
Chapter 1
Introduction to Coherent
Multidimensional Spectroscopy

Minhaeng Cho

Abstract Coherent multidimensional spectroscopy is a state-of-the-art technique
with applications in a variety of subjects, such as chemistry, molecular physics, bio-
chemistry, biophysics, and materials science. Due to dramatic advances in ultrafast
laser technologies, a diverse range of coherentmultidimensional spectroscopicmeth-
ods utilizing combinations of THz, infrared, visible, UV, and X-ray radiation sources
have been developed and used to study the real-time dynamics of small molecules
in solutions, proteins and nucleic acids in condensed phases and membranes, single
and multiple exciton states in functional materials like semiconductors, quantum
dots, and solar cells, photo-excited states in light-harvesting complexes, ions in bat-
tery electrolytes, electronic and conformational changes in charge or proton transfer
systems, and excess electrons and protons in water and biological systems. In this
chapter, we introduce the theory behind coherent multidimensional spectroscopy and
a summary of recent experiments.

1.1 Introduction

A spectrometer is a device that measures radiation intensity as a function of electro-
magnetic field frequency or wavelength, and it has become indispensable in modern-
day chemical and biological research. A variety of spectroscopic techniques have
been developed to study the interaction between matter and electromagnetic waves,
in particular investigating the spectra or distribution of the quantum eigenstates of
molecules and materials in the frequency domain and their population evolution and
coherent vibrational/electronic oscillatory motion in the time domain.

On a microscopic level, a number of fundamental molecular processes of interest
occur over a broad dynamic range of timescales, from femtoseconds (10−15 s) to
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nanoseconds (10−9 s) and even microseconds [1, 2]. For example, electrons transfer
from an electron-donating group to an electron-accepting group in femtoseconds to
nanoseconds, depending on the distance between them. In addition, energy transfer
and migration processes in light-harvesting protein complexes after photoexcitation
have a broad distribution of kinetic rate constants on a picosecond timescale. Simi-
larly, in aqueous solutions, water molecular reorientation takes place on a picosecond
timescale, and H-bonding network dynamics are subpicosecond processes that can
be slowed down when hydrophobic molecules are nearby. Dihedral rotations about
single chemical bonds are another important elementary process involved in a vari-
ety of conformational transitions of flexible polyatomic molecules and proteins. The
internal rotation of a small molecule about a carbon-carbon bond in solution, which
represents a barrier-crossing process, takes tens of picoseconds, which is clearly
dependent on the potential energy barrier along the reaction coordinate connecting
the two conformer states [3]. Small solvent molecules in solution around electronic
chromophore molecules (e.g., dyes) can reorganize themselves on a subpicosecond
to several picosecond timescale when the chromophore is electronically excited by
an impulsive light pulse [4, 5].

To understand the molecular processes taking place on femtosecond to nanosec-
ond timescales in chemistry, physics, and biology, ultrafast nonlinear spectroscopy
is a powerful experimental technique that has been used extensively [1, 2, 6–8].
For example, Ti:Sapphire oscillator and amplifier systems are commercially avail-
able, producing pulses with a duration in the tens of femtoseconds and a few mJ of
energy per pulse. Femtosecond pulses in the frequency range from UV-vis to mid-
IR and THz can be readily generated by various optical processes using nonlinear
crystals. Therefore, multiple time-separated coherent laser pulses whose amplitudes
and relative phases can be precisely controlled have been used to electronically or
vibrationally perturbmolecular systems under investigation. These field-matter inter-
actions put the systems into superposition states, where each of them can be described
as a linear combination of molecular eigenstates. The non-stationary states evolve
over time, and the randomly fluctuating solute-solvent interactions in solution allow
the systems to relax to a new thermal equilibrium state. These transitions and relax-
ations can be monitored with a probe pulse using other field-matter interactions.

Naturally, a variety of ultrafast nonlinear spectroscopic techniques have been used
to investigate the structure and dynamics of molecular systems. For instance, in the
pump-probe spectroscopy of chromophores in condensed phases, a strong pump
pulse coherently excites many molecules, and a time-delayed probe pulse is used
to monitor the collective relaxation of the non-equilibrium molecular systems as a
function of delay time. Because the probe absorption spectrum is recorded at a given
waiting time using dispersive optics and an array detector, the measured signals
are time and frequency-resolved pump-probe spectra that are plotted against probe
frequency.

To extend pump-probe spectroscopy to two-dimensional (2D)measurementmeth-
ods, it is necessary to include an additional control variable in the time or frequency
domain. Over the past two decades, many attempts have been made to develop 2D
electronic, vibrational, and electronic-vibrational hybrid spectroscopic techniques
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that can be used to study the congested dynamic information of molecular sys-
tems that cannot be extracted from one-dimensional spectra. This involves disen-
tangling the complex nonlinear response functions and susceptibilities of materials
or molecules of interest into two-dimensional (excitation and emission) frequency
space. A natural extension of widely used 2D spectroscopy is to add more time-
delayed pulses or frequency-scanning schemes with one or more phase-stabilized
coherent lasers to develop novel coherent multidimensional spectroscopy (CMS) [7,
8].

Of the many possible N-dimensional spectroscopic techniques, two-dimensional
(2D) optical and/or IR spectroscopy, which can be regarded as an ultrafast optical
analog of 2D nuclear magnetic resonance (2D NMR), is one of the most widely
used. Including the emissive field-matter interaction that produces the signal electric
field under detection, four-wave-mixing (4WM) 2D spectroscopy involves four field-
matter interactions, which are separated in time by three time intervals, denoted as
τ , T, and t, where the incident pulses are assumed to be Dirac delta function-like.
Thus, the measured signal can be expressed as S(t, T, τ ). The 2D spectrum S(ωt ,
T, ωτ ), which is obtained from the double Fourier transformation of S(t, T, τ ) with
respect to τ and t, provides information on the electronically/vibrationally resonant
transitions of molecules by pump fields at waiting time (T ) zero and those by a probe
field at a later waiting time. By monitoring the 2D spectra at different waiting times,
dynamic information on the system can be extracted. Time-dependent diagonal peak
intensities are determined by the survival probabilities of the excited states with
regard to population and orientation, whereas the time dependence of off-diagonal
peak intensities is associated with the conditional probability of finding the state in
resonance with a probe field at time T when the initial state at time zero was in
resonance with a pump field. Therefore, 2D electronic/vibrational spectroscopy is
capable of time-resolving the molecular dynamics of the relaxation of excited states
and state-to-state transitions between molecular quantum states.

Two-dimensional electronic spectroscopy (2D ES) is based on the electronic tran-
sition ofmolecular systems of interest induced by their interactionswith femtosecond
UV or visible pulses [7]. Often, the UV-vis absorption spectra of chromophores in
condensed phases are broad and featureless due to ultrafast electronic dephasing and
large inhomogeneous line-broadening. Interestingly, photon echo spectroscopy has
been shown to be useful for selectivelymeasuring the pure dephasing rate and spectral
diffusion. In addition, if chromophores are electronically coupled to produce delocal-
ized exciton states, 2D ES can be used to measure the electronic coupling strength
between chromophores, as well as exciton annihilation, migration, and coherence
transfer in coupled multi-chromophore systems. One of the most successful uses of
2D ES is in the investigation of photosynthetic light-harvesting complexes and exci-
ton dynamics in semiconductors, where the relaxation, energy transfer, and coherent
and incoherent evolution of created single and multiple exciton states have been of
great interest.

Two-dimensional infrared (2D IR) spectroscopy utilizing multiple IR pulses has
been widely used to analyze the structure and dynamics of molecular systems and to
probe the chemical exchange and conformational transition processes of complicated
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molecular systems in real time [8]. The IR absorption bandwidth of a given normal
mode is typicallymuch narrower than that of a broadbandmid-IR pulse (>250 cm−1),
so the entire band shape and intensity can be monitored with 2D IR spectroscopy.
Because vibrational frequency, intensity, and line shape are strongly affected by
the local environment and chemical structure, small IR probes that can be easily
incorporated into biomolecules and reactive species are excellent reporters for the
structure and dynamics of systems under study [9, 10]. For example, femtosecond
IR pulses are used to excite various fundamental vibrational modes of molecules
in the wavelength range of 2.5–7 μm (mid-IR range), such as −OH, −NH, −CH,
−CD, −CN, −SCN, −N3, and −C=O. Because each individual mid-IR photon
has an energy that is almost one order of magnitude smaller than that of UV or
visible photons, photochemical damage is not a serious issue even though multiple
IRexcitation-dissipationprocesses cause an increase in local temperature. Tobroaden
the probe spectral window, a plasma-generated continuum IR pulse has been used
to obtain a 2D IR spectrum that covers the entire mid-IR frequency range.

For coupled multi-oscillator systems, vibrational frequency and dynamics are
strongly affected by vibrational couplings between local modes through space via
intermolecular interactions and/or through bonds via anharmonicities on the multi-
dimensional potential energy surface. However, because the linear vibrational spec-
trum is mainly determined by harmonic properties such as fundamental transition
frequency and the 0–1 transition dipolemoment, it is difficult to quantitatively extract
weak features like the vibrational coupling constants and potential anharmonic coef-
ficients of coupled oscillators from the linear vibrational spectra. In contrast, coherent
multidimensional vibrational spectroscopic methods have been found to be excep-
tionally useful for estimating vibrational coupling constants by analyzing cross peaks
in 2D IR spectra [7, 8]. The changes in the line shapes and intensities of the cross
peaks provide crucial information on structural dynamics involving time-dependent
changes in the spatial proximity and relative orientation of vibrational chromophores.

Although 2D IR spectroscopy that employs three incident IR laser pulses is one of
the most widely used forms of coherent multidimensional vibrational spectroscopy,
variations of this method have also been developed for specific purposes. Examples
include surface-specific 2D sum-frequency-generation spectroscopy, 2D Raman and
terahertz spectroscopy, and 2D IR-IR-visible spectroscopy. (See the other chapters
in this book for more details on these.)

In parallel with the advances in experimental techniques, extensive theoretical and
computational research on coherent 2D electronic/vibrational spectroscopy has been
carried out over the years. Theory and computation can provide valuable insights into
themicroscopic origin of 2D spectroscopic features, aid in the interpretation of exper-
imental spectra, predict spectra for new systems, and, in some cases, even suggest
potentially useful novel nonlinear spectroscopy techniques [11]. Two-dimensional
spectroscopic observables are completely determined by the nonlinear response
functions of a system. This response function theory provides a framework for the
description of the 2D spectroscopy in general, and explicit expressions are available
for a number of important model systems [6]. In accordance with the theory, the
molecular response to multiple incident light pulses can be decomposed into quan-
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tum transition pathways with different time evolution patterns. In 2D spectroscopy,
these nonlinear electronic/vibrational transition pathways can be selectively mea-
sured, thus microscopic information on the system itself and the influence of the
environment can be extracted [7]. For more realistic systems composed of multi-
ple chromophores, the Frenkel exciton model provides an adequate description. The
nonlinear response functions derived from this model reflect the delocalization of
quantum states due to inter-chromophore couplings, i.e., resonance effects, and the
fluctuation in transition frequencies due to chromophore-solvent interactions, i.e.,
dephasing and rephasing phenomena. The individual components of these nonlinear
response functions can be calculated separately using electronic structure calculation
methods and molecular dynamics (MD) simulation methods. The former approaches
provide information on the transition energies, electronic couplings, and involved
transition dipole strengths, whereas the latter approaches are useful for taking into
account solute-solvent interaction-induced dephasing and line-broadening effects.
An alternative approach is also available for numerically simulating 2D vibrational
spectra of complex systems, which is based on the classical limit of the nonlin-
ear vibrational response function and utilizes MD simulations with hybrid quantum
mechanical/molecular mechanical (QM/MM) force fields.

In this chapter, a brief historical account of coherent 2D spectroscopy will be
presented in Sect. 2. Following this, a general theoretical framework and numerical
calculation methods for coherent 2D spectroscopy will be presented and discussed
in Sect. 3. Critical experimental techniques that have been developed over the past
decade will then be briefly discussed in Sect. 4. Finally, Sect. 5 will summarize the
various perspectives on coherent multidimensional spectroscopy experimentation
and theory and offer concluding remarks.

1.2 A Brief Account of the Early Developments in Coherent
Two-Dimensional Spectroscopy

Coherent 2D spectroscopy has rapidly developed over the past two decades, emerg-
ing as one of the most widely used nonlinear spectroscopic techniques. Older reports
alluded to the possibility of using multiple laser pulses to realize coherent 2D optical
spectroscopy. However, the experimental feasibility of this idea was only demon-
strated after lasers that were capable of generating ultrashort pulses had been devel-
oped. Today, two of the most popular techniques are 2D electronic spectroscopy and
2D IR spectroscopy. They are an extension of three-pulse stimulated photon echoes,
where three time-delayed pulses are used to create third-order material polarization
in the sample, which then acts as a radiation source. Weiner, De Silvestri, and Ippen
experimentally demonstrated three-pulse scattering spectroscopy [12], which was
later found to be of use for analyzing chromophore-solvent dynamics in condensed
phases. In addition, a few interesting theoretical studies on the principles underlying
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photon echo phenomena arising from chromophores with a heterogeneous distribu-
tion of transition frequencies have been reported.

Before the development of spectral interferometric detection, 4WM spectroscopy
experiments were performed by measuring the generated third-order (in electric
fields) signal field intensity |Es(r, t)|2, i.e., homodyne detection. Because the phase
information of the signal field is lost in this case, it was not possible to obtain the com-
plex 2D electronic response from optical chromophores in condensed phases. How-
ever, the inhomogeneous distribution of the transition frequencies of chromophores
in solution and its time-dependent change could be successfully investigated using
photon echo peak shift (PEPS) measurements. As shown by Cho and Fleming, the
PEPS signal with respect to waiting time T is directly related to the transition
frequency-frequency correlation function and spectral diffusion process [5]. The
Fleming research group showed that PEPS measurement is an exceptionally useful
method for studying ultrafast chromophore-solvent dynamics. As an extension of
this optical photon echo technique into the IR frequency domain, vibrational photon
echo measurements, which are an IR analog of the optical photon echo, were exper-
imentally demonstrated by the Fayer research group in 1993, who used IR pulses
from a free-electron laser [13].

Theoretically, Tanimura and Mukamel in 1993 proposed fifth-order 2D Raman
scattering spectroscopy, which allows the analysis of intermolecular vibrational
rephasing phenomena from Raman-active molecules whose intermolecular vibra-
tional frequencies are inhomogeneously distributed in liquids [14]. The fifth-order
Raman response function, which represents the nonlinear correlation of polarizabil-
ities at different times, depends on two time variables, which is why it was referred
to as the 2D time-domain Raman response function. Later, Tominaga, Yoshihara,
Fleming, Tokmakoff, Blank, Dwayne-Miller and many others attempted to mea-
sure fifth-order Raman signals from neat liquids such as CS2. However, undesired
cascading contributions to the detected signal (i.e., two third-order rather than truly
fifth-order) are often dominant, as shown by Blank, Fleming, and coworkers [15, 16].
Because the direct fifth-order Raman signal becomes large and dominant as the field
frequencies approach electronic transition frequencies, the resonant version of fifth-
order Raman scattering spectroscopy theoretically proposed by Cho in 1998 could
be of use in investigating 2D Raman responses from chromophores in condensed
phases [17].

Independently, Cho and Fleming in 1994 theoretically demonstrated that fifth-
order three-pulse scattering spectroscopy probing correlations of electronic transition
frequencies at two different times could be useful when investigating the inhomoge-
neous line-broadening effect on the optical spectrum of chromophores in condensed
phases [18]. In contrast to traditional integrated intensity photon echo spectroscopy,
which probes one electronic coherence evolution, fifth-order three-pulse scattering
spectroscopy can be considered fifth-order 2D electronic spectroscopy that is capable
ofmeasuring time-dependent changes in optical transition frequencies. However, due
to limitations in controlling the center frequencies ofmultiple pulses, only degenerate
fifth-order three-pulse scattering experiments were performed.
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After array detectors in the visible and IR frequency domains became available,
heterodyne-detected 2D spectroscopic techniques were developed. Once a generated
nonlinear signal electric field is allowed to interfere with an added local oscillator
field, a spectral interferogramcan be obtained using amonochromator (e.g., a grating)
and an array detector. Spectral interferometric detection has been particularly useful
in developing coherent multidimensional spectroscopy (CMS) because it enables the
simultaneous characterization of the phase and amplitude of a generated 4WM signal
electric field. Jonas and coworkers in 1998 showed that the spectral interferometric
detection of three-pulse scattering or a photon echo signal field is experimentally fea-
sible [19]. In 2D IR spectroscopy, Hamm, Lim, and Hochstrasser used a frequency-
tunable IR pump-probe spectroscopic method to obtain the reconstructed 2D amide
I IR spectra of polypeptides in solution, where amide I vibration is mainly carbonyl
stretch mode of an amide group or a peptide bond [20]. In their study, a narrowband
IR pump pulse was used to selectively excite resonant oscillators, and the transient
probe absorption spectrum was then measured. Scanning the pump frequency, they
obtained a series of time- and probe frequency-resolved pump-probe spectra, which
were used to construct time-resolved 2D IR spectra. Later, 2D IR photon echo exper-
iments were performed by Zanni, Hochstrasser, and coworkers and Tokmakoff and
coworkers to determine the solution structure of small oligopeptides.

In parallel with experimental studies using 2D IR spectroscopy, there have been
efforts to numerically simulate the 2D vibrational spectra of a variety of molecu-
lar systems. Two-dimensional vibrational spectroscopy can be used to achieve both
ultrafast time resolution and high spectral resolution. Therefore, this method pro-
vides rich information on molecular systems, such as homogeneous (anti-diagonal)
and inhomogeneous (diagonal) spectral broadening, vibrational anharmonicity, spec-
tral diffusion, vibrational mode-mode coupling strength, and their time-dependent
changes [7, 8].

Although the 2D IR and 2D ESmethods, which are based on heterodyne-detected
three-pulse scattering geometry, have been found to be useful, the center frequen-
cies of the pulses used were the same, i.e., degenerate. To study a wider range of
vibrational dynamics and intramolecular vibrational relaxations, two-color 2D vibra-
tional spectroscopic techniques have since been developed. Theoretically, Park and
Cho proposed a new class of non-degenerate 4WM 2D vibrational spectroscopy that
requires both IR and visible pulses [21]. Two IR pulses could be used to create two
consecutive vibrational coherences or super-position state evolutions. An incident
visible pulse, whose frequency is electronically non-resonant, puts the molecular
system into a state of electronic coherence. This third-order polarization radiates an
IR-IR-vis sum or a difference frequency field that provides information on the 2D
vibrational responses of electronically ground-state molecules. The Wright research
group experimentally demonstrated that an IR-IR-vis difference frequency gener-
ation scheme can be used to measure the cross peak between the C-C stretch and
C-N stretch of acetonitrile, which results from both the mechanical and electronic
anharmonic couplings between the two modes [22].

In the present section, a brief account of the early developments in coherent 2D
spectroscopy in the 1990s was presented. It should be emphasized that this account
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is far from complete, so readers are strongly recommended to read the representative
review articles cited in this chapter and other chapters in this book.

1.3 Theoretical Description and Numerical Simulation
Methods

In general, spectroscopic measurement involves both excitation and detection. In 2D
spectroscopy, the molecular system of interest interacts with three coherent laser
pulses and the generated signal field is then detected and presented with respect to
the excitation and detection frequencies [7]. In each of the four field-matter interac-
tion events, a quantum transition takes place between the eigenstates of the system.
Depending on both the configuration of the optical laser pulses, including the fre-
quency, direction of propagation (i.e., wave vector), and beam polarization, and the
detection method employed, different quantum transition pathways can occasionally
be selectively measured.

One of the most widely used methods for theoretically describing various non-
linear spectroscopic observables is to use the formalism of the nonlinear response
function [6], which naturally emerges from the application of quantum mechanical
time-dependent perturbation theory to the molecular system in the presence of per-
turbative light-matter interactions during the preparation step. In this section, I sketch
the theoretical analysis in a stepwise manner and present key results that are partic-
ularly relevant to coherent 2D spectroscopy, though the formal theory can easily be
generalized to describe other CMS measurement methods.

1.3.1 Third-Order Response Functions

In coherent 2D spectroscopy, themolecular system interactswith the incident electric
field and, in the electric dipole approximation, the interaction Hamiltonian can be
written as

Hint(r, t) = −μ̂ · E(r, t), (1.1)

where μ̂ is the electric dipole operator and E(r, t) is the superposition of the three X-
ray, UV-visible, IR, or THz pulses (depending on the specific experiment), which are
generally denoted as E1, E2, and E3. The approximate Hamiltonian of the composite
system is the sum of the molecular or material Hamiltonian H0 in the absence of
radiation and the field-matter interaction Hamiltonian H int(r, t). The system evolves
over time according to the quantum Liouville equation for the density operator ρ(r,
t) of the system, where ρ(r, t) is the state vector in the Liouville space, as follows:
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∂ρ(r, t)
∂t

= − i

�
[H0 + Hint(r, t), ρ(r, t)] (1.2)

The solution to this equation provides information about any physical observable
A(r, t) of the system through the expectation value of Tr[ Âρ(r, t)]. Here, Tr denotes
the trace of thematrix and Â is the operator associatedwith the observableA.Diagonal
element ρaa of the density matrix represents the probability that the system is in state
a, or the population of the system in state a. Off-diagonal element ρab of the density
matrix, which is related to the coherence or distinguishability of the two quantum
states, gives rise to the temporal oscillation of the aforementioned probability with
the frequency ω ≈ ωab = (Ea − Eb)/� determined by the energy difference of the
two eigenstates a and b.

Treating H int(r, t) as a perturbation to the system described by the molecular
HamiltonianH0, (1.2) can be solved by applying time-dependent perturbation theory.
The solution is expressed as a power series expansion of ρ(r, t) with respect to
the perturbation energy, the zeroth-order term of which is the equilibrium density
operator for the unperturbed system ρ(0)(t) = ρeq. The nth-order term ρ(n)(r, t)
contains n factors of H int(r, t) and is given by [6].

ρ(n)(r, t) =
(

− i

�

)n
t∫

t0

dτn

τn∫
t0

dτn−1 · · ·
τ2∫

t0

dτ1G0(t − τn)L int(τn)

G0(τn − τn−1)L int(τn−1) · · ·G0(τ2 − τ1)L int(τ1)G0(τ1 − t0)ρ(t0) (1.3)

whereG0(t) = exp(−i L0t/�) is the time-evolution operator in the absence of radia-
tion. The Liouville operators are defined as LaA= [Ha, A] for a= 0 or int. According
to (1.3), the system initially defined by ρ(t0) evolves freely without perturbation for
τ 1 − t0 as given by G0(τ 1 − t0) and then interacts with the radiation at time τ 1 as
given by Lint(τ 1). This propagation-interaction sequence is repeated n times until the
final field-matter interaction at τ n, as given by Lint(τ n). Finally, the system evolves
freely until observation time t for t − τ n according to G0(t − τ n). The multiple
integrals over τ 1, …, τ n account for all possible interaction times under the time
ordering condition t0 ≤ τ 1 ≤ … ≤ τ n ≤ t.

Each term of the power series expansion of ρ(r, t) in (1.3) gives rise to the
corresponding nth-order polarization P(n)(r, t) = Tr

[
μ̂ρ(n)(r, t)

]
in the system as

follows:

P(n)(r, t) =
∞∫
0

dtn . . .

∞∫
0

dt1R(n)(tn, . . . , t1)
...E(r, t − tn) . . .E(r, t − tn . . . − t1)..

(1.4)

The nth-order response function is formally given by
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R(n)(tn, . . . , t1) =
(
i

�

)n

θ(tn) · · · θ(t1) < μ(tn + · · · + t1)[μ(tn−1 + · · · + t1),

[· · · [μ(t1), [μ(0), ρeq]] · · · ]] > (1.5)

where μ̂(t) = exp(i H0t
/

�)μ̂ exp(−i H0t
/

�) is the dipole operator in the interaction
picture and the angular bracket in (1.5) denotes the trace of a matrix. The linear
response can be obtained by setting n = 1 in (1.5). The 2D spectroscopy signal
is determined by the third-order polarization P(3)(r, t) and the third-order response
functionR(3)(t3, t2, t1) [23]. Here, the latter is a fourth-rank tensor. Note that the time
variables t1, …, tn−1 in (1.4) and (1.5) are the time intervals between consecutive
field-matter interactions related to τ 1, …, τ n in (1.3) as tm = τm+1 − τm (1 ≤ m ≤ n
− 1), while tn = t − τ n is the time elapsed after the last field-matter interaction.
Therefore, t1, …, tn are all positive and the response function must vanish if any
of its time arguments tm (m = 1…n) are negative in accordance with the causality
principle, as imposed by theHeaviside step function s θ (t) in (1.5). In addition,R(n) is
a real function because P(n)(r, t) and E(r, t) in (1.4) are both real quantities, though
individual terms comprising R(n) are complex in general and represent different
quantum transition pathways.

The signal electric field E(n)
S (r, t) detected in nth-order nonlinear spectroscopy is

obtained by solving Maxwell’s equation where the material nonlinear polarization
P(n)(r, t) acts as a radiation source. After making the simplifying assumptions that (i)
the generated signal field is only weakly absorbed by the medium, (ii) the temporal
envelopes of the polarization and signal fields vary slowly in time compared to the
optical period, (iii) the signal field envelope spatially varies slowly compared to its
wavelength, and (iv) the frequency dispersion of themedium refractive index isweak,
the approximate solution can be obtained as [6, 7].

E(n)
S (t) ∝ iωs

n(ωs)
P(n)
S (t). (1.6)

Here, n(ω) is the refractive index of the medium and P(n)
S (t) is the polarization

component propagating with wave vector kS and frequency ωS , which represent one
of the combinations ±k1 ± k2 · · · ± kn and ±ω1 ± ω2 · · · ± ωn , respectively. These
components make up the total nth-order polarization as

P(n)(r, t) =
∑
l

P(n)
l (t) exp(ikl · r − iωl t). (1.7)

By appropriately changing the location of the detector, individual components of
the polarization with different wave vectors can be selectively measured.
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1.3.2 Nonlinear Response Function Components

Two-dimensional vibrational spectroscopy usually induces transitions up to the sec-
ond vibrational excited state. Therefore, a three-level system with eigenstates |g>,
|e>, and |f > is a useful model for the nonlinear response function relevant to coherent
2D spectroscopy. Because the third-order response function vanishes for a harmonic
oscillator (i.e., a molecular vibration or an electronic Lorentz oscillator), the model
system must represent an anharmonic oscillator where the fundamental transition
frequency ωeg differs from ωfe.

The evaluation of a realistic response function critically depends on an accu-
rate description of the system-bath interaction, which is essentially responsible for
dephasing, relaxation, spectral diffusion, and population and coherence transfers. To
highlight the structure of the response function, I consider a simple model where
a single three-level chromophore interacts with the environment according to the
following Hamiltonian:

H0 =
∑

m=g,e, f

[
�ωm + Vm(q) + HB(q)

]|m〉〈m|, (1.8)

where �ωm is the energy of the mth state in the absence of a bath. Vm(q) is the
chromophore-bath interaction energy of the state, where q represents the bath coor-
dinates. In (1.8), HB(q) is the energy of the bath. The off-diagonal elements of the
chromophore-bath interaction are assumed to be negligible for the sake of simplicity.
Using this Hamiltonian, the three nested commutators in the response function in
(1.5) can be expanded as the sum of eight terms:

R(3)(t3, t2, t1) =
(
i

�

)3

θ(t3)θ(t2)θ(t1)
4∑

i=1

[Ri (t3, t2, t1) − (c.c.)], (1.9)

where c.c. denotes the complex conjugate and the fourth-rank tensor components
Ri (t3, t2, t1) are given by

R1(t3, t2, t1) = μgeμegμgeμeg exp
[
i(−ω̄egt3 − ω̄egt1)

]
Fgege
1 (t3, t2, t1)

+ μgeμe f μ f eμeg exp
[
i(ω̄ f et3 − ω̄egt1)

]
Fgef e
1 (t3, t2, t1)

R2(t3, t2, t1) = μgeμegμgeμeg exp
[
i(−ω̄egt3 + ω̄egt1)

]
Fgege
2 (t3, t2, t1)

+ μgeμe f μ f eμeg exp
[
i(ω̄ f et3 + ω̄egt1)

]
Fgef e
2 (t3, t2, t1)

R3(t3, t2, t1) = μgeμegμgeμeg exp
[
i(−ω̄egt3 + ω̄egt1)

]
Fgege
3 (t3, t2, t1)

+ μgeμe f μ f eμeg exp
[
i(ω̄ f et3 + ω̄ f gt2 + ω̄egt1)

]
Fgef e
3 (t3, t2, t1)

R4(t3, t2, t1) = μgeμegμgeμeg exp
[
i(−ω̄egt3 − ω̄egt1)

]
Fgege
4 (t3, t2, t1)

+ μgeμe f μ f eμeg exp
[
i(−ω̄egt3 − ω̄ f gt2 − ω̄egt1)

]
Fgef e
4 (t3, t2, t1)

.

(1.10)



12 M. Cho

Here, it is assumed that the system is initially in the ground state g. In (1.10),
μab is the transition dipole moment between states a and b, which is often
assumed to be independent of the bath coordinates (i.e., the Condon approxima-
tion). In (1.10), the energy gap averaged over bath degrees of freedom is defined
as �ω̄ab = �(ωa − ωb)+ < Va(q) − Vb(q) >B . F

gabc
n (t3, t2, t1) is the line shape

function expressed in terms of the time-ordered exponentials of the fluctuations in
the system-bath interactions, Um(q) = Vm(q)− < Vm(q) >B . The total response
function is composed of multiple quantum transition pathways represented by indi-
vidual Ri, each of which is the product of three factors determining the transition
strength (i.e., the products of transition moments), the transition frequency (i.e.,
coherence oscillation), and the line shape function (F1–4). To facilitate the compu-
tation of Fgabc

n (t3, t2, t1), the time-ordered exponential operators can be approxi-
mated by normal exponential functions containing the difference potential energies
Uab(q) = Ua(q) − Ub(q). Alternatively, the nonlinear line shape function can be
approximately described by invoking second-order cumulant expansion technique,
which becomes exactwhen the fluctuation of the transition frequency obeysGaussian
statistics [7, 11]. Because detailed theoretical expressions of line shape functions can
be found in other review articles and books [6–8, 23], I will not present them here.

The general formulation for multi-level systems has been reported and provides
an excellent framework for interpreting experimental results and for understanding
the effect of chromophore-solvent interaction dynamics on the diagonal and off-
diagonal peak shapes in 2D spectra. For instance, a distinction between homogenous
and inhomogeneous line broadening can be achieved by analyzing the extent of the
diagonal elongation of a given diagonal peak. Furthermore, time-dependent 2D peak
shape analysis of both diagonal and cross peaks provides critical information on the
timescale of solvent dynamics affecting transition frequency fluctuations and on the
correlation or anticorrelation of the solvent-induced frequency fluctuations of the
two associated states, respectively.

1.3.3 Classical Approximation to 2D Vibrational Response
Functions

Although the nonlinear response function formalism is exact, fully quantummechan-
ical simulations of 2D peak shape functions remain difficult and impractical for sys-
tems with many degrees of freedom. Thus, applicable and efficient methods based
on the classical mechanical description of molecular vibrations have been devel-
oped and used to calculate 2D vibrational response functions for coupled oscillator
systems [24].

One of these is to use trajectories of equilibrium MD simulations with classical
approximations of the vibrational response functions. First, the classical mechan-
ical response functions are derived using the relationship between the quantum
mechanical commutator and the Poisson bracket, i.e., (i�)−1[X,Y ] = {X,Y }PB,
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where X and Y are physical variables and the Poisson bracket is expressed as
{X,Y }PB = (∂X/∂q)(∂Y/∂p) − (∂X/∂p)(∂Y/∂q). For instance, the classical lin-
ear response function of a physical quantity A to a perturbation B is given as
(1/kBT )〈B ′(0)A(t)〉, where B ′ is the time derivative of B. The above relationship
between the quantum mechanical commutator and the classical mechanical Poisson
bracket can be applied to derive the classical nonlinear response function [25]. For
4WM-based 2D vibrational spectroscopy, the corresponding classical third-order
response function that is related to 2D IR spectroscopy is expressed as

R(3)(t1, t2, t3) = β〈{{μ(t1 + t2 + t3), μ(t1 + t2)}PB, μ(t1)}PBμ′(0)〉
= −β〈{μ(t1 + t2 + t3), μ(t1 + t2)}PB(βμ′(t1)μ′(0) − {μ(t1), μ

′(0)}PB)〉
(1.11)

Here, the Poisson brackets of the physical variables at two different times, e.g.,
{μ(t), μ(t ′)}PB, are calculated using equilibrium MD trajectories. This involves the
calculation of the stability matrix representing the transformation of the phase space
along the trajectory. Using this method, Jeon and Cho investigated 2D IR spec-
tra, employing a quantum mechanical/molecular mechanical (QM/MM) simulation
method for an accurate description of the intramolecular vibrations of the solute
molecules (deuterated N-methylacetamide [d-NMA] and HOD) [24]. They were
able to calculate the 2D IR spectra of the OD stretch of HODmolecules in water and
demonstrated that various 2D IR spectroscopic features can be successfully repro-
duced by this classical approach to calculate the 2D IR spectra.

However, because this approach requires stabilitymatrix calculations, it is compu-
tationally expensive and suffers from numerical instability, which makes it difficult
to calculate nonlinear response functions accurately. Another approach that has been
developed to overcome this problem utilizes the simulation of non-equilibrium MD
trajectories. In this case, nonlinear vibrational response functions are evaluated by
considering external field-matter interactions directly, in a similar way to real experi-
ments performed with pulsed electromagnetic fields. In other words, instead of using
equilibrium MD trajectories, the nonlinear vibrational responses can be calculated
by directly taking into consideration radiation-molecule interaction by means of car-
rying out a number of independent non-equilibrium MD simulations. For instance,
the linear response function can be approximately calculated using [26].

R(1)(t) = lim
ε→0

1

ε
{〈A(t)〉B(0) − 〈A〉}, (1.12)

where ε is the perturbation parameter. Here, the first term is the expectation value of
A(t) on the perturbed trajectory determined by the Hamiltonian H0 − εBδ(t), where
B is, for example, μ(r) · E(r, t). The second term 〈A〉 is the expectation value of
A on the trajectory in the absence of perturbation. In this non-equilibrium finite-
field method, the third-order response function for 2D vibrational spectroscopy is
expressed as
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R(3)(t1, t2, t3) = lim
ε→0

1

ε3

{〈μ(t1 + t2 + t3)〉E(0),E(t1),E(t1+t2) − 〈μ(t1 + t2 + t3)〉E(0),E(t1)

− 〈μ(t1 + t2 + t3)〉E(0),E(t1+t2) − 〈μ(t1 + t2 + t3)〉E(t1),E(t1+t2)

+ 〈μ(t1 + t2 + t3)〉E(0) + 〈μ(t1 + t2 + t3)〉E(t1)

+〈μ(t1 + t2 + t3)〉E(t1+t2) − 〈μ(t1 + t2 + t3)〉
}
. (1.13)

Jansen and coworkers have further developed an efficient method using positive
and negative electric fields [27].

Although non-equilibriumMDsimulationmethods do not require the direct calcu-
lation of a cumbersome stability matrix, it is still expensive computationally because
a number of non-equilibrium trajectories need to be obtained to accurately calculate
the nonlinear vibrational response functions. To save computational time, the Tan-
imura research group developed an efficient method that combines the equilibrium
MD simulation and non-equilibrium finite perturbation methods [28].

The third-order vibrational response functions obtained from equilibrium and/or
non-equilibriumMD simulations in principle allow any third-order vibrational spec-
tra to be predicted. However, despite these recent developments in computational
spectroscopy, it is still computationally demanding to calculate the third-order
response functions of complicated systems in solution. Furthermore, the fundamental
validity of the classical approximations used previously has been re-investigated by
several groups and it has been found that classical nonlinear response functions are
not stable for integrable systems and systems without dissipation. Sakurai and Tan-
imura examined the quantum effects on the IR and 2D IR spectra of aMorse oscillator
interacting with a collection of harmonic bath oscillators [29]. They showed that the
classical 2D IR spectra represent a good approximation of the quantum 2D IR spectra
when the system is largely modulated by the bath via a strong system-bath coupling
or when the bath modulation is fast even in a weak system-bath coupling regime.
Recently, this issue was investigated again by Reppert and Brumer, who showed
that the classical 2D IR spectra of a Morse oscillator mimicking amide I mode can
reproduce most of the qualitative features of the quantum 2D IR spectra very well
[30]. From these studies, it is clear that the validity of the classical approximation
when calculating linear and nonlinear IR spectra depends on system-bath coupling.

Although classical nonlinear spectral simulations have been shown to reproduce
spectra derived via quantum mechanical calculations reasonably well when system
vibrations are largely modulated by the bath, there remain intrinsic differences with
regards to the quantum mechanical description of vibrational transitions. In fact,
real vibrational spectra are described as transitions from one vibrational level to
another in quantum mechanics, whereas they are obtained from the fluctuation of
dipolemoments in classical mechanics. Furthermore, the anharmonic frequency shift
observed in 2D IR spectra is determined by information about the entire potential
energy function. In contrast, no discrete vibrational quantum states are considered in
any approaches based on classical mechanics. Trajectories in a classical mechanical
regime are determined by local information on coordinates and momenta. Conse-
quently, the anharmonic shift corresponding to the frequency difference between
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the positive and negative peaks in classical 2D IR spectra arises from the difference
between the curvatures of the trajectories perturbed by one and multiple electric
fields. Therefore, the anharmonic shifts found in the 2D IR spectra obtained with
classical approaches are small compared to those in the experimental or quantum
mechanically calculated 2D IR spectra [25].

The other important quantity determining each nonlinear vibrational response
function component is the transition dipole moment. In quantum mechanics, spec-
tral intensity is related to the transition dipole moments between vibrational lev-
els, whereas classical mechanically calculated spectra are determined by the dipole
moments induced by vibrational and conformational changes. Therefore, it is abso-
lutely crucial to model highly accurate potential function and transition (dipole,
polarizability, etc.) moments to correctly simulate nonlinear vibrational response
functions and corresponding spectra. Of course, fully quantum mechanical MD sim-
ulation methods exist, but the calculation of quantummechanical nonlinear response
functions that include all of the effects of the surrounding thermal bath remain chal-
lenging and impractical, despite the dramatic advances in computer technology and
algorithms. Therefore, other semiclassical approach es like semiclassical initial value
representation, centroid MD, and ring-polymer MD, which have been used to calcu-
late the linear spectroscopic properties of molecules in condensed phases, should be
employed in the calculation of various coherent 2D vibrational spectra in the near
future.

1.3.4 Numerical Integration of the Vibrational Schrödinger
Equation

Instead of considering the fluctuation in system-bath interaction-induced frequency
and the change in transition dipoles over time using MD simulations, the fluctuating
vibrational frequency and the transition dipole of the oscillator of interest in con-
densed phases can be described using theoretical models. The task remaining is then
to solve the time-dependent vibrational Schrödinger equation. This approach has
been referred to as the Numerical Integration of the Schrödinger Equation (NISE)
theory [31]. In this case, each oscillator is treated as a weakly anharmonic oscillator
with three vibrational levels that are coupled to bath degrees of freedom. The latter is
taken into account through their time-dependent modulation of the parameters of the
quantumoscillator, such as the harmonic frequency and transition dipole. For coupled
multi-oscillator systems interacting with external electric fields, the corresponding
time-dependent Hamiltonian can be written as

H(t) =
N∑
n

�ωn(t)a
†
nan +

N∑
n,m

Jnm(t)a†nam − 1

2

N∑
n


n(t)a
†
na

†
nanan
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+
N∑
n

E(t) · μn(t)
(
a†n + an

) +
N∑
n

E(t) · αn(t) · E(t)
(
a†n + an

)
(1.14)

Here, a†n and an are the creation and annihilation operators of the nth oscillator
considered quantum mechanically. The individual local modes are characterized
by their frequency ωn(t), transition dipole μn(t), transition polarizability αn(t), and
anharmonicity
n(t). Any pair of localmodes can bemixed by theirmutual couplings
Jnm(t). In this approach, the time dependence of these parameters strictly arises from
the coupling of each individual oscillator with bath degrees of freedom. The last two
terms in (1.14) account for the interaction of the oscillating dipoles and molecular
polarizabilities with the applied electric field(s) E(t), respectively, depending on the
specific experimental configuration.

Determining the fluctuating frequencies, transition moments, and coupling con-
stants in the above time-dependent Hamiltonian depends on the system under consid-
eration. Once there exist quantitatively reliablemodels for these parameters, approxi-
mate time-evolution operator approaches can be used to calculate the response func-
tions. The key step is to divide the propagation time into sufficiently short time
intervals so that the Hamiltonian during these intervals can be considered time-
independent. The solution for the time-dependent Schrödinger equation for each
short time interval can then be easily obtained. Successive applications of the finite-
difference time-evolution operator s for neighboring time-intervals enable the time-
dependent vibrational wavefunction of the coupled multi-oscillator systems to be
calculated.

The success of this NISE approach relies on the accuracy of the computed param-
eters needed to construct the time-dependent Schrödinger equation. The vibrational
frequency and transition moment of a given oscillator depends on the local environ-
ment and is determined by the intermolecular interaction potential and the vibra-
tional anharmonicity of the multidimensional intramolecular vibrational potential.
For instance, an early attempt to calculate the solute-solvent interaction-induced shift
of vibrational frequency was based on the assumption that the solute-solvent inter-
action is dictated by electrostatic interactions. The vibrational frequency shift of an
oscillator was assumed to be dependent on the solvent electric potential, electric field,
or sometimes the electric field gradient on specific sites of the solute molecule. These
vibrational frequency mappings have allowed the frequency trajectories of the cou-
pled oscillators to be obtained from equilibrium MD trajectories. However, recently
it has been shown that the vibrational solvatochromic frequency shift is determined
by not just electrostatic interactions but also dispersive interaction, short-range Pauli
repulsion, polarization, and even multipole-multipole interactions [32].

The anharmonicity of a given molecular vibration also depends on its interaction
with the solvent molecules. For multi-oscillator systems, the vibrational coupling
constant between any pair of local modes should be accurately calculated to describe
the delocalized nature of the vibrational modes. One of the most popular models is
the transition-dipole coupling model, which is based on the assumption that the two
oscillators interact with each other through electric dipole-dipole interactions. So
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far, this form of semiempirical mapping has been found to be exceptionally useful,
achieving a chemical accuracy within a few wavenumbers, something which cannot
be achieved using current classical or even ab initio MD simulation methods.

The quantum-classical methods discussed here have a number of crucial advan-
tages. One of the commonly used methods that incorporates second-order cumu-
lant approximation or another method that requires an assumption that the coupled
bath degrees of freedom are harmonic oscillators cannot account for intermolecu-
lar interaction-induced effects properly. On the other hand, the quantum-classical
methods take them correctly. Nevertheless, the quantum-classical methods still have
clear limitations. The time-dependent Hamiltonian for NISE does not allow for the
relaxations between the different excitation manifolds. Furthermore, while these
quantum-classical methods are able to account for the effect that the bath exerts
on the system, the feedback of the system to the bath when in an excited state is
unable to be considered. As a consequence, the method cannot reproduce the correct
thermalization in quantum systems, which results in artifacts at low temperatures.
Another inherent difficulty of NISE is that the quantum mechanical oscillators need
to be well defined and localized. If the nature of an oscillator changes over time (e.g.,
H-bond vibrations and delocalized intermolecular modes), it is not possible to treat
them quantum mechanically.

Asmentioned in this section, despite the prolonged efforts to develop approximate
theory and computational methods, clear limitations in the accurate calculation of
the coherent multidimensional spectra of molecules in condensed phases exist. The
next section will now switch focus to experimental techniques and their underlying
principles.

1.4 Experimental Methods

1.4.1 Femtosecond Laser Light Sources

Owing to the recent developments in high-power Ti:Sapphire lasers, stable fem-
tosecond pulses in the 750–900 nm wavelength range have been used in a variety of
ultrafast spectroscopic studies. Ti:Sapphire laser systems that produce pulses cen-
tered at 800 nm of ~50 fs in duration and a pulse energy of a fewmJ are commercially
available. The 800-nm pulses can then be used to generate femtosecond pulses in the
visible (400–700 nm), near IR (1.2–2.4 μm), mid-IR (2.5–7.0 μm), and even THz
(10–30 μm) frequency ranges by employing various nonlinear optical techniques
with appropriate nonlinear crystals, such as optical parametric amplification (OPA),
second and higher harmonic generation, sum frequency generation, and difference
frequency generation. Thus, the generated femtosecond pulses have been used to
carry out various forms of time-resolved spectroscopic research. More recently, 100-
kHz repetition rate lasers and optical frequency comb lasers with repetition frequen-
cies in the hundreds of MHz have been added to the list of radiation sources for
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coherent 2D spectroscopy experiments. In fact, two or more phase-stabilized optical
frequency comb lasers, with each producing a train of phase-stabilized pulses with
well-defined and constant repetition and carrier-envelop-offset frequencies, can be
used to construct double- and multiple-comb spectrometers. A review article writ-
ten by Kim et al. will be of interest for understanding state-of-the-art theories and
experiments regarding dual-comb-based nonlinear spectroscopy (see the chapter 16
written by Kim and Cho in this book too) [33]. They present an extensive discus-
sion of the advantages and limitations of this technique compared to conventional
time-resolved spectroscopic methods using a single mode-locked laser with beam
splitters and translational stages.

1.4.2 Interferometry

In spectroscopy and microscopy, various interferometric approaches to measuring
the phase and amplitude of an unknown field by having it interfere with a reference
field have been adopted. One of the most popular techniques used in nonlinear spec-
troscopy is Mach-Zehnder (MZ) interferometry (Fig. 1.1a). A single pulse from a
coherent radiation source (e.g., a laser) is split into two daughter pulses that propagate
along two different paths. The two beams are then combined by a beam combiner
placed before a photon detector. Now, suppose one of the two path lengths is changed
intentionally. As long as the two beams remain coherent with each other, the recorded
intensity at the detector will exhibit an interference fringe with respect to the differ-
ence in the path lengths. Let us denote the waves in the upper and lower paths as
ψu and ψl , respectively, and the incident wave as ψ0. For the sake of simplicity, it
is assumed that the incident beam is split into two by a 50:50 beam splitter that is
fabricated from a lossless material. The wave arriving at the detector is given by

ψ = ψu + ψl = (1/
√
2)ψ0(e

iφu + eiφl ), (1.15)

Fig. 1.1 Mach-Zehnder
interferometry for
spectroscopy. a The
incoming wave is divided in
two by a beam splitter. The
two waves pass through the
upper and lower paths and
then interfere to produce a
fringe of varying path length
differences. b The wave on
the lower path is modified by
the complex susceptibility of
the optical sample, which
changes the interference
pattern

D

D

(a)

(b)

sample

ψu

ψl

ψu

ψl

ψ0

ψ0

https://doi.org/10.1007/978-981-13-9753-0_16
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where φu (φl) is the phase acquired by the upper (lower) beam. The detected intensity
of the total wave is

|ψ |2 = |ψ0|2{1 + cos(φu − φl)}. (1.16)

The phase difference φu − φl is primarily determined by the difference in path
length and it determines the fringe spacing. The sinusoidal term in (1.16) represents
the coherence or distinguishability of the two waves. From the complementarity
relation D2 + V 2 = 1 for a single particle, distinguishability (D) is related to the
visibility (V ) of the fringe, where the former is a particle characteristic and the latter
a wave characteristic. Thus, any finite visibility in the interference pattern indicates
that the particle path is not completely distinguishable, i.e., |D| < 1. Now, suppose
that there exist media on one or both of the two paths that can induce random phase
fluctuations, ϕm(t), in the two waves, i.e., ψm = (1/

√
2)ψ0eiφm+iϕm (t) for m = l

and u. The interference term will then vanish when it is averaged over the broad
and randomly fluctuating phases. This is known as the dephasing process, which is
measurable with MZ interferometry.

Now, let us consider the case where a real optical sample that resonantly interacts
with the incident beam is placed on the lower beam path (Fig. 1.1b). Due to the
absorptive and dispersive properties of the sample, the wave passing through the
lower path is modified and can be written as ψl = (1/

√
2)ψ0e−κl+iηl+iφl , where

κl is the attenuation factor (α extinction coefficient) due to the resonant absorption
of the radiation by chromophores in the sample and ηl is the phase shift due to the
dispersion (α refractive index) of the sample. These two factors, κl and ηl , are related
to the imaginary and real parts of the linear susceptibility of the sample, respectively.
The measured signal in this case is

|ψs |2 = (1/2)|ψ0|2{1 + e−2κl + 2e−κl cos(φu − φl − ηl)}. (1.17)

In principle, by comparing this interference pattern with that produced without
an optical sample (or, more specifically, chromophores in the solution), quantita-
tive information about the real and imaginary parts of the linear susceptibility of
chromophores can be extracted.

Heterodyne-detected coherent 2D spectroscopic measurement [19, 34] is also
based on MZ interferometry (Fig. 1.2). Instead of placing a sample cell containing
molecules of interest on the lower beam path, the optical setup shown in the lower
box in Fig. 1.2 is employed there. The pulse incident into the 4WM setup is split
into three pulses, the relative delay times of which are controlled by two mechanical
delay devices. The three pulses interact with the optical sample of interest, which then
generates a third-order signal field propagating along the phase-matching direction.
This signal field interferes with the reference beam traveling along the upper path,
which closes theMZ interferometry circuit. In this formof coherent 2D spectroscopy,
the output wave from the lower path can be generalized as

ψl = (1/
√
2)ψ0e

−κl (t,T,τ )+iηl (t,T,τ )+iφl , (1.18)



20 M. Cho

Fig. 1.2 Modified MZ
interferometry. The
experimental setup for 4WM
scattering is placed on the
lower beam path. The
generated third-order signal
electric field, which results
from the desired
phase-matching condition, is
combined with the local
oscillator (i.e., reference)
field passing through the
upper path. The interference
pattern is recorded using a
monochromator and array
detector pair or a single
detector depending on the
experimental configuration

D

ψu

ψl

ψ0

4WM

where κl(t, T, τ ) and ηl(t, T, τ ) represent the attenuation (extinction) factor and
the phase shift factor, respectively. Note that they depend on the two pulse-to-pulse
delay times τ and T and are related to the imaginary and real parts of the third-order
response susceptibility. The wave passing along the lower path interferes with the
wave from the upper path, and the interference term is selectively measured by the
detector (D).Depending on the specific experimental configuration, the spectral inter-
ferogram in the frequency domain or the temporal interferogram in the time domain
can be measured. In conventional 2D spectroscopy with laser pulses (Fig. 1.2), the
time delay between the local oscillator field and the signal field is usually fixed. Using
a monochromator and array detector, the spectral interferogram is measured experi-
mentally, which provides information on the phase and amplitude of the third-order
2D spectroscopic signal field.

Recently, dual frequency comb spectroscopy has been shown to be useful in
measuring the nonlinear electronic response functions of atomic (Rb) vapor or chro-
mophores in condensed phases [35, 36]. Because the down conversion factor, which
is determined by the ratio of the mean repetition frequency and the difference in
repetition frequency between the two comb lasers is in the order of 106–108, it is
possible to use a single detector to monitor ultrafast molecular response and relax-
ation processes with microsecond timescale detectors [37, 38]. Thus, for multiple
frequency comb spectroscopy, the time-domain interferogram is recorded with a
single detector and its Fourier transformation provides direct information about the
spectrum of the sample with respect to the probe frequency. Although the underlying
interferometry in dual and evenmultiple frequency comb spectroscopic techniques is
more similar to Michelson interferometry than to MZ interferometry, the underlying
principles are the same in the sense that the linear or nonlinear optical signal field
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is characterized by analyzing the interference patterns produced by the interference
between the signal field and the local oscillator (i.e., reference) field.

1.4.3 2D Electronic and Vibrational Spectroscopy

Two-dimensional electronic and vibrational spectroscopy that utilizes multiple laser
pulses whose frequencies cover a broad range from THz, UV, to X-ray can be con-
sidered a time-domain 4WM process. The first three femtosecond pulses propagate
along a non-collinear beam geometry. The pulse-to-pulse time intervals are con-
trolled by changing the relative optical path lengths with motorized translational
stages or dispersive materials such as a pair of wedged glasses. In coherent 2D
spectroscopy, the molecular system evolves on different density matrix elements.
The coherence evolution time τ is almost identical to the delay time between the
first and second pulses when they are assumed to be ultrashort compared to the
molecular relaxation processes. The waiting time T is the time interval between the
second and third pulses, and the detection time t is the time between the third pulse
and the emitted signal. Initially, the chromophores in condensed phases are in the
thermal equilibrium state. The first E1 field-matter interaction creates a coherence
state between the ground and excited states, i.e., the superposition of the ground and
excited states. The second interaction with the E2 pulse puts the molecular system
back to a population in either an excited or ground state. When there are multiple
vibrational states or electronically delocalized exciton states that can be excited by
spectrally broadband pulses, the state vector during T will demonstrate an oscillating
pattern, i.e., quantum beats. The third pulseE3 shifts the molecular system to another
coherence and it evolves for t. If the initial excitation frequency is different from the
emission frequency due to changes in the local environment or the chemical struc-
ture of the chromophores during the waiting time, quantitative information about
these processes can be extracted by analyzing the changes in both the diagonal and
cross-peak shapes and intensities.

Various nonlinear response function components can usually be conveniently clas-
sified into non-rephasing R(3)

NR(τ, T, t) and rephasing R(3)
R (τ, T, t) transition path-

ways. In experiments, the non-rephasing and rephasing signals can be selectively
measured by changing the time sequence of the first three pulses.

The emitted signal electric field is thus a function of the two delay times τ and
T, i.e., Es(t, T, τ ). To measure the phase and amplitude of this signal electric field, a
successful strategy is to have it interfere with an additional reference field, i.e., local
oscillator field ELO(kLO), and to measure and analyze the spectral interferogram
(Fig. 1.3). This detection technique is known as heterodyned detection because the
spectral distribution of the local oscillator can differ from that of the third-order
signal electric field. Because the spectral components of the total electric field are
measured using an array detector combined with a monochromator, the measured
spectrum is given by
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Fig. 1.3 Coherent 2D spectroscopy based on the measurement of a spectral interferogram. Delay
stages in the first black box are used to control the relative time intervals between pulses. M =
monochromator. D = detector

S(ωt , T, τ ) = |Es(ωt , T, τ ) + ELO(ωt )|2
= |ELO(ωt )|2 + |Es(ωt , T, τ )|2 + 2Re[E∗

s (ωt , T, τ ) · ELO(ωt )]
(1.19)

where ωt is the Fourier frequency conjugated with detection time t. In (1.19),
|ELO(ωt)|2 contributes to the measured spectral interferogram as a constant indepen-
dent from the two delay times τ and T so that it can be removed from the measured
intensity. The signal field intensity, which is often referred to as the homodyne sig-
nal, |Es(ωt , T, τ )|2, is negligibly small compared to the last interference term because
of the inequality |ELO(ωt)|�|Es(ωt , T, τ )|. Thus, the measured heterodyne-detected
signal that is needed to obtain the 2D spectrum is

Shet (ωt , T, τ ) ∝ 2Re[E∗
s (ωt , T, τ ) · ELO(ωt )]. (1.20)

To retrieve the complex signal electric field, i.e., both the real and imaginary
parts of the signal field, from the spectral interferogram, it should first be Fourier
transformed to the time domain data. The positive time component of the time-
domain signal is only taken into consideration for the subsequent inverse Fourier
transformation back to the frequency (ωt) domain. Thus, the obtained spectrum is
a function of τ , T, and ωt , which is denoted as S̄het(ωt , T, τ ). Finally, the Fourier
transformation of S̄het(ωt , T, τ ) with respect to τ produces the 2D spectrum S2D(ωt ,
T, ωτ ). The absorptive component of the signal is measured when the signal is in
phase with that of the LO field, whereas the dispersive component is obtained when
the signal is 90° out of phase with respect to the LO. In practice, the dispersive
and absorptive components of the heterodyned signal can be obtained using phase
cycling methods such as the dual phase scan method.

To obtain purely absorptive 2D spectra, the non-rephasing and rephasing signals
are measured independently using two different pulse time sequences at a fixed
waiting time T. These signals are Fourier transformed with respect to t and τ and are
added together to obtain the absorptive 2D spectrum:

Sabs(ωt , T, ωτ ) = SNR(ωt , T, ωτ ) + SR(ωt , T, ωτ ). (1.21)

In experiments, the time resolution is determined by the duration of the incident
pulses, whereas the spectral resolution is determined by (1) the characteristics of the
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monochromator (e.g., the grating and focal length), (2) the pixel size of the CCD or
IR array detector, and (3) the scanning range of the delay time τ between the first
and second pulses.

The measured 2D spectra are then displayed with respect to the excitation (pump)
frequency ωτ and the emission (probe) frequency ωt for varying waiting times T.
The horizontal axis labeled as ωτ provides information on the molecular transition
frequencies of an ensemble of chromophores, whereas the peak positions along the
vertical probe frequency (ωt) axis provide information on the quantum states involved
in the created superposition state of the systemafter thewaiting timeT. Thus, coherent
2D spectroscopy is composed of photon-labeling (i.e., writing), waiting, and photon-
detecting (i.e., reading) steps. A molecule labeled (i.e., excited) by the first two field-
matter interactions spontaneously undergoes a variety of relaxations, transitions,
or reactions, which essentially result in the change in the transition frequency of
the labeled molecule. The 2D optical spectrum can therefore be considered a 2D
frequency correlation map between the initial and final frequencies or states, which
provides quantitative information on the dynamics of molecules.

The overall experimental layout shown in Fig. 1.3 is also similar to the Mach-
Zehnder interferometer. Usually, the local oscillator field does not need to pass
through the optical sample. In practice, the amplitude ratio of |Es|/|ELO| is delib-
erately varied to optimize the signal-to-noise ratio. One of the most difficult issues
in measuring the 2D spectrum is to keep the relative phases of the pulses stable
and constant throughout the experimental time. The relative phase of the signal field
with respect to that of the LO (reference) field is determined by the relative phases
of incident pulses:

φ = φLO − φs = φLO − (φE1 − φE2 + φE3) = (φLO − φE3) − (φE1 − φE2). (1.22)

Here, the phase differences φE1 − φE2 and φLO − φE3 fluctuate in time because
the time delays between E1 and E2 and between E3 and ELO, respectively, fluctuate.
Usually, it is quite challenging to precisely control the relative phase between the
signal and LO fields. The heterodyne-detected signal inevitably consists of both
absorptive and dispersive contributions. Thus, to extract the purely absorptive spectra
from the measured spectral interferograms, the relative time delay errors between
the incident pulses and the chirps on the incident pulses need to be numerically
corrected afterward. This numerical procedure is often referred to as phasing. The
most successful and widely used method is based on the pump-probe projection
theorem. This theorem holds that the integrated spectrum of S2D(ωt , T, ωτ ) over
frequency ωτ should, in principle, be identical to the pump-probe spectrum with
respect to the probe frequency ωt . Therefore, the phase factor by which the complex
2D spectrum is multiplied should be adjusted to ensure the 2D spectrum projected
onto the ωt-axis better matches the pump-probe spectrum, thus completing phasing
correction.
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1.4.4 Phasing

As emphasized above, the important step for successful heterodyne-detected 2D
spectroscopy is to measure the amplitude and phase of the signal field Es with respect
to the local oscillator field ELO. The period of electromagnetic waves in the UV-
visible range is just a few femtoseconds per cycle, so it is difficult to accurately
and repeatedly measure the absorptive component of the third-order signals with
fixed relative phases. Suppose that the phases of incident pulses vary in time due to
fluctuations in the incident beam paths. The relative phase φ(t) can be written as
the sum of the time-averaged constant phase angle φ0 and the fluctuating component
δφ f (t) as φ(t) = φ0 − δφ f (t). If the relative phase between the signal and LO fields
varies randomly over the timescale of the experimental data collection, the measured
signal that represents the average of the fluctuating phases would be distorted or even
vanish depending on the amplitude of the phase fluctuation.

To stabilize the relative phase, an active phase-locking scheme has been devel-
oped using an additional interferometer to monitor the phase errors. A feedback
loop is then implemented to control the position of each individual optic compo-
nent on the incident beam path. Another approach is to use diffractive optics for
passive phase-locking. A diffractive optical element acts like a beam splitter. If two
beams propagating along different directions are focused onto the diffractive optical
element, each beam is split into two (±) first-order beams. The waiting time T is
controlled before the diffractive optics, but the other delay times are scanned with
a pair of sliding glass wedges. Thus, the four generated beams are reflected by the
same optical element, e.g., mirrors, and are focused onto the sample. Therefore, the
phase noise of the incident beams cancels out. This passive phase-locking technique
based on diffractive optics can be easily implemented within a coherent 2D spec-
trometer without requiring additional interferometer or feedback electronics. A 2D
optical spectrometer based on diffractive optics is compact and has been found to be
more effective for 2D electronic spectroscopy in the visible frequency domain.

1.4.5 Frequency-Scanning 2D Pump-Probe Spectroscopy

Unlike coherent 2D spectroscopy that utilizes three pulses with different propaga-
tion directions, coherent 2D spectroscopy based on a pump-probe geometry has a
relatively simple experimental configuration. Typical pump-probe spectroscopy is
performed with two pulses propagating non-collinearly. The pump beam Epu(kpu)
with frequency ωτ excites only those chromophores that are resonant with the ωτ

field. After a finite delay time of T, the probe beam Epr(kpr) is used to monitor the
relaxation processes of those excited molecules. In this case, the pump-pump-probe
electric field-matter interactions create the corresponding third-order polarization
P(3)(t), which in turn generates the pump-probe signal electric field E(3)(t), whose
wave vector is ks = −kpu + kpu + kpr. This pump-probe signal field propagates
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along the same direction as the probe beam, and the spectrum of the interference
between the signal and probe fields is measured with a monochromator and an array
detector. Because no additional local oscillator (reference) field is used to detect the
amplitude and phase of the pump-probe signal field, there is no need to precisely
control the relative phase. This is why it is known as self-heterodyne detection spec-
troscopy. Note that the pump-probe signal field is naturally in phase with the probe
beam, which allows the absorptive component of the 2D spectrum to be measured.

This pump-probe scheme has been used to obtain 2D spectra by scanning the
pump frequency. The excitation frequency ωτ of the pump can be selected using,
for example, a Fabry-Pérot interferometer. To obtain the 2D spectrum SPP(ωt , T,
ωτ ), the excitation frequency ωτ needs to be scanned over the molecular transition
band. The frequency resolution is therefore determined by the spectral bandwidth of
the frequency-selected pump beam. The temporal resolution of frequency-scanning
2D pump-probe spectroscopy is determined by the convolution of the frequency-
selected pump beam and the probe beam at the sample position. The narrow spectral
bandwidth of the pump beam unfortunately generates a 2D spectrum with poor time
resolution. In other words, there is a trade off between the temporal resolution and
the spectral resolution. Therefore, this frequency-scanning 2D pump-probe mea-
surement method has been used to study molecular systems with relatively slow
relaxation processes and chemical or biological reactions.

1.4.6 Time-Scanning 2D Pump-Probe Spectroscopy

Unlike frequency-scanning 2D pump-probe spectroscopy, time-scanning 2D pump-
probe spectroscopy utilizes three broadband femtosecond pulses in the pump-probe
geometry. In contrast to the three-pulse scattering geometry (Fig. 1.3), the first
two incident pulses (Epu1 and Epu2), which are separated by τ in time, propagate
collinearly along the direction set by the same wave vector kpu. The pump 1/pump
2/probe interactions with the chromophores generate the pump-probe signal field
along the probe direction due to the phase-matching condition of ks = −kpu + kpu

+ kpr = kpr. The generated signal electric field E(3)(t) interferes with the probe
field itself and the spectrum of this interference term is measured using a monochro-
mator and an array detector (Fig. 1.4). In contrast to pump frequency-scanning 2D
pump-probe spectroscopy, temporal interferograms are collected with respect to τ

at detection frequencies (ωt). Therefore, additional Fourier transformation of the τ -
dependent data provides additional frequency information for the nonlinear response
function along the ωτ axis. One of the advantages of this form of spectroscopy
is that the absorptive 2D spectra can be obtained without sacrificing the temporal
resolution. However, the desired 2D signal is measured together with the stronger
pump-probe signals originating from the pump 2/pump 2/probe interactions with
the chromophores, thus the noise inherently present in the two-beam pump-probe
signals contributes to the pump 1/pump 2/probe 2D signal. These strong two-beam
pump-probe signals act like an additional time-dependent local oscillator field, which
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Fig. 1.4 Schematic representation of time-scanning 2D pump-probe spectroscopy. The time delay
between pump 1 and pump 2 is controlled with a translational stage (or sometimes two sliding
wedged glasses). The probe field is delayed from pump 2 by waiting time T. The generated third-
order pump-probe signal field interferes with the probe beam itself. The spectrum of the interference
signal is measured by a monochromator (M) and an array detector (D)

causes the spectral distortion of the 2D signal. Furthermore, this time-scanning 2D
pump-probe method still requires phasing correction to obtain the 2D spectrum, even
though the number of phasing parameters is reduced. The timing error between Epu1

and Epu2 and the unbalanced chirp also give rise to the spectral distortion of the
measured 2D spectrum. In real experiments, the two beams E1 and E2 are usually
combined by a 50:50 beam combiner, which means that a loss of almost 50% in
the intensity of each beam is unavoidable. To overcome some of these problems,
pulse-shaping technology has thus been employed.

1.4.7 2D Spectroscopy with a Pulse Shaper

With the development of pulse-shaping technology, it has become possible to carry
out coherent 2D pump-probe spectroscopy experiments with commercially available
pulse shapers. In principle, this approach is similar to time-scanning 2D pump-probe
spectroscopy because a pair of collinearly propagating pump pulses are used to excite
molecules and a time-delayed probe pulse is used to monitor the relaxation processes
of the excited molecules in condensed phases. Here, it is the pulse shaper that gen-
erates the pair of femtosecond pump pulses that are temporally separated in time by
τ (Fig. 1.5). The underlying principle of a pulse shaper is well-known. Suppose that
an incident pulse electric field Ein(t) has the spectral distribution Ein(ω). To obtain
time-separated twin pulses, the pulse shapermodulates the spectral distribution of the
incident beam,which is achievedwith the use of amask in the frequency domain, pro-
ducing the shaped spectral pulse electric field Eout(ω) as Eout(ω) = M(ω)Ein(ω).
Here, the spectrum of the acousto-optic modulator (AOM) is in general given by
M(ω) = A(ω) exp[iϕ(ω)], where the spectral amplitude of the mask is denoted
as A(ω) and its spectral phase is ϕ(ω). The time profile of the generated electric
field Eout(t) is given by the inverse Fourier transformation of the output field spec-
trum Eout(ω). In principle, the phase and chirp of the shaped pulse or pulses can
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Fig. 1.5 2D pump-probe spectroscopy with a pulse shaper. A pair of twin pump pulses that are
separated by τ in time are generated by a pulse shaper on the lower path. The time (T) delayed
probe is used to generate the third-order pump-probe signal field and to produce the interference
signal detected by the monochromator and the array detector

be controlled by changing the mask spectrum. To generate a pair of femtosecond
pulses with a time delay of τ using the acousto-optic modulator, the static acoustic
wave needs to be electronically generated so that the mask spectrum is given by
M(ω) = cos(ωτ/2) exp[iωτ/2]. The time delay between the two pulses is inversely
proportional to the fringe spacing (wavelength) of the acoustic wave created by the
AOM. The maximum time delay is therefore limited by the resolution of the AOM.
In addition to the time delay between the two pulses, the relative phase and chirp
of the generated pulses can also be controlled using the pulse shaper. Essentially,
the throughput of the pulse shaper is determined by the efficiency of the grating as
well as the AOM. Often, a significant loss in the intensity of the input beam when it
passes through the pulse shaper cannot be avoided.

In this form of 2D pump-probe spectroscopy, the pulse shaper can modulate the
relative phase between the pump 1 and pump 2 pulses, i.e., 
φ = φE1 − φE2 = 0
and 
φ = π , and the absorptive 2D spectrum can be directly obtained by the phase-
cycling method. A pulse shaper with a laser system operating at a repetition rate of
1 kHz can produce 500 data points per second. Therefore, a complete 2D spectrum at
fixed waiting time T can be collected within a few seconds. However, a drawback of
this method is that it cannot control the polarization states of the three beams, which
limits its use in exploring all fourth-rank tensor properties of the nonlinear response
function of molecules in condensed phases.

Over the past decade, a variety of coherent 2D spectroscopic techniques have been
developed anddemonstrated.Using a two-dimensional arraydetector (CCD)working
in the visible frequency domain, it has been shown that single-shot 2D electronic and
IR spectroscopic measurements are feasible [39, 40]. Using combined spherical and
cylindrical lenses, the different spectral components of a broadband pulse can be
encoded onto different positions of the sample in space and different pixels on a
2D array detector are used to record the different spectral components of coherent
2D signals. Another possibility is using a wedge-shaped material to induce a pump-
to-pulse time delay gradient along the wedge axis. This approach is advantageous
because neither a mechanical translational stage nor a pair of sliding wedged glasses
is needed to control the time delay between the pulses. Nevertheless, the principles
behind these techniques do not differ from those discussed above.
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1.5 Perspectives and Concluding Remarks

1.5.1 Coherent Multidimensional Spectroscopy with Mixed
IR and Visible Beams

Nonlinear IR (e.g., near-IR, mid-IR, far-IR, and THz) spectroscopy provides criti-
cal information on molecular structure and dynamics because vibrational properties
are highly sensitive to chemical structure and intermolecular interactions. Although
the theory and experimental feasibility of mixed IR-vis 4WM spectroscopy was
proposed in 1998 and demonstrated in 1999, only recently have fully time-resolved
mixed IR-vis 4WM experiments been performed. They are an IR-optical analogue of
heteronuclear 2D NMR because there are two different kinds of oscillating charged
particles that are resonant with external fields: electrons and nuclei. Because mixed
IR-vis 2D spectroscopy can be used in the analysis of vibration-electronic cou-
pling, it is especially useful for investigating electronic transition-induced changes
in molecular structures and the long-lived electronic states or vibrational coherences
of photo-excited molecules during chemical reactions.

Another important development in CMS is fluorescence-detected coherent 2D
electronic or vibrational spectroscopy [41]. Instead of measuring third-order signal
electric fields using spectral interferometric detection, the population of excited state
molecules can bemeasured by detecting the fluorescence intensity after themolecular
system interacts with a sequence of optical or IR pulses whose relative phases are
accurately controlled. This form of fluorescence-detected 2D spectroscopy can be
extended to coherent 2D microspectroscopy by combining it with a microscope
system.

1.5.2 Coherent Multidimensional Spectroscopy with More
Than One Phase-Stabilized Mode-Locked Laser

Most CMS techniques developed and used over the past two decades use a single
mode-locked laser. Although it produces a train of femtosecond pulses, each CMS
signal field is generated by considering one pulse at a time. More specifically, a
single laser pulse is split into two or more pulses and their relative delay times are
controlled with mechanical delay devices (Fig. 1.6a). The generated daughter pulses
thus originate from the same mother pulse, meaning they should remain coherent.
However, in practice, this is not always the case because the beam paths fluctuate
due to the environmental vibrations of optical mounts and chaotic air flow, which
results in the decoherence of pulsed electric fields. However, as long as this noise
is actively or passively controlled, each individual signal measurement is performed
with one pulse from the laser at a time. The 2D spectrum is thus the average of the
signals obtained from many thousands of laser pulses.
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Fig. 1.6 a Conventional interferometric measurement of a sample’s linear or nonlinear optical
response signal field. Here, only one mode-locked laser producing a train of femtosecond pulses
is used. b Schematic representation of dual optical frequency comb (OFC) spectroscopy. The two
frequency comb lasers are phased-locked with each other using one standard atomic clock radio
frequency. Any pair of pulses from the two OFC lasers will thus have a fixed phase relationship,
which means that the pulsed fields are coherent. The upper wave fromOFC1 is used as the reference
field, which is then allowed to interfere with the sample’s generated linear or nonlinear optical
response signal field. By deliberatelymaking the two repetition frequencies differ slightly from each
other, automatic time scanning can be achieved, and the down-converted temporal interferogram
can be measured with a single detector

Very recently, an interesting development in CMS has been reported, in which
more than one mode-locked laser is used, where the phase-stabilized ultrafast laser
is referred to as an optical frequency comb, which generates a train of pulses with
highly stable repetition and carrier-envelop-offset frequencies. To understand how
this differs from more conventional Ti:Sapphire lasers, it should be noted that the
optical phase of a pulse from an ordinary 1 kHz Ti:Sapphire laser has no correlation
with that of another pulse separated by 1 ms. On the other hand, there is a fixed
phase relationship between any pair of pulses within the train of pulses from a
highly stabilized frequency comb laser. This long-term coherence among the pulses
is a key feature of the frequency comb. If two frequency comb lasers are stabilized
simultaneously with respect to one standard frequency, e.g., a GPS-disciplined Rb
atomic clock, the two trains of pulses from the two comb lasers will have a precisely
defined phase relationship. Therefore, these two radiation sources together can be
used to carry out coherent nonlinear spectroscopicmeasurements (Fig. 1.6b). This can
be viewed asYoung’s double slit interference, where the coherent waves from the two
slits that will combine to produce an interference fringe pattern are replaced with two
phase-stabilized comb lasers. Due to the fixed phase relationship between any pair
of pulses from the two frequency comb lasers, the two waves are coherent with each
other. One of the two trains of pulses can be used as the reference (i.e., local oscillator)
field, whereas the other linearly or nonlinearly interacts with molecular systems. The
signal field from the latter then interferes with the reference field to produce a time-
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domain interferogram. Its Fourier transformation provides information about the
spectrum ofmolecular quantum eigenstates. Therefore, CMS signals can be obtained
with a single detector [42]. It is anticipated that a variety of CMS techniques will be
developed by combining optical frequency comb and IR frequency comb lasers in
the future.

1.5.3 Nonlinear Microspectroscopy

A natural extension of nonlinear optical spectroscopy is to combine it with a
microscope to develop novel microspectroscopy techniques. One of the most suc-
cessful label-free imaging techniques is coherent Raman scattering microscopy.
Since the first experimental demonstration of coherent anti-Stokes Raman scattering
microscopy, a number of papers have reported a variety of coherent nonlinear optical
or vibrational microspectroscopy techniques. For 2D electronic microspectroscopy,
the detection of the fluorescence emitted by chromophores that are excited by mul-
tiple femtosecond laser pulses can be used, where the coherent 2D spectroscopic
signal is selectively measured using phase-cycling techniques.

To achieve coherent 2D IR microspectroscopy, reflective objective lenses or
upconversion techniques can be used to measure the 2D IR response with detec-
tors in the visible frequency range.

1.5.4 Computational Spectroscopy

Anumber of computational methods for calculating 2D vibrational spectra have been
developed and demonstrated to be of exceptional use in simulating and interpreting
experimental results. In addition to pairwise couplings, diagonal and off-diagonal
potential anharmonicities, and mode-mode frequency correlation, more information
about multiple oscillator systems can be obtained from higher-order CMS meth-
ods generating multidimensional spectra. For example, 3D infrared spectroscopy
has been explored experimentally and simulated based on classical or semiclassical
methods. Nevertheless, it is still difficult to fully interpret these 2D spectra because
of the increased number of couplings and the higher dimensionality of the relevant
potential energy surface.

In the numerical integration of the Schrödinger equation method, an essential step
is the modeling and parameterization of the multi-chromophore Hamiltonian from
the electronic structure calculations of their static structures. In contrast, the classi-
cal mechanical approach relies on an accurate description of molecular vibrational
properties in the context of classical dynamics. This often requires the use of sophis-
ticated molecular mechanics potential models or quantum mechanical potential. In
this regard, recently proposed ab initio theories of vibrational solvatochromism and
direct QM/MM or full ab initio MD simulations of vibrational spectra can be fruit-
fully adapted for either approach to improve their efficiency and accuracy.
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Two-dimensional vibrational spectra can be calculated using the exact hierarchical
equation of motion (HEOM) approach. It should be noted, however, that this HEOM
approach is based on the assumption that the spectral density description of the
bath is valid and accurate. This means that the bath is modeled as a collection of
independent harmonic oscillators, i.e., the Caldeira-Leggett quantum dissipative bath
model, and the spectral distribution of solute-solvent coupling constants is well-
known. Under this assumption, the quantum correlation between the system and the
bath can be accounted for. However, this method scales rather unfavorably, limiting
its application to relatively small systems even though a number of approximations
have been developed to improve its efficiency. Another limitation is that the method
requires the parameterization of the spectral density.

1.5.5 Summary

In this chapter, I have presented a brief introduction to the fundamental theory, com-
putational methods, and experimental techniques that have been used to describe or
measure a variety of coherent multidimensional spectroscopic signals. Theoretically,
the formalism of the nonlinear response function has been developed to describe var-
ious CMS methods. For nonlinear vibrational spectroscopy, one of the widely used
theoretical approaches is based on the approximation that the associated quantum
mechanical nonlinear vibrational response function can be evaluated using the MD
simulation trajectories of either equilibrium or non-equilibrium systems. Another
popular method of choice is to solve the time-dependent vibrational Schrödinger
equation of coupled oscillators where their frequencies, coupling constants, and
anharmonicities, which fluctuate in time due to the system-bath interactions, can be
obtained with independent computational methods and theoretical models. Experi-
mentally, over the past decade, a variety of 2D vibrational and/or electronic spectro-
scopic techniques that utilize femtosecond IR, THz, and/or UV-visible pulses have
been developed and used to study molecular structure and dynamics, protein confor-
mation and folding-unfolding processes, large-scale delocalizedmodes in condensed
phases, and ultrafast reaction dynamics during chemical and biological reactions.
We have recently witnessed novel forms of coherent multidimensional spectroscopy,
such as multiple frequency comb spectroscopy and nonlinear optical and vibrational
microspectroscopy. There is no doubt that the theory and experimentation in coher-
ent multidimensional spectroscopy and microspectroscopy will pave the way for the
development of novel time and space resolved spectroscopy and microscopy tools
that are useful for understanding the underlying principles, mechanisms, and func-
tions of novel materials and synthetic and biological molecules in condensed phases.
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