 N

Exact −218,735,559 −4.357177 6.380146 −1.477348

4th −218,735,742 −4.356659 6.380802 −1.475152

8th −218,735,559 −4.357201 6.380145 −1.477340

with the result of thePMEmethodwith parameters giving a sufficiently high accuracy.
The values obtained at the 4th to 8th expansion order coincide with the exact value in
the range of 4–9 digits. There is also an accuracy of 4–7 digits for force; i.e., enough
accuracy can be obtained for MD calculations even in expansions up to the 4th order.
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Chapter 6
Large-Scale Quantum Chemical
Calculation

Kazuya Ishimura and Masato Kobayashi

Abstract Quantumchemical calculations give electronic structures, energies, geome-
tries, and properties of molecular systems, and then their reactivities and functions
are analyzed and predicted. Approximations, acceleration, parallelization, and the
features of calculation methods from the viewpoint of computer use are introduced.
In addition, the application of quantum chemical methods to huge systems based on
the fragmentation methods will be overviewed.

Quantum chemical calculations give electronic structures, energies, geometries,
and properties of molecular systems, and then their reactivities and functions are
analyzed and predicted. They are widely applied to the analysis and control of chem-
ical reactions, the elucidation of the functions for chemical substances and catalysts,
the design of new materials, and drug developments. With the development of the-
ories and computational methods, and the performance improvement of computers,
it is becoming possible to calculate nano-sized molecules using supercomputers. By
enriching software including visualization, not only theoretical and computational
researchers, but experimental researchers can also easily perform quantum chemical
calculations. In this chapter, approximations, acceleration, parallelization, and the
features of calculation methods from the viewpoint of computer use are introduced.
In addition, the application of quantum chemical methods to huge systems based on
the fragmentation methods will be overviewed.
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6.1 Purpose of Quantum Chemical Calculation

Thequantumchemistry is a researchfield, inwhich, as its name suggests, the quantum
mechanics that governs the material science is applied to the chemical phenomena.
The targets of the material science are molecules, molecular clusters, and solids,
which consist of atomic nuclei and electrons. Their quantum behavior determines
all the physical properties of the material, although the electrons are only treated in
the quantum mechanical manner usually because the mass of each nucleus is more
than thousands times larger than that of the electron. The purpose of the quantum
chemical calculation is to numerically obtain the quantum behavior of electrons.

The first-principles calculation, or ab initio calculation is a method to evalu-
ate molecular energy, electron distribution, and the other properties only from the
nuclear coordinates and the electron number as the input. Additionally, the compu-
tational method and the basis set (see below) may have to be specified explicitly
because various levels of approximate computational methods are implemented in
the actual computational package. Furthermore, the evaluations of energy derivatives
with respect to various fields are frequently performed because a physical property
obtained from an actual measurement is the response to a field or the energy bal-
ance. Especially, the derivative calculation with respect to the nuclear coordinates is
routinely performed to obtain the equilibrium and transition-state structures of the
molecule. In this chapter, however, we only focus on the energy calculation of the
ground state.

6.2 Quantum Chemical Calculation Software Packages

The software packages to perform the quantum chemical calculation are available in
many formats. Typical software packages are summarized in Table6.1. Gaussian is
the most popular package and is commonly used even by experimental researchers,
of which several handbooks are also available [1]. NTChem is developed for the use
with the K Computer, and is available in the computer resources in Research Cen-
ter for Computational Science (RCCS) of the National Institute of Natural Sciences,
Japan (former Computer Center, Institute forMolecular Science, Japan) and in Foun-
dation for Computational Science (FOCUS), Japan, as well as in the K Computer.
Although CONQUEST and OpenMX are not usually regarded as the quantum chem-
ical calculation packages, they share several similarities with the quantum chemical
calculation such as the use of atom-centered basis functions. The purpose of so-
called “first-principles calculation software” is almost the same except mainly using
plane-wave basis functions, although not listed in the table.

Here, we show the input file of SMASH program, which is the open-source quan-
tum chemical package developed by one of the authors, Ishimura (Fig. 6.1). The
Cartesian coordinates of nuclei are given below geom. By putting nuclei as speci-
fied, the structure of bent water molecule appears on the yz plane. Many programs
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job runtype=energy method=B3LYP basis=cc-pVDZ
geom
O 0.000 0.000 0.122
H 0.000 0.793 -0.487
H 0.000 -0.793 -0.487

Fig. 6.1 Input file of the SMASH program for water molecule

also accept the internal coordinate input known as the Z-matrix instead of the Carte-
sian coordinate input. The electron number, which is the other required information,
is usually set automatically for the neutral and lowest spin multiplicity molecule. At
the first line started from job, the calculation method (DFT calculation with B3LYP
functional), the basis set (cc-pVDZ), and the type of the calculation (energy only
calculation) are specified.

6.3 Computer Environment in the Field of Molecular
Science

Because the computational cost for quantum chemical calculations increases in pro-
portion to more than the cubic of the number of atoms, which depends on the com-
putational method, supercomputers have been utilized in this field for more than 40
years. Table6.2 shows the history of the computer performance in RCCS [2]. Since
the first introduction in 1979, they have been regularly updated, and the performance
continues to improve at a pace of several hundred times in 10 years. The peak per-
formance in 2000 is 515 GFLOPS, which is equivalent to 1 PC in 2019. It is now
possible to secure the computing capacity of supercomputers 20 years ago in a labo-
ratory. The peak performance in 2015 is 492 TFLOPS, which is equivalent to about
1/20 of the K Computer (10.6 PFLOPS). The total number of CPU cores is more
than 15,000, and thus parallel computing is necessary for taking advantage of perfor-
mance. If the performance improvement of computers continues, it is predicted that
computers with the performance of several tenths of the K computer are available in
a laboratory in the late 2020s and the number of cores is enormous. Therefore, the

Table 6.1 Typical quantum chemical calculation software packages

Commercial Gaussian16, Q-Chem, MOLPRO, Molcas,
Turbomole, ADF

Free Provided binary only NTChem, ORCA, Firefly, CONQUEST

Source code available GAMESS, DIRAC, SIESTA

Open source NWChem, ACES III, SMASH, OpenMX
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Table 6.2 History of computer performance in Research Center for Computational Science
(RCCS), National Institutes of Natural Sciences [2]

Year Machine Peak performance (GFLOPS)

1979 HITACHI M-180 (2 machines) 0.036

1988 HITACHI M-680H 0.016

HITACHI S-820/80 2

Total 2

2000 IBM SP2 (Wide 24 machines) 7

IBM SP2 (Thin 24 machines) 3

NEC SX-5 (8 CPUs) 64

Fujitsu VPP5000 (30 PEs) 288

SGI SGI2800 (256 CPUs) 153

Total 515

2015 Fujitsu PRIMERGY RX300S7 (5472 cores) 126,950

(+ NVIDIA Tesla M2090 32 boards) 21,280

Fujitsu PRIMEHPC FX10 (1536 cores) 20,152

SGI UV2000 (1024 cores) 21,299

Fujitsu PRIMERGY CX2550M1 (7280 cores) 302,848

Total 492,530

(Ref.) Earth Simulator (2002) 35,860

K Computer (2011) 10,510,000

effort to master the use of current supercomputers has become the foundation for
future daily researches.

6.4 Types of Quantum Chemical Calculations

There are various types of quantum chemical calculation methods. Here, the typical
calculation methods and their computational bottlenecks are briefly summarized.

The Hartree–Fock (HF) method is the nonempirical mean-field theory of the
electronic ground state, which is the basic of the quantum chemical calculation. The
computational bottlenecks of the HF calculation is the computation of the electron
repulsion integrals (ERIs) and the diagonalization of dense symmetric matrix.

Currently, the HF method is hardly adopted as the final calculation method. The
Kohn–Sham (KS) density functional theory (DFT), which is formally almost equiv-
alent to the HF method and usually yields more accurate results than the HF method,
is the current mainstream method. However, compared to the post-HF methods
described below, which offer the systematic hierarchy to improve the accuracy, the
current DFT has no way for certain and systematic improvement. For the theoreti-
cal aspects of DFT, please refer to the Ref. [3]. In the DFT calculation, the spatial
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numerical integration of the density functional is required in addition to the ERI
computation and matrix diagonalization.

There is another class of calculations known as the post-HFmethods that provide
more accurate results than the HF and possibly DFT. In these methods, the energy
correction by considering the explicit correlation between electrons (called correla-
tion energy), which is not included in the HF wave function, is evaluated after the
HF calculation. The procedure for these methods is completely different from that
of the HF or DFT calculation. Specifically, the main computational processes of the
Møller–Plesset perturbation (MP) and coupled cluster (CC) methods are the integral
transformation introduced below and the tensor contractions. In the configuration
interaction (CI) method, the diagonalization of huge sparse matrix is required in
addition to the integral transformation. For the theoretical details of the individual
post-HF methods, please refer to the textbook of the quantum chemistry such as [4].

6.4.1 Theory of Hartree–Fock Method

At first, the theoretical aspects of the HFmethod, the basic of the quantum chemistry,
will be overviewed briefly.1 The motion of Ne electrons in a molecule is governed
by the Schrödinger equation, the fundamental equation of the quantum mechanics:

Ĥ�(
−→r 1,

−→r 2, . . . ,
−→r Ne) = Ee�(

−→r 1,
−→r 2, . . . ,

−→r Ne). (6.1)

This is an eigenvalue equation, where the electronic energy Ee and the Ne-electron
wave function �(

−→r 1,
−→r 2, . . . ,

−→r Ne) are determined from the Hamiltonian Ĥ that
is the energy operator. The electronic Hamiltonian of an isolated molecule is given
by2

Ĥ = −1

2

Ne∑

i=1

∇2
i −

Ne∑

i=1

Nn∑

I=1

ZI∣∣∣−→r i − −→
R I

∣∣∣
+

Ne∑

i=1

i−1∑

j=1

1∣∣−→r i − −→r j

∣∣ . (6.2)

From this equation, it can be seen that the external parameters independent of the
wave function � are only the coordinates {−→R I } and charges {ZI } of the Nn nuclei.

It is difficult to obtain the wave function� by directly solving Eq. (6.1) because it
includes the coordinates of Ne electrons. Then, the HF approximation is introduced,
where each electron moves independently in the mean field (Ĥeff ) created by Ne

electrons. The Ne-electron wave function � is approximated by the product of Ne

1In this chapter, the description concerning spin is omitted, and only the formulas for the closed-
shell system are given. There are descriptions that can be pointed out to be partially incorrect, e.g.,
the coordinates of electrons must include the spin coordinate. Their details are given in the other
textbook [5].
2In this chapter, the atomic unit system is used without notice.
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one-electron wave functions {ψp(
−→r )}, each of which is called the molecular orbital

(MO),

�(
−→r 1,

−→r 2, . . . ,
−→r Ne) ≈ 1√

Ne!
∣∣ψ1(

−→r 1)ψ2(
−→r 2) · · · ψNe(

−→r Ne)
∣∣ , (6.3)

and the MOs {ψp(
−→r )} are determined by solving the following equation:

Ĥeffψp(
−→r ) = εpψp(

−→r ). (6.4)

|·| on the right-hand side of Eq. (6.3) denotes a determinant (Slater determinant),
which expresses the behavior of electrons as the Fermi particle obeying the Pauli’s
exclusion principle. Because the effective Hamiltonian Ĥeff depends on Ne MOs
{ψi (

−→r )} occupied by electrons, it has to be solved by an iterative method. Further-
more, instead of analytically solvingMOs, the Roothaan method, where theMOs are
expanded by given functions {φμ(

−→r )} (called basis functions), is generally adopted:

ψp(
−→r ) =

∑

μ

Cμpφμ(
−→r ). (6.5)

It replaces Eq. (6.4) to the following algebraic equation:

FC = SCε (6.6)

Fμν = ∫
d−→r φμ(

−→r )Ĥeffφν(
−→r ) is thematrix corresponding to the effectiveHamilto-

nian (called the Fock matrix) and Sμν = ∫
d−→r φμ(

−→r )φν(
−→r ) is the overlap integral

matrix of the basis functions, which appears when adopting non-orthogonal basis
functions. In summary, the HF calculation is the method to obtain MOs from the
nuclear coordinates and given basis functions.

6.4.2 Basis Functions of Quantum Chemical Calculation

As the basis functions, uniform systematic functions such as finite element functions
or plane waves are first thought. Actually, in the first-principles calculation program
of solid-state physics, these functions are adopted in many cases. However, in many
quantum chemical calculation programs, the functions localized at one atom are
adopted as the basis functions. These functions are occasionally called the atomic
orbitals (AOs). For the same chemical elements, the same set of AOs (basis set)
different only in the central coordinates is often assigned. This not only coincides
with the chemist’s intuitive picture that “a molecule is a collection of atoms”, but also
contributes to a drastic reduction in the number of basis functions. In the case of the
hydrogen molecule H2 as an extreme example, it is possible to obtain a qualitatively
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and symmetrically correct wave function only with two basis functions, each of
which is located on each H atom.

The first thing that comes up as an AO is the Slater type function, the radial
function of which is expressed as exp(−ζ |−→r − −→

R |) because it is the exact wave
function of the hydrogen atom. However, since the computation of the ERIs to be
introduced later becomes extremely demanding with the Slater type functions, the
program adopting the Slater type functions is limited to only a few packages such as
ADF. The standard AO used in the quantum chemistry is the Gauss-type function, the
radial function of which is expressed as exp(−α|−→r − −→

R |2). Although it does not
look much different from the Slater type function, the computation of the integrals
can be simplified by using the fact that the product of the Gauss-type functions
become another Gauss-type function. Various types of basis sets are implemented
in the packages, one of which may be specified in the calculation depending on the
required accuracy and application. You can also download them from the website
below:

https://www.basissetexchange.org/
http://sapporo.center.ims.ac.jp/sapporo/
In this chapter, we will consider quantum chemical calculations with the Gauss-

type basis functions.

6.4.3 Procedure of Quantum Chemical Calculation

The procedure of the quantum chemical calculation is summarized in Fig. 6.2. At
first, the initial guess of the electron density (density matrix D) is obtained with an
easy method such as a semiempirical MO calculation. Using the initial D matrix,
the Fock matrix3 F is constructed, where the computational bottlenecks of the ERI
calculation and the spatial numerical integration (in DFT case) is included. Next, the
other bottleneck of the diagonalization of F is performed to obtain MOs {ψp} of
Eq. (6.5). The density matrix D is evaluated with the occupied MOs as:

Dμν = 2
occ∑

i

CμiCνi . (6.7)

The process to iterate abovementioned procedure until D converges is called the
self-consistent field (SCF) calculation. In the case of HF or DFT calculation, the
computation is completed when the SCF converges. In contrast, when performing
highly accurate post-HF calculation, the largest computational bottleneck exists after
SCF.

3In DFT, it is called the KS Hamiltonian matrix.

https://www.basissetexchange.org/
http://sapporo.center.ims.ac.jp/sapporo/
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Fig. 6.2 Procedure of
quantum chemical
calculation

In the following sections, the computational details of each method will be
explained, focusing on these bottlenecks, and their rapid computational algorithms
will be illustrated.

6.5 Components of SCF Calculation

6.5.1 Fock Matrix Construction

The Fock matrix F of the HF method is expressed as the sum of the D-independent
term, Hcore, and D-dependent two-electron term, G, where D is the density matrix
expressing the electron density:

F = Hcore + G. (6.8)

The total energy is given in the HF method as

E = 1

2
Tr[D(Hcore + F)] +

Nn∑

A<B

ZAZB∣∣∣
−→
R A − −→

R B

∣∣∣
. (6.9)

Hcore is normally stored on the memory during the SCF calculation. The explicit
form of G is expressed as

Gμν =
AO∑

λσ

Dλσ

[
2�μν,σλ − �μλ,σν

]
. (6.10)
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The first term is derived from the classical electrostatic repulsion among electrons
and is known as the Coulomb term J . The second term is derived from the Pauli’s
exclusion principle and is known as the exchange term K .

�μν,σλ =
∫∫

d−→r 1d
−→r 2φμ(

−→r 1)φν(
−→r 1)|−→r 1 − −→r 2|−1φσ (

−→r 2)φλ(
−→r 2) (6.11)

is the rank-4 tensor known as the two-electron integral or the electron repulsion
integral, and has the following high symmetry:

�μν,λσ = �μν,σλ = �νμ,λσ = �νμ,σλ

= �λσ,μν = �σλ,μν = �λσ,νμ = �σλ,νμ, (6.12)

whenusing the real basis functions. This symmetry can reduce the number of integrals
to be stored to O(N 4/8). However, let us think about a medium-size example where
the number of basis functions N is 1000 and 10% of them are nonzero. In this case,
the scratch volume required to store the integral value increases to approximately
200 GB.4 Therefore, it immediately becomes difficult to store them in the memory
as the size of the system increases. There are the following two directions for the
treatment of ERIs:

• Conventional SCF
To store ERIs on the external storage (disk).

• Direct SCF
To calculate ERIs every time and discard them.

Due to the advances in the computer performance, the computation of the integrals
now can be more efficient in the actual computational time than the excessive disk
access for reading them. Recently, the direct SCF algorithm or its effective combina-
tion with the memory-based scheme, called the semi in-core algorithm, is commonly
used.

Figure6.3 shows the pseudocode for the Fock matrix construction with the direct
SCF algorithm. The AO indices are processed with the unit composed of several
basis functions of the same center, which is called the shell. The number of AO
shells μ, ν, λ, σ , running at the loop of Lines 2–16, is expected to be more than 100,
or even higher than 1000 for large molecules, for each index. The number of shell
quartets increases to tens of millions or more even if the integral symmetry described
above is used. Then, this procedure can be parallelizedwith theMPI/OpenMPhybrid,
though the MPI parallelization is only used in the Figure, and the inside of this loop
may not be parallelized.

The ERIs � is computed at Line 5, which is a unique part in quantum chemical
calculations and will be explained in detail later. The loop of Lines 6–13 is for
the integrals in the shell quartet, and the loop length of each index is fairly short
(approximately 1–10).AtLines 7–12, Fockmatrix elements are incremented utilizing

4Normally, 64-bit variables are used respectively to store the integral value and the index set (μνλσ ).
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Fig. 6.3 Pseudocode for the Fock matrix construction

the abovementioned symmetry of the integral. Due to this symmetry usage, the access
to F is not sequential by this algorithm. When utilizing the reduction clause of the
OpenMP parallelization, different arrays for F are prepared for different threads and
they are finally gathered.

At Line 4, the density matrix is used to screen the integral set as well as the AO
set of {μνλσ }. Specifically,

∣∣�μν,λσ

∣∣ ≤ √
�μν,μν · √

�λσ,λσ , (6.13)

derived from the Cauchy–Schwarz inequality, is used to evaluate the upper limit of
the 4-index integral value by the product of two 2-index integral values computed in
advance. Furthermore, the maximum absolute value of the density matrix elements
that are multiplied by �μν,λσ when evaluating the energy,

Dmax = Max(4|Dμν |, 4|Dλσ |, |Dμλ|, |Dμσ |, |Dνλ|, |Dνσ |), (6.14)

is used and the ERIs that are expected to have the contribution more than a certain
threshold εthresh to the energy

Dmax

√
�μν,μν · √

�λσ,λσ ≥ εthresh (6.15)

are only computed. In the actual implementation, a set of integrals are evaluated at
once by processing with the shell indices. Furthermore, because F is linear with
respect to D, this screening can also be adopted to the difference from the previous
cycle,�D, if the previous F is stored elsewhere (except for the exchange-correlation
term in DFT calculations). As the magnitude of �D decreases rapidly as the con-
vergence approaches, this screening becomes more effective as the SCF calculation
proceeds.
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Even if this screening is adopted, the ideal order of the computational cost is
O(N 2) because the ERI evaluation is performed when both of �μν,μν and �λσ,λσ are
large.Many programs equip the reduced-order computational code that, for example,
adopts the fast multipole method (FMM), used in the classical MD calculations, for
the potential derived by the continuous electron cloud. The implementation of the
FMM in the classical calculation is reviewed in detail in an appendix of Chap.5 of
this book. Here, we just cite important articles for the extension to the continuous
electrons [6, 7]. Although this method cannot be used directly to the exchange term
appeared only in the quantum chemical calculations, approximate O(N ) calculation
is possible by adopting the cut-off technique, because the exchange term decays
exponentially with respect to the distance for insulators [8].

6.5.2 Generalized Eigenproblem

The second component of the SCF calculation is the solution of the generalized
eigenproblem (Eq. (6.6)), in other words, the diagonalization. The typical size of the
eigenproblem in the SCF calculation is not so large, i.e., thousands by thousands.
However, because the number of the roots to construct the density matrix (=the
number of occupied orbitals) is comparable in magnitude with the number of the
basis functions, the algorithm to obtain all the roots will be usually selected. The
iron rule to do this is to use the existing linear algebra library.

When using non-orthogonal basis functions, the linear dependency of the basis
functions often becomes a problem. To avoid this problem, it is typically used to cut-
off the linearly dependent components by solving the eigenproblem of the overlap
matrix S,

SU = U s. (6.16)

Then, it is possible to orthogonalize the basis functions using X = U s−1/2. When
constructing this matrix, it is possible to avoid the linear dependence by eliminating
the components with small eigenvalues s. Because X does not depend on the density
and MOs, it is possible to construct before SCF calculation. For the matrix orthog-
onalized by X , F′ = XTFX , the standard eigenproblem is solved, (F′C ′ = C ′ε).
Then, the matrix is backtransformed as C = XC ′.

6.5.3 Spatial Numerical Integration of Density Functional

The third component of the SCF calculation appears only in the DFT calculation,
that is, the integration of the density functional. The DFT energy by the KS method
is given by,

http://dx.doi.org/10.1007/978-981-13-9802-5_5
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E = 1

2
Tr

[
D(2Hcore + 2J)

] + Exc[ρ(
−→r )] +

Nn∑

A<B

ZAZB∣∣∣
−→
R A − −→

R B

∣∣∣
. (6.17)

Comparing with the HF energy equation (6.9), the functional of the density known
as the exchange-correlation functional, Exc, appears instead of the exchange term of
K . KS Hamiltonian is expressed as,

HKS = Hcore + 2J + V xc, (6.18)

where

(V xc)μν =
∫

d−→r φμ(
−→r )

δExc

δρ
φν(

−→r ). (6.19)

Because Exc is nonlinear with respect to the density, its explicit differential form
is required. Exc and V xc must be evaluated by three-dimensional spatial numerical
integration.

In quantum chemical calculations, the atom-centered polar coordinate grid is
typically used [9]. This utilizes the fact that the electrons are dense around nuclei
and its density decreases with respect to the distance from the nucleus. Due to the
atom-centered grid, the overlap problem cannot be avoided. To avoid the overlapped
counting, the partition function p(−→r ) is introduced,

∫
d−→r Vxc(

−→r ) ≈
atom∑

A

grid∑

g

ωg pA(
−→r g)Vxc(

−→r g). (6.20)

ωg represents the weight of the grid g, which is systematically defined to each
quadrature point of each atom, whereas the partition function p(−→r ) is determined
so that it is normalized for each grid point,

atom∑

A

pA(
−→r g) = 1, (6.21)

and the weight becomes larger for closer atom. For partitioning, a gentle function
such as the Fermi function is used instead of the step function. The increase in the
number of grid points is O(N ), but if there is no ingenuity in calculating the electron
density, the cost increases by O(N 3). Parallelization of this procedure is easy because
the number of grid points are tens of thousands for each atom.
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6.5.4 Reduction of SCF Cycles by DIIS Method

Because the SCF calculation is an iterative procedure, it is important to remember that
the computational time is the one-cycle time × the number of iterations. Therefore,
although it is not essential for SCF calculation, we describe the DIIS (direct inversion
in the iterative subspace) method [10, 11] as one of the methods of reducing the
number of iteration, or a method to improve the convergence.

In the DIIS method, the Fock matrix is predicted as the linear combination of
several prior Fock matrices,

Fn,DIIS =
n∑

i=1

xi Fi

(
n∑

i=1

xi = 1

)
. (6.22)

The condition in the bracket is derived from the fact that the number of electrons
to be considered is constant. To obtain the appropriate coefficients of the linear
combination {xi }, the error vector e that represents the distance of each F from its
exact solution is introduced.

There are several definitions of the error vector. If the error can be linearly approx-
imated around the convergence, the following error vector can be considered:

ei = Fi − Fi−1. (6.23)

This definition can be easily applicable to general nonlinear optimization problem,
which is also known as the Anderson mixing. As the characteristic definition for the
SCF calculation,

ei = Fi Di S − SDi Fi (6.24)

is usually more useful, which utilizes the fact that F commutes with S at the con-
verged solution.

{xi } will be determined to reduce the error by the least square method with the
Lagrange multiplier constraint, i.e., for Bi j = eiT · ei , the following linear system of
equations will be solved:

⎛

⎜⎜⎜⎝

0 −1 −1 · · · −1
−1 B11 B12 · · · B1n
...

. . .
...

−1 Bn1 Bn2 · · · Bnn

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

−λ

x1
...

xn

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

−1
0
...

0

⎞

⎟⎟⎟⎠ . (6.25)

This is the DIIS method.
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6.6 Components of Post-HF Calculation

6.6.1 Component of the MP2 Method: Integral
Transformation

Let us introduce the bottlenecks of the more accurate post-HF calculations. The
simplest post-HF calculation is the second-order MP (MP2) method, of which the
correlation energy is given by:

�EMP2 =
occ∑

i j

vir∑

ab

(ia| jb)[2(ia| jb) − (ib| ja)]
εi + ε j − εa − εb

. (6.26)

Here, the computation of the molecular integral

(ia| jb) =
∑

μνλσ

CμiCνaCλ jCσb�μν,λσ (6.27)

is the bottleneck and costs O(N 5) if the product sum is taken stepwise.
In the actual implementation, it is necessary to balance the computational cost

with the memory and/or scratch capacity by considering the general relationship of
the number of AOs (μν) > the number of unoccupied orbitals (ab) > the number of
occupied orbitals (i j).

6.6.2 Component of the CI Method: Diagonalization
of Large Sparse Matrix

The second topic of this section is the diagonalization of huge matrix, which is
required in such as the CI method. At first, the formulation of the CI method will be
described.

The general CI wave function is given by,

�CI = t0�0 +
occ∑

i

vir∑

a

tai �a
i +

occ∑

i j

vir∑

ab

tabi j �ab
i j + · · · , (6.28)

where�0 represents the HF wave function, �a
i represents the configuration function

where one electron of i in the HF configuration is excited to orbital a,�ab
i j represents

the configuration function where two electrons of i and j in the HF configuration
are excited to a and b. In the ground-state CI method, the following equation is
variationally solved,
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H t = tE (6.29)

to obtain the lowest eigenenergy and the linear combination coefficients, t . Here, the
Hamiltonian matrix, H , has the following structure:

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
�0|Ĥ |�0

〉
0

〈
�0|Ĥ |�cd

kl

〉
· · ·

0
〈
�a

i |Ĥ |�c
k

〉 〈
�a

i |Ĥ |�cd
kl

〉

〈
�ab

i j |Ĥ |�0

〉 〈
�ab

i j |Ĥ |�c
k

〉 〈
�ab

i j |Ĥ |�cd
kl

〉

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.30)

where each piece in the square box represents all matrix elements for all i, j, . . .
and/or a, b, . . ..5 Therefore, the actual size of the Hamiltonian is significantly large,
although the number of the required roots is only a few with the lowest eigenvalues
or even one when only calculating the ground state.

An algorithm to obtain a few of the lowest eigensolutions is the Davidsonmethod,
which is the iterative procedure with trial vectors [12]. First, the trial vectors {bk; k =
1, . . . , M} are prepared, where M is about twice of the number of required roots.
Because the CI Hamiltonian is diagonal dominant, the basis vectors for the smallest
diagonal matrix elements can be adopted as the initial trial vectors. The M × M
matrix that is constructed by projecting the Hamiltonian with these trial vectors,
H ′ = b†Hb, is diagonalized to obtain the eigenvalues {λk} and eigenvectors {vk}
approximated in the subspace. The residual for the target state i is calculated as the
following:

t i = (λi I − DH )−1(H − λi I)bvi , (6.31)

where DH is the diagonal element matrix of H . The components of t i orthogonal to
the subspace {bk} are then added to the subspace and this procedure is iterated until
convergence.This algorithmachieves not only the reductionof the computational cost
but also the avoidance of the huge H storage on the memory for the diagonalization.
Furthermore, using the fact that H is a sparse matrix of which the elements are the
linear combination of the molecular integrals, the storage of H on the scratch can be
altered by that of molecular integrals by directly constructing the σ vector, σ = Hb
for the molecular integrals read from the scratch. The Davidson method is famous as
the diagonalization method of hugematrix born in the field of the quantum chemistry
and is often used even in the other field of studies.

5 0 is due to Brillouin’s theorem
〈
�0|Ĥ |�a

i

〉
= 0.
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6.7 Acceleration

6.7.1 Reduction in Operation Amount

Themost important approach for acceleration is to reduce the amount of computation.
This should be tried prior to tuning source codes in order to obtain better computer
performance. One of the basic methods is to develop new algorithms of AO ERIs
and electron correlation calculations. These operation amounts depend on the timing
for the contraction of basis functions or the transformation order from AOs to MOs.
Various algorithms continue to be proposed at present. Commonly used techniques
are the cut-off and symmetry of AO ERIs described in Sect. 6.5.1. Furthermore, if
a molecule has space symmetry, electron configurations that have different symme-
tries do not mix in electron correlation calculations, and AO ERIs with the same
value are obtained by symmetry operations such as rotations and reflections. The
computational cost can be decreased by treating only configurations with the same
symmetry or symmetry-unique ERIs.

6.7.2 Reduction in Iteration Cycles

Iteration procedures are often performed in quantum chemical calculations, and the
reduction in the number of iteration cycles lead to the reduction in the computational
time. TheDIISmethod describe in Sect. 6.5.4 ismostly used in SCF calculations. The
quadratically convergent SCF method [13] is also used especially for complicated
electronic structure systems containing transition metals although the computational
cost is very high. In the case of a small energy gap between electron-occupied and
unoccupied orbitals (the so-called HOMO-LUMO gap), the total molecular energy
sometimes oscillates. To widen the gap artificially, the level shift method [14] is
useful to prevent changing electron-occupied orbitals.

In geometry optimization calculations, stable geometries are foundwith the quasi-
Newton–Raphson method [15], in which the first derivatives are calculated ana-
lytically and the second derivatives are usually updated by the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method [16] . Initial second derivatives are calculated
with force field parameters on the redundant coordinate system that utilizes molec-
ular bond lengths, angles, and torsions [17], while the unit matrix is employed on
the Cartesian coordinate system. The initial values are improved on the redundant
system, and then the number of geometry optimization cycles can be greatly reduced.
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6.7.3 Improvement of Single-Core Performance

Computational speed may vary depending on how you write a source code even
though an algorithm or an equation is the same. It is difficult to make full use of
the performance of CPUs and memory unless you understand the current computing
mechanism. In single instruction multiple data (SIMD) operations, since multiple
data are processed simultaneously by one operation instruction, the performance can
be drawn by using “do” or “for” loops a lot. If there are data dependencies or if-
clauses in a loop, it is difficult to simply run the loop, so it is necessary to simplify
the operations in the loop. If the loop length does not depend on the input data, writing
it with a specific numerical value or parameter variable (a value unchanged in the
program) rather than a variable makes it easier for a compiler to optimize. In the
future, the SIMD width (amount of data that can be processed by single instruction)
will be even larger, and it is considered that the use of SIMD instructions becomes
more and more important. In electron correlation calculations, the amount of their
intermediates is huge, and three- or four-dimensional arrays are often handled.When
a CPU fetches data from the memory, continuous data on the memory are transferred
together. If the number of accesses to the memory is reduced by fetching efficiently,
the data transfer time can be shortened. Therefore, cache misses can be reduced by
devising the arrangement of multidimensional arrays and multiple-loop structures to
consecutive data access, enabling efficient computation of the CPU.

It is possible to useCPUsmuchmore effectively by usingmathematical BLAS and
LAPACK routines than writing matrix multiplication and diagonalization operations
by hand. In particular, BLAS level 3 routines are indispensable for dense matrix–
matrix multiplications of electronic correlation calculations. In many libraries, the
effective utilization of caches is taken into consideration and thread parallelization
is implemented, and thus intra-node matrix–matrix product calculations are greatly
accelerated.

6.8 Parallelization

6.8.1 Parallelization Method

The way of parallelization depends on what range and what to distribute, and by
combining them, it is possible to efficiently utilize large numbers of nodes and cores
simultaneously. It is the mainstream to adopt the MPI standard for internode par-
allelization and the OpenMP standard for intra-node, and using thread-parallelized
BLAS and LAPACK libraries enables more efficient development. The MPI is avail-
able for inter- and intra-node parallelization. Obtaining performance is relatively
easy, but starting to use is a bit difficult. The OpenMP is available for intra-node
parallelization and is easy to start using. In many cases, it is difficult to obtain high
performance unless you firmly consider how to store data and how to distribute
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Fig. 6.4 Hybrid MPI/OpenMP parallelization (left) communication (right) memory distribution

indices in a node. The importance of OpenMP is increasing more and more because
it is expected that the number of CPU cores per node will further increase in the
future.

The feature of the hybrid MPI/OpenMP parallelization is shown in Fig. 6.4. One
of the great merits in the field of quantum chemistry is the effective use of memory. If
distributed only with MPI, each core allocates memory space as shown in Fig. 6.4b,
and the amount of memory that can be used per MPI process becomes small, which
makes it difficult to assign a large array. On a node using OpenMP, since the memory
area can be shared by the cores, the array size can be increased. Another great
merit is the improvement of parallelization efficiency. In hybrid parallelization, the
number of MPI processes can be reduced from the total number of CPU cores to the
total number of nodes, contributing to the improvement of high load balancing and
the reduction of communication volume. Furthermore, it is possible to dynamically
distribute computational taskswithOpenMP in a node.As a disadvantage, algorithms
and programs become complicated and the development cost increases, but this
approach is quite significant for large-scale calculations using present and future
computers.

6.8.2 Optimization of MPI Communication

The primary factor of the MPI communication time depends on the data size, and the
countermeasure will change accordingly. In the case of small data, the latency time
accounts for themajority, and it is important to reduce the number of communications.
A solution is to gather data on one array and send them only once, not repeatedly
as shown in Fig. 6.5. In the case of large data, the bandwidth is dominant, and an
algorithm with small amount of communications should be developed.
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Fig. 6.5 Procedure for reducing the number of communications

6.8.3 Optimization of OpenMP Parallelization

In an OpenMP parallel region, all variables are classified into shared variables,
which are shared among threads of one process, and private ones, in which each
thread has a different value. When introducing OpenMP into an existing code, pay
attention to bugs due to forgetting to specify variables to be private. The cost of
“!$OMP parallel” or “!$OMP do” (especially,schedule(dynamic)) can-
not be ignored if the calculation amount of the OpenMP region is small. We should
design as many calculations as possible in one OpenMP parallel region, and paral-
lelize the outer loop of a multiple loop to reduce the extra cost as much as possible.

When we heavily use exclusive critical and/or atomic directives, the wait
time increases and the efficiency decreases. We have to develop loop and data struc-
tures that do not overwrite data among threads, or prepare variables for each thread
with private or reduction directives.

6.8.4 Importance and Difficulty of Acceleration
and Parallelization

It is expected that the numbers of nodes and CPU cores per node will increase in
supercomputers and PC clusters, and the SIMD width will be larger. Acceleration
and parallelization are becoming indispensable not only for special large-scale cal-
culations but also for routine calculations. In the field of quantum chemistry, the
improvement of existing programs is often complicated to obtain good performance.
It is also required to rethink from the derivation of equations and algorithms. Some-
times acceleration and parallelization cannot be progressed independently, and it
may be necessary to consider them simultaneously. Consequently, the development
cost has been increasing. We are now at the stage of thinking about cost reductions
throughout the field through open-source program sharing.
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6.9 Cases of Acceleration and Parallelization

6.9.1 Algorithm of Atomic Orbital Electron Repulsion
Integral Calculation

The AO ERI is a very important term, which is required for most quantum-chemical
calculations and is expressed as Eq. (6.11). Compared with the classical point charge
treatment, the computation is complicated since an electron is described by a set of
Gauss-type functions. Thusmany algorithms have been proposed so far, for example,
the Rys polynomial method [18], the Pople–Hehre (PH) method which rotates the
xyz axes to reduce the operation amount [19], the Obara–Saika [20], McMurchie–
Davidson (MD) [21], and Head–Gordon–Pople [22] methods which use recurrence
relations to efficiently increase angular momenta, the Accompanying Coordinate
Expansion (ACE) method [23], and so on.

An AO (basis function) is described as a linear combination of Gauss-type func-
tions. For instance, the STO-3G basis set is the contraction of three Gauss-type
functions. The calculation cost of an ERI increases in proportion to the fourth, sec-
ond, and zeroth powers of the number of the contraction and changes at the timing
of the contraction. The combination of the PH and MD methods is introduced here
[24].

The PH method rotates the coordinate axes as shown in Fig. 6.6 in order to make
the x and y components of AB and the y component of CD be zero and some
other components be constant values. The MD method increases the orbital angular
momenta of the integrals from the (ss|ss) type using recurrence relations (Fig. 6.7).

Fig. 6.6 Axes rotation in Pople–Hehre method

Fig. 6.7 Procedure for Pople–Hehre + McMurchie–Davidson method
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Table 6.3 Operation amount of (sp, sp|sp, sp) integral (=xK 4 + yK 2 + z, K : contraction num-
ber of basis functions)

Method PH PH+MD

x 220 180

y 2300 1100

z 4000 5330

Table 6.4 Operation amount of (sp, sp|sp, sp) integral for each contraction number of basis func-
tions (K )

K PH PH+MD

1 6,520 6,583

2 16,720 12,490

3 42,520 29,535

Table 6.5 Fock matrix calculation time (s)

Molecule Taxol (C47H51NO14) Luciferin
(C11H8N2O3S2)

Basis set STO-3G (361
dimensions)

6-31G(d) (1032
dimensions)

aug-cc-pVDZ (550
dimensions)

Original GAMESS
(PH)

85.7 2015.2 2014.9

PH+MD 69.9 1361.8 1154.5

In the combination of these methods, the axes are rotated, the angular momenta of
the integrals are increased using the recurrence relations, and then finally the axes are
re-rotated to the original position. The cost proportional to the fourth power of the
contraction can be reduced by the feature that several components are constant values
at the first recurrence relation (Table6.3).Where the angular momenta are distributed
to the bra and ket, since several components are 0, the amount of the calculation
proportional to the square can be reduced. In the case of the (sp, sp|sp, sp) integral,
the operation amount of the PH+MDmethod can be reduced by about 30% compared
with the PHmethod for the STO-3G basis set (the number of the contraction K = 3)
as shown in Table6.4. It demonstrates good performance for moderately contracted
basis sets such as the 6-31G(d) and cc-pVDZ basis sets.

Using this algorithm, the code of 21 integral routines from (ss|ss) to (dd|dd)

were generated. About 20,000 lines of the code were automatically generated by the
program writing them, reducing the development cost including debugging. After
integrating these routines into the GAMESS program [25], the computational time
for the Fock assembly was measured on a Pentium 4 machine (Table6.5). The time
of the PH+MD method is 20–40% faster than that of the PH method. This method
has been used as a default ERI routine of the GAMESS since 2005.
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6.9.2 MPI Parallelization of the Second-Order Perturbation
(MP2) Calculation

The MP2 method is the simplest electron correlation calculation, and the energy
is obtained using MO energies and MO ERIs evaluated by multiplied AO ERIs
(μν|λσ) by MO coefficients Cμa four times as described in Eqs. (6.26) and (6.27).
Many parallel algorithms that distribute AO or MO indices have been developed. In
the distribution of AOs, it is necessary to sum partialMOERIs onmultiple processes,
and thus the total communication amount depends on the number of processes. On
the other hand, in the distribution of MOs, the same AO ERIs have to be evaluated
in multiple processes. The parallel efficiency decreases as the number of processes
increases.

Baker and Pulay proposed a parallel algorithm to distribute AOs in the first half
transformation and MOs in the second half in 2002 [26]. Data sorting for commu-
nication takes some time, but all calculations can be distributed, and the total traffic
volume is almost constant irrespective of the number of processes. Since the data
amount of the ERIs after the first half transformation increases in proportion to the
fourth power of the number of basis functions, it is roughly in TB units for molecules
of hundreds of atoms. Therefore, intermediate data were stored on disk at the time.

Figure6.8 shows an algorithm to distribute AOs until the third quarter transforma-
tion and MOs at the fourth transformation and the energy calculation [27] based on
the algorithm above. Simple data sorting is achieved while maintaining the features
of load balancing and communication. In the second to fourth transformations, using
the BLAS-3 matrix–matrix multiplication routine DGEMM, the calculation and rear-
rangement of data of multidimensional arrays are performed simultaneously. The
data after the third transformation are saved on disk.

When calculating the product of A(M,K) and B(K,N) with the DGEMM routine,
the obtained matrix C can have two types of dimensions (Fig. 6.9). If A and B are
multiplied without transposing, C becomes (M,N), and if B and A are multiplied
with transposing, C becomes (N,M). Rearranging data without an extra cost can be
done with an efficient library.

Fig. 6.8 MPI Parallel
algorithm for MP2 energy
calculation
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Fig. 6.9 Matrices obtained
by DGEMM routine

Table 6.6 MP2 energy calculation time (h) and speedup

Number of
CPUs

1 2 4 8 16

6-31G(d) (1032 dimensions)

Time 10.2 5.08 2.54 1.31 0.64

Speedup 1.0 2.0 4.0 7.8 15.8

6-311G(d, p) (1484 dimensions)

Time 31.6 16.3 8.06 4.05 2.05

Speedup 1.0 1.9 3.9 7.8 15.4

This algorithmwas implemented into the GAMESS program, and benchmark cal-
culations were performed using a Pentium 4 3.0GHz cluster connected by a Gigabit
Ethernet network. Results of Taxol (C47H51NO14) molecule with the 6-31G(d) and
6-311G(d, p) basis sets (1032 and 1484 dimensions, respectively) are summarized
in Table6.6. The total amount of the intermediate data for the 6-311G(d, p) was 202
GB. In both cases, the speedup is almost the same as the number of CPUs used,
indicating high parallel performance.

6.9.3 Hybrid MPI/OpenMP Parallelization for Hartree–Fock
Calculation

The most time-consuming step in the HF calculation is the evaluation of AO ERIs
and their addition to the Fockmatrix. AnMPI/OpenMP parallel algorithm of this step
[28] is shown in Fig. 6.10. The outermost loop of the quadruple loop is parallelized
by OpenMP and the third loop by MPI. After the quadruple loop, the Fock matrix
elements are added within a process by “reduction” of OpenMP and among
processes by “MPI_allreduce”.

Since the OpenMP parallelization is done in the outermost loop, extra costs such
as thread creation and distribution are decreased as much as possible. High load bal-
ancing is achieved due to the dynamic distribution from indices with a large amount
of computation. The MPI parallelization is performed by the “mod” (remainder)
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Fig. 6.10 MPI/OpenMP
parallel algorithm of Fock
matrix calculation

calculation without using an if-clause and a counter. Because all processes execute
the same calculations up to the distribution point by MPI ranks, the redundant part is
reduced asmuch as possible. TheMPI communication is located outside theOpenMP
region, which is a simple communication.

This algorithm was implemented into the GAMESS program in which only pro-
cess parallelization was introduced. In addition to the Fock matrix computation, the
initial guess calculation was also accelerated and parallelized. In the stage of pro-
jecting MOs obtained by the extended Hückel method to MOs of the basis used in
the SCF calculation, many matrix–matrix multiplications are adopted. Furthermore,
in the middle of the SCF calculation, an approximate second-order SCF method [29]
based on the Newton–Raphson method is introduced. The Fock matrix is diagonal-
ized only at the first and last two times.

Benchmark calculations were performed using a TiO2 cluster (T35O70, 6-31G
(1645 dimensions), 30 SCF cycles), and Cray XT5 (Opteron 2.4GHz, 8 cores/node)
2048 cores. The speedup of the total time is shown in Fig. 6.11. The speedup of the
new algorithm with only MPI is improved compared with that of original GAMESS
as the number of cores increases, and the speedup of the hybrid MPI/OpenMP par-
allelization is further improved.

In the original calculation, the fraction of the initial guess calculation time to
the total calculation is less than 1% on 16 cores, but it accounts for about 40% on
2048 cores (Table 6.7). Due to the improvement of this part, it becomes less than
7% even on 2048 cores, and the overall speedup increased drastically. Although the
Fock matrix calculation time (Table6.8) is almost the same in any calculation on 16
cores, the time of hybrid parallelization is the shortest on 2048 cores, and this also
contributes to shortening the calculation time overall and improving the speedup.

Hybrid parallelization becomes more effective as the number of used cores
increases, and it is significant in future many-core systems. The analysis of the initial
guess calculation time demonstrates that it is necessary to accelerate and parallelize
all steps in massively parallel computation.

When introducing OpenMP into the GAMESS program, it changed to a specific
program because the source code was rewritten considerably. All the variables in the
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Fig. 6.11 Speedup of
Hartree–Fock calculation

Table 6.7 Initial guess calculation time (s) and its percentage of total calculation (in parentheses)

Number of CPU cores 16 256 1024 2048

Original
GAMESS

MPI only 166.2 (0.9%) 143.6 (10.5%) 143.6 (27.2%) 143.8 (37.5%)

Modified MPI only 20.2 (0.1%) 18.6 (1.5%) 18.9 (4.4%) 19.2 (7.0%)

Modified MPI/OpenMP 18.6 (0.1%) 13.2 (1.1%) 13.6 (3.6%) 13.8 (5.9%)

Table 6.8 Fock matrix calculation time (s) and speedup (in parentheses)

Number of CPU cores 16 256 1024 2048

Original
GAMESS

MPI only 17881.8 (16.0) 1175.2 (243.5) 334.0 (856.6) 188.6 (1517.0)

Modified MPI only 17953.5 (16.0) 1175.2 (244.4) 360.0 (797.9) 203.1 (1414.4)

Modified MPI/OpenMP 17777.6 (16.0) 1150.4 (247.3) 316.4 (899.0) 174.8 (1627.2)

OpenMP region are classified as private or shared ones, the common variables to be
made private is changed to the arguments of subroutines, and scalar variables written
in arguments are rearranged into an array in order to reduce the number of variables.
It is often difficult to introduce OpenMP to an existing program and to achieve high
execution and parallel performance. The development with data and loop structures
considering parallelization is now required from the design stage of a program.

6.10 Approximations of Quantum Chemical Methods
for Large Systems

Here, we summarize the orders of the computational time and data amounts, and
the accuracy of the typical quantum chemical methods (Table6.9). Even in the low-
accuracymethods, the required computational time scales asO(N 3), which is derived
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Table 6.9 Computational time and accuracy of the typical quantum chemical methods

from the direct diagonalization of densematrix. Therefore, even if a 1000 times faster
computer is provided, the computable system size only increases by a factor of 10.
Furthermore, the computational time increases rapidly as the accuracy is improved
by treating the electron correlation.

There are many approximations aiming at the treatment of large systems. In the
ONIOM (our own N -layered integrated molecular orbital and molecular mechanics)
method [30], a molecular system is divided into two or three layers, and the layers
are calculated with different kinds of methods. High level (ab initio) methods are
applied to important layers, and low level (semiempirical or molecular mechanics)
methods are applied to the others. The results are combined to predict the high-level
result of the whole system.

The quantum mechanics/molecular mechanics (QM/MM) method [31] is an
approach to divide a system and calculate the important part with a QM method
and the other with MM. The hybrid method can be applied to chemical reactions
with solvent or protein environments, etc.

Since valence electrons play a significant role in chemical bonds, effective core
potentials (ECPs) [32] are often used to replace core electrons of heavy atoms by
potentials. The number of electrons treated explicitly can be reduced. Major poten-
tials are LANL2 (Hay–Wadt) [33], Stuttgart [34], and SBKJC [35].

Another approach to restrict the range of calculations is the frozen core approx-
imation [36] which ignores excitations from core electrons. This is used in most
electron correlation calculations.

In general, MOs obtained by SCF calculations spread throughout a molecule. In
the localized molecular orbital (LMO) method (Fig. 6.12) [37], MOs are localized in
atoms or bonds by an appropriate transformation. The cost for electron correlation
calculations can be reduced by considering only excitations among near LMOs.

Fig. 6.12 Localized molecular orbital method
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Several approximations for the ERI evaluation has been developed. In the density
fitting or resolution of the identity (RI) method [38], four-center ERIs are approxi-
matedby the products of two- and three-center integrals including auxiliary functions.
The amounts of data and operations become small especially in electron correlation
calculations. There is also the FMMmethod which uses the multipole expansion for
long-range Coulomb interactions described in Sect. 6.5.1.

Recently, the linear-scaling methods, or equivalently the O(N ) theories have
rapidly been developed to treat huge systems. In Chap. 4 of this book, an O(N )

method using the Krylov subspace is introduced mainly for the Green’s function
method, where the Hamiltonian is approximated based on the cut-off distance. In this
section, we describe the fragment-based methods that achieve O(N ) computation
by combining the results of several subsystem calculations.

6.10.1 Fragment Molecular Orbital Method

Fragmentmolecular orbital (FMO)method proposed byKitaura and coworkers is one
of the pioneering fragment-based methods that orient toward large-scale calculation.
First, this FMO method will be introduced [39].

The FMO method is mainly used in calculations of molecular clusters and
biomolecular systems such as proteins. When treating a huge single molecule, the
FMO method requires to cut chemical bonds to construct fragment systems. As an
example, Fig. 6.13 shows the recommended fragmentation scheme in the FMO cal-
culations of peptide systems. A cut chemical bond is described using the hybridized
orbital by either of two fragments sharing the bond. For example, because the left-
most C–C bond in the Figure is included in the left-side fragment, the hybridized
orbital of the right-side C atom that contributes to the C–C bond is included into
the left-side fragment instead of the right-side one. This scheme is called as the
hybridization orbital projection (HOP).

Various properties such as the energy are expressed by the many-body expansion
formulas. The simplest form expressed by the sum of the one-body (monomer)
energies {EI } is called as the FMO1,
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Fig. 6.13 Recommended fragmentation scheme in FMO calculation of peptides
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EFMO1 =
∑

I

EI . (6.32)

The FMO2 and FMO3 include the two-body (dimer) and three-body (trimer) energy
corrections,

EFMO2 = EFMO1 +
∑

I>J

(EI J − EI − EJ ), (6.33)

EFMO3 = EFMO2 +
∑

I>J>K

(EI J K − EI J − EJK − EI K

+EI + EJ + EK ), (6.34)

where EI J and EI J K represent the dimer and trimer energies, respectively. In the
FMO method, the computational time can be drastically reduced by truncating this
many-body expansion.

Let us go into a bit more detail about the FMO method. In the calculation of
fragment X (X can be either a monomer, dimer, or trimer), the following effective
Hamiltonian is used:

H̃ X
μν = HX

μν + V X
μν + PX

μν (μν ∈ X), (6.35)

where H X represents the Hamiltonian of the electrons and nuclei in the fragment
X itself, and V X includes the electrostatic potential from the outside electrons and
nuclei of the fragment X :

V X
μν =

∑

K /∈X

⎡

⎣
∑

A∈K

〈
μ

∣∣∣∣∣∣
− ZA∣∣∣−→r − −→

R A

∣∣∣

∣∣∣∣∣∣
ν

〉
+

∑

λσ∈K
DK

λσ�μν,λσ

⎤

⎦ . (6.36)

Here, the electron density of the fragment K that is not included in X is evaluated
from themonomer densitymatrix DK . P X is derived from the bond separation by the
hybridization orbital, which is used to project out the components of the hybridization
orbitals that does not belong to X . For H̃ of Eq. (6.35), the HF or KS equation is
solved:

H̃
X

C X = SX C XεX . (6.37)

The density matrix of the fragment X is expressed in the similar manner as the
standard calculation as

DX
μν = 2

occ(X)∑

i

C X
μiC

X
νi . (6.38)
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The electron number (and the spin multiplicity in case of open-shell system) of each
fragment should be specified a priori. Because the monomer density matrices {DK }
are included in the Hamiltonians of the other fragment through V X , these density
matrices have to be determined in the self-consistent manner. In actual fact, because
the density matrix is approximately treated by the electronic charge, this procedure
is called as the self-consistent charge (SCC) method.

If no further approximation than the truncation of the many-body expansion is
adopted, the computational time for the FMO2 calculation scales as O(N 2) with
respect to the entire system size N . For example, in the actual implementation in
GAMESS program, the following approximations based on the cut-off distance is
introduced.

• RESPPC
Intra-fragment electrostatic potential is approximated with the Mulliken charges
instead of explicitly evaluating with ERIs.

• RESDIM
Avoiding explicit dimer calculations by approximating with the electrostatic inter-
action.

• RCORSD (in case of electron correlation calculation)
Dimer electron correlation is neglected.

If the time for the electrostatic field calculation with the Mulliken charges are
neglected, the computational time of the monomer SCC calculation scales O(N )

by adopting RESPPC. RESPPC also replaces the monomer density matrix with the
Mulliken charges, which can drastically reduce the communication volume in the
parallel calculation. RESDIM further reduces the computational scaling of the dimer
calculation to O(N ).

Various applications of the FMO method can be found in the Ref. [39]. Recent
advances in the fragmentation scheme and the generalization to the FMO3 or FMO4
have extended the target systems of the FMO method.

6.10.2 Divide-and-Conquer Method

Here, we would like to introduce another O(N ) method, namely the divide-and-
conquer (DC) quantum chemical method. The DC method as well as the FMO
method are fragment-based large-scale calculation methods in the sense that the
entire system is divided into fragments (called subsystems in theDCmethod). Instead
of the dimer corrections in the FMO method, the buffer region is added to each
disjoint subsystem (called the central region) and the interactionwith the surrounding
environment of the subsystem is explicitly considered (Fig. 6.14). The size of the
buffer region is the computational parameter that highly correlates with the accuracy
of the DC method.
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Fig. 6.14 The division scheme of the DC method and schematics of the central and buffer regions

The treatment of the buffer region in the DC-SCF calculation is different from
that in the DC post-HF electron correlation calculation. The detailed procedures of
these DC calculations are introduced below.

6.10.2.1 DC-SCF Method

The DC-SCF calculation can be considered as a method to construct the density
matrix of the entire system from many density matrices evaluated in the subsystem
calculations, namely,

DDC
μν =

subsystem∑

α

Pα
μνD

α
μν. (6.39)

The scheme to compute Hamiltonian matrix and energy is the same as the standard
SCF calculation except using Eq. (6.39) for the density matrix. The density matrix of
the subsystem α, Dα

μν , is constructed with the subsystem MOs. Here, for technical
reasons to be explained later, this matrix is evaluated for the ensemble at finite
temperature β = (kBT )−1:

Dα
μν ≈ 2

MO(α)∑

p

fβ(εF − εα
p)C

α
μpC

α
νp, (6.40)

where εF represents the Fermi level, fβ(x) = [
exp(βx) + 1

]−1
is the Fermi distri-

bution function. MOs of the subsystem α is expanded with the basis functions in the
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central region S(α) and those in the buffer regionB(α), and is determined by solving
the following subsystem HF (or KS) equation:

FαCα = SαCαεα. (6.41)

The partition matrix P in Eq. (6.39) defined by

Pα
μν =

⎧
⎨

⎩

1 (μ ∈ S(α) ∧ ν ∈ S(α))

1/2 (μ ∈ S(α) ∧ ν ∈ B(α) or vice versa)
0 (otherwise)

(6.42)

is used to normalize the contributions from the overlapping buffer region. Although
the Fermi level εF still remains as an unknown variable, it is determined from the
following equation so that the electron number of the entire system is preserved:

Ne = Tr(DDCS) = 2
∑

α

MO(α)∑

p

fβ(εF − εα
p)

AO(α)∑

μν

Pα
μνC

α
μpC

α
νpS

α
νμ. (6.43)

The greatest incentive to introduce a finite temperature is to give a solution for this
nonlinear equation. In the DCmethod, the electron number (and the spin multiplicity
in an open-shell case) in each subsystem is automatically determined fromEq. (6.43),
while it has to be specified before the calculation in the other fragment-based meth-
ods such as the FMO method. Due to this feature, the DC method can handle the
delocalized electronic structures, which is generally considered difficult to describe
by the fragment-based methods.

Let us return the story to the procedure. The subsystem Fock matrix Fα is evalu-
ated using the same formula to the standard calculation, i.e., Eq. (6.8). Because the
computational cost for constructing Fock matrix is large, it is common to compute
the entire Fock matrix F and then take its submatrix corresponding to each subsys-
tem in the subsystem calculation. However, the strategy to directly construct Fα for
each subsystem should also be considered especially in case of using semiempirical
Hamiltonian.

Lastly, let us consider this procedure from the viewpoint of the computational
cost. Although the calculations of Eq. (6.41) require high computational cost, the
time increases as O(N ) for large systems because the diagonalization within each
subsystem (O(N 0)) is performed for every subsystem, the number of which is O(N ).
The other part requiring high computational cost is the construction of the Fock
matrix. Because the DC method makes D sparse, the time increases as O(N 2) even
if only the Schwarz screening is adopted. If FMM is further applied, the O(N )

computation can be achieved. Figure6.15 shows the computational time for theHF/6-
31G** calculation of polyene system, CnHn+2. Obviously, both two parts become
faster in the DC method than in the standard method, especially for larger system.
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Fig. 6.15 Computational times for A diagonalizing Fock matrix and B constructing Fock matrix
in the HF and DC-HF calculations. The FMM option is used to construct Fock matrix [40]

6.10.2.2 DC-DFTB Method and Determination of Fermi Level

Here, let us think about the electron number conservation condition (Eq. (6.43)) that
appears only in the DC method. It is the nonlinear equation to obtain εF. Defining
the weight of the subsystem MO as

wα
p =

AO(α)∑

μν

Pα
μνC

α
μpC

α
νpS

α
νμ (6.44)

is useful because the electron number can be calculated as sum of the orbitals (p)
of all subsystems (α). Because the Fermi function, fβ(εF − εα

p), gives almost 1
or 0 except around εα

p = εF, the range of εα
p that must be evaluated explicitly is

determined from the threshold value in advance of the calculation. Then, εF can be
obtained with the standard iterative root-finding method such as the Brent method
[41] by appropriately setting the initial upper and lower limits.6 Because the number
of the variables regarding all the subsystems (εα

p andwα
p) is O(N ), the computational

time for the determination of εF becomes O(N ). However, it is normally adopted
to gather all required information to the master process for determining εF, since
its straightforward implementation requires the communication for every iteration.
This does not deteriorate the performance in the DC-HF and DC-DFT calculations
because the computational time for the other part is significantly long. However, it
becomes problematic if a semiempirical Hamiltonian such as the density functional
tight-binding (DFTB) method, which will be introduced below, is adopted.

The DFTB method is a semiempirical computational method based on DFT [42].
In DFT, the total energy is expressed as the functional of the electron density ρ(

−→r )

as Eq. (6.17). In the DFTB method, the density is expressed as sum of the density
of the reference state ρ0 and its change δρ using the tight binding approximation.
Because the exchange-correlation functional is nonlinear to the electron density, it is

6Either is set to be 0 or the prior convergent value and the other is set to be crossed over the root.
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approximated by the second-order Taylor expansion. Furthermore, for the density-
dependent terms, the electric charge �qA (namely Mulliken charge is used in usual)
is approximately used instead of the explicit electron density. Then, Eq. (6.17) can
be expressed as the sum of the charge-independent, charge-dependent, and nuclear
repulsion terms as

ETB
2 =

occ∑

i

2
〈
ψi

∣∣∣Ĥ0

∣∣∣ψi

〉

+1

2

∑

A,B

�qA�qBγAB +
∑

A<B

Erep(RAB). (6.45)

The first and third terms and γAB are parametrized from a priori DFT calculations.
The Hamiltonian matrix can be expressed as

Hμν = H 0
μν + Sμν

∑

C

1

2
(γAC + γBC)�qC (μ ∈ A, ν ∈ B), (6.46)

which does not require the ERI evaluation, leading much faster computation. Espe-
cially, the method to self-consistently determine the Mulliken charges are known as
the SCC-DFTB or DFTB2 method [43].

Although this DFTB method even requires the O(N 3) computational time due
to the diagonalization of the Hamiltonian, its combination with the DC method
is straightforward and easily achieves near O(N ) computation. Its massive paral-
lel calculation, however, significantly deteriorates the performance if the sequential
Fermi-level determination scheme is adopted. Then we have proposed a novel algo-
rithm to determine the Fermi level that realizes to reduce the number of iterations
with the interpolation method and to parallelize the computation [44]. For each ten-
tative Fermi level given by equally dividing the estimated range of the Fermi level,
which has to be specified in advance, the number of electrons included in the subsys-
tems allocated for each node is calculated. Its reduction operation yields the number
of electrons in the entire system for each tentative Fermi level, and we can obtain
the upper and lower limits of the proper Fermi level within the accuracy of energy
interval. The Fermi level is estimated from the interpolation between the upper and
lower limits. If sufficient accuracy can not be obtained, this process is repeated once
again. It is possible to reduce the number of iterations (=the number of reduction
operations) within 2 times and to shorten the computational time by computing for
several energy levels simultaneously, although a nonlinear iteration calculation is not
avoided.

Figure6.16 shows the computational times for Fermi level determination of a sys-
tem containing 4000 water molecules with the conventional and the abovementioned
parallel interpolation methods. The time for the first SCC cycle and the accumurated
time measured with the K Computer are shown, where the horizontal axis shows
the number of nodes used. In the first SCC cycle, the time with the conventional
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Fig. 6.16 Dependence of
the computational time for
Fermi-level determination on
the number of nodes. The
time was measured with the
K Computer for a system
with 4000 water molecules
[44]

method is shorter than that with the parallel interpolation method when using a small
number of nodes. However, it hardly decreases with the increase of the number of
nodes. On the contrary, the time with the interpolation method decreases ideally as
the number of nodes increases. Comparing the accumulated time, the time with the
interpolation method becomes shorter than that with the conventional one even with
a small number of nodes. This is because the Fermi level hardly changes for the
late SCC cycles, and sufficient accuracy can be obtained by only one interpolation
process.

We have developed a super-parallel DC-DFTB program, called DC-DFTB-K,
which includes the techniques mentioned above, and implemented into the K
Computer. Table6.10 shows the computational time for each DC-DFTB procedure
when performing the DC-DFTB calculation of a system containing 256,000 water
molecules with the DC-DFTB-K program. Nnode represents the number of nodes
used in the calculation. The last row (efficiency) represents the parallel efficiency
with 5,120 nodes against the time with 640 nodes. The parallel efficiency is higher
than 80% except for the one-electron integral (H0 and S) evaluation with the short
computational time. Because an O(N ) Coulomb calculation method such as FMM
is not implemented, the computational scalings for γ and gradient calculations are
O(N 2). However, the parallel efficiency of these procedures are especially high.

Table 6.10 Computational time and parallel efficiency of each procedure in DC-DFTB calculation
[44]

Nnode Erep H0,S γ SCC Grad. Total

640 1.81 0.42 27.95 165.66 37.33 233.16

1280 0.92 0.22 13.96 85.81 18.78 119.69

2560 0.48 0.13 7.11 47.87 9.58 65.17

5120 0.26 0.07 3.55 25.18 5.05 34.12

Efficiency (%) 86 74 98 82 92 85
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6.10.2.3 DC-Based Post-HF Electron Correlation Calulation

Let us move on to the post-HF electron correlation calculation based on the DC
method. The DC-based post-HF calculation adopts a strategy to obtain the electron
correlation energy of the entire system by accumurating the subsystem correlation
energies that is expressed with the subsystem MOs. The contribution from the over-
lapping buffer region is removed using the analogy to the energy density analysis
[45].

According to the Nesbet’s theorem [46], the correlation energy �E can be
expressed with the occupied and unoccupied MOs of the HF method as

�E =
occ∑

i j

vir∑

ab

(ia| jb)[2t̃ia, jb − t̃ib, ja]. (6.47)

Here, t̃ia, jb represents a coefficient called the amplitude, and the expression dif-
fers depending on the method adopted. To obtain the correlation energy of a sub-
system, the MOs in this equation are replaced with the subsystem MOs. Here,
the Energy Density Analysis (EDA) is used to obtain only the contribution from
the central region. Using the following 3-index transformed ERIs, (μaα| jαbα) =∑

νλσ C
α
νaC

α
λ jC

α
σb�μν,λσ , the summation of the last integral transformation is limited

to the AOs of the central region of the subsystem α, S(α),

�Eα =
occ(α)∑

i j

vir(α)∑

ab

∑

μ∈S(α)

Cα
μi (μa

α| jαbα)[2t̃αia, jb − t̃αib, ja]. (6.48)

It makes it possible to estimate the contribution of the correlation energy only from
the central region. The amplitudes are evaluated with the subsystem MOs, e.g., in
case of MP2 method,

t̃αia, jb = (iαaα| jαbα)

εα
i + εα

j − εα
a − εα

b

. (6.49)

The total correlation energy is evaluated by summing up all the subsystem correlation
energies:

�E ≈
∑

α

�Eα. (6.50)

This procedure not only achieves O(N ) computation time but also realizes the
required memory size independence for N . This feature is essential especially in
the highly accurate post-HF electron correlation calculations such as the coupled
cluster method, which requires huge memory capacity.
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In the DC-based post-HF method, because the computation to evaluate a sub-
system correlation energy is completely independent of the other subsystems, the
process can be parallelized straightforwardly. Furthermore, a standard highly par-
allelized MP2 algorithm can be adopted for each subsystem MP2 energy calcula-
tion. It provides a two-level parallelization scheme where the fine-grained parallel
computation of each subsystem MP2 calculation is performed inside the course-
grained parallelization over the subsystem. An example to implement this algorithm
to GAMESS will be introduced.

GAMESS provides the proprietary interface for multilayer parallel processing,
called GDDI (generalized distributed data interface). This is first introduced for the
layered parallel computation for the FMO method.

GDDI controls the communicating processes using three kinds of scopes (corre-
sponding to communicators in MPI). The first scope is DDI_WORLD, which com-
municates among all processes as the same as MPI_COMM_WORLD in MPI. The
second one is DDI_GROUP, where the processes are divided into several groups and
the communications are limited within each group. The last one is DDI_MASTERS,
which communicates among masters of all groups and is responsible for the inter-
group parallelization.

In the two-level parallel algorithm, each subsystem energy calculation is associ-
ated with a group and the computation is parallelized within each group with the
DDI_GROUP scope. After all subsystem energy calculations, the energy is summed
up among the masters of all groups with the DDI_MASTERS scope.

Figure6.17 shows the pseudocode for the above procedure. For better load bal-
ancing, the subsystems are sorted with the number of basis functions before the
calculation. Line 7 judges whether the subsystem should be calculated in my group.
Each MP2 calculation can be parallelized with the standard MPI or MPI/OpenMP
hybrid parallel algorithm within each group.

This two-level parallel DC-based post-HF method was implemented for the MP2
calculation and its efficiencywasmeasuredusingT2K-Tsukuba computer (Fig. 6.18).

1: Sort subsystems by # basis functions in the subsystem in descending order 
2: Call DDI_SCOPE(DDI_GROUP)
3: Call GDDICOUNT(-1,MYJOB)
4: EMP2TOT  0
5: Loop isub=1, nsub ; GDDI-parallelized loop over sorted subsystems
6:    Call GDDICOUNT(0,MYJOB)
7:    If (MYJOB=TRUE) Then
8:       EMP2  [MP2 correlation energy of isub subsystem]

(applying fine-grained parallelization)
9:       EMP2TOT  EMP2TOT + EMP2
10:    End If
11: End Loop
12: Call GDDICOUNT(1,MYJOB)
13: Call DDI_SCOPE(DDI_MASTERS)
14: Call DDI_GSUMF(EMP2TOT)
15: Call DDI_SCOPE(DDI_WORLD)

Fig. 6.17 Pseudocode for the two-level parallel DC-MP2 calculation with GDDI [47]
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Fig. 6.18 Parallel efficiency of the DC-MP2 calculation. The results for A β-strand alanine 20 mer
and B 40 mer. The times were measured with T2K-Tsukuba computer

Looking at the left chart showing the results for alanine 20 mer, the saturation of
the efficiency with respect to the number of processes obviously become later by
adopting the two-level parallel algorithm. For larger systems, 40 mer shown in the
right chart, much higher efficiency can be confirmed.

6.11 Development of New Quantum Chemical Calculation
Program

6.11.1 Outline of SMASH Program

On the basis of the experiences described in Sect. 6.9, a newly developed program
is SMASH (Scalable Molecular Analysis Solver for High-performance computing)
[48]. It has been distributed under the Apache 2.0 open-source license since Septem-
ber 2014, and the latest version is 2.2.0 as of 2019. Energy and geometry optimization
calculations of the HF, DFT, MP2 methods are available. Computers equipped with
scalar processors from PC clusters to supercomputers including the K Computer are
supported.

It was developed with the Fortran 90/95 language considering hybrid MPI/
OpenMP parallelization from the design stage. All the large data of electronic cor-
relation calculations are distributed and stored in memory, not on disk. Frequently
used calculation routines such as ERIs are modularized, making it possible to reduce
development costs and making it easy to port to other programs.
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Fig. 6.19 Atomic orbital electron repulsion integral routine

6.11.2 Atomic Orbital Electron Repulsion Integral
Calculation Routine

As shown in Fig. 6.19, the ERI calculation routine is structured to pass all the data
as arguments. Since the derivative of an ERI is a linear combination of ERIs with
different coefficients and angular momenta, the routine is reusable in derivative cal-
culations. The necessary procedure is to pass appropriate coefficients and angular
momenta as the arguments and to add the obtained values to appropriate elements of
the gradient array. For example, the derivatives of (pxs|ss) are

∂(pxs|ss)/∂Xa = −2αa(dxx s|ss) + (ss|ss)
∂(pxs|ss)/∂Ya = −2αa(dxys|ss)
∂(pxs|ss)/∂Za = −2αa(dxzs|ss)

(6.51)

and then what to do is to calculate (ds|ss) and (ss|ss).

6.11.3 Hybrid MPI/OpenMP Parallelization

Theparallel algorithmdescribed inSect. 6.9.3 is adopted forHFandDFTcalculations
in the SMASH program, and a new algorithm for MP2 calculations based on the idea
in Sect. 6.9.2 is developed considering hybrid parallelization andmemory storage for
intermediate data (Fig. 6.20). AO indices are distributed among processes up to the
second transformation, andMO indices are distributed after the third transformation.
All calculations within a process are also parallelized by OpenMP or the BLAS
library. The huge data after the second transformation are distributed and stored in
memory.
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Fig. 6.20 Hybrid
MPI/OpenMP parallel
algorithm for MP2 energy
calculation

6.11.4 Performance of SMASH

Several benchmark calculations of the SMASH program were performed using the
K Computer (2.0GHz, 8 cores/node). The DFT (B3LYP) energy calculation of
(C150H30)2 (cc-pVDZbasis set (4500dimensions), 16SCFcycles, Fig. 6.21) achieved
a speedup of 50,000 and a CPU efficiency of 13% on 100,000 cores, which took 154s
[49]. The diagonalization (LAPACK, DSYEVD routine) is parallelized only within a
node and is performed for one overlap matrix of the basis functions and two Fock
matrices, and the time is 35 s on any number of cores. This is a main factor of rela-
tively low parallel efficiency on 50,000 and 100,000 cores. It is necessary to further
improve the parallel performance by introducing libraries that are parallelized among
processes such as ScaLAPACK and EigenExa [50]. On the other hand, since a DFT
energy gradient calculation does not include a matrix diagonalization calculation,
even if the number of cores increases, the parallelization efficiency of the B3LYP

Fig. 6.21 Speedup of
B3LYP energy calculation
on K computer
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Table 6.11 B3LYP energy gradient calculation time (s) and speedup on K computer

Number of cores 1024 4096 8192 16,384

Time 402.0 101.2 50.8 25.5

Speedup 1024.0 4067.7 8103.3 16143.1

Table 6.12 MP2 energy calculation time (s) and speedup

Number of cores 4608 6912 9216 18,432

Time 152.5 105.7 83.4 46.9

Speedup 4608.0 6648.2 8425.9 14983.4

Table 6.13 Number of B3LYP/cc-pVDZgeometry optimization cycles (initial geometry:HF/STO-
3G)

Cartesian Redundant

Luciferin (C11H8N2O3S2) 63 11

Taxol (C47H51NO14) 203 40

energy gradient calculation for C150H30 (with the cc-pVDZ basis (2250 dimensions),
shown in Table6.11) is almost 100%.

The intermediate data volume of theMP2 energy calculation for C150H30 (with the
6-31G(d) basis set (2160 dimensions), shown in Table6.12) is huge as 1.1 TB, but it
can be executed by distributedly storing them in memory of many nodes. Despite the
total amount of 1.1 TB MPI_Sendrecv communication, the calculation achieved
a speedup of 15,000 and an execution time of 47 seconds on 18,400 cores.

In geometry optimization calculations, the reduction of the number of optimiza-
tion cycles are significant as well as the acceleration of energy gradient calculations.
The number of optimization cycles can be reduced to 1/5 or 1/6 by the introduction of
the redundant coordinate that uses molecular bond length, angle, and torsion infor-
mation compared with the simple Cartesian coordinate, and thus whole geometry
optimization calculations are drastically accelerated (Table6.13).

6.12 Summary

Many researchers have been able to easily perform quantum chemical calculations
due to the developments of new theories, calculation methods, and software, and the
improvement of computer performance. It became possible to handle real systems
and it became the stage where sufficient accuracy was obtained in comparison with
the experiment and analysis. In the future, the need to calculate larger molecules at
high speed with high accuracy will be expected to become larger and larger. In order



6 Large-Scale Quantum Chemical Calculation 199

to make full use of the performance of the computer in the future, though it takes time
and effort, we have to not only tune source codes but redo from fundamental things
such as new formula derivations and algorithm developments with understanding the
computer system.

We also focused on the quantum chemical calculation method for large systems
based on the fragmentation and discussed the algorithms used therein. Due to the
computational cost for the direct diagonalization of Fock matrix scaling O(N 3), it
was found that some ingenuity is necessary for treating huge systems, beyond the use
of supercomputers such as the K Computer. In addition, a non-parallelized algorithm
may become a problem even if the computational time is very short, as in the case
of Fermi level determination in the DC-DFTB method. In such a case, a seemingly
inefficient method may work efficiently when the computation is parallelized. Fur-
thermore, it was shown that the hierarchical parallel computation algorithms such as
the DC-MP2 method with GDDI are very effective especially in the fragment-based
methods.

Efforts to reduce development costs in this field such as the development of
common foundation libraries for quantum chemical calculations will be a major
challenge from now on.

6.13 Exercise

1. Using the symmetry of� described in Eq. (6.12), the storage of� for 100AOs can
be reduced from 100 × 100 × 100 × 100 = 100 million element array to ∼ 1/8
order of magnitudes. Calculate the correct number of unique elements in the array
when storing without waste, and store the value of μ + ν + λ + σ to such array
GAMMA. Make a program to get and show any specified element of GAMMA.

2. Both the FMO and DC methods are implemented in GAMESS. Download
GAMESS from the following webpage and compile it.
https://www.msg.chem.iastate.edu/GAMESS/
exam37.inp and exam44.inp in the test calculations are the sample inputs for
the FMO calculation of water trimer and DC calculation of hydrogen fluoride
hexamer, respectively. Perform them and confirm their computational results.
Compute the hydrogen fluoride hexamer with the FMO method and compare the
result with that of the DC method (DC calculation of water trimer will be mean-
ingless because the entire system will be included in subsystems). Confirm the
buffer-size dependence of the DC method by changing the size of buffer region
(BUFRAD in $DANDC and RBUFCR in $DCCORR).

3. Download the SMASH source code from the web site, and execute “make” to
compile the source code.

4. Execute the SMASH program with the different numbers of MPI processes and
threads, and compare their computational times.

https://www.msg.chem.iastate.edu/GAMESS/
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