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An Economic Order Quantity (EOQ)
Inventory Model for a Deteriorating Item
with Interval-Valued Inventory Costs,
Price-Dependent Demand, Two-Level
Credit Policy, and Shortages
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Abstract In today’s competitive environment, every leading organization wishes to
improve the pricing strategies in order to increase revenue, credit policy is one of
the best tools of it. This research work develops an economic order quantity (EOQ)
inventory model for a deteriorating item that considers interval-valued inventory
costs, price dependent demand, two-level credit policy, and shortages. Due to high
and uncertainty in demand, sometimes organizations have to face the situation of
stock out. So, keeping this scenario in mind, this work considers the situation of
partially backlogging. Here, it is developed an EOQ inventory model by considering
a non-linear interval-valued constrained optimization problem. Two types of particle
swarm optimization (PSO) algorithm are used to resolve it, and then the results
are compared. Sensitivity analysis is done in order to investigate the impact of key
parameters on decision-making. Finally, conclusions along with some managerial
insights are given.
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2.1 Introduction

In the inventory management literature, very little research work has been done
in relation to considering that the inventory costs are represented in an interval-
valued. Many researchers assume that the inventory costs such that the ordering cost,
inventory carrying cost, and purchasing cost are expressed as a fixed value known.
Nevertheless, in reality, all of the mentioned costs are imprecise numbers in nature
instead of a fixed value due to the fact that generally, the inventory costs fluctuate by
reason of several factors such as changes in prices. In order to explain why it needs
to use an interval number rather than the fixed value number, the following reason is
mentioned. Normally, the inventory carrying cost is distinct during the seasons of the
year. For example, the deterioration rate is different in summer and winter. During
summer time, it is necessary to use preservation technology with the intention of
decreasing the deterioration percentage of some perishable products and therefore
the holding cost is different from holding cost in the winter time. Another cost that
also varies is the labor charges, which change over the period of time.

To overcome the problemof imprecise numbers, the researchers and academicians
use the following approaches: (i) stochastic, (ii) fuzzy, and (iii) fuzzy-stochastic. In
the case of the stochastic approach, the inventory data are considered as random
variables with a given and known probability distribution. In the case of the fuzzy
approach, the data of the inventory system and the constraints are expressed with
fuzzy sets with a given and known membership function. In the case of fuzzy-
stochastic approach, some inventory data are supposed to be represented by fuzzy
sets and the rest of the inventory parameters are assumed random variables. But it
is not an easy task to select the most suitable membership function or probability
distribution.

With the aim of avoiding the complexity in the selection of the right membership
function or the right probability distribution, it is suggested to use interval numbers.
With this, the imprecise problem is converted to an interval-valued problem, which
can be solved, by any soft computing optimization technique, such as the different
versions of particle swarm optimization (PSO) or genetic algorithm (GA). In this
connection, the reader can see the related works, which apply interval number into
the area of inventory control. Gupta et al. [1] applied the interval concept in the field
of inventory theory. They resolved an inventory problem with interval-valued inven-
tory costs using a genetic algorithm approach. After that, Dey et al. [2] formulated
an inventory model considering interval-valued lead time. Again, Gupta et al. [3]
developed an inventory model using interval-valued inventory costs. Bhunia et al.
[4] solved a stock-dependent inventory model with interval-valued inventory costs
using particle swarm optimization (PSO). Afterward, Bhunia and Shaikh [5] built
a two-warehouse inventory model with inflation, and they solved it using particle
swarm optimization.

In the current competitive markets, the permissible delay in payment has a vital
role in promoting the business. Normally, the suppliers give different types of facil-
ities to retailers, and the retailers give some facilities to their direct customers. This
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is done with the aim of attracting more customers to acquire products. Table 2.1
presents research works related to single-level or two-level credit policy.

Table 2.1 Research works related to single- and two-level permissible delay in payment

Author(s) Deterioration Demand rate Shortages Level of
permissible
delay in
payment

Inventory
costs

Hwang and
Shinn [6]

Yes Constant No Single Fixed

Chang et al.
[7]

Yes Constant No Single Fixed

Abad and
Jaggi [8]

No Linearly
time-
dependent

No Single Fixed

Ouyang et al.
[9]

Yes Constant No Single Fixed

Huang [10] No Linearly
time-
dependent

No Two-level Fixed

Huang [11] No Constant No Single Fixed

Huang [12] No Constant No Two-level Fixed

Sana and
Chaudhuri
[13]

Yes Selling price-
dependent

No Single Fixed

Huang and
Hsu [14]

No Constant No Two-level
partial trade
credit

Fixed

Ho et al. [15] No Constant No Two-level Fixed

Jaggi and
Khanna [16]

Yes Inventory
level
dependent

Complete
backlogging

Single Fixed

Jaggi and
Kausar [17]

No Selling price-
dependent

Complete
backlogging

Single partial
trade credit

Fixed

Jaggi and
Mittal [18]

Yes Constant Complete
backlogging

Single Fixed

Guria et al.
[19]

No Selling price-
dependent

Complete
backlogging

Immediate
and delay in
payment

Fixed

Taleizadeh
et al. [20]

No Constant Partial
backlogging

Partial delay
in payment

Fixed

Wu et al. [21] Expiration
date
dependent

Constant No Two-level Fixed

(continued)
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Table 2.1 (continued)

Author(s) Deterioration Demand rate Shortages Level of
permissible
delay in
payment

Inventory
costs

Chen et al.
[22]

Yes Constant No Order
quantity-
dependent
credit period

Fixed

Bhunia et al.
[23]

Yes Selling price-
dependent

Partial
backlogging

Alternative
single

Fixed

Bhunia and
Shaikh [24]

Yes Selling price-
dependent

Partial
backlogging

Single Fixed

Shah and
Cárdenas-
Barrón
[25]

Yes Constant No Two-level Fixed

Bhunia et al.
[26]

No Stock-
dependent

Partial
backlogging

Single Fixed

This research
work

Yes Selling price-
dependent
demand

Partial
backlogging

Two-level
credit policy

Interval-
valued

It is a well-known fact that inventory cost always is not a fixed value. This means
that the inventory cost lies between certain interval numbers. Therefore, the major
goal of this research work is to include the interval concept in an inventory model. In
this direction, this researchwork derives an economic order quantity (EOQ) inventory
model for a deteriorating item with price-dependent demand, and interval-valued
inventory costs and shortages. The shortage is partially backordered according to a
rate, which is reliant on the interval of waiting time till the occurrence of next lot. The
inventory model is expressed as a nonlinear interval-valued continuous optimization
problem. Then, different forms of particle swarm optimization (PSO) algorithm are
applied to solve it. In continuous optimization, PSO gives better results than GA. For
this reason, in this research work, the latest version of PSO is used.

The remnants sections of the research work are planned as follows. Section 2.2
defines the suppositions and the notations. Section 2.3 formulates the inventory
model. Section 2.4 derives the mathematical solution for three different demand
functions. Section 2.5 solves some instances. Section 2.6 does a sensitivity analysis.
Section 2.7 provides conclusions and lines for research.
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2.2 Suppositions and Notations

The suppositions and symbols that are used to build the inventory model are listed
below.

2.2.1 Suppositions

(i) The planning horizon is infinite.
(ii) Inventory system handles a single item.
(iii) Demand rate D(.) is influenced by the selling price (p).
(iv) Inventory costs are interval-valued.
(v) The order is supplied in one delivery.
(vi) Replenishment is instantaneous.
(vii) Lead time is zero.
(viii) Stockout is partially backlogged with a backlogging rate given by

[1 + δ(T − t)]−1.
(ix) Two-level credit policy approach is assumed where the supplier gives a credit

period (M) to his/her retailer, and the retailer also provides a credit facility (N)
to his/her customer under certain terms and conditions. Here, it is established
the following condition N < M.

2.2.2 Notations

Symbols Description

Parameters

I (t) Inventory level at time t (units)

α Deterioration rate (0 < α � 1)

[CoL ,CoR] Interval-valued replenishment cost ($/order)

δ Backlogging parameter
[
CpL ,CpR

] Interval-valued purchasing cost ($/unit)

D(.) Demand rate that is dependent on price (units/unit of time)

[ChL ,ChR] Interval-valued holding cost ($/unit/unit of time)

[CbL ,CbR] Interval-valued shortage cost ($/unit/unit of time)

[ClsL ,ClsR] Interval-valued opportunity cost due to a lost sale ($/unit/unit of time)

t1 Time in which the stock level is zero (unit of time)

(continued)
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(continued)

Symbols Description

T Cycle length (unit of time)

M Credit period is given to the retailer by the supplier (unit of time)

N Credit period provided to the customer by the retailer: N < M (unit of time)

Ie Interest earned by the retailer (%/unit of time)

Ip Interest charged by the supplier to the retailer (%/unit of time)
[
Z (.)
L , Z (.)

R

]
Interval-valued the total profit ($/unit of time)

Decision variables

S Stock level (units)

R Shortage level (units)

B The time period after reaching the prescribed credit timeM (unit of time)

2.3 Mathematical Derivation of the Inventory Model

Initially, the retailer purchases a lot of (S + R) units. After fulfilling the backordered
units of the preceding cycle, the stock level is S units at t = 0. Then, S units start to
decrease due to both consumers’ demand and deterioration effect. Obviously, after
a certain time period, the stock level reaches zero at the time t = t1. After that, at
time t = t1, shortage occurs with a backlogging rate [1 + δ(T − t)]−1 till the time
t = T . Then, a subsequent batch is received at T.

The behavior of the inventory I (t) is modeled by the differential Eqs. (2.1) and
(2.2):

d I (t)

dt
+ θ(t)I (t) = −D(.), [0, t1] (2.1)

d I (t)

dt
= −D(.)

1 + δ(T − t)
, (t1, T ] (2.2)

with the initial and boundary conditions

I (t) = S at t = 0, I (t) = 0 at t = t1 (2.3)

and

I (t) = −R at t = T (2.4)
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It is significant to state that the inventory level I (t) is continuous at t = t1. Using
the conditions (2.3) and (2.4), the solutions to the differential equations (2.1) and
(2.2) are given below:

I (t) = −D(.)

θ
+ D(.)

θ
eθ(t1−t), [0, t1]

I (t) = D(.)

δ
log|1 + δ(T − t)| − R, (t1, T ]

From condition (2.3), I (t) = S at t = 0. Thus, the maximum inventory level is
computed with

S = D(.)

θ

{
eθ t1 − 1

}
(2.5)

Using the continuity condition, hence, the shortage quantity is determined with

R = D(.)

δ
log|1 + δ(T − t1)| (2.6)

The total interval-valued inventory holding cost Chol = [CholL ,CholR] of the
system is expressed as follows:

CholL = ChL

t1∫

0

I (t) dt = ChL

[
(S + D(.)

θ
)

θ

(
1 − e−θ t1

) − Dt1
θ

]

(2.7)

and

CholR = ChR

t1∫

0

I (t) dt = ChR

[
(S + D(.)

θ
)

θ

(
1 − e−θ t1

) − Dt1
θ

]

(2.8)

The total interval-valued shortage cost Csho = [CshoL ,CshoR] of the inventory
system is given below:

CshoL = CbL

T∫

t1

[−I (t)] dt

= CbL

[(
R + D(.)

δ

)
(T − t1) − D(.)

δ2
{(1 + δ(T − t1)) log(1 + δ(T − t1))}

]

(2.9)
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CshoR = CbR

T∫

t1

[−I (t)] dt

= CbR

[(
R + D(.)

δ

)
(T − t1) − D(.)

δ2
{(1 + δ(T − t1)) log(1 + δ(T − t1))}

]

(2.10)

The total interval-valued opportunity cost of lost sales OCLS = [OCLSL , OCLSR]
during the entire cycle is determined by

OCLSL = ClsL

T∫

t1

{
1 − 1

1 + δ(T − t)

}
D(.) dt

= ClsL D(.)

[
(T − t1) − log(1 + δ(T − t1))

δ

]
(2.11)

and

OCLSR = ClsR

T∫

t1

{
1 − 1

1 + δ(T − t)

}
D(.) dt

= ClsRD(.)

[
(T − t1) − log(1 + δ(T − t1))

δ

]
(2.12)

As it was mentioned before, in two-level credit policy, the supplier provides a
credit period to his/her retailer with a duration of M. Then, the retailer also gives a
certain credit period to his/her client with a duration of N, where N is always less
than M. Furthermore, here two cases occur: Case 1: 0 < N < M ≤ t1 and Case 2:
N < t1 < M ≤ T . Figures 2.1 and 2.2 show the behavior of the stock level over the
period of time for Case 1 and Case 2, respectively. Below a discussion of these two
cases is given.

Case 1: 0 < N < M ≤ t1
In this case, the total amount of purchase cost of the retailer is within the following
interval

[
CpL(S + R),CpR(S + R)

]
. This amount must be covered to the supplier

at the time t = M. In this credit time period, the retailer accumulates money due
to sales during [0, M] as well as the interest gained during [N, M]. Hence, the total
collected amount is calculated with

U1 = p

M∫

0

D(.) dt + pIe

M∫

N

t∫

N

D(.) dudt+pR{1 + Ie(M − N )}.
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0t =

t T=

R

I(t)

1t t=t M=t N=

S

Time

Fig. 2.1 Inventory-level behavior for Case 1

0t =

t T=

R

I(t)

1t t=

t M=

t N=

S

Time

Fig. 2.2 Inventory-level behavior for Case 2
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Thus,

U1 = pD(.)

{
M + Ie

(M − N )2

2

}
pR{1 + Ie(M − N )} (2.13)

The retailer collects U1 and interval-valued for the purchase cost amount
is

[
CpL(S + R),CpR(S + R)

]
. Here, the following two subcases occur:

Subcase 1: U1 ≥ [
CpL(S + R),CpR(S + R)

]
and Subcase 2: U1 <[

CpL(S + R),CpR(S + R)
]
. These subcases are developed below:

Subcase 1: U1 ≥ [
CpL(S + R),CpR(S + R)

]

In this Subcase 1, the total interval-valued profit of the inventory system is written
as

Z1L(.) = XL(.)

T
and Z1R(.) = XR(.)

T
(2.14)

where
[XL , XR] = <Excess amount on hand after paying the cost of purchased goods to

the supplier> + <interest earned for excess amount in [M, T ]> + <sales revenue in
[M, t1]> + <interest earned in [M, t1]> + <interest earned in [t1, T ]> − <ordering
cost> − <holding cost> − <shortage cost> − <cost of lost sale>

XL (.) = {
U1 − CpR(S + R)

}{1 + Ie(T − M)} + D(.)p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoR − CholR − CshoR − OCLSR (2.15)

and

XR(.) = {
U1 − CpL (S + R)

}{1 + Ie(T − M)} + D(.)p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoL − CholL − CshoL − OCLSL (2.16)

Therefore, the corresponding interval-valued nonlinear optimization problem of
the inventory system is written as follows.

Problem 1

Maximize Z1(.) = [Z1L(.), Z1R(.)]

subject to 0 < N < M ≤ t1 < T (2.17)

Subcase 2: U1 <
[
CpL(S + R),CpR(S + R)

]

In Subcase 2, the retailer collects an amount corresponding to sales and interest
earned up to t = M. This amount is less than the amount of the purchase cost.
Taking into consideration this situation, the following two subcases happen: Subcase
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2.1: Supplier takes a partial payment at t = M of his/her retailer, and Subcase 2.2:
Supplier does not take the partial payment at t = M of his/her retailer. Now, these
two subcases are discussed below.

Subcase 2.1: Supplier takes a partial payment at t = M of his/her retailer.
In this subcase, it is considered that the supplier takes a partial payment and per-
mits some time to the retailer regarding the payment of rest interval amount which
is expressed as

[
CpL(S + R) −U1,CpR(S + R) −U1

]
. The interval relax time is

t = [BL , BR] where [BL , BR] > M . In this situation, the supplier must charge the
interest of unpaid amount

[
CpL(S + R) −U1,CpR(S + R) −U1

]
during the inter-

val [M, [BL , BR]] with interest paid rate Ip.
Thus, the total amount that must be paid to the supplier at a time t = [BL , BR] is

given by
[
CpL(S + R) −U1,CpR(S + R) −U1

]{
1 + Ip([BL , BR] − M)

}
.

On the other hand, the total available amount to the retailer is determined as < total
sales revenue during the time interval [M, [BL , BR]]>+ <total interest earned during
the time interval [M, [BL , BR]]>. So, the total interest earned is

= p

BL∫

M

D(.) dt + pIe

BL∫

M

t∫

M

D(.) dudt

and

= p

BR∫

M

D(.) dt + pIe

BR∫

M

t∫

M

D(.) dudt

As a result, at the time t = [BL , BR], the total payable amount available to the
retailer is equal to the amount payable to the supplier, which is

[
CpL(S + R) −U1,CpR(S + R) −U1

]{
1 + Ip(BL − M)

}

= pD(.)(BL − M)

{
1 + Ie(BL − M)

2

}

Thus,

[
CpL(S + R) −U1

]{
1 + Ip(BL − M)

} = pD(.)(BL − M)

{
1 + Ie(BL − M)

2

}

and

[
CpR(S + R) −U1

]{
1 + Ip(BR − M)

} = pD(.)(BR − M)

{
1 + Ie(BR − M)

2

}
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Consequently, the total interval-valued profit function of the inventory system is
computed as

Z2L(.) = XL(.)

T
and Z2R(.) = XR(.)

T

where
[XL , XR] = < sales revenue during the time interval [[BL , BR], t1] > + < interest

earned thru the time interval [[BL , BR], t1] > + < interest earned through interval
[t1, T ] > − < ordering cost > − <holding cost > − <shortage cost > − <cost of lost
sale>

XL(.) =
⎧
⎨

⎩
p

t1∫

BR

D(.)dt + pIe

t1∫

BR

t∫

BR

D(.)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR(.) =
⎧
⎨

⎩
p

t1∫

BL

D(.)dt + pIe

t1∫

BL

t∫

BL

D(.)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

So, in this subcase, the interval-valued constrained optimization problem is for-
mulated as follows.

Problem 2

Maximize Z2(.) = [Z2L(.), Z2R(.)]

subject to 0 < N < M ≤ t1 < T (2.18)

Subcase 2.2: Supplier does not take the partial payment at t = M of his/her retailer.
In this situation, the supplier does not take a partial payment. In other words, the
retailer needs to cover the credit amount to his/her supplier. This amount is calculated
with

[
CpL(S + R) −U1,CpR(S + R) −U1

]
after the time t = M . The interval time

period t = [BL , BR] when the supplier gets the full creditable amount within this
time interval. Regarding this situation, supplier charges the interest for the period
[M, [BL , BR]] with interest paid rate Ip.

Therefore, the total on-hand amount available to the retailer is equal to the amount
payable to the supplier at the time t = [BL , BR]. Thus,

CpL(S + R)
{
1 + Ip(BL − M)

} = U1[1 + Ie(BL − N )] + pD(.)(BL − M)
[
1 + Ie

(BL − M)

2

]
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and

CpR(S + R)
{
1 + Ip(BR − M)

} = U1[1 + Ie(BR − N )] + pD(.)(BR − M)
[
1 + Ie

(BR − M)

2

]

Consequently, the total interval-valued profit of the inventory system is as follows:

Z3L(.) = XL(.)

T
and Z3R(.) = XR(.)

T

where
[XL , XR] = < sales revenue during the time interval [[BL , BR], t1] > + < interest

earned for the duration of the time interval [[BL , BR], t1] > + < interest earned
within the interval [t1, T ] >− < ordering cost >− <holding cost >− <shortage cost
> − <cost of lost sale>

XL(.) =
⎧
⎨

⎩
p

t1∫

BR

D(.)dt + pIe

t1∫

BR

t∫

BR

D(.)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR(.) =
⎧
⎨

⎩
p

t1∫

BL

D(.)dt + pIe

t1∫

BL

t∫

BL

D(.)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL (2.19)

Thus, the interval-valued constrained nonlinear optimization problem is expressed
below:

Problem 3

Maximize Z3(.) = [Z3L(.), Z3R(.)]

subject to 0 < N < M ≤ t1 < T (2.20)

Case 2: N < t1 < M ≤ T
Owing to sales revenue and interest earned, the collected amount of the retailer is
computed as

U2 =
⎡

⎣p

t1∫

0

D(.)dt + pIe

M∫

N

t∫

N

D(.)dudt

⎤

⎦[1 + Ie(M − t1)] + pR{1 + Ie(M − N )}
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U2 = pD(.)

[

t1 + Ie

(
M2 − N 2

)

2

]

[1 + Ie(M − t1)] + pR{1 + Ie(M − N )}

Here, the interval-valued profit of the inventory system is formulated as

Z4L(.) = XL(.)

T
and Z4R(.) = XR(.)

T

where
[XL , XR] = < Excess amount available of retailer after paying the supplier > +

< total interest earned for that excess amount in [M, T ] > − < ordering cost > −
<holding cost > − <shortage cost > − <cost of lost sale>

XL(.) = U2 − (CoR + CholR + CshoR + OCLSR)

and

XR(.) = U2 − (CoL + CholL + CshoL + OCLSL)

For that reason, the corresponding interval-valued constrained nonlinear opti-
mization problem is as follows.

Problem 4

Maximize Z4(.) = [Z4L(.), Z4R(.)]

subject to N < t1 < M ≤ T (2.21)

2.4 The Solution for Three Demand Functions

D(·) = a − bp, a, b > 0, D(·) = ap−α a > 0, α < 1, and D(·) =
ae(−p/k), a, k > 0.

This section derives the mathematical expressions for three price demand func-
tions.

4.1: When D(·) = a − bp, a, b > 0
Here,

U1 = p

M∫

0

(a − bp)dt + pIe

M∫

N

t∫

N

(a − bp)dudt+pR{1 + Ie(M − N )}
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Case 4.1.1.

Maximize Z (1)
1 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.22)

where

XL = {
U1 − CpR(S + R)

}{1 + Ie(T − M)} + (a − bp)p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoR − CholR − CshoR − OCLSR

and

XR = {
U1 − CpL (S + R)

}{1 + Ie(T − M)} + (a − bp)p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoL − CholL − CshoL − OCLSL

Case 4.1.2.

Maximize Z (1)
2 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.23)

{
CpL (S + R) −U1

}{
1 + Ip(BL − M)

} = p

BL∫

M

(a − bp)dt + pIe

BL∫

M

t∫

M

(a − bp)dudt

and

{
CpR(S + R) −U1

}{
1 + Ip(BR − M)

} = p

BR∫

M

(a − bp)dt + pIe

BR∫

M

t∫

M

(a − bp)dudt

where

XL =

⎧
⎪⎨

⎪⎩
p

t1∫

BR

(a − bp)dt + pIe

t1∫

BR

t∫

BR

(a − bp)dudt

⎫
⎪⎬

⎪⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

XR =

⎧
⎪⎨

⎪⎩
p

t1∫

BL

(a − bp)dt + pIe

t1∫

BL

t∫

BL

(a − bp)dudt

⎫
⎪⎬

⎪⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL
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Case 4.1.3.

Maximize Z (1)
3 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.24)

CpL (S + R)
{
1 + Ip(BL − M)

} = U1[1 + Ie(BL − N )] + p(a − bp)(BL − M)

[
1 + Ie

(BL − M)

2

]

and

CpR(S + R)
{
1 + Ip(BR − M)

} = U1[1 + Ie(BR − N )] + p(a − bp)(BR − M)
[
1 + Ie

(BR − M)

2

]

where

XL =
⎧
⎨

⎩
p

t1∫

BR

(a − bp)dt + pIe

t1∫

BR

t∫

BR

(a − bp)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

(a − bp)dt + pIe

t1∫

BL

t∫

BL

(a − bp)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

Case 4.1.4.

Here,

U2 =
⎡

⎣p

t1∫

0

(a − bp)dt + pIe

M∫

N

t∫

N

(a − bp)dudt

⎤

⎦[1 + Ie(M − t1)]

+ pR{1 + Ie(M − N )}

Maximize Z (1)
4 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to N < t1 < M ≤ T (2.25)

where

XL = U2 − (CoR + CholR + CshoR + OCLSR)
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and

XR = U2 − (CoL + CholL + CshoL + OCLSL)

4.2: When D(·) = ap−α a > 0, α < 1
Here,

U1 = p

M∫

0

ap−α dt + pIe

M∫

N

t∫

N

ap−α dudt+pR{1 + Ie(M − N )}

Case 4.2.1.

Maximize Z (2)
1 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.26)

where

XL = {
U1 − CpR(S + R)

}{1 + Ie(T − M)} + ap−α p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoR − CholR − CshoR − OCLSR

and

XR = {
U1 − CpL (S + R)

}{1 + Ie(T − M)} + ap−α p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoL − CholL − CshoL − OCLSL

Case 4.2.2.

Maximize Z (2)
2 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.27)

{
CpL(S + R) −U1

}{
1 + Ip(BL − M)

} = p

BL∫

M

ap−α dt + pIe

BL∫

M

t∫

M

ap−α dudt

and

{
CpR(S + R) −U1

}{
1 + Ip(BR − M)

} = p

BR∫

M

ap−α dt + pIe

BR∫

M

t∫

M

ap−α dudt
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where

XL =
⎧
⎨

⎩
p

t1∫

BR

ap−α dt + pIe

t1∫

BR

t∫

BR

ap−α dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

ap−α dt + pIe

t1∫

BL

t∫

BL

ap−α dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

Case 4.2.3.

Maximize Z (2)
3 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.28)

CpL(S + R)
{
1 + Ip(BL − M)

} = U1[1 + Ie(BL − N )] + pap−α(BL − M)
[
1 + Ie

(BL − M)

2

]

and

CpR(S + R)
{
1 + Ip(BR − M)

} = U1[1 + Ie(BR − N )] + pap−α(BR − M)
[
1 + Ie

(BR − M)

2

]

where

XL =
⎧
⎨

⎩
p

t1∫

BR

ap−α dt + pIe

t1∫

BR

t∫

BR

ap−α dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

ap−α dt + pIe

t1∫

BL

t∫

BL

ap−α dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL
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Case 4.2.4.

Here,

U2 =
⎡

⎣p

t1∫

0

ap−α dt + pIe

M∫

N

t∫

N

ap−α dudt

⎤

⎦[1 + Ie(M − t1)]

+ pR{1 + Ie(M − N )}

Maximize Z (2)
4 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to N < t1 < M ≤ T (2.29)

where

XL = U2 − (CoR + CholR + CshoR + OCLSR)

and

XR = U2 − (CoL + CholL + CshoL + OCLSL)

4.3: When D(·) = ae(−p/k), a, k > 0
Here,

U1 = p

M∫

0

ae(−p/k) dt + pIe

M∫

N

t∫

N

ae(−p/k) dudt + pR{1 + Ie(M − N )}

Case 4.3.1.

Maximize Z (3)
1 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.30)

where

XL = {
U1 − CpR(S + R)

}{1 + Ie(T − M)} + ae(−p/k) p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoR − CholR − CshoR − OCLSR

and

XR = {
U1 − CpL (S + R)

}{1 + Ie(T − M)} + ae(−p/k) p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoL − CholL − CshoL − OCLSL
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Case 4.3.2.

Maximize Z (3)
2 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.31)

{
CpL(S + R) −U1

}{
1 + Ip(BL − M)

}

= p

BL∫

M

ae(−p/k) dt + pIe

BL∫

M

t∫

M

ae(−p/k) dudt

and

{
CpR(S + R) −U1

}{
1 + Ip(BR − M)

}

= p

BR∫

M

ae(−p/k) dt + pIe

BR∫

M

t∫

M

ae(−p/k) dudt

where

XL =
⎧
⎨

⎩
p

t1∫

BR

ae(−p/k) dt + pIe

t1∫

BR

t∫

BR

ae(−p/k) dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

ae(−p/k) dt + pIe

t1∫

BL

t∫

BL

ae(−p/k) dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

Case 4.3.3.

Maximize Z (3)
3 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.32)

CpL(S + R)
{
1 + Ip(BL − M)

} = U1[1 + Ie(BL − N )] + pae(−p/k)(BL − M)
[
1 + Ie

(BL − M)

2

]
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and

CpR(S + R)
{
1 + Ip(BR − M)

} = U1[1 + Ie(BR − N )] + pae(−p/k)(BR − M)
[
1 + Ie

(BR − M)

2

]

where

XL =
⎧
⎨

⎩
p

t1∫

BR

ae(−p/k) dt + pIe

t1∫

BR

t∫

BR

ae(−p/k) dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

ae(−p/k) dt + pIe

t1∫

BL

t∫

BL

ae(−p/k)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

Case 4.3.4.

Here,

U2 =
⎡

⎣p

t1∫

0

ae(−p/k) dt + pIe

M∫

N

t∫

N

ae(−p/k) dudt

⎤

⎦[1 + Ie(M − t1)]

+ pR{1 + Ie(M − N )}

Maximize Z (3)
4 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to N < t1 < M ≤ T (2.33)

where

XL = U2 − (CoR + CholR + CshoR + OCLSR)

and

XR = U2 − (CoL + CholL + CshoL + OCLSL)
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2.5 Numerical Examples

This section provides and solves three instances with the purpose of illustrating and
validating the inventory model.

The solution procedure consists of applying the theory of interval numbers and two
efficient and effective soft computing techniques: Particle swarm optimization con-
striction (PSO-CO) and weighted quantum particle swarm optimization (WQPSO).
Both soft computing algorithms are programmed in C language. The computational
experiments are done on a personal computer with the following technical charac-
teristics: Intel Core-2-Duo, 2.5 GHz Processor, and LINUX environ. It is important
to remark that Kennedy and Eberhart [27], Clerc and Kennedy [28], and Clerc [29]
proposed the particle swarm optimization (PSO) and particle swarm optimization
constriction (PSO-CO); and Sun et al. [30, 31] introduced weighted quantum par-
ticle swarm optimization (WQPSO). Sahoo et al. [32] introduced the definitions of
interval order relations between two interval numbers with the aim of solving the
maximization and minimization problems.

Example 1 Consider an inventory problem in which the demand function is given
by D = a − bp and the following parameters: CoL = $195, CoR = $200, θ = 0.1,
a = 150, b = 0.7, δ = 1.5, ChL = $1, ChR = $1.5, CbR = $10, CbL = $8,
CpL = $22, CpR = $25, Ie = 0.12, Ip = 0.15 N = 0.16, M = 0.246, ClsL = $18,
ClsR = $20, p = $30.

The solution is exhibited in Tables 2.2 and 2.3, where Table 2.2 shows the solution
obtained by PSO-CO and Table 2.3 displays the solution determined by WQPSO.

Example 2 Consider an inventory system in which the demand function is as fol-
lows: D = ap−α and the following parameters: CoL = $195, CoR = $200, θ = 0.1,
a = 150, δ = 1.5, ChL = $1, ChR = $1.5, CbR = $10, CbL = $8, CpL = $22,
CpR = $25, Ie = 0.12, Ip = 0.15 N = 0.16, M = 0.246, ClsL = $18, ClsR = $20,
p = $30, α = 0.2 (Tables 2.4 and 2.5).

Example 3 Consider that the demand function is D = ae
(−p/k)

and the following
parameters: CoL = $195, CoR = $200, θ = 0.1, a = 150, δ = 1.5, ChL = $1,
ChR = $1.5, CbR = $10, CbL = $8, CpL = $22, CpR = $25, Ie = 0.12, Ip = 0.15
N = 0.16, M = 0.246, ClsL = $18, ClsR = $20, p = $30, k = 40 (Tables 2.6 and
2.7).

2.6 Sensitivity Analysis

This section provides a sensitivity analysis, which is done, based on Example 1. The
sensitivity analysis is made by varying the parameters by −20 to +20%. The results
of the sensitivity analysis for Example 1 are shown in Table 2.8.
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From Table 2.8, the following interpretations are mentioned:

• With the increment in the value of replenishment cost [CoL ,CoR], the cycle length
(T ), the time at which the inventory level reaches zero (t1), shortage level (R), and
stock level (S) increase, but average profit decreases.

• When the holding cost [ChL ,ChR] increases, then the cycle length (T ), the time
at which the inventory level reaches zero (t1), stock level (S), and average profit
decrease, but shortage level (R) increases.

• With the increment in the value of shortage cost [CbL ,CbR], the time at which the
inventory level reaches zero (t1) and stock level (S) increase, but the shortage level
(R), the cycle length (T ), and the average profit decrease.

• When the value of purchasing cost
[
CpL ,CpR

]
increases, then the shortage level

(R), the cycle length (T ), the time at which the inventory level reaches zero (t1),
stock level (S) and the average profit decrease.

• When the scale parameter (a) of demand increases, then the cycle length (T ) and the
time at which the inventory level reaches zero (t1) decrease, whereas the shortage
level (R), the stock level (S), and the average profit increase.

• When the price elasticity parameters (b) of demand increases, then the shortage
level (R), the stock level (S), and the average profit decrease, whereas the cycle
length (T ) and the time at which the inventory level reaches zero (t1) increase.

• With the increment in the value of the deterioration rate (θ), the cycle length (T ),
stock level (S), the average profit, and the time at which the inventory level reaches
zero (t1) decrease, but the shortage level (R) increases.

• When the value of the backlogging parameter δ increases, then the shortage level
(R), the cycle length (T ) and the average profit decrease, but the time at which the
inventory level reaches zero (t1) and stock level (S) increase.

• With the increment in the value of opportunity cost [ClsL ,ClsR], then the shortage
level (R), the cycle length (T ), and the average profit decrease, but the time at
which the inventory level reaches zero (t1) and stock level (S) increase.

• With the increment in the value of selling price (p), then the shortage level (R),
the cycle length (T ), the time at which the inventory level reaches zero (t1), stock
level (S), and the average profit increase.

2.7 Conclusion

This paper develops an inventory model for deteriorating items with interval-valued
inventory costs, partial backlogging, and price-dependent demand under two-level
credit policy. In order to make a more realistic scenario, the shortages are permitted,
and these are partially backlogged. The proposed inventory model is very helpful
for retail and manufacturing industries in developing countries where credit policy
plays a significant role in decision-making. This research work aims to find the
retailer’s optimal replenishment policy that maximizes the total profit of the system.
To solve the inventory model, two soft computing techniques are used: the PSO-CO
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and the WQPSO. The efficiency and effectiveness of the proposed inventory model
are validated with numerical examples and a sensitivity analysis.

Finally, this research can be extended by considering: (1) stock-dependent
demand, (2) inventory costs represented by a fuzzy number, (3) finite-time hori-
zon, (4) inflation, and (5) an integrated supply chain model with two or more players
with the coordination between the players, among others. These are some interesting
and challenge research lines to explore by academicians and researchers.
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