
Chapter 13
EOQ Model Under Discounted Partial
Advance—Partial Trade Credit Policy
with Price-Dependent Demand

Swati Agrawal, Rajesh Gupta and Snigdha Banerjee

Abstract The aim of this article is to investigate an inventorymodel with discounted
partial advance payment in a single supplier–single retailer supply chain in the pres-
ence of credit periodwhen the demand rate is price sensitive. The lengths of the credit
period, advance period, as well as rate of discount on advance payment, are speci-
fied by the supplier. Conditions for unique optimal values of the decision variables,
namely, the retailer’s selling price and cycle length are obtained. Optimal values of
the decision variables are determined iteratively. An algorithm is developed and a
numerical example is presented to demonstrate the solution algorithm. Sensitivity
analysis is conducted. It is observed that optimal cycle time is affected by the two
interest rates. Optimal net profit is affected by the demand rate and the discount fac-
tor. Both, the optimal cycle time, as well as the optimal net profit is affected by the
supplier’s selling price and the proportion of units for which the advance payment is
made. Optimal retailer’s selling price is significantly affected by the discount factor,
supplier’s selling price, price elasticity of the demand function as well as the propor-
tion of units for which advance payment is made. We also observe that the retailer’s
net profit does not decrease significantly on increasing the advance period.

Keywords Inventory · Partial advance payment · Discount · Trade credit ·
Iso-elastic price-dependent demand

13.1 Introduction

In the competitive situation prevailing in the market, a major effort is required by
suppliers to provide facilities which would, in turn, attract orders from retailers. One
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such facility popular in a supplier–retailer contract is to offer goods on credit for
some interest-free period—generally termed as the trade credit period or permissible
delay in payment. The retailer may pay the entire amount or a part of it to the supplier
at the end of the credit period. Once the credit period is over, interest is charged by
the supplier on the remaining dues.

The benefits of trade credit policy in the context of marketing are identified as
leading to increased sales and as a tool to attract new retailers who deem credit
policy as a kind of price reduction. Another advantage is that due to trade credit, an
established retailermay paymore promptly resulting in a reduction in the outstanding
sales dues. Trade credit provides financial support to the retailer alongwith providing
a certification of quality from the supplier.

During the last few decades, many inventory models have been developed con-
sidering the trade credit facility. Goyal [8], Teng [27], Chang et al. [3], Sarkar [22],
Chen and Teng [5], Taleizadeh et al. [26], Tiwari et al. [30], Jaggi et al. [14] and
many others have considered trade credit when the demand is constant.

In practice, quite often, the end customer demand at the retailer is price-sensitive.
In such a situation, decisions regarding setting the retailer’s selling price and order
quantity are to be made by the retailer. Price-sensitive demand without trade credit
has been considered bymany authors, e.g., Banerjee and Sharma [2]. For an inventory
model under trade credit contract with price-sensitive demand, optimal pricing poli-
cies were obtained by Hwang and Shinn [13]. Under cooperative and noncooperative
structures, Abad and Jaggi [1] developed a model with price-dependent demand to
obtain the retailer’s optimal unit price and replenishment cycle as well as the seller’s
optimal selling price and credit period. Teng et al. [28] found the optimal selling
price and replenishment policies considering a model with price-sensitive demand
for deteriorating items. They concluded that under trade credit, the cycle time, and
order quantity will decrease. Price-sensitive demands for integrated inventory mod-
els that involve trade credit have also been developed by Ouyang et al. [21], Chen
and Kang [4] and Chung and Liao [6].

Ho et al. [12], Shah et al. [23] analyze the decision policy when the buyer receives
a cash discount if he pays any fraction of purchase cost within a shorter allowable
credit period and then clears the remaining balance in the long credit period. Such a
policy is called a two-part permissible delay.

Somemore realistic models have considered revenue earned through sales as well
as interest earned during the credit period and even later for price-sensitive demand
[15, 16, 19, 20, etc.].

Retailers are generally in search of long credit periods for the purchase of their
goods, whereas this tendency may lead to financial complications for small suppliers
and hence to supply crunch for the retailer. Hence, sometimes, it may be worthwhile
for the supplier to demand advance payment. Zhang et al. [32] stated that advance
payment is a known practice in the Chinese automobile and steel industries. Maiti
et al. [18] observed that in the bricks and tiles factories in India, sometimes a price
discount on advance payment is offered to the retailer if made at his own discretion.

In inventory literature, very little consideration has been given to the advance
payment and its influences on inventory decisions. Maiti et al. [18] developed a
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stochastic inventory model with advance payment. They assumed that the retailer’s
procurement price depended on the fraction of the advance payment. Theirmodelwas
extended by Gupta et al. [9]. However, these two papers do not consider trade credit
policy. Both advance payment and trade credit were considered by Thangam [29] for
constant demand. Full advance and partial advance partial credit were incorporated
by Zhang et al. [32] for constant demand. They conclude that in both the payment
policies, length of the period of advance payment does not affect the retailer’s optimal
policy.

Taleizadeh [25] studied a lot sizing model without credit period under price-
dependent demand with advance payment policy when the equal installments of the
advance payment of the purchase cost are specified by the supplier. For constant
demand, Wu et al. [31] studied the model when the seller requires an advance-cash-
credit (ACC) payment.

From the above-detailed literature review, we find that till now, very few papers
have considered advance payments. Out of these few papers, some have not con-
sidered trade credit [18, 24] while others, who have considered advance payment,
as well as trade credit, have regarded demand to be constant [17, 31, 32, 33] or
time dependent [7]. Although Diabat et al. have considered both advance payment
as well as delayed payment, the two are for different echelons in the supply chain
with upstream advance payment and downstream delayed payment.

In the present paper, we consider iso-elastic price-dependent demand with partial
advance payment before the supply is receivedwhen the credit period is also allowed.
The aim of this article is to study an optimal inventory model that considers ordering
and pricing decisions under discounted partial advance and partial credit periodwhen
the customer demand is an iso-elastic function of the retailer’s selling price.Weobtain
the optimal price and optimal length of replenishment cycle when shortages are not
allowed. We also examine how the variations in the model parameters affect the
optimal solution.

The rest of this paper is organized as follows: Sect. 13.2 presents the assumptions
and notations. Section 13.3 explains the working of the model, Numerical example is
given in Sect. 13.4 alongwith algorithm, sensitivity analysis andmanagerial insights.
In Sect. 13.5, we present the conclusions.

13.2 Notations and Assumptions

The following notations are used in this paper:

D demand dependent on retailer’s price rate per unit. D = α P-βR , α, β > 1.
h unit inventory holding cost per unit time.
A ordering cost per order.
I1 the interest rate paid per unit time to supplier by retailer.
IPR the interest rate per unit time to be paid by retailer to financer for loan.
IER the interest rate earned per unit time by retailer.
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t0 epoch of advance payment
MA the retailer’s advance period stipulated by the supplier.
MR the credit period provided by the supplier to the retailer.
Net the retailer’s net profit per unit time.
A1 proportion of Q for which an advance payment is made by the retailer at epoch

MA.
A2 proportion of Q for which payment is paid by the retailer at epoch MR. 0 ≤ A1

+ A2 ≤ 1.
ρ discount factor for advance booking, 0<ρ<1.The discount percent is 100(1–ρ).
T the retailer’s inventory cycle length (Decision variable)
PS supplier’s unit selling price.
PR retailer’s unit selling price (PR > PS). (Decision variable)
Q the retailer’s order quantity per cycle (Decision variable). Q = DT

* With any decision variable indicates its optimal value.

Assumptions

The model is developed with the following underlying assumptions:

1. The supplier provides a fixed credit period MR to the retailer for settling the
accounts.

2. The end consumer market demand rate declines with an increase in the retailer’s
selling price, D(PR) = αP-βR , where α > 0 and β being, respectively, the scaling
factor and the index of price elasticity. For notational simplicity, we will be
interchangeably using D(PR) and D in this work.

3. The retailer starts selling the goods as soon as he receives it.
4. The earnings accumulated by the retailer is withdrawn only at epoch T, or later.
5. For the payments made to supplier at t0 and MR, the retailer has to take loan

from the financial institution like banks—which we call financer, while for the
payment made at epoch T, the retailer uses a part of the earnings accumulated
till time T.

6. Shortages are not allowed.
7. Replenishment rate and time horizon are infinite.

13.3 The Model

Themodel is developedwith the stated advance period under trade credit with a price-
dependent demand so as to maximize net profit for the retailer. The retailer orders
for Q units of inventory at epoch t0, which is MA time units before the beginning of
the selling season. The ordered units arrive at the beginning of the selling season.
The payments for the ordered units are made by the retailer in three parts:
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Fig. 13.1 a Time Inventory
Graph when MR ≤ T.

1. An advance payment at epoch t0 for proportion A1 of Q units is made at the
discounted rate ρPS. 0 ≤ A1 ≤ 1.

2. For the remaining quantity, payment has to be made depending on the following
two cases.

Case I: MR ≤ T
In this case, a payment at the rate PS for proportion A2 of Q units is made at the
epoch MR. No interest is paid to the supplier for this delayed payment under the
credit policy. 0 ≤ A1 + A2 ≤ 1. Payment for the remaining proportion 1 – (A1 +
A2) of Q units at the rate PS along with interest charged by the supplier from MR to
T at the rate I1. is made at epoch T.

The payments at t0 and MR are made by taking a loan from financer. The retailer
starts selling his goods from the beginning of the selling period. The sales earnings
up to Tare invested as they accumulate and interest is earned on it at the rate IER.
When the selling period ends, the payment to the supplier and loan repayment and
payment of interest for the loan to the financer will be made by the retailer from the
sales as well as interest earnings up to T (Fig. 13.1a).
Case II: MR > T
In this case, a payment for the remaining proportion (1 – A1) of Q units is made at
the rate PS at epoch MR so as to take advantage of the credit period. No interest is to
be paid for this payment, the credit period MR being larger than the cycle length T,
and no loan is to be taken by the retailer for the payment. Repayment the loan taken
from the financer at t0 and interest on it is to be repaid to the financer at epoch T, i.e.,
when the selling period ends (Fig. 13.1b).

13.3.1 Computation of Net

The retailer’s net profit for the cycle is given by
Net = Total revenue earned – (Ordering cost + Stock holding cost + Purchase

cost + Interest paid) where
Total revenue earned = Sales revenue + Interest earned
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Fig. 13.1 b Time Inventory
Graph when MR > T

Ordering cost is A

Stock holding cost is
h(DT2)

2
The total revenue earned, interest earned, interest paid and net profit per unit time

for Case I and Case II are as follows:

Case I: MR ≤ T
The total purchasing cost paid at epoch MA, MR and T of quantity (A1Q), (A2Q) and
(1 – (A1 + A2))Q, respectively, is

(ρPS)(A1Q) + PS(A2Q) + PS(1 − (A1 + A2))Q

The interest paid by the retailer till T, for the loan taken at the epochs t0 and MR,
is (T + MA)(A1Q)(ρPS)IPR + (T − MR)(A2Q)PSIPR

The interest paid by the retailer to the supplier for the amount paid at T is
(T - MR)((1 − (A1 + A2))Q)PSI1

Total revenue earned by the retailer is

PR(DT) + PR(DT)IERT

2

Hence, the net profit per unit time of the retailer is

Net 1 = PRD

(
1 + 1

2
IERT

)
− A

T
− hDT

2
− PSD[(1 − A1)(1 + I1(T − MR))

−A2(I1 − IPR)(T − MR) + A1ρ(1 + IPR(T + MA))] (13.1)

Case II: MR > T
The total purchasing cost paid at epoch MA and T of quantity(A1Q) and (1 – A1)Q,
respectively, is

(ρPS)(A1Q) + PS(1 − A1)Q
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The interest paid by the retailer till T to the financer for the amount paid at the
epoch t0 is

(T + MA)(A1Q)(ρPS)IPR

Total revenue earned by the retailer is

PR(DT) + PR(DT)IERT

2
+ PR(DT)(MR − T)IER

Hence, the net profit per unit time of the retailer is

Net 2 = PRD

[
1 + IER

(
MR − T

2

)]
− A

T
− hDT

2
− PSD{A1[1 − ρ{1 + IPR(MA + T)}] − 1}

(13.2)

The overall net profit per unit time is

Net =
{
Net1; for MR ≤ T
Net2; for MR > T

(13.3)

13.3.2 Analysis

Using assumption 3 and Q = DT, it is apparent that Net is a function of decision
variables PR and T. In order to obtain the optimal values of the decision variables
analysis of the net profit function for Case I and Case II are presented:

13.3.2.1 Necessary Conditions

The first-order (necessary) conditions for maximization of Netj with respect to T and
PR are

∂Netj(T, PR)

∂T
= 0

∂Netj(T, PR)

∂PR
= 0; j = 1, 2.

Differentiating (1) with respect to T and PR, we get, respectively

∂Net1(T, PR)

∂T
= α P−β

R

{
IERPR
2

− h

2
− PS[(1 − A1)I1 − A2(I1 − IPR) + A1IPRρ]

}
+ A

T2

(13.4)
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and

∂Net1(T, PR)

∂PR
= 1

2
αP−(β+1)

R R1 (13.5)

where

R1 = −PR(2 + IERT)(β − 1)

+ β[hT

+ 2PS{(1 − A1)(1 + I1(T − MR)) − A2(I1 − IPR)(T − MR)

+A1ρ(1 + IPR(MA + T))}]

We note that RHS of (5) is zero iff R1 = 0.
On equating (13.4) and (13.5) to zero, we get, respectively

T∗
1=

√
2A√

αP−β

R [h − IERPR + 2PS((1 − A1)I1 − A2(I1 − IPR) + A1IPRρ)]
(13.6)

And on substituting for R1, we get

P∗
R1=

β[hT + 2PS{(1 − A1)(1 + I1(T − MR)) − A2(I1 − IPR)(T − MR) + A1ρ(1 + IPR(MA + T))}]
(2 + IERT)(β − 1)

(13.7)

Similarly, differentiating (2) with respect to T and PR,we get respectively

∂Net2(T, PR)

∂T
= αP−β

R

{
− IERPR

2
− h

2
− A1IPRPSρ

}
+ A

T2 (13.8)

and

∂Net2(T, PR)

∂PR
= α

2
P−(β+1)
R R2 (13.9)

where

R2 = −PR(2 + 2IERMR − IERT)(β − 1) + β[hT − 2PS[{A1(1 − ρ(1 + IPR(MA + T))) − 1}]

On equating (13.8) and (13.9) to zero, we get, respectively

T∗
2 =

√
2A√

αP−β

R (h + IERPR + 2A1IPRPSρ)

(13.10)
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and

P∗
R2=

β(hT − 2PS[A1(1 − ρ(1 + IPR(MA + T))) − 1])

(2 + 2IERMR − IERT)(β − 1)
(13.11)

13.3.2.2 Sufficiency Conditions

The second order (sufficiency) conditions for Netj, j = 1, 2 to be maximum with
respect to T and PR, respectively, are

(i) ∂2Netj(T,PR)

∂T2 < 0, (ii) ∂2Netj(T,PR)

∂P2R
< 0

for which, wide sufficient conditions are derived in Appendix 1
For Net j to be jointly concave with respect to both the decision variables T and

PR, we require that Netj satisfies (i) or (ii) and

(iii) ∂2Netj(T,PR)

∂T2
∂2Netj(T,PR)

∂P2R
−

(
∂2Netj(T,PR)

∂T∂PR

)2
> 0

Condition (iii) has been further discussed in Appendix 2.

13.4 Algorithm

On the basis of above theoretical results, the following solution algorithm has been
developed to determine an optimal solution of the model for the given parameters α,
β, A, h, IER, IPR, I1, ρ, A1, A2, PS, MA, MR.

Step 1: Input values of all the parameters.
Step 2: We find the optimal values of T and PR for T ≥ MR, i.e., T*

1, P
*
R1 as follows:

(i) Put j = 0. Select the initial value P*R1 of PR1 as PR10 = PS.
(ii) Substitute PR = P*R1jin (6) and compute T*

1j.
Set j = j + 1.

(iii) Substitute T = T*
1j in (7) to obtainP

*
R1j+1.

(iv) Repeat (ii) – (iii) till the values of T*
1j and P*R1j stabilize, say, to T*

1 and P*R1,
respectively.

(v) Substitute T*
1 and P*R1 in (1) to obtain the optimal value of Net1*

Step 3: We find the optimal values of T and PR for T ≥ MR, i.e., T*
2, P

*
R2 as follows:

(i) Put j = 0. Set PR20 = PS a guess value of PR2.
(ii) Substitute PR = P*R2jin (10) and compute T*

2j.
Set j = j + 1.

(iii) Substitute T = T*
2j in (11) to obtainP

*
R2j+1.

(iv) Repeat (ii) – (iii) till the values of T*
2j and P*R2j stabilize, say, to T*

2 and P*R2,
respectively.
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(v) Substitute T*
2 and P*R2 in (2) to obtain the optimal value of Net2*

Step 4: The optimal net profit is Net* = Max (Net1*, Net2*). Stop.

13.4.1 Numerical Example

In this section, we provide a numerical example to illustrate the results satisfying both
the above necessary and sufficient conditions of maximization obtained in Sect. 13.3.
We apply the above algorithm to obtain optimal values of the decision variables
and to conduct sensitivity analysis. We consider the following values for the input
parameters in proper units.

Example: Let us take the following parameter values of the inventory system as
follows:α = 1,000,000, β = 2, h = 0.65, A = 50, IER = 0.06, IPR = 0.09, I1 = 0.1,
ρ = 0.4, A1 = 0.2, A2 = 0.4, PS = 5, MR = 0.08, MA = 0.04.

Plots of Net1 and Net2 with respect to T and PR for Case I (T ≥ MR) and Case II
(T < MR) are presented in Fig. 13.2a and Fig. 13.2b, respectively. From the figures,
it is clear that for this set of input parameters, Net is jointly Concave function of PR
and T for both the cases.

The optimal values are as follows:

Decision variable Case I Case II

T* 0.0908 0.0790

PR* 8.8525 8.8385

Net* 56084.2 56075.6

Case I provides a larger value of Net. Hence, the column under Case I provides
the optimal set of values.

Fig. 13.2 a Net versus T
and PR for MR ≤ T,
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Fig. 13.2 b Net versus T
and PR for MR > T

13.4.2 Sensitivity Analysis

We now study the effects of changes in the values of the system parameters α, β, h,
A, IER, IPR, I1, ρ, A1, A2, PS, MR, MA on the optimal values of retailer’s price, cycle
length and net profit.

The sensitivity analysis is performed by changing each of the parameters by +
50%, +25%, −25%, and −50% taking one parameter at a time and keeping the
values of the remaining parameters unchanged.

The results for the cost parameters and other parameters of themodel are presented
in Table 13.1 and Table 13.2, respectively.

Table 13.1 shows the change in optimal values of the decision variables and the
optimum net profit with changes in the cost parameters. We observe that increase in
Ps by 50% results in increase in T* by almost 40%, increase in PR* by almost 50%
and decrease in Net* by 33%. Increase in IER by 50% results in about 18% increase
in T* whereas surprisingly, this does not significantly affect the net profit. A 50%
decrease in IPR andI1 results in almost 14% and 13% increase in T*, respectively.
Increase in ρ by 50% results in increase in optimal cycle time by 4% and the retailers’
selling price by about 5% and net profit decreases by 4.40%. Increase in A by 50%
results in about 23% increases in T*. A 50% decrease in h results in about 23%
increase in T*.

Table 13.2 shows the change in optimal values of the decision variables and the
optimum net profit with changes in the model parameters, where the significant
changes are written in bold characters. It is seen that increase in the credit period
MR by 25% results in decline in T* and hence, Case II becoming optimal, i.e., the
inventory ordered should be such that it is sold off before the end of the credit period.

The parameters α and β are major factors that affect—the optimal values of the
cycle time, retailer’s price, as well as the net profit. A 25% increase/decrease in the
value of α result in a proportionate increase/decrease in the value of net profit. A
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Table 13.1 Sensitivity analysis of the optimal solution with change in cost parameters

Cost changing
parameter

% Change in
parameter value
(%)

% Change in optimal values Optimal case

T* PR* Net*

h = 0.65 −50 23.045 −0.122 0.371 Case I

−25 9.734 −0.061 0.176

25 −5.843 0.085 −0.142 Case II

50 −10.756 0.164 −0.276

PS = 5 −50 NV NV NV Case I

−25 NV NV NV

25 20.473 25.118 −20.061

50 39.708 50.276 −33.433

IER = 0.06 −50 −11.614 −0.024 −0.257 Case II

−25 −6.346 −0.015 −0.133 Case I

25 7.845 0.025 0.142

50 17.912 0.063 0.297

IPR = 0.09 −50 13.848 0.067 0.090 Case I

−25 6.261 0.034 0.041

25 −5.277 −0.034 −0.035

50 −9.805 −0.069 −0.064 Case I = Case II

I1 = 0.1 −50 12.691 0.108 0.037 Case I

−25 5.788 0.054 0.015

25 −4.942 −0.054 −0.010

50 −9.226 −0.109 −0.015

ρ = 0.4 −50 −4.024 −4.608 4.826 Case I

−25 −2.007 −2.304 2.356

25 1.996 2.305 −2.250

50 3.980 4.610 −4.402

A = 50 −50 NV NV NV Case II

−25 −13.486 −0.119 0.303

25 12.019 0.150 −0.232 Case I

50 22.924 0.285 −0.441

Note ‘NV’ indicates infeasible value
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Table 13.2 Sensitivity analysis of the optimal solution with respect to model parameters

Model changing
parameter

% Change in
parameter value (%)

% Change in optimal values Optimal case

T* PR* Net*

A1 = 0.2 −50 5.247 6.786 −6.355 Case I

−25 2.639 3.393 −3.281

25 −2.672 −3.392 3.511

50 −6.740 −6.784 7.296 Case II

α = 1,000,000 −50 42.376 0.527 −50.405 Case I

−25 15.753 0.196 −25.228

25 −10.711 −0.133 25.260

50 NV NV NV

β = 2 −50 NV NV NV Case I

−25 NV NV NV

25 32.166 −16.333 −65.233

50 84.485 −24.213 −87.261

MR = 0.08 −50 0.445 0.348 −0.345 Case I

−25 0.222 0.174 −0.173

25 −0.094 −0.120 0.242 Case II

50 −0.188 −0.241 0.485

MA = 0.04 −50 −0.021 −0.016 0.016 Case I

−25 −0.011 −0.008 0.008

25 0.010 0.008 −0.008

50 0.021 0.017 −0.016

Note ‘NV’ indicates non feasible value

25% decrease in α results in about 16% increase in the optimal cycle length, while
50% increase in β results in 84% increase in the optimal cycle length.

The results of sensitivity analysis presented above are also shown below graphi-
cally in order to enable a quicker comprehension (Fig 13.3a,b,c).

13.4.3 Managerial Insights

We find that among cost factors, increasing supplier’s selling price results in a sig-
nificant increase in the optimal cycle time, but a drastic decrease in the optimum
profit. Other factors that result in a significant change in optimal time are the rates
of interest to be paid by and earned by the retailer, ordering cost, discount fac-
tors well as the holding cost. However, other than the supplier’s price, net profit
is not significantly affected by cost factors. Hence supplier’s price must be nego-
tiable to attain a profitable level for the retailer. Increase in the proportion of advance
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(a) 

Fig. 13.3 a Significant change in T* with change in parameters

(b)  

Fig. 13.3 b Significant change in PR* with change in parameters

(c)  

Fig. 13.3 c Significant change in Net* with change in parameters
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payment will result in decline in optimal value of the retailer’s selling price and
hence increase in end customer demand. Thus, an increase in the proportion of order
quantity obtained at discounted price and increase in revenue earned due to increased
demand together lead to an increase in the net profit rate of the retailer. Further, an
advantage of increasing A1 is that it will contribute to increase in supplier’s corpus
fund. A completely opposite effect is seen when the discount factor is increased. The
retailer’s net profit is significantly affected by both the demand parameters. Hence,
the demand rate must be estimated with care. Increase in duration of advance pay-
ment by the supplier will not result in a reduction in the retailer’s net profit as in
Zhang [18].

13.5 Conclusion and Future Scope

In this paper, we have discussed a payment policy for supply chains with permis-
sible delay in payment and partial advance payment at a discounted price where
the retailer’s selling price is a decision variable. Iso-elastic price-dependent demand
function has been considered and useful managerial insights are obtained from sen-
sitivity analysis.

In future, other types of price-dependent demand functions may be explored for
other real-life problems. Further, being an important determinant of the retailer’s
payment policy, discount may be optimally determined using procedure similar to
Gupta et al. [10] for constant demand and Gupta et al. [11] for iso-elastic demand.

This research did not receive any specific grant from funding agencies in the
public, commercial, or nonprofit sectors.
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Appendix 1 (Sufficiency Conditions)

For Case I (T≥MR), the second-order derivatives with respect to T and PR are given
by differentiating (4) and (5), respectively, i.e.,

∂2Net1(T,PR)

∂T2 = −2A

T3 < 0

∂2Net1(T,PR)

∂P2R
= −α

2
P−(β+1)
R

[
P−1
R (β + 1)(R1) + (β − 1)(2 + IERT)

]

At PR* since ∂Net1
∂PR

= 0, we have R1 = 0.
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Since R1 = 0,

∂2Net1(T,PR)

∂P2R
〈0 If β − 1〉0, i.e., β > 1.

For Case II (T < MR), the second-order derivatives with respect to T and PR are
given by differentiating (8) and (9), respectively, i.e.,

∂2Net2(T,PR)

∂T2 = −2A

T3 < 0

∂2Net2(T,PR)

∂P2R
= −α

2
P−(β+1)
R [P−1

R (β + 1)(R2) + (β − 1)(2 + 2IERMR − IERT)

Since R2 = 0

∂2Net2(T,PR)

∂P2R
〈0, I f β − 1〉0, i.e., β > 1.

Appendix 2 (Determinant of the Hessian Matrix)

For Case I, T ≥ MR, we have

∂2Net1(T,PR)

∂T2 = −2A

T3

∂2Net1(T,PR)

∂P2R
= −α

2
P−(β+2)
R

[
P−1
R (β + 1)(R1) + (2 + IERT)(β − 1)

]

On differentiating (5), we get

∂2Net1(T,PR)

∂T∂PR
= α

2
P−(β+1)
R {−PRIER(β − 1)

+β{h + 2PS[(1 − A1)I1 − A2(I1 − IPR) + A1ρIPR]}}

The determinant of this Hessian matrix for Case I is

Hessian1 = −2A

T3

{
−α

2
P−(β+2)
R

[
P−1
R (β + 1)(R1) + (2 + IERT)(β − 1)

]}

−
[α

2
P−(β+1)
R {−PRIER(β − 1) + β[h + 2PS((1 − A1)I1 − A2(I1 − IPR)

(+A1ρIPR)]}]2
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Since R1 = 0

Hessian1 = A

T3 αP−(β+2)
R (2 + IERT)(β − 1)

−
[α

2
P−(β+1)
R {−PRIER(β − 1) + β [h + 2PS((1 − A1)I1 − A2(I1 − IPR)

+A1ρIPR)]}]2

i.e.,

Hessian1 = AA − BB

where

AA = A

T3 αP−(β+2)
R (2 + IERT)(β − 1) > 0 if β > 1.

BB =
[α

2
P−(β+1)
R {−PRIER(β − 1) + β[h + 2PS((1 − A1)I1 − A2(I1 − IPR) + A1ρIPR)]}

]2

Since ∂2Net1
∂T2 < 0, the condition for joint concavity of Net1 with respect to T and

PR is AA > BB.
For Case II, for T < MR, we have

∂2Net2(T,PR)

∂T2 = −2A

T3

∂2Net2(T,PR)

∂P2R
= −α

2
P−(β+1)
R

[
P−1
R (β + 1)(R2) + (β − 1)(2 + 2IERMR − IERT)

]

On differentiating (9) with respect to T, we get

∂2Net2(T,PR)

∂T∂PR
= α

2
P−(β+1)
R [PRIER(β − 1) + β(h + 2PSA1ρIPR)]

The determinant of the Hessian matrix for Case II is

Hessian2 = −2A

T3

{
−α

2
P−(β+1)
R

[
P−1
R (β + 1)(R2) + (β − 1)(2 + 2IERMR − IERT)

]}

−
{α

2
P−(β+1)
R [PRIER(β − 1) + β(h + 2PSA1ρIPR)]

}2

Since at PR2*, R2 = 0,

Hessian 2 = A

T3αP−(β+1)
R (β − 1)(2 + 2IERMR − IERT)
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−
{α

2
P−(β+1)
R [PRIER(β − 1) + β(h + 2PSA1ρIPR)]

}2

i.e.,

Hessian2 = CC − DD

where

CC = A

T3αP−(β+1)
R (β − 1)(2 + 2IERMR − IERT)

DD =
{α

2
P−(β+1)
R [PRIER(β − 1) + β(h + 2PSA1ρIPR)]

}2

Since ∂2Net2
∂T2 < 0, the condition for concavity of Net2 is CC > DD.
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