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Chapter 1
Economic Production Quantity (EPQ)
Inventory Model for a Deteriorating Item
with a Two-Level Trade Credit Policy
and Allowable Shortages

Ali Akbar Shaikh, Leopoldo Eduardo Cárdenas-Barrón and Sunil Tiwari

Abstract This research work derives an economic production quantity (EPQ)
model, and in order to make it a bit close to reality, the stockout is allowed, and
this is completely backordered. In addition to this feature, it is incorporated a two-
level credit scheme when both supplier and retailer are giving a delay in payment to
their respective customers with the aim of enhancing the sales. The inventory model
is modeled as a constrained nonlinear optimization problem, and this is resolved by
the generalized reduced gradient method (GRG). Moreover, to exemplify and certify
the inventory model, five instances are given and solved. Finally, a sensitivity anal-
ysis is made for studying the influence of variations of input parameters, modifying
one parameter and maintaining the others at their initial input values.

Keywords Production-inventory model · Deteriorating · Constant demand · Full
backlogging · Full credit policy

1.1 Introduction

The management of inventories is one of the critical responsibilities that the man-
agers of manufacturing firms need to do carefully. Recently, businesses are highly
competitive due to globalization. So, all manufacturing firms are highly engaged in
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how to promote their business in order to have a successful career with the aim of
surviving in current volatile markets. For this reason, the researchers and academi-
cian are very interested in deriving inventory models that are useful in an inventory
decision-making process.

In a supply chain system, there exist several stages and, in each stage, there
is a customer that one needs to satisfy. A supply chain system typically involves
suppliers, manufacturers, transport system, warehouses capacities, retailers, and the
end consumers [8]. The core aim of a supply chain system is to deliver the right
products at the right time and right location with a minimum total cost [18].

Trade credit policy is one of the essential issues that are required to promote
the business in highly competitive markets. In this context, suppliers/manufacturers
give a certain (fixed) time to settle the payment without any interest charge to the
customers. This trade credit policy motivates to consumers to procure more goods.
With this credit policy, the buyer reduces his/her inventory holding cost because this
decision decreases the amount of capital investment during the permissible delay
period. It is important to mention that during the interval of the permissible delay in
payment, the retailer earns revenue due to the sales of the product as well as obtains
interests on that revenue via a banking facility or any other investment alternative.
Usually, the trade credit policy enables to increase the demand and capture more and
more clientele.

In inventory management, there exist two well-known inventory models: Harris
[12] and Taft [19]. The first one is identified as the economic order quantity (EOQ).
The second one is called the economic production quantity (EPQ). It is relevant
to remark that the EOQ inventory model is a particular case of the EPQ inventory
model. Notice that the well-known EOQ inventory model is developed by putting the
assumption that when a retailer buys a product, he or she must give the payment to
his/her supplierwhen the items are delivered. For the first time,Goyal [11] introduced
the concept of credit policy in an inventory model. Goyal [11] formulated a single-
product inventory model with a permissible delay in payment. After that, many EOQ
inventory models with trade credit policy have been appearing. In this direction, the
reader can see the two comprehensive reviews related to trade credit in Chang et al.
[5] and Seifert et al. [15].

The credit strategy examined in Goyal [11] consists in that supplier gives a credit
period to his/her retailer. However, the retailer cannot give a credit period to his/her
client. This type of problem is identified as a single-level trade credit scheme. The
problem becomes more interesting if the retailer gives credit to its client too. Thus,
this kind of problem is recognized as a two-level trade credit scheme for a supply
chain comprised of supplier–retailer–customer. Perhaps, Huang [13] introduced an
EOQ inventorymodelwith two-level trade credit scheme by taking into consideration
that the supplier gives to the retailer a delay period (M), and the latter correspondingly
gives a delay period (N) to its customer. After that, this type of inventory model has
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also discussed by Teng [20]. Now, some dissimilarities between Teng [20] andHuang
[13] inventory models are mentioned below:

(i) In Huang’s [13] inventory model, if the client buys goods from the retailer at
time t then he or she must pay the goods at time N. Consequently, the retailer
must permit the maximum credit time period to his/her retailer up to time N.

(ii) In Teng’s [20] inventory model, if the customer procures products to the retailer
at time t which is within in the interval [0, T ], then the customer must give
payment to its retailer at time N + t. Here, the retailer always permits the
customer a credit period N. The perspective of Teng [20] is generally applied
in the business operations.

Chung and Huang [9] extended Goyal’s [11] inventory model. Principally, they
developed an EPQ inventory model under a single-level credit policy approach.

Generally, in the real world, there exist so many kinds of goods which deteriorate
thru time. So, in inventory analysis, the deterioration cannot be ignored. Ghare and
Schrader [10] formulated an EOQ inventory model by considering that the deteri-
oration rate is known and constant. Later, a lot of research works have been done
under the trade credit policy.

On the one hand, Liao [14] presented anEPQ inventorymodel for goods that suffer
an exponential deterioration rate involving two-level trade credit scheme based on the
concepts Huang’s [13] inventorymodel. On the other hand, Chang et al. [6] discussed
an EPQ inventory model with products that suffer an exponential deterioration rate
considering two-level trade credit scheme by applying the concepts of Teng [20].
Table 1.1 presents some recentworks related to the trade credit scheme.The acronyms
IFS and SFI correspond to inventory follows shortage and shortage follows inventory,
respectively.

Notice that if demand is higher than the production rate, then shortages appear. In
this context, themanufacturingfirmdecides to cover this shortage. This researchwork
deals with an inventory model in which it is allowed fully backlogged shortages with
fully two-level trade credit scheme. The inventory model is formulated as a nonlinear
constrained optimization problem. In order to exemplify and certify the inventory
model, five examples are presented and solved.

This research work is designed in the following manner. Section 1.2 presents the
suppositions and notation. Section 1.3 develops the inventory model. Section 1.4
solves five instances. Section 1.5 gives a sensitivity analysis. Section 1.6 exposes
conclusions and research guidelines.
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1.2 Suppositions and Notation

1.2.1 Suppositions

The inventory model is based on the suppositions listed below:

1. Demand rate is known and constant.
2. The planning horizon is infinite.
3. Replenishment rate is instantaneous.
4. Stockout is permissible, and unsatisfied demand is fully backlogged.
5. The trade credit policy applies to both retailer and customer.

1.2.2 Notation

The following symbols are utilized during the inventory model development:

Symbol Units Description

co $/order Replenishment cost

c $/unit Purchasing cost

p $/unit Selling price

ch $/unit/unit
time

Holding cost

cb $/unit/unit
time

Shortage cost

θ θ ∈ (0, 1) Deterioration rate

P Units/unit time Production rate

D Units/unit time Demand rate

t1 Unit time Time when stock level attains its maximum level

t2 Unit time Time when the stock level touches zero

t3 Unit time Time when the inventory level achieves its maximum shortage
level

T Unit time Replenishment cycle

I(t) Units Inventory level at time t; 0 ≤ t ≤ T

M Unit time The retailer’s trade credit period given by the supplier

N Unit time Customer’s trade credit period given by the retailer

Ie %/unit time Interest earned by the retailer

Ip %/unit time Interest paid by the retailer

TCi (S, R) $/unit time The total cost where i = 1, 2 . . . , 5

Decision variables

S Units Order quantity

R Units Shortage level
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1.3 Inventory Model Formulation

The differential equations that define the inventory level thru time t during the period
[0, T ] are expressed below:

d I (t)

dt
+ θ I (t) = P − D, t ∈ [0, t1] (1.1)

d I (t)

dt
+ θ I (t) = −D, t ∈ (t1, t2] (1.2)

d I (t)

dt
= −D, t ∈ (t2, t3] (1.3)

d I (t)

dt
+ θ I (t) = P − D, t ∈ (t3, T ] (1.4)

The following results are obtained when differential equations (1.1)–(1.4) are
solved taking into account the boundary conditions I (0) = 0, I (t1) = S, I (t3) =
−R, and I(t) is continuous at t = t1, t2 and t3:

I (t) = P − D

θ

(
1 − e−θ t

)
, t ∈ [0, t1] (1.5)

I (t) = D

θ

(
eθ(t2−t) − 1

)
, t ∈ [0, t1] (1.6)

I (t) = D(t2 − t), t ∈ (t2, t3] (1.7)

I (t) = P − D

θ

(
1 − eθ(T−t)

)
, t ∈ (t3, T ] (1.8)

Using the boundary and continuity conditions, then the following results are
obtained:

t1 = −1

θ
log

P − D − Sθ

P − D
(1.9)

t2 = t1 + 1

θ
log

D + Sθ

D
(1.10)

t3 = t2 + R

D
(1.11)

T = t3 + 1

θ
log

(P − D) + Rθ

P − D
(1.12)

The total cost of the inventory model is comprised of the terms listed below:

(a) The ordering cost (OC):
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OC = co (1.13)

(b) The inventory holding cost (HC):

HC = ch

⎛

⎝
t1∫

0

I (t)dt +
t2∫

t1

I (t)dt

⎞

⎠ = ch

[
(P − D)

θ

{
t1 + {

e−θ t1 − 1
}}

+ D

θ2

{
eθ(t2−t1) − θ(t2 − t1) − 1

}]

(1.14)

(c) The purchase cost (PC):

PC = c(S + R) (1.15)

(d) The shortage cost (SC):

SC =cb

⎡

⎣
t3∫

t2

[−I (t)]dt +
T∫

t3

[−I (t)]dt

⎤

⎦

=
[
D

2
(t3 − t2)

2 + (P − D)

θ2

{
eθ(T−t3) − θ(T − t3) − 1

}]
(1.16)

Taking into consideration the credit period given by supplier to its retailer (M)
and credit period provided by the retailer to his/her customer (N), the following five
cases are identified: Case 1: N < M ≤ t1 < t2, Case 2: N < t1 ≤ M ≤ t2, Case
3: t1 ≤ N < M ≤ t2, Case 4: t1 ≤ N < t2 ≤ M, and Case 5: t1 < t2 ≤ N < M .
These are explained below.

Case 1: N < M ≤ t1 < t2 (Fig. 1.1)

Here, the customer’s credit period (N) is less than the retailer credit period (M), where
M is less than or equal to t1. So, the retailer needs to pay the interest during [M, t2].
Owing to customer credit period retailer can earn interest in the period [N , M].

Therefore, the interest paid (IP) is determined with cIc

[
t1∫

M
I (t)dt +

t2∫

t1

I (t)dt

]

.

Hence,

I P = cIc

[
(P − D)

θ

{
(t1 − M) + 1

θ

(
e−θ t1 − e−θM

)}

+ D

θ2

{
eθ(t2−t1) − θ(t2 − t1) − 1

}
]

(1.17)
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( )I t

time

R
0t = t N=

1t t=

t M= 2t t= 3t t= t T=

S

Fig. 1.1 When N < M ≤ t1 < t2

Moreover, the interest earned (IE) is calculated with pIe
M∫

N

t∫

0
Ddudt .

Thus,

I E = pIeD(M2 − N 2)

2
(1.18)

Consequently, the total cost

TC1(S, R) = X1

T
(1.19)

where

X1 = co + c(S + R) + HC + SC + I P − I E (1.20)

Now, the optimization problem is formulated as follows:
Problem 1

Minimize TC1(S, R) = X1

T
subject to N < M ≤ t1 < t2

⎫
⎬

⎭
(1.21)

Case 2: N < t1 ≤ M ≤ t2 (Fig. 1.2)

The customer’s credit period (N) is less than the retailer credit period (M) specified
by the supplier whereM is greater than or equal to t1. For that reason, it is necessary
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( )I t

R t N=

time
0t =

1t t=

t M=
2t t= 3t t= t T=

S

Fig. 1.2 When N < t1 ≤ M ≤ t2

that the retailer pays the interest for the duration of the following interval [M, t2]. On
the other hand, owing to customer credit period the retailer obtains interest within of

the interval [N , M]. Then, the interest paid is obtained with cIc

[ t2∫

M
I (t)dt

]
.

Thus,

I P = cIc

[
D

θ2

{
eθ(t2−M) − θ(t2 − M) − 1

}]
(1.22)

and the interest earned is calculated with pIe
M∫

N

t∫

0
Ddudt .

Therefore,

I E = pIeD(M2 − N 2)

2
(1.23)

Consequently, the total cost is written as

TC2(S, R) = X2

T
(1.24)

where

X2 = co + c(S + R) + HC + SC + I P − I E (1.25)

Hence, the optimization problem is
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( )I t

R

S

t N=

time
0t =

1t t=

t M=
2t t= 3t t= t T=

Fig. 1.3 When t1 ≤ N < M ≤ t2

Problem 2

Minimize TC2(S, R) = X2

T
subject to N < t1 ≤ M < t2

⎫
⎬

⎭
(1.26)

Case 3: t1 ≤ N < M ≤ t2 (Fig. 1.3)

Notice that the customer’s credit period (N) settled by the retailer is less than the
retailer’s credit period (M) established by the supplier whereM is less than or equal
to t2 and greater than t1. Thus, the retailer needs to cover the interest for the time
period [M, t2]. In contrast, due to the customer’s credit interval, the retailer gets
interest through the time period [N , M]. So, the interest paid is computed with

cIc

[ t2∫

M
I (t)dt

]
.

Then

I P = cIc

[
D

θ2

{
eθ(t2−M) − θ(t2 − M) − 1

}]
(1.27)

and interest earned is given by pIe
M∫

N

t∫

0
Ddudt

I E = pIeD(M2 − N 2)

2
(1.28)

For that reason, the total cost is expressed as
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( )I t

R t M=

S

t N=
time

0t =
1t t=

2t t= 3t t= t T=

Fig. 1.4 When t1 ≤ N < t2 ≤ M

TC3(S, R) = X3

T
(1.29)

where

X3 = co + c(S + R) + HC + SC + I P − I E (1.30)

Here, the optimization problem is presented as follows:
Problem 3

Minimize TC3(S, R) = X3

T
subject to t1 ≤ N < M ≤ t2

⎫
⎬

⎭
(1.31)

Case 4: t1 ≤ N < t2 ≤ M (Fig. 1.4)

Here, the retailer’s credit period (M) is greater than or equal to (t2), so it is not
necessary that the retailer pay the interest. Consequently, the interest paid is I P = 0.

But retailer gains interest, and it is calculated as follows: pIe
M∫

N

t∫

0
Ddudt .

Thus,

I E = pIeD(M2 − N 2)

2
(1.32)

The total cost is written as
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( )I t

R

S

t M=

t N=

time
0t =

1t t= 2t t=

3t t= t T=

Fig. 1.5 When t1 < t2 ≤ N < M

TC4(S, R) = X4

T
(1.33)

where

X4 = co + c(S + R) + HC + SC + I P − I E (1.34)

Now, the optimization problem becomes
Problem 4

Minimize TC4(S, R) = X4

T
subject to t1 ≤ N < t2 ≤ M

⎫
⎬

⎭
(1.35)

Case 5: When t1 < t2 ≤ N < M (Fig. 1.5)

Both the retailer credit period (M) and customer credit period (N) are greater than
(t2). So, the retailer does not need to pay interest. Therefore, the interest paid is

I P = 0. But retailer wins interest, and it is pIe
M∫

N

t∫

0
Ddudt .

Thus,

I E = pIeD(M2 − N 2)

2
(1.32)

Here, the total cost is determined by
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Fig. 1.6 Convexity of the objective function for Case 1

TC5(S, R) = X5

T
(1.33)

where

X5 = co + c(S + R) + HC + SC + I P − I E (1.34)

Here, the optimization problem is stated as
Problem 5

Minimize TC5(S, R) = X5

T
subject to t1 < t2 ≤ N < M

⎫
⎬

⎭
(1.35)

The necessary conditions for optimality of objective function are ∂TCi ()

∂S =
0 and ∂TCi ()

∂R = 0. The sufficiency conditions are

∂T 2Ci ()

∂S2
≥ 0,

∂T 2Ci ()

∂R2
≥ 0

and

(
∂T 2Ci ()

∂S2

)(
∂T 2Ci ()

∂R2

)
−

(
∂T 2Ci ()

∂S∂R

)2

≥ 0
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The corresponding optimization problem is highly nonlinear in nature. So, it is
difficult to prove the optimality analytically. For that reason, the convexity is shown
graphically (see Fig. 1.6).

1.4 Numerical Examples

With the intention of exemplifying and certify the inventory model, five instances
are presented and solved. Each example illustrates one case of the inventory model.
The data of these instances are given in Table 1.2.

The generalized reduced gradient method (GRG) is applied in order to solve the
five numerical examples. Table 1.3 presents the optimal solution for all examples.

1.5 Sensitivity Analysis

The instance 1 is utilized to analyze the influence of over/underestimation of input
data on the optimal solution of the initial stock level (S), maximum shortage level (R),
cycle length (T ), the total cost (TC), and time periods: t1, t2, and t3. The analysis is
performed by modifying (decreasing/increasing) the input data by +20% to −20%.
The results are computed by varying one input datum and maintaining the other data
with original value. Table 1.4 displays the results of the sensitivity analysis.

From Table 1.4, the following observations are mentioned:

(i) With the increase in the value of replenishment cost co, the total cost (TC),
highest stock (S), shortage level (R), and the replenishment cycle (T ) increase,
which is an obvious result.

(ii) As the holding cost ch increases, the total cost (TC) and shortage level
(R) increase whereas the highest stock (S) and the replenishment cycle (T )
decrease. On the other hand, with the increase in production rate (P), the
total cost (TC) and highest stock (S) increase but the replenishment cycle (T )
decreases.

(iii) Higher the deterioration rate θ , higher the total cost (TC) but lesser the highest
stock (S) and the replenishment cycle (T ). A higher deterioration rate means
more deteriorated items, which results in an increase in deterioration cost.

(iv) An increment in the shortage cost means more total cost (TC) as well as more
highest stock (S). Whereas for an increase in the value of purchasing cost (c),
the total cost (TC) and shortage level (R) increase but the highest stock (S)
and the replenishment cycle decrease. Moreover, as the value of selling price
increases (p), the total cost (TC), highest stock (S), shortage level (R), as well
as the replenishment cycle (T ) decrease significantly.
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Table 1.3 The optimal solution for all instances

Instance Case S R t1 t2 t3 T TC

1 N <

M ≤
t1 < t2

44.0621 38.5184 0.1105 0.1838 0.2480 0.3440 5584.208

2 N <

t1 ≤
M ≤ t2

43.2274 39.88456 0.0866 0.1729 0.2527 0.3323 8312.618

3 t1 ≤
N <

M ≤ t2

34.9388 31.9287 N 0.1398 0.2036 0.2674 6898.536

4 t1 ≤
N <

t2 ≤ M

27.9441 27.9441 N 0.1307 0.1815 0.2612 7319.905

5 t1 <

t2 ≤
N < M

10.4871 10.4871 0.0525 N 0.0874 0.13981 6533.081

Table 1.4 Sensitivity analysis for instance 1

Parameters % of
variation
in param-
eter

TC∗ % of the change in

S∗ R∗ t∗1 t∗2 t∗3 T ∗

co −20 −1.66 −11.82 −11.82 −11.85 −11.83 −11.83 −11.82

−10 0.80 −5.72 −5.72 −5.74 −5.73 −5.73 −5.72

10 0.76 5.41 5.41 5.43 5.42 5.42 5.41

20 1.48 10.56 10.56 10.60 10.57 10.57 10.56

ch −20 −0.70 14.25 −5.10 14.29 14.26 9.27 5.29

−10 −0.33 6.61 −2.37 6.63 6.62 4.29 2.23

10 0.30 −5.80 2.14 −5.81 −5.80 −3.74 −2.10

20 0.57 −10.92 4.09 −10.95 −10.93 −7.04 −3.94

P −20 −35.08 −18.90 −21.05 62.48 30.03 16.81 28.22

−10 −15.49 −7.62 −8.69 23.26 10.95 5.86 10.28

10 12.58 5.46 6.43 −15.67 −7.24 −3.70 −6.81

20 23.00 9.52 11.35 −27.04 −12.46 −6.30 −11.72

D −20 3.75 1.17 2.87 −22.47 −3.13 5.08 −2.16

−10 3.27 0.85 2.19 −12.06 −2.31 1.79 −1.81

10 −6.07 −2.75 −3.76 14.46 4.07 −0.22 3.52

20 −14.95 −7.29 −9.24 32.57 10.52 1.49 9.33

θ −20 −0.02 −0.25 0.33 −0.31 −0.27 −0.12 0.02

−10 −0.01 −0.13 0.16 −0.15 −0.14 −0.06 0.01

10 0.01 0.13 −0.16 0.15 0.14 0.06 −0.01

(continued)
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Table 1.4 (continued)

Parameters % of
variation
in param-
eter

TC∗ % of the change in

S∗ R∗ t∗1 t∗2 t∗3 T ∗

20 0.02 0.25 −0.33 0.31 0.27 0.12 −0.02

cb −20 −0.74 −5.25 17.92 −5.26 −5.25 0.75 5.53

−10 −0.34 −2.44 8.18 −2.45 −2.45 0.31 2.50

10 0.30 2.15 −6.99 2.16 2.15 −0.21 −2.10

20 0.57 4.06 −13.03 4.07 4.06 −0.36 −3.89

c −20 −17.26 2.73 −0.15 2.74 2.74 1.99 1.39

−10 −8.63 1.35 −0.07 1.35 1.35 0.98 0.69

10 8.63 −1.32 0.06 −1.32 −1.32 −0.96 −0.68

20 17.26 −2.60 0.11 −2.61 −2.61 −1.90 −1.34

p −20 0.09 0.67 0.67 0.68 0.67 0.67 0.67

−10 0.05 0.34 0.34 0.34 0.34 0.34 0.34

10 −0.05 −0.34 −0.34 −0.34 −0.34 −0.34 −0.34

20 −0.1 −0.68 −0.68 −0.68 −0.68 −0.68 −0.68

M −20 0.34 2.39 2.39 2.40 2.39 2.39 2.39

−10 0.18 1.27 1.27 1.27 1.27 1.27 1.27

10 −0.20 −1.42 −1.42 −1.43 −1.42 −1.42 −1.42

20 −0.42 −3.00 −3.00 −3.01 −3.01 −3.00 −3.00

N −20 −0.06 −0.41 −0.41 −0.41 −0.41 −0.41 −0.41

−10 −0.03 −0.21 −0.21 −0.21 −0.21 −0.21 −0.21

10 0.03 0.24 0.24 0.24 0.24 0.24 0.24

20 0.07 0.49 0.49 0.50 0.49 0.49 0.49

(v) As the supplier increases, the credit period (M) for its retailer, the total cost
(TC), highest stock (S), shortage level (R), and the replenishment cycle (T )
decrease.

(vi) As the retailer increases, the credit period (N) for its customer, the total cost
(TC), highest stock (S), shortage level (R), and the replenishment cycle (T )
increase.

(vii) The time periods (t1, t2, t3) are highly sensitive regarding parameters
co, ch, P and D; moderately sensitive regarding c, cb and M ; and less sen-
sitive regarding the rest parameters.

(viii) The cycle length (T ) is very sensitive pertaining to the data of co, ch and P;
discreetly sensitive relating to D, cb, c and M ; and less sensitive in regard to
the other data.
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1.6 Conclusion

This research work develops a production-inventory model for an article that deteri-
orates considering fully backlogged shortages and full two-level trade credit scheme.
Here, it is supposed that demand function and production rate are known and con-
stant. A solution method for the inventory model is developed. The validation and
effectiveness of the proposed inventory model are assessed through numerical exam-
ples. The findings suggest significance importance of the proposed inventory model
to the retail industry for decision-making under realistic scenarios.

This inventory model can be extended by considering stock-dependent demand,
price-dependent demand, stochastic demand, partial backlogging, inflation, partial
trade credit policy, fuzzy-valued inventory cost, interval valued inventory costs, over-
time production rate, and imperfect production processes. These are some interesting
topics that researchers can explore.
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Chapter 2
An Economic Order Quantity (EOQ)
Inventory Model for a Deteriorating Item
with Interval-Valued Inventory Costs,
Price-Dependent Demand, Two-Level
Credit Policy, and Shortages
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Abstract In today’s competitive environment, every leading organization wishes to
improve the pricing strategies in order to increase revenue, credit policy is one of
the best tools of it. This research work develops an economic order quantity (EOQ)
inventory model for a deteriorating item that considers interval-valued inventory
costs, price dependent demand, two-level credit policy, and shortages. Due to high
and uncertainty in demand, sometimes organizations have to face the situation of
stock out. So, keeping this scenario in mind, this work considers the situation of
partially backlogging. Here, it is developed an EOQ inventory model by considering
a non-linear interval-valued constrained optimization problem. Two types of particle
swarm optimization (PSO) algorithm are used to resolve it, and then the results
are compared. Sensitivity analysis is done in order to investigate the impact of key
parameters on decision-making. Finally, conclusions along with some managerial
insights are given.
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2.1 Introduction

In the inventory management literature, very little research work has been done
in relation to considering that the inventory costs are represented in an interval-
valued. Many researchers assume that the inventory costs such that the ordering cost,
inventory carrying cost, and purchasing cost are expressed as a fixed value known.
Nevertheless, in reality, all of the mentioned costs are imprecise numbers in nature
instead of a fixed value due to the fact that generally, the inventory costs fluctuate by
reason of several factors such as changes in prices. In order to explain why it needs
to use an interval number rather than the fixed value number, the following reason is
mentioned. Normally, the inventory carrying cost is distinct during the seasons of the
year. For example, the deterioration rate is different in summer and winter. During
summer time, it is necessary to use preservation technology with the intention of
decreasing the deterioration percentage of some perishable products and therefore
the holding cost is different from holding cost in the winter time. Another cost that
also varies is the labor charges, which change over the period of time.

To overcome the problemof imprecise numbers, the researchers and academicians
use the following approaches: (i) stochastic, (ii) fuzzy, and (iii) fuzzy-stochastic. In
the case of the stochastic approach, the inventory data are considered as random
variables with a given and known probability distribution. In the case of the fuzzy
approach, the data of the inventory system and the constraints are expressed with
fuzzy sets with a given and known membership function. In the case of fuzzy-
stochastic approach, some inventory data are supposed to be represented by fuzzy
sets and the rest of the inventory parameters are assumed random variables. But it
is not an easy task to select the most suitable membership function or probability
distribution.

With the aim of avoiding the complexity in the selection of the right membership
function or the right probability distribution, it is suggested to use interval numbers.
With this, the imprecise problem is converted to an interval-valued problem, which
can be solved, by any soft computing optimization technique, such as the different
versions of particle swarm optimization (PSO) or genetic algorithm (GA). In this
connection, the reader can see the related works, which apply interval number into
the area of inventory control. Gupta et al. [1] applied the interval concept in the field
of inventory theory. They resolved an inventory problem with interval-valued inven-
tory costs using a genetic algorithm approach. After that, Dey et al. [2] formulated
an inventory model considering interval-valued lead time. Again, Gupta et al. [3]
developed an inventory model using interval-valued inventory costs. Bhunia et al.
[4] solved a stock-dependent inventory model with interval-valued inventory costs
using particle swarm optimization (PSO). Afterward, Bhunia and Shaikh [5] built
a two-warehouse inventory model with inflation, and they solved it using particle
swarm optimization.

In the current competitive markets, the permissible delay in payment has a vital
role in promoting the business. Normally, the suppliers give different types of facil-
ities to retailers, and the retailers give some facilities to their direct customers. This
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is done with the aim of attracting more customers to acquire products. Table 2.1
presents research works related to single-level or two-level credit policy.

Table 2.1 Research works related to single- and two-level permissible delay in payment

Author(s) Deterioration Demand rate Shortages Level of
permissible
delay in
payment

Inventory
costs

Hwang and
Shinn [6]

Yes Constant No Single Fixed

Chang et al.
[7]

Yes Constant No Single Fixed

Abad and
Jaggi [8]

No Linearly
time-
dependent

No Single Fixed

Ouyang et al.
[9]

Yes Constant No Single Fixed

Huang [10] No Linearly
time-
dependent

No Two-level Fixed

Huang [11] No Constant No Single Fixed

Huang [12] No Constant No Two-level Fixed

Sana and
Chaudhuri
[13]

Yes Selling price-
dependent

No Single Fixed

Huang and
Hsu [14]

No Constant No Two-level
partial trade
credit

Fixed

Ho et al. [15] No Constant No Two-level Fixed

Jaggi and
Khanna [16]

Yes Inventory
level
dependent

Complete
backlogging

Single Fixed

Jaggi and
Kausar [17]

No Selling price-
dependent

Complete
backlogging

Single partial
trade credit

Fixed

Jaggi and
Mittal [18]

Yes Constant Complete
backlogging

Single Fixed

Guria et al.
[19]

No Selling price-
dependent

Complete
backlogging

Immediate
and delay in
payment

Fixed

Taleizadeh
et al. [20]

No Constant Partial
backlogging

Partial delay
in payment

Fixed

Wu et al. [21] Expiration
date
dependent

Constant No Two-level Fixed

(continued)
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Table 2.1 (continued)

Author(s) Deterioration Demand rate Shortages Level of
permissible
delay in
payment

Inventory
costs

Chen et al.
[22]

Yes Constant No Order
quantity-
dependent
credit period

Fixed

Bhunia et al.
[23]

Yes Selling price-
dependent

Partial
backlogging

Alternative
single

Fixed

Bhunia and
Shaikh [24]

Yes Selling price-
dependent

Partial
backlogging

Single Fixed

Shah and
Cárdenas-
Barrón
[25]

Yes Constant No Two-level Fixed

Bhunia et al.
[26]

No Stock-
dependent

Partial
backlogging

Single Fixed

This research
work

Yes Selling price-
dependent
demand

Partial
backlogging

Two-level
credit policy

Interval-
valued

It is a well-known fact that inventory cost always is not a fixed value. This means
that the inventory cost lies between certain interval numbers. Therefore, the major
goal of this research work is to include the interval concept in an inventory model. In
this direction, this researchwork derives an economic order quantity (EOQ) inventory
model for a deteriorating item with price-dependent demand, and interval-valued
inventory costs and shortages. The shortage is partially backordered according to a
rate, which is reliant on the interval of waiting time till the occurrence of next lot. The
inventory model is expressed as a nonlinear interval-valued continuous optimization
problem. Then, different forms of particle swarm optimization (PSO) algorithm are
applied to solve it. In continuous optimization, PSO gives better results than GA. For
this reason, in this research work, the latest version of PSO is used.

The remnants sections of the research work are planned as follows. Section 2.2
defines the suppositions and the notations. Section 2.3 formulates the inventory
model. Section 2.4 derives the mathematical solution for three different demand
functions. Section 2.5 solves some instances. Section 2.6 does a sensitivity analysis.
Section 2.7 provides conclusions and lines for research.
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2.2 Suppositions and Notations

The suppositions and symbols that are used to build the inventory model are listed
below.

2.2.1 Suppositions

(i) The planning horizon is infinite.
(ii) Inventory system handles a single item.
(iii) Demand rate D(.) is influenced by the selling price (p).
(iv) Inventory costs are interval-valued.
(v) The order is supplied in one delivery.
(vi) Replenishment is instantaneous.
(vii) Lead time is zero.
(viii) Stockout is partially backlogged with a backlogging rate given by

[1 + δ(T − t)]−1.
(ix) Two-level credit policy approach is assumed where the supplier gives a credit

period (M) to his/her retailer, and the retailer also provides a credit facility (N)
to his/her customer under certain terms and conditions. Here, it is established
the following condition N < M.

2.2.2 Notations

Symbols Description

Parameters

I (t) Inventory level at time t (units)

α Deterioration rate (0 < α � 1)

[CoL ,CoR] Interval-valued replenishment cost ($/order)

δ Backlogging parameter
[
CpL ,CpR

] Interval-valued purchasing cost ($/unit)

D(.) Demand rate that is dependent on price (units/unit of time)

[ChL ,ChR] Interval-valued holding cost ($/unit/unit of time)

[CbL ,CbR] Interval-valued shortage cost ($/unit/unit of time)

[ClsL ,ClsR] Interval-valued opportunity cost due to a lost sale ($/unit/unit of time)

t1 Time in which the stock level is zero (unit of time)

(continued)
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(continued)

Symbols Description

T Cycle length (unit of time)

M Credit period is given to the retailer by the supplier (unit of time)

N Credit period provided to the customer by the retailer: N < M (unit of time)

Ie Interest earned by the retailer (%/unit of time)

Ip Interest charged by the supplier to the retailer (%/unit of time)
[
Z (.)
L , Z (.)

R

]
Interval-valued the total profit ($/unit of time)

Decision variables

S Stock level (units)

R Shortage level (units)

B The time period after reaching the prescribed credit time M (unit of time)

2.3 Mathematical Derivation of the Inventory Model

Initially, the retailer purchases a lot of (S + R) units. After fulfilling the backordered
units of the preceding cycle, the stock level is S units at t = 0. Then, S units start to
decrease due to both consumers’ demand and deterioration effect. Obviously, after
a certain time period, the stock level reaches zero at the time t = t1. After that, at
time t = t1, shortage occurs with a backlogging rate [1 + δ(T − t)]−1 till the time
t = T . Then, a subsequent batch is received at T.

The behavior of the inventory I (t) is modeled by the differential Eqs. (2.1) and
(2.2):

d I (t)

dt
+ θ(t)I (t) = −D(.), [0, t1] (2.1)

d I (t)

dt
= −D(.)

1 + δ(T − t)
, (t1, T ] (2.2)

with the initial and boundary conditions

I (t) = S at t = 0, I (t) = 0 at t = t1 (2.3)

and

I (t) = −R at t = T (2.4)
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It is significant to state that the inventory level I (t) is continuous at t = t1. Using
the conditions (2.3) and (2.4), the solutions to the differential equations (2.1) and
(2.2) are given below:

I (t) = −D(.)

θ
+ D(.)

θ
eθ(t1−t), [0, t1]

I (t) = D(.)

δ
log|1 + δ(T − t)| − R, (t1, T ]

From condition (2.3), I (t) = S at t = 0. Thus, the maximum inventory level is
computed with

S = D(.)

θ

{
eθ t1 − 1

}
(2.5)

Using the continuity condition, hence, the shortage quantity is determined with

R = D(.)

δ
log|1 + δ(T − t1)| (2.6)

The total interval-valued inventory holding cost Chol = [CholL ,CholR] of the
system is expressed as follows:

CholL = ChL

t1∫

0

I (t) dt = ChL

[
(S + D(.)

θ
)

θ

(
1 − e−θ t1

) − Dt1
θ

]

(2.7)

and

CholR = ChR

t1∫

0

I (t) dt = ChR

[
(S + D(.)

θ
)

θ

(
1 − e−θ t1

) − Dt1
θ

]

(2.8)

The total interval-valued shortage cost Csho = [CshoL ,CshoR] of the inventory
system is given below:

CshoL = CbL

T∫

t1

[−I (t)] dt

= CbL

[(
R + D(.)

δ

)
(T − t1) − D(.)

δ2
{(1 + δ(T − t1)) log(1 + δ(T − t1))}

]

(2.9)
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CshoR = CbR

T∫

t1

[−I (t)] dt

= CbR

[(
R + D(.)

δ

)
(T − t1) − D(.)

δ2
{(1 + δ(T − t1)) log(1 + δ(T − t1))}

]

(2.10)

The total interval-valued opportunity cost of lost sales OCLS = [OCLSL , OCLSR]
during the entire cycle is determined by

OCLSL = ClsL

T∫

t1

{
1 − 1

1 + δ(T − t)

}
D(.) dt

= ClsL D(.)

[
(T − t1) − log(1 + δ(T − t1))

δ

]
(2.11)

and

OCLSR = ClsR

T∫

t1

{
1 − 1

1 + δ(T − t)

}
D(.) dt

= ClsRD(.)

[
(T − t1) − log(1 + δ(T − t1))

δ

]
(2.12)

As it was mentioned before, in two-level credit policy, the supplier provides a
credit period to his/her retailer with a duration of M. Then, the retailer also gives a
certain credit period to his/her client with a duration of N, where N is always less
than M. Furthermore, here two cases occur: Case 1: 0 < N < M ≤ t1 and Case 2:
N < t1 < M ≤ T . Figures 2.1 and 2.2 show the behavior of the stock level over the
period of time for Case 1 and Case 2, respectively. Below a discussion of these two
cases is given.

Case 1: 0 < N < M ≤ t1
In this case, the total amount of purchase cost of the retailer is within the following
interval

[
CpL(S + R),CpR(S + R)

]
. This amount must be covered to the supplier

at the time t = M. In this credit time period, the retailer accumulates money due
to sales during [0, M] as well as the interest gained during [N, M]. Hence, the total
collected amount is calculated with

U1 = p

M∫

0

D(.) dt + pIe

M∫

N

t∫

N

D(.) dudt+pR{1 + Ie(M − N )}.
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0t =

t T=

R

I(t)

1t t=t M=t N=
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Time

Fig. 2.1 Inventory-level behavior for Case 1

0t =

t T=

R

I(t)

1t t=

t M=

t N=

S

Time

Fig. 2.2 Inventory-level behavior for Case 2
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Thus,

U1 = pD(.)

{
M + Ie

(M − N )2

2

}
pR{1 + Ie(M − N )} (2.13)

The retailer collects U1 and interval-valued for the purchase cost amount
is

[
CpL(S + R),CpR(S + R)

]
. Here, the following two subcases occur:

Subcase 1: U1 ≥ [
CpL(S + R),CpR(S + R)

]
and Subcase 2: U1 <[

CpL(S + R),CpR(S + R)
]
. These subcases are developed below:

Subcase 1: U1 ≥ [
CpL(S + R),CpR(S + R)

]

In this Subcase 1, the total interval-valued profit of the inventory system is written
as

Z1L(.) = XL(.)

T
and Z1R(.) = XR(.)

T
(2.14)

where
[XL , XR] = <Excess amount on hand after paying the cost of purchased goods to

the supplier> + <interest earned for excess amount in [M, T ]> + <sales revenue in
[M, t1]> + <interest earned in [M, t1]> + <interest earned in [t1, T ]> − <ordering
cost> − <holding cost> − <shortage cost> − <cost of lost sale>

XL (.) = {
U1 − CpR(S + R)

}{1 + Ie(T − M)} + D(.)p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoR − CholR − CshoR − OCLSR (2.15)

and

XR(.) = {
U1 − CpL (S + R)

}{1 + Ie(T − M)} + D(.)p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoL − CholL − CshoL − OCLSL (2.16)

Therefore, the corresponding interval-valued nonlinear optimization problem of
the inventory system is written as follows.

Problem 1

Maximize Z1(.) = [Z1L(.), Z1R(.)]

subject to 0 < N < M ≤ t1 < T (2.17)

Subcase 2: U1 <
[
CpL(S + R),CpR(S + R)

]

In Subcase 2, the retailer collects an amount corresponding to sales and interest
earned up to t = M. This amount is less than the amount of the purchase cost.
Taking into consideration this situation, the following two subcases happen: Subcase
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2.1: Supplier takes a partial payment at t = M of his/her retailer, and Subcase 2.2:
Supplier does not take the partial payment at t = M of his/her retailer. Now, these
two subcases are discussed below.

Subcase 2.1: Supplier takes a partial payment at t = M of his/her retailer.
In this subcase, it is considered that the supplier takes a partial payment and per-
mits some time to the retailer regarding the payment of rest interval amount which
is expressed as

[
CpL(S + R) −U1,CpR(S + R) −U1

]
. The interval relax time is

t = [BL , BR] where [BL , BR] > M . In this situation, the supplier must charge the
interest of unpaid amount

[
CpL(S + R) −U1,CpR(S + R) −U1

]
during the inter-

val [M, [BL , BR]] with interest paid rate Ip.
Thus, the total amount that must be paid to the supplier at a time t = [BL , BR] is

given by
[
CpL(S + R) −U1,CpR(S + R) −U1

]{
1 + Ip([BL , BR] − M)

}
.

On the other hand, the total available amount to the retailer is determined as < total
sales revenue during the time interval [M, [BL , BR]]>+ <total interest earned during
the time interval [M, [BL , BR]]>. So, the total interest earned is

= p

BL∫

M

D(.) dt + pIe

BL∫

M

t∫

M

D(.) dudt

and

= p

BR∫

M

D(.) dt + pIe

BR∫

M

t∫

M

D(.) dudt

As a result, at the time t = [BL , BR], the total payable amount available to the
retailer is equal to the amount payable to the supplier, which is

[
CpL(S + R) −U1,CpR(S + R) −U1

]{
1 + Ip(BL − M)

}

= pD(.)(BL − M)

{
1 + Ie(BL − M)

2

}

Thus,

[
CpL(S + R) −U1

]{
1 + Ip(BL − M)

} = pD(.)(BL − M)

{
1 + Ie(BL − M)

2

}

and

[
CpR(S + R) −U1

]{
1 + Ip(BR − M)

} = pD(.)(BR − M)

{
1 + Ie(BR − M)

2

}
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Consequently, the total interval-valued profit function of the inventory system is
computed as

Z2L(.) = XL(.)

T
and Z2R(.) = XR(.)

T

where
[XL , XR] = < sales revenue during the time interval [[BL , BR], t1] > + < interest

earned thru the time interval [[BL , BR], t1] > + < interest earned through interval
[t1, T ] > − < ordering cost > − <holding cost > − <shortage cost > − <cost of lost
sale>

XL(.) =
⎧
⎨

⎩
p

t1∫

BR

D(.)dt + pIe

t1∫

BR

t∫

BR

D(.)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR(.) =
⎧
⎨

⎩
p

t1∫

BL

D(.)dt + pIe

t1∫

BL

t∫

BL

D(.)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

So, in this subcase, the interval-valued constrained optimization problem is for-
mulated as follows.

Problem 2

Maximize Z2(.) = [Z2L(.), Z2R(.)]

subject to 0 < N < M ≤ t1 < T (2.18)

Subcase 2.2: Supplier does not take the partial payment at t = M of his/her retailer.
In this situation, the supplier does not take a partial payment. In other words, the
retailer needs to cover the credit amount to his/her supplier. This amount is calculated
with

[
CpL(S + R) −U1,CpR(S + R) −U1

]
after the time t = M . The interval time

period t = [BL , BR] when the supplier gets the full creditable amount within this
time interval. Regarding this situation, supplier charges the interest for the period
[M, [BL , BR]] with interest paid rate Ip.

Therefore, the total on-hand amount available to the retailer is equal to the amount
payable to the supplier at the time t = [BL , BR]. Thus,

CpL(S + R)
{
1 + Ip(BL − M)

} = U1[1 + Ie(BL − N )] + pD(.)(BL − M)
[
1 + Ie

(BL − M)

2

]
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and

CpR(S + R)
{
1 + Ip(BR − M)

} = U1[1 + Ie(BR − N )] + pD(.)(BR − M)
[
1 + Ie

(BR − M)

2

]

Consequently, the total interval-valued profit of the inventory system is as follows:

Z3L(.) = XL(.)

T
and Z3R(.) = XR(.)

T

where
[XL , XR] = < sales revenue during the time interval [[BL , BR], t1] > + < interest

earned for the duration of the time interval [[BL , BR], t1] > + < interest earned
within the interval [t1, T ] >− < ordering cost >− <holding cost >− <shortage cost
> − <cost of lost sale>

XL(.) =
⎧
⎨

⎩
p

t1∫

BR

D(.)dt + pIe

t1∫

BR

t∫

BR

D(.)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR(.) =
⎧
⎨

⎩
p

t1∫

BL

D(.)dt + pIe

t1∫

BL

t∫

BL

D(.)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL (2.19)

Thus, the interval-valued constrained nonlinear optimization problem is expressed
below:

Problem 3

Maximize Z3(.) = [Z3L(.), Z3R(.)]

subject to 0 < N < M ≤ t1 < T (2.20)

Case 2: N < t1 < M ≤ T
Owing to sales revenue and interest earned, the collected amount of the retailer is
computed as

U2 =
⎡

⎣p

t1∫

0

D(.)dt + pIe

M∫

N

t∫

N

D(.)dudt

⎤

⎦[1 + Ie(M − t1)] + pR{1 + Ie(M − N )}



34 A. A. Shaikh et al.

U2 = pD(.)

[

t1 + Ie

(
M2 − N 2

)

2

]

[1 + Ie(M − t1)] + pR{1 + Ie(M − N )}

Here, the interval-valued profit of the inventory system is formulated as

Z4L(.) = XL(.)

T
and Z4R(.) = XR(.)

T

where
[XL , XR] = < Excess amount available of retailer after paying the supplier > +

< total interest earned for that excess amount in [M, T ] > − < ordering cost > −
<holding cost > − <shortage cost > − <cost of lost sale>

XL(.) = U2 − (CoR + CholR + CshoR + OCLSR)

and

XR(.) = U2 − (CoL + CholL + CshoL + OCLSL)

For that reason, the corresponding interval-valued constrained nonlinear opti-
mization problem is as follows.

Problem 4

Maximize Z4(.) = [Z4L(.), Z4R(.)]

subject to N < t1 < M ≤ T (2.21)

2.4 The Solution for Three Demand Functions

D(·) = a − bp, a, b > 0, D(·) = ap−α a > 0, α < 1, and D(·) =
ae(−p/k), a, k > 0.

This section derives the mathematical expressions for three price demand func-
tions.

4.1: When D(·) = a − bp, a, b > 0
Here,

U1 = p

M∫

0

(a − bp)dt + pIe

M∫

N

t∫

N

(a − bp)dudt+pR{1 + Ie(M − N )}
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Case 4.1.1.

Maximize Z (1)
1 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.22)

where

XL = {
U1 − CpR(S + R)

}{1 + Ie(T − M)} + (a − bp)p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoR − CholR − CshoR − OCLSR

and

XR = {
U1 − CpL (S + R)

}{1 + Ie(T − M)} + (a − bp)p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoL − CholL − CshoL − OCLSL

Case 4.1.2.

Maximize Z (1)
2 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.23)

{
CpL (S + R) −U1

}{
1 + Ip(BL − M)

} = p

BL∫

M

(a − bp)dt + pIe

BL∫

M

t∫

M

(a − bp)dudt

and

{
CpR(S + R) −U1

}{
1 + Ip(BR − M)

} = p

BR∫

M

(a − bp)dt + pIe

BR∫

M

t∫

M

(a − bp)dudt

where

XL =

⎧
⎪⎨

⎪⎩
p

t1∫

BR

(a − bp)dt + pIe

t1∫

BR

t∫

BR

(a − bp)dudt

⎫
⎪⎬

⎪⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

XR =

⎧
⎪⎨

⎪⎩
p

t1∫

BL

(a − bp)dt + pIe

t1∫

BL

t∫

BL

(a − bp)dudt

⎫
⎪⎬

⎪⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL
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Case 4.1.3.

Maximize Z (1)
3 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.24)

CpL (S + R)
{
1 + Ip(BL − M)

} = U1[1 + Ie(BL − N )] + p(a − bp)(BL − M)

[
1 + Ie

(BL − M)

2

]

and

CpR(S + R)
{
1 + Ip(BR − M)

} = U1[1 + Ie(BR − N )] + p(a − bp)(BR − M)
[
1 + Ie

(BR − M)

2

]

where

XL =
⎧
⎨

⎩
p

t1∫

BR

(a − bp)dt + pIe

t1∫

BR

t∫

BR

(a − bp)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

(a − bp)dt + pIe

t1∫

BL

t∫

BL

(a − bp)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

Case 4.1.4.

Here,

U2 =
⎡

⎣p

t1∫

0

(a − bp)dt + pIe

M∫

N

t∫

N

(a − bp)dudt

⎤

⎦[1 + Ie(M − t1)]

+ pR{1 + Ie(M − N )}

Maximize Z (1)
4 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to N < t1 < M ≤ T (2.25)

where

XL = U2 − (CoR + CholR + CshoR + OCLSR)
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and

XR = U2 − (CoL + CholL + CshoL + OCLSL)

4.2: When D(·) = ap−α a > 0, α < 1
Here,

U1 = p

M∫

0

ap−α dt + pIe

M∫

N

t∫

N

ap−α dudt+pR{1 + Ie(M − N )}

Case 4.2.1.

Maximize Z (2)
1 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.26)

where

XL = {
U1 − CpR(S + R)

}{1 + Ie(T − M)} + ap−α p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoR − CholR − CshoR − OCLSR

and

XR = {
U1 − CpL (S + R)

}{1 + Ie(T − M)} + ap−α p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoL − CholL − CshoL − OCLSL

Case 4.2.2.

Maximize Z (2)
2 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.27)

{
CpL(S + R) −U1

}{
1 + Ip(BL − M)

} = p

BL∫

M

ap−α dt + pIe

BL∫

M

t∫

M

ap−α dudt

and

{
CpR(S + R) −U1

}{
1 + Ip(BR − M)

} = p

BR∫

M

ap−α dt + pIe

BR∫

M

t∫

M

ap−α dudt
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where

XL =
⎧
⎨

⎩
p

t1∫

BR

ap−α dt + pIe

t1∫

BR

t∫

BR

ap−α dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

ap−α dt + pIe

t1∫

BL

t∫

BL

ap−α dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

Case 4.2.3.

Maximize Z (2)
3 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.28)

CpL(S + R)
{
1 + Ip(BL − M)

} = U1[1 + Ie(BL − N )] + pap−α(BL − M)
[
1 + Ie

(BL − M)

2

]

and

CpR(S + R)
{
1 + Ip(BR − M)

} = U1[1 + Ie(BR − N )] + pap−α(BR − M)
[
1 + Ie

(BR − M)

2

]

where

XL =
⎧
⎨

⎩
p

t1∫

BR

ap−α dt + pIe

t1∫

BR

t∫

BR

ap−α dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

ap−α dt + pIe

t1∫

BL

t∫

BL

ap−α dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL



2 An Economic Order Quantity (EOQ) Inventory Model for a … 39

Case 4.2.4.

Here,

U2 =
⎡

⎣p

t1∫

0

ap−α dt + pIe

M∫

N

t∫

N

ap−α dudt

⎤

⎦[1 + Ie(M − t1)]

+ pR{1 + Ie(M − N )}

Maximize Z (2)
4 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to N < t1 < M ≤ T (2.29)

where

XL = U2 − (CoR + CholR + CshoR + OCLSR)

and

XR = U2 − (CoL + CholL + CshoL + OCLSL)

4.3: When D(·) = ae(−p/k), a, k > 0
Here,

U1 = p

M∫

0

ae(−p/k) dt + pIe

M∫

N

t∫

N

ae(−p/k) dudt + pR{1 + Ie(M − N )}

Case 4.3.1.

Maximize Z (3)
1 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.30)

where

XL = {
U1 − CpR(S + R)

}{1 + Ie(T − M)} + ae(−p/k) p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoR − CholR − CshoR − OCLSR

and

XR = {
U1 − CpL (S + R)

}{1 + Ie(T − M)} + ae(−p/k) p(t1 − M)

{
1 + 1

2
Ie(t1 − M)

}

{1 + Ie(T − t1)} − CoL − CholL − CshoL − OCLSL
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Case 4.3.2.

Maximize Z (3)
2 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.31)

{
CpL(S + R) −U1

}{
1 + Ip(BL − M)

}

= p

BL∫

M

ae(−p/k) dt + pIe

BL∫

M

t∫

M

ae(−p/k) dudt

and

{
CpR(S + R) −U1

}{
1 + Ip(BR − M)

}

= p

BR∫

M

ae(−p/k) dt + pIe

BR∫

M

t∫

M

ae(−p/k) dudt

where

XL =
⎧
⎨

⎩
p

t1∫

BR

ae(−p/k) dt + pIe

t1∫

BR

t∫

BR

ae(−p/k) dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

ae(−p/k) dt + pIe

t1∫

BL

t∫

BL

ae(−p/k) dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

Case 4.3.3.

Maximize Z (3)
3 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to 0 < N < M ≤ t1 < T (2.32)

CpL(S + R)
{
1 + Ip(BL − M)

} = U1[1 + Ie(BL − N )] + pae(−p/k)(BL − M)
[
1 + Ie

(BL − M)

2

]
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and

CpR(S + R)
{
1 + Ip(BR − M)

} = U1[1 + Ie(BR − N )] + pae(−p/k)(BR − M)
[
1 + Ie

(BR − M)

2

]

where

XL =
⎧
⎨

⎩
p

t1∫

BR

ae(−p/k) dt + pIe

t1∫

BR

t∫

BR

ae(−p/k) dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoR − CholR − CshoR − OCLSR

and

XR =
⎧
⎨

⎩
p

t1∫

BL

ae(−p/k) dt + pIe

t1∫

BL

t∫

BL

ae(−p/k)dudt

⎫
⎬

⎭
{1 + Ie(T − t1)}

− CoL − CholL − CshoL − OCLSL

Case 4.3.4.

Here,

U2 =
⎡

⎣p

t1∫

0

ae(−p/k) dt + pIe

M∫

N

t∫

N

ae(−p/k) dudt

⎤

⎦[1 + Ie(M − t1)]

+ pR{1 + Ie(M − N )}

Maximize Z (3)
4 (S, R, t1, T ) =

[
XL

T
,
XR

T

]

subject to N < t1 < M ≤ T (2.33)

where

XL = U2 − (CoR + CholR + CshoR + OCLSR)

and

XR = U2 − (CoL + CholL + CshoL + OCLSL)
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2.5 Numerical Examples

This section provides and solves three instances with the purpose of illustrating and
validating the inventory model.

The solution procedure consists of applying the theory of interval numbers and two
efficient and effective soft computing techniques: Particle swarm optimization con-
striction (PSO-CO) and weighted quantum particle swarm optimization (WQPSO).
Both soft computing algorithms are programmed in C language. The computational
experiments are done on a personal computer with the following technical charac-
teristics: Intel Core-2-Duo, 2.5 GHz Processor, and LINUX environ. It is important
to remark that Kennedy and Eberhart [27], Clerc and Kennedy [28], and Clerc [29]
proposed the particle swarm optimization (PSO) and particle swarm optimization
constriction (PSO-CO); and Sun et al. [30, 31] introduced weighted quantum par-
ticle swarm optimization (WQPSO). Sahoo et al. [32] introduced the definitions of
interval order relations between two interval numbers with the aim of solving the
maximization and minimization problems.

Example 1 Consider an inventory problem in which the demand function is given
by D = a − bp and the following parameters: CoL = $195, CoR = $200, θ = 0.1,
a = 150, b = 0.7, δ = 1.5, ChL = $1, ChR = $1.5, CbR = $10, CbL = $8,
CpL = $22, CpR = $25, Ie = 0.12, Ip = 0.15 N = 0.16, M = 0.246, ClsL = $18,
ClsR = $20, p = $30.

The solution is exhibited in Tables 2.2 and 2.3, where Table 2.2 shows the solution
obtained by PSO-CO and Table 2.3 displays the solution determined by WQPSO.

Example 2 Consider an inventory system in which the demand function is as fol-
lows: D = ap−α and the following parameters: CoL = $195, CoR = $200, θ = 0.1,
a = 150, δ = 1.5, ChL = $1, ChR = $1.5, CbR = $10, CbL = $8, CpL = $22,
CpR = $25, Ie = 0.12, Ip = 0.15 N = 0.16, M = 0.246, ClsL = $18, ClsR = $20,
p = $30, α = 0.2 (Tables 2.4 and 2.5).

Example 3 Consider that the demand function is D = ae
(−p/k)

and the following
parameters: CoL = $195, CoR = $200, θ = 0.1, a = 150, δ = 1.5, ChL = $1,
ChR = $1.5, CbR = $10, CbL = $8, CpL = $22, CpR = $25, Ie = 0.12, Ip = 0.15
N = 0.16, M = 0.246, ClsL = $18, ClsR = $20, p = $30, k = 40 (Tables 2.6 and
2.7).

2.6 Sensitivity Analysis

This section provides a sensitivity analysis, which is done, based on Example 1. The
sensitivity analysis is made by varying the parameters by −20 to +20%. The results
of the sensitivity analysis for Example 1 are shown in Table 2.8.
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From Table 2.8, the following interpretations are mentioned:

• With the increment in the value of replenishment cost [CoL ,CoR], the cycle length
(T ), the time at which the inventory level reaches zero (t1), shortage level (R), and
stock level (S) increase, but average profit decreases.

• When the holding cost [ChL ,ChR] increases, then the cycle length (T ), the time
at which the inventory level reaches zero (t1), stock level (S), and average profit
decrease, but shortage level (R) increases.

• With the increment in the value of shortage cost [CbL ,CbR], the time at which the
inventory level reaches zero (t1) and stock level (S) increase, but the shortage level
(R), the cycle length (T ), and the average profit decrease.

• When the value of purchasing cost
[
CpL ,CpR

]
increases, then the shortage level

(R), the cycle length (T ), the time at which the inventory level reaches zero (t1),
stock level (S) and the average profit decrease.

• When the scale parameter (a) of demand increases, then the cycle length (T ) and the
time at which the inventory level reaches zero (t1) decrease, whereas the shortage
level (R), the stock level (S), and the average profit increase.

• When the price elasticity parameters (b) of demand increases, then the shortage
level (R), the stock level (S), and the average profit decrease, whereas the cycle
length (T ) and the time at which the inventory level reaches zero (t1) increase.

• With the increment in the value of the deterioration rate (θ), the cycle length (T ),
stock level (S), the average profit, and the time at which the inventory level reaches
zero (t1) decrease, but the shortage level (R) increases.

• When the value of the backlogging parameter δ increases, then the shortage level
(R), the cycle length (T ) and the average profit decrease, but the time at which the
inventory level reaches zero (t1) and stock level (S) increase.

• With the increment in the value of opportunity cost [ClsL ,ClsR], then the shortage
level (R), the cycle length (T ), and the average profit decrease, but the time at
which the inventory level reaches zero (t1) and stock level (S) increase.

• With the increment in the value of selling price (p), then the shortage level (R),
the cycle length (T ), the time at which the inventory level reaches zero (t1), stock
level (S), and the average profit increase.

2.7 Conclusion

This paper develops an inventory model for deteriorating items with interval-valued
inventory costs, partial backlogging, and price-dependent demand under two-level
credit policy. In order to make a more realistic scenario, the shortages are permitted,
and these are partially backlogged. The proposed inventory model is very helpful
for retail and manufacturing industries in developing countries where credit policy
plays a significant role in decision-making. This research work aims to find the
retailer’s optimal replenishment policy that maximizes the total profit of the system.
To solve the inventory model, two soft computing techniques are used: the PSO-CO
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and the WQPSO. The efficiency and effectiveness of the proposed inventory model
are validated with numerical examples and a sensitivity analysis.

Finally, this research can be extended by considering: (1) stock-dependent
demand, (2) inventory costs represented by a fuzzy number, (3) finite-time hori-
zon, (4) inflation, and (5) an integrated supply chain model with two or more players
with the coordination between the players, among others. These are some interesting
and challenge research lines to explore by academicians and researchers.
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Chapter 3
Inventory Control Policies
for Time-Dependent Deteriorating Item
with Variable Demand and Two-Level
Order Linked Trade Credit

Mrudul Y. Jani, Nita H. Shah and Urmila Chaudhari

Abstract In today’s business world to boost the demand, vendor gives a trade credit
to buyer. Moreover, most of the products lose quality over time due to environmental
effects. This chapter studies an inventory policy for the item which has expiry date
with two levels of trade credit depending on the quantity of order. It is considered
that a supplier is ready to give a mutually agreed credit period to retailer only if
the order quantity purchased by retailer is more than the predetermined quantity of
order. Additionally, a retailer deals a credit limit to the end consumers. Here, time-
and price-sensitive demand is debated with inflation. A retailer’s main objective is to
earn maximum total profit with respect to the number of replenishments throughout
the finite planning horizon. Results are supported by numerical examples. Finally, a
sensitivity analysis is done to develop visions for decision-makers.

Keywords Order link trade credit · Inflation · Time value of money · Maximum
fixed lifetime · Price- and time-dependent demand

3.1 Introduction

In today’s competitive business world, credit limit is an essential strategy for man-
agement system of supply chain. Therefore, a supplier deals with a credit limit to
a retailer on purchasing cost of predetermined amount only if the stock purchased
by retailer is larger than the preset order size. Trade credit attracts new retailers and
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the concept of price discount occurs indirectly. Many researchers have enlightened
the literature of inventory by addressing this concept. Goyal [1] perhaps was the first
in introducing the term of credit limit financing in the EOQ model. Aggarwal and
Jaggi [2] extended the concept of Goyal [1] for perishable items. Huang [3] con-
sidered business polices where upstream credit limit is greater than a downstream
trade credit. Soni et al. [4] developed broad study of inventory policies with delay in
payment options. Sana [5] derived an EOQ model of perfect and imperfect quality
items that incorporates the concept of delay in payment. Ouyang [6] relaxed two
assumptions of Huang’s [3] work. First, the wholesaler’s interest earned rate is more
than the interest charged by the supplier. Second, upstream credit limit is indepen-
dent of downstream credit limit. Taleizadeh et al. [7] formulated amodel of half-done
trade credit policy with shortages and partial backordering. Pal et al. [8] established
a vendor’s optimal refill size and manufacturer’s manufacturing rate under the effect
of trade credit. Recently, Shah et al. [9] determined optimal ordering policies for
permissible delay in payment option.

Most of the articles in traditional inventory modeling are concentrated on con-
stant demand. However, it is rare in real world. Keeping this limitation in mind, Pal
et al. [10] discussed inventory models of stock-dependent demand. Wee [11] inves-
tigated inventory policies for price-sensitive demand. Jaggi et al. [12] formulated
ideal replenishment strategies for permissible delay in payment-dependent demand.
Shah et al. [13] examined quadratic demand-dependent EOQmodel. In recent times,
Shah et al. [14] derived retailer’s optimum control policy for trade credit and selling
price-sensitive trapezoidal demand.

In the standard traditions of inventory modeling, products are reserved for
unbounded time to fulfill consumers’ demand; however, this hypothesis occurs rarely.
For example, drugs, blood in blood banks, and foods are deteriorated over time in
warehouses. Also, some liquids like petrol and alcohol in storage evaporate with
time throughout holding period. Therefore, storage of such deteriorating items is
the big issue for inventory control policies. In this regard, Ghare and Schrader [15]
developed inventory control policies of exponentially decaying items. Raafat [16]
considered the effect of deterioration on optimal control of inventory policies. Sett
et al. [17] studied inventory modeling of time-dependent deterioration. Sarkar et al.
[18] established inventory control policy of product with maximum fixed life. Lately,
Shah et al. [19] discussed an inventory model for three different cases, i.e., constant
deterioration rate, maximum fixed life of the product, and without deterioration rate.

Nowadays, inflation is a general feature that abruptly declines the money’s pur-
chasing power. Large scale of inflation is usual inmany countries. So,while giving the
definition of the optimal control inventory policy, one cannot ignore the environment
of inflation rate.Many researchers have recognized inventory control policieswith the
inflationary environment. Ray and Chaudhuri [20] and Chang et al. [21] planned an
inventory policy with inflation. Sarkar [22] investigated an inventory model of finite
renewal rate. Ghoreishi et al. [23] worked on an EOQ model for non-instantaneous
perishable items. Lashgari et al. [24] analyzed a model for backordering and credit
limit with inflation. Recently, Shah et al. [25] examined manufacturing system of
imperfect item in inflationary environment.
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All of the above-cited factors such as order quantity linked delay in payment,
inflation, time value of money, price and time-varying demand and product’s max-
imum fixed life have not been enlightened comprehensively in one model, but this
chapter considers all the above factors together in one model. The proposed inven-
tory model represents one supplier–one retailer for two layers of trade credit options
where supplier gives credit period to retailer only if the stock purchased by retailer
is more than the prescheduled order quantity. The main objective is to maximize the
net current value of retailer’s profit with optimum number of shipments during finite
planning horizon in both the ways, analytically and numerically, under the effect of
inflationary environment together with time value money.

In the remaining chapter, Sect. 3.2 represents notations togetherwith assumptions.
Section 3.3 represents a mathematical model. Numerical examples with managerial
insights are discussed in Sect. 3.4. Sensitivity analysis of the proposed model is also
described in Sect. 3.4. Lastly, Sect. 3.5 offers conclusions with future scopes.

3.2 Notation and Assumptions

3.2.1 Notation

A Setup cost ($/lot)
h Holding cost/unit/unit time (in $)
k Net rate of constant decline in inflation
C Purchase cost ($/unit) at t = 0
C(t) = Ce−kt Purchase cost at t
p Selling price ($/unit) at t = 0; p > C
p(t) = p e−kt Selling price ($/unit) at t
M Supplier deals permissible delay in payment to retailer (in years)
N Retailer deals permissible delay in payment to customer (in years)
Ic Interest rate paid by retailer to supplier (/$/year); Ic > Ie
Ie Rate of interest earned by retailer (/$/year)
Ib Interest rate paid by retailer to bank per dollar per year if T > M
n Replenishments’ number (Decision Variable)
H Finite planning horizon
T = H

n ; Replenishment or cycle time (years)
m Item’s maximum fixed life (years)
Q Order quantity in each replenishment (units)
Qd Predetermined order quantity (units)
I (t) Inventory’s level at t (units)
π(n) Total profit of retailer for nth replenishment (in $)
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Fig. 3.1 Inventory control diagram

3.2.2 Assumptions

1. The planning horizon is finite.
2. The inventory policy deals with single product.
3. Demand rate, (say) R(p, t) = a − bp(t); where a > 0 is scale demand and

b > 0 is markup of selling price.
4. θ(t) = 1

1+m−t , 0 ≤ t ≤ T ≤ m is instantaneous deterioration, where θ(t) ≤ 1
for any m.

5. Supplier is ready to give mutually agreed credit period M to retailer only if stock
purchased by retailer is larger than the prearranged order quantity, i.e., Q > Qd .

6. Retailer pays interest rate Ib to bank for T > M .
7. Constant inflation rate is considered with time value of money (Fig. 3.1).

3.3 Mathematical Model

In an interval [0, T ], the rate of change of inventory at any time t is given as follows:

d I (t)

dt
= −R(p, t) − θ(t)I (t), 0 ≤ t ≤ T (3.1)

After applying a condition I (T ) = 0, the solution of (3.1) is

I (t) = (1 + m − t)

(
W1 ln

(
1 + m − t

1 + m − T

)
+ W2(t − T ) − bpk2

4

(
t2 − T 2

))

(3.2)

where W1 = a − bp + bpk(1 + m) − bpk2(1+m)2

2 and W2 = bpk − bpk2(1+m)

2
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Taking I (0) = Q as an initial condition, Q can be derived from Eq. (3.2) as
follows:

Q = (1 + m)

(
W1 ln

(
1 + m

1 + m − T

)
− W2T + bpk2T 2

4

)
(3.3)

Relevant costs of retailer’s total profit are as follows:

• Ordering/Setup Cost: OC =
n∑
j=0

Ae− jkT

• Holding Cost: HC = Ch

[
n−1∑
j=0

e− jkT
T∫
0
I (t)dt

]

• Purchase Cost: PC = CQ

[
n−1∑
j=0

e− jkT

]

• Sales Revenue: SR =
[
n−1∑
j=0

e− jkT
T∫
0
p(t)R(p, t)dt

]

Since we consider two levels order linked trade credit, the order size is more than
Qd ; then, only supplier proposes credit limit M to a retailer; otherwise, at a time
of receiving an order, retailer pays the total purchase cost. However, in both cases,
retailer gives N to the customers. So, from the above discussion, two possible cases
will occur (1) Q < Qd (2) Q > Qd .

Case 1: Q < Qd

In this situation, predetermined order quantity Qd is more than retailer’s order quan-
tity Q. So, supplier does not offer M to a retailer. Nevertheless, retailer proposes N
to the end customers. As an outcome, retailer takes loan from a bank at time zero
and at N retailer starts to pay back. Therefore, interest payable to supplier and bank
by retailer are

IC1 = C Ic

n−1∑
j=0

e− jkT

⎛
⎝

T∫
0

R(p, t)t dt +
N∫

0

R(p, t)T dt

⎞
⎠

and

CC1 = C Ib

⎛
⎝n−1∑

j=0

e− jkT

T∫
0

I (t)dt

⎞
⎠

respectively.
Hence, the net current total profit throughout the finite planning horizon is

π1(n) = SR − HC − OC − PC − IC1 − CC1 (3.4)



60 M. Y. Jani et al.

Case 2: Q > Qd

In this situation, order quantity Q of retailer is more than an order quantity Qd .
Therefore, supplier gives trade creditM(M �= 0) to a retailer. Thus, possible subcases
are as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

Subcase - 1 : M < N M < T

Subcase - 2 : M < N T < M

Subcase - 3 : M > N M < T

Subcase - 4 : M > N T < M < T + N

Subcase - 5 : M > N T + N < M

⎞
⎟⎟⎟⎟⎟⎟⎠

Subcase-1: M < N andM < T . In this subcase, due to M < N , interest earned
to retailer is zero. On the other hand, interest payable by retailer to supplier and bank
are

IC2 = C Ic

n−1∑
j=0

e− jkT

⎛
⎝

T∫
0

t R(p, t) dt +
N−M∫
0

T R(p, t) dt

⎞
⎠

and

CC2 = C Ib

⎛
⎝n−1∑

j=0

e− jkT

T∫
M

I (t)dt

⎞
⎠

respectively.
Consequently, the existing total profit for the durationof thefinite planninghorizon

is

π2(n) = SR − HC − OC − PC − IC2 − CC2 (3.5)

Subcase-2: M < N and T < M. Due to T < M , interest payable
by retailer to bank is zero. Furthermore, since M < N , interest earned
to retailer is zero. So, interest payable by retailer to supplier is IC3 =
C Ic

n−1∑
j=0

e− jkT

(
N−M∫
0

R(p, t)T dt +
T∫
0
t R(p, t)dt

)
.

As a result, the current total profit for the duration of the finite planning horizon
is

π3(n) = SR − HC − OC − PC − IC3 (3.6)

Subcase-3: M > N andM < T . In this subcase, retailer earns interest by selling
the items and retailer has to pay interest to the supplier and bank as follows:
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I E4 = pIe

n−1∑
j=0

e− jkT

⎛
⎝

M∫
N

R(p, t)t dt

⎞
⎠,

IC4 = C Ic

n−1∑
j=0

e− jkT

⎛
⎝

T+N−M∫
0

R(p, t)t dt

⎞
⎠

and

CC4 = C Ib

n−1∑
j=0

e− jkT

⎛
⎝

T∫
M

I (t)dt

⎞
⎠

Thus, the existing total profit for the duration of the finite planning horizon is

π4(n) = SR − HC − OC − PC − IC4 − CC4 + I E4 (3.7)

Subcase-4: M > N and T < M < T + N . Since, T < M , interest payable
by retailer to bank is zero. Moreover, in this situation, retailer’s interest earn and
retailer’s interest charge to supplier are

I E5 = pIe

n−1∑
j=0

e− jkT

⎛
⎝

M∫
N

R(p, t)t dt

⎞
⎠ and

IC5 = C Ic

n−1∑
j=0

e− jkT

⎛
⎝

T+N−M∫
0

R(p, t)t dt

⎞
⎠ respectively.

So, the current total profit for the duration of the finite planning horizon is

π5(n) = SR − HC − OC − PC − IC5 + I E5 (3.8)

Subcase-5: M > N and T + N < M. In the current subcase, since T + N < M :

I E6 = pIe

n−1∑
j=0

e− jkT

⎛
⎝

M−N−T∫
0

R(p, t)T dt +
T∫

0

R(p, t)t dt

⎞
⎠

Consequently, the existing total profit for the durationof thefinite planninghorizon
is

π6(n) = SR − HC − OC − PC + I E6 (3.9)
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Hence, total profit is given by

π(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q < Qd π1(n)

Q > Qd

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M < N ,

{
π2(n), M < T
π3(n), T < M

M > N ,

⎧⎨
⎩

π4(n), M < T
π5(n), T < M < T + N
π6(n), T + N < M

(3.10)

Here, model considers an algorithm for the optimum solution as follows.

Algorithm

Step 1: Calculate πi (n) ; ∀i = 1 . . . 6 where n ∈ N, using Eqs. (3.4)–(3.9),
respectively.

Step 2: Take n = n + 1 where n ∈ N and once again calculate πi (n) ; ∀i =
1 . . . 6 where n ∈ N, using Eqs. (3.4)–(3.9), respectively.

Step 3: If πi (n + 1) < πi (n) ; ∀i = 1 . . . 6 where n ∈ N, then the optimal
number of replenishments is n∗ = n; otherwise, go to step 2.

Step 4: Calculate optimal cycle time T ∗ = H
n∗

Step 5: Calculate optimum order quantity Q∗ by replacing T ∗ in Eq. (3.3).

3.4 Numerical Examples with Sensitivity Analysis

3.4.1 Numerical Examples

3.4.1.1 Numerical Example 1 (M > N)

Take a = 1000 units, b = 20%, A = $500 per order, C = $5 per unit, p =
$10 per unit, Ie = 8% h = $0.2 per unit per unit time, Ic = 12%/$/year, Ib =
8%/$/year, M = 0.15 year, k = 0.08 N = 0.06 year, m = 0.5 year, H = 5 years,
and Qd = 300 units.

3.4.1.2 Numerical Example 2 (M < N)

Set N = 0.2 year in example 1.
By solving the numerical examples using themathematical softwareMapleXVIII,

we have Table 3.1 of optimal solutions.
FromTable 3.1,we analyze that in the case (Q > Qd , M > N , M < T ), retailer’s

total profit is $10,032.22 which is maximum, optimal number of replenishments is
n∗ = 14, optimal cycle time is T ∗ = 0.357 year, and optimum order quantity is
Q∗ = 407.10 units.
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Table 3.1 Optimal solutions

Case Subcase Example
number

Total profit
($)

Decision variables

Q < Qd
** ** 1 Infeasible

solution
Infeasible solution

Q > Qd M < N M < T 2 9621.85 n∗ = 14

Q∗ = 407.10 units

T∗ = 0.357 year

T < M 2 Infeasible
solution

Infeasible solution

M > N M < T 1 10,032.22 n∗ = 14

Q∗ = 407.10 units

T∗ = 0.357 year

T < M <

T + N
1 Infeasible

solution
Infeasible solution

T +N < M 1 Infeasible
solution

Infeasible solution

N.B. ** indicates not applicable case

The concavity of the retailer’s total profit π4(n∗) for best optimal case is depicted
in Fig. 3.2.

Fig. 3.2 Concavity of
retailer’s total profit versus
number of replenishments
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3.4.2 Sensitivity Analysis

Sensitivity analysis of object function for Example 1 for various inventory parameters
is calculated in Table 3.2.

From Table 3.2, we analyze the following points: Increasing of finite planning
horizon, scale demand, selling price, and maximum fixed life of the item increases
retailer’s total profit most rapidly which is fairly rational in practice. Increasing of
trade credit proposedby supplier to retailer rises retailer’s total profit gradually.On the
other hand, purchase cost at time t = 0, ordering cost per unit, and constant decline
rate in inflation decreases retailer’s total profit promptly. Holding cost decreases
retailer’s total profit slowly.

Table 3.2 Sensitivity
analysis

Inventory parameters Values Total profit ($)

A 400 11,269.69

450 10,650.95

500 10,032.22

550 9413.48

600 8794.74

C 4 15,031.72

4.5 12,531.97

5 10,032.27

5.5 7532.47

6 5032.72

a 800 6781.88

900 8407.049

1000 10,032.22

1100 11,657.38

1200 13,282.55

h 0.16 10,195.65

0.18 10,113.94

0.20 10,032.22

0.22 9950.50

0.24 9868.78

H 4 7949.86

4.5 9074.81

5 10,032.22

5.5 10,824.13

6 11,452.02

(continued)
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Table 3.2 (continued) Inventory parameters Values Total profit ($)

k 0.064 10,492.23

0.072 10,259.11

0.080 10,032.22

0.088 9811.39

0.096 9596.40

m 0.4 9767.65

0.45 9905.47

0.5 10,032.22

0.55 10,149.18

0.6 10,257.45

M 0.12 9901.05

0.135 9966.99

0.150 10,032.22

0.165 10,096.74

0.18 10,160.58

p 8 1791.96

9 5912.90

10 10,032.22

11 14,149.90

12 18,265.96

3.5 Conclusion

This chapter establishes an inventory policy of the item with expiry date and permis-
sible delay in payment option. Supplier offers order quantity dependent credit limit
to retailer and retailer offers unconditional credit limit to the customers. Moreover,
effect of inflation together with time value of money is discussed. We have proposed
the solution algorithm of the inventory model to maximize retailer’s total profit by
evaluating optimum number of replenishment in a finite planning horizon, optimal
cycle time, and optimal order quantity for all possible cases of delay periods. In
future, it is expected to spread out the offered model by considering shortages, par-
tial backlogging, full backlogging, stochastic demand, and preservation technology
investment.
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Chapter 4
Inventory Modelling of Deteriorating
Item and Preservation Technology
with Advance Payment Scheme Under
Quadratic Demand

Urmila Chaudhari, Nita H. Shah and Mrudul Y. Jani

Abstract This chapter comprises a single retailer and single product which deterio-
rates continuously. For the time-dependent deteriorating item with seasonal demand,
quadratic demand is debated here which is suitable for the items whose demand
with starting of the season increases initially and after end of the season, it starts to
decrease. To reduce deterioration of the product, retailer needs preservation technol-
ogy and due to preservation technology retailer minimizes total cost. In this chapter,
the retailer has to pay a fraction of the purchase cost before the time of delivery and
rest of the payment must be paid at the time of delivery. In this chapter, the opti-
mal number of equal instalments before receiving the order quantity, replenishment
time and investment of preservation technology are the decision variables that min-
imize the total cost. This chapter is an extension of the earlier work, as it provides
the best optimal rather than the nearest minimum solution. A numerical example
is delivered to demonstrate the performance of the model and to highlight certain
decision-making insights.
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4.1 Introduction

It is a corporate exercise by the vendor to request a retailer to advance credits for pur-
chasing periodic and instantaneous perishable items. By doing so, a retailer may get
a price reduction or an on-time distribution in return. In the current study, Taleizadeh
[1] studied a model for deteriorating product for an economic order quantity (EOQ).
Simultaneously, Taleizadeh [2] elaborated partial backlogging, where he obtained
a near-best minimum solution using a truncated Taylor series expansion. In his cir-
cumstance, the deterioration rate reaches to zero but never extends to null. Ishii et al.
[3] developed joint policies for three players, viz., vendor, wholesaler and retailer.
Haq et al. [4] established the concept of joint inventory system with one vendor,
several wholesalers and several retailers. Goyal and Nebebe [5] determined a model
for deteriorating item under shipment policy and production for a two-layered supply
chain. Woo et al. [6] studied a coordinated strategies for a manufacturer and multi-
retailers. Authorsmeasuredmanufacturer to be produced. Rau et al. [7]minimized an
objective function of the supply chain under deteriorating items with three-echelon
system. Shah et al. [8] discussed a coordinated decision when demand is quadratic.
Shah et al. [9–11] developed optimal payment policies, pricing and shipment for
a two-echelon system for deteriorating items under buoyant demand and up- and
downstream trade credit. Shah and Shukla [12] analysed a two-layered inventory
model for optimum pricing strategies and ordering under the retailer partial trade
credit when demand is declining.

Due to extreme changes in the environment, most of the items loss their efficiency
over time, termed as deterioration. Deterioration of goods like fruits (mango, i.e. sea-
sonal famous fruit of India) and root vegetables. Out of many studies on deterioration
product, only rare of them have considered fixed lifetime issue of deteriorating items.
Ghare and Schrader [13] analysed inventory model with deterioration. Raafat [14],
Shah and Shah [15], Goyal and Giri [16], and Bakker et al. [17] analysed the research
articles on deteriorating items for inventory system.Chung andCardenas-Barrón [18]
developed an algorithm of stock-dependent demand and two-level trade credit in a
supply chain comprising of three players for deteriorating items. Furthermore, Shah
and Barrón [19] determined the retailer’s verdict for credit policies and ordering for
deteriorating itemswhen a supplier offers order-linked credit period or cash discount.

On the other hand, to reduce the deterioration, Hsu et al. [20] studied an inven-
tory model to minimize the deterioration rate of inventory for constant demand with
preservation technology investment. Dye and Hsieh [21] evaluated a model for opti-
mal cycle time with effective investment in preservation technology for deteriorating
items. Hsieh and Dye [22] analysed when demand is fluctuating with time, a produc-
tion inventory model incorporating the effect of protection technology investment.
Recently, Shah and Shah [23] evaluated an inventorymodel for demand depending on
price and time under inflation to optimal cycle time and preservation technology asset
for deteriorating items. Later on Shah, et al. [24] developed an integrated inventory
model for deteriorating item which depends on time under price and time-sensitive
demand. Moreover, Shah et al. [25] established optimal policies under selling price
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and trade credit-dependent quadratic demand in a supply chain for time-varying
deteriorating item with preservation technology.

This chapter develops an inventorymodel for a retailer tominimize his total cost. It
is assumed that the demand rate decreases quadratically.To reducedeteriorationof the
product, retailer needs preservation technology and due to preservation technology
retailer minimizes his total cost. In this chapter, the retailer has to pay a fraction of
the purchase cost before the time of delivery and rest of the payment must pay at the
time of delivery. Under above assumptions, the objective is to minimize the cost of
retailer with respect to the optimal number of equal instalment before receiving the
order quantity replenishment time and preservation technology investment.

The remaining of the chapter is systematized as follows. Section 4.2 contains
the notations and the assumptions part that are used in model. Section 4.3 is about
formulation of the proposed mathematical model. Section 4.4 validates the derived
inventory model with numerical instances and its sensitivity analysis. This section
also provides some managerial insights. Finally, Sect. 4.5 provides a conclusion and
future research directions.

4.2 Notation and Assumptions

Following are the notation and assumption that are used in mathematical inventory
model.

4.2.1 Notation

Retailer’s parameters

a Total scale demand of the product, a > 0

b Linear rate of change of demand of the product, 0 ≤ b < 1

c Quadratic rate of change of demand of the product, 0 ≤ c < 1

Ar Ordering cost per order incurred by the retailer ($/order)

Cr Purchasing cost per unit item (in $)

Tt The length of time during which the prepayments are paid, Tt > 0(in year)

r The interest rate of capital cost per dollar per year, 0 ≤ r ≤ 1

α The fraction of the purchase cost to be prepaid before the time of delivery, 0 ≤ α ≤ 1

CC Capital total cost

θ(t) Deterioration rate; 0 ≤ θ(t) ≤ 1

m Fixed lifetime of the product (in years)

n The number of equal prepayments before receiving the order quantity (decision
variable)

(continued)
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(continued)

Retailer’s parameters

u Investment of preservation technology investment per unit time (in $)(decision
variable)

f (u) = 1 − 1
1+μu amount of reduced deterioration item (in year), μ > 0

Ir (t) Inventory level for the retailer of item at any time t(units)

T Cycle time (unit time) of the retailer (decision variable)

Q Retailer’s order quantity at time t

hr Holding cost rate for retailer per unit per annum for the product

HCr (t) Time-dependent holding cost of retailer for item ($/unit/unit time)

Relations between parameters:

• T ≤ m
• 0 ≤ θ(t) < 1

Parameters of retailer:

R(t) Time-dependent quadratic demand rate; R(t) = a · (
1 + bt − ct2

)
, where

a > 0 is scale demand, 0 < b, c < 1 are rates of change of demand,
respectively.

TCr (n, T, u) Total cost of the retailer per unit time ($/unit/unit time)

Minimization of the problem for the retailer is expressed as follows:

min TCr (n, T, u)

Subject to constraints

T ≤ m

4.2.2 Assumptions

1. The inventory system involves single retailer and single non-instantaneous dete-
riorating item.

2. The demand rate, R(t) = a · (1 + bt − ct2
)
(say), is function of time, a > 0 is

total scale demand, 0 ≤ b < 1 denotes the linear rate of change of demand with
respect to time and 0 ≤ c < 1 denotes the quadratic rate of change of demand.

3. Time prospect is infinite.
4. Shortages are not permitted.
5. Lead time is zero or negligible.
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6. The instantaneous rate of deterioration is θ(t) = 1
1+m−t , 0 ≤ t ≤ T ≤ m; for

any finite value of m, we have θ(t) < 1. If m → ∞, then θ(t) → 0, i.e. the item
is non-deteriorating.

7. For extremely periodic items or perishable product, the vendor frequently
demands α fractions of purchasing cost PCr to be prepaid (i.e.α · PCr ) before
the time of delivery. Then the outstanding purchase cost (1 − α) · PCr is paid
at the point of delivery. Notice that if α = 0 then the vendor does not request
prepayment. Instead of if α = 1, then the vendor requests the retailer to prepay
the entire purchase cost.

8. The vendor settles to prepay α · PCr by n equal payments in Tt years previous
to the time of delivery and pay the rest of (1 − α) · PCr at the time of receiving.

In the next section, the proposed inventory model for the retailer is developed.

4.3 Mathematical Model

The proposed models for deteriorating items with equally multiple instalments of α

fractions of the purchase cost and remaining instalment would be paid at the time of
purchasing the product.

In general, the retailer pays the vendor α portions of the purchasing cost by n equal
instalments in Tt years earlier to the time of purchasing. The vendor receives the
remaining unpaid balance (1 − α) · PCr instantly at the product delivery. Thereafter,
the retailer’s inventory level is regularly exhausted to zero by the end of the cycle T ,
due to the mixture of demand and deterioration. Hence, the inventory level at time t
as follows:

d Ir (t)
dt = −R(t) − (1 − f (u))θ(t)Ir (t), 0 ≤ t ≤ T with the boundary condition

Ir (T ) = 0. Solving above differential equations, we get

Ir (t) = 1
(
6μ2 + 7μu + 2

)
μu

(1 + μu)

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

(1 + m − t)
1− 1

μu+1 a

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

−2cm2μ2u2 − 2cmμ2 tu2

−2cμ2 t2u2 + 3bmμ2u2
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−2cμ2 tu2 + 3bμ2u2
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2cμ2u2 − cμt2u
+5bmμu + 2bμtu
−8cmμu − 2cμtu
+6μ2u2 + 5bμu − 2cm2

−4cμu + 2bm − 4cm
+7μu + 2b − 2c + 2

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
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⎟
⎟
⎠
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Therefore, the order quantities per replenishment cycle are Q = Ir (0).
Now, the total cost per unit time of retailer included the following:

• Orderingcost perunit : OCr = Ar

• Purchasecost perunit : PCr = Cr Q

• Inventoryholdingcost perunit : HCr = hr

[
T∫

0
Ir (t) dt

]

• Investment forpreservation technology : PT I = u · T
• FromTaleizadeh (2014), thecapital cost per cycle isCC = n+1

2n (α Tt r )PCr

The total appropriate cost of the retailer for the product is

TCr (n, T, u) = 1

T
(OCr + PCr + HCr + P IT + CC)

The total cost function TCr (n, T, u) is a continuous function of number of instal-
ment n, cycle time T and investment of preservation technology ‘u’.Wewill establish
endorsement of the proposed model using numerical example. The minimization of
the total cost will be shown graphically for the obtained results.

4.4 Numerical Example and Sensitivity Analysis

4.4.1 Numerical Example

Example: Consider a = 1000 units, b = 0.85, c = 0.01, Ar = $100, Cr = $ 40 ,
hr = $ 10, α = 0.4, Tt = 0.17 year, r = 0.1, m = 0.25 year,μ = 1.7. The values
of the decision variables are total idle instalment of the prepayments that are n = 6,
cycle time of replenishment is T = 0.066 years and u = $25.19. This results in
retailer’s minimum cost as $ 43,192.90.

The convexity of the total cost function is obtained by the well-known Hessian
matrix. Now, for a fixed value of n = 6, Hessian matrix for the above retailer is

H(6, T, u) =
(

∂2TCr (n,T,u)

∂T 2
∂2TCr (n,T,u)

∂T ∂u
∂2TCr (n,T,u)

∂u ∂T
∂2TCr (n,T,u)

∂u2

)

By the above example, we get the Hessian matrix H(6, T, u) at the point (6, T, u)

H(6, T, u) =
(
502336.28 −18.36
−18.36 6.079

)

As in Barrón and Sana [26], if the eigenvalues of the Hessianmatrix at the solution
(6, T, u) are all positive, then the total cost TCr (6, T, u) is minimum at that solution.
Here, eigenvalues of above Hessian matrix are λ1 = 502336.23 and λ2 = 6.079. So,
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Fig. 4.1 Convexity
behaviour of the cost
function for n = 6

the cost function TCr (6, T, u) is minimum. Also, the convexity of the cost function
is obtained in Fig. 4.1 with respect to cycle time and investment of preservation
technology with n = 6.

4.4.2 Sensitivity Analysis for the Inventory Parameters

Therefore, for the changed inventory parameters, the sensitivity study of example is
agreed out by changing one variable at a time as −20, −10, 10 and 20%.

In imperative to detect the sensitivity of the inventory parameters on the optimal
solution, we consider the data as given in numerical example. Optimal solutions for
different values of a, b, c,Ar , C ,hr ,α, Tt , r , m and μ are presented in Table 4.1. The
resulting statement could be made from Table 4.1.

1. In Table 4.1, holding cost rate decreases cycle time slowly. However, ordering
cost per order incurred by the retailer increases cycle time rapidly, whereas scale
demand, linear rate of change of demand and purchase cost decreases cycle time
rapidly. In addition, change in the quadratic rate of change of demand, the fraction
of the purchase cost to be prepaid before the time of delivery, a time at which
prepayments are paid, the interest rate of capital cost, fixed lifetime of the product
and rate of preservation technology cycle time remain constant.

2. FromTable 4.1, scale demand, ordering cost per order incurred by the retailer and
holding cost rate increase investment of preservation technology slowly, whereas
linear rate of change of demand and fixed lifetime of the product decreases
investment of preservation technology slowly. However, purchase cost increases
investment of preservation technology rapidly although the rate of preservation
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Table 4.1 Sensitivity analysis

Parameter Change % Values T
(in years)

u
in $)

Total cost TCr (in $)

a −20 800 0.074 23.86 34,844.84

−10 900 0.070 24.56 39,023.30

0 1000 0.066 25.19 43,192.90

10 1100 0.063 25.79 47,354.97

20 1200 0.060 26.34 51,510.51

b −20 0.680 0.072 26.25 42,954.80

−10 0.785 0.069 25.69 43,076.34

0 0.850 0.066 25.19 43,192.91

10 0.935 0.064 24.74 43,305.06

20 1.020 0.062 24.33 43,413.27

c −20 0.008 0.066 25.19 43,193.02

−10 0.009 0.066 25.19 43,192.96

0 0.010 0.066 25.19 43,192.91

10 0.011 0.066 25.19 43,192.84

20 0.012 0.066 25.20 43,192.79

Ar −20 80 0.059 23.72 42,873.89

−10 90 0.063 24.49 43,037.82

0 100 0.066 25.19 43,192.90

10 110 0.069 25.85 43,340.44

20 120 0.072 26.47 43,481.44

C −20 32 0.072 23.51 34,920.69

−10 36 0.069 24.39 39,059.30

0 40 0.066 25.19 43,192.90

10 44 0.064 25.93 47,322.08

20 48 0.062 26.61 51,447.30

hr −20 8 0.068 25.51 43,123.37

−10 9 0.067 25.35 43,158.35

0 10 0.066 25.19 43,192.90

10 11 0.065 25.04 43,227.04

20 12 0.065 24.90 43,260.77

α −20 0.32 0.066 25.19 43,160.26

−10 0.36 0.066 25.19 43,176.58

0 0.40 0.066 25.19 43,192.90

10 0.44 0.066 25.20 43,209.23

20 0.48 0.066 25.20 43,225.55

(continued)
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Table 4.1 (continued)

Parameter Change % Values T
(in years)

u
in $)

Total cost TCr (in $)

Tt −20 0.136 0.066 25.19 43,160.26

−10 0.153 0.066 25.19 43,176.58

0 0.170 0.066 25.19 43,192.90

10 0.187 0.066 25.20 43,209.23

20 0.204 0.066 25.20 43,225.55

r −20 0.08 0.066 25.19 43,160.26

−10 0.09 0.066 25.19 43,176.58

0 0.10 0.066 25.19 43,192.90

10 0.11 0.066 25.20 43,209.23

20 0.12 0.066 25.20 43,225.55

m −20 0.200 0.066 25.73 43,193.99

−10 0.225 0.066 25.46 43,193.44

0 0.250 0.066 25.19 43,192.91

10 0.275 0.066 24.94 43,192.39

20 0.300 0.066 24.69 43,191.89

μ −20 1.360 0.066 28.08 43,198.84

−10 1.530 0.066 26.52 43,195.63

0 1.70 0.066 25.19 43,192.91

10 1.87 0.066 24.05 43,190.56

20 2.04 0.066 23.05 43,188.51

technology decreases investment of preservation technology rapidly. Further-
more, change in quadratic rate of change of demand, the fraction of the purchase
cost to be prepaid before the time of delivery, a time at which prepayments are
paid and the interest rate of capital cost investment of preservation technology
remain constant.

3. From Table 4.1, linear rate of change of demand, holding cost rate, ordering
cost per order incurred by the retailer, the fraction of the purchase cost to be
prepaid before the time of delivery and t a time at which prepayments are paid
and the interest rate of capital cost increases total cost slowly, whereas the rate of
preservation technology decreases total cost slowly. However, scale demand and
purchase cost increase total cost rapidly. In addition, change in quadratic rate of
change of demand and fixed lifetime of the product total cost remain constant.
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4.5 Conclusion

In this chapter, we consider retailer’s model for the instantaneous deteriorating item
under replenishment time, the optimal number of equal instalments before receiving
the order quantity and preservation technology with quadratic demand. Due to time-
dependent deteriorating item, retailer invests money on preservation technology to
reduce deterioration. Moreover, the retailer has to pay a fraction of the purchase cost
in an equal number of instalment before the time of delivery. The total cost of the
retailer with respect to the optimal number of equal instalments before receiving
the order quantity, replenishment time and investment of preservation technology is
minimized. The decision policies are analysed for the decision-maker. For numerical
examples, retailer reaches the minimum cost and carries out sensitivity analysis. This
study will extend as the model can be further generalized by taken more items at a
time. One can also analyse three-layered supply chain.
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Chapter 5
Dynamic Pricing, Advertisement
Investment and Replenishment Model
for Deteriorating Items

Chetansinh R. Vaghela and Nita H. Shah

Abstract In practice, it is commonly observed that the quality and price of items
are two important factors for customers to choose a product. The profit of a firm
is greatly affected by these two factors, especially when their inventory has dete-
riorating items. Also, it is commonly observed that the product demand increases
due to promotional efforts like advertisement through digital media, newspaper, etc.
Thus, the spending on commercial promotion is a very crucial decision. This paper
considers a replenishment model for perishable items with investment on promotion
and retail price-dependent demand with a budget constraint. The deterioration rate
is considered constant. An optimization problem is formulated in order to provide a
pricing, promotional spending and replenishment policy, which maximize the total
profit. Using Pontryagin’smaximumprinciple, the optimal advertisement investment
is obtained for a given retail price and cycle time. The closed form of the inventory
level is obtained by solving the respective differential equation of inventory. The
model is validated by a numerical example with hypothetical parameters in result
section. The results show that the model is pretty stable and the concavity is proven
graphically. The sensitivity analysis is performed in discussion section. The sensi-
tivity analysis about key inventory parameters reveals some important managerial
insights. Also, the future scope is given in conclusion section, which gives a brief
idea about possible extensions of this model.
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5.1 Introduction

In this modern era, technological development has connected people through elec-
tronicmedia, socialmedia, etc. Thesemedia can be a good platform for the promotion
of products. Promoting a product through electronic media, newspaper, etc. can help
in increasing the product demand. So, the amount needs to be invested on advertise-
ment is also one of the important managerial decision. Researchers like Chowdhury
et al. [2], Kotler [7], Palanivel and Uthayakumar [15], Shah and Vaghela [29, 30]
have used promotional investment in their study.

In today’s competitive market, setting an optimal selling price is a very important
managerial decision. The higher selling price will lead to reduced customer demand.
Mishra et al. [13] used demand sensitive to retail price and stock displayed and
gave a simple algorithm to optimize objective function. Lin et al. [8] considers a
demand dependent on price with maximum lifetime. The model was developed for
non-instantaneous deteriorating items. Shah [19] studied an inventory model with
demand sensitive to trade credit and retail price. Researchers like Yang andWee [34],
Shah et al. [24, 25], Yadav et al. [33], Liu et al. [9] and Jaggi et al. [5] have worked
with inventory models with price sensitive demand. Some more inspiring work in
price-dependent demand includes Modak and Kelle [14], You [35], Shastri et al. [28]
and Shah et al. [23].

It is very impractical to assume that the demand for an item remains constant
throughout the inventory cycle. Researchers like Hariga [3], Mehta and Shah [11,
12], etc. used the time-dependent linear and exponential demand instead of constant
demand. But even time trended linear and exponential demands are notmuch realistic
because these demands lead to either uniform change or exponential rise or fall,
respectively. Thus, many researchers like Sarkar et al. [17], Shah and Shah [20],
Shah et al. [26, 27], Soni et al. [31] and Tripathy and Mishra [32] used a more
realistic time quadratic demand in their research.

Deterioration is one of the important phenomena in the study of inventory mod-
elling. The items in the inventory cannot stay fresh forever. Items like food, cosmetics,
radioactive chemicals, etc. have significant decay rates. Thus, deterioration is a very
popular parameter among researchers. In the past decades, many researchers like
Jaggi and Verma [4], Maihami et al. [10], Shah et al. [22, 24, 25], etc. have incorpo-
rated different types of deterioration rate in their inventory models. Raafat [16] tried
to provide literature review on deteriorating items. Bakker et al. [1] and Shah and
Shah [21] also gave review articles on inventory with perishable items.

Based on the literature survey, our aim is to develop an inventory model, which
uses a price and promotional investment dependent demand. The model is applicable
for deteriorating items and shortages are not allowed. The managerial issues are
worked out with the help of sensitivity analysis. The developed model can be useful
for items like mobile phones, iron goods, garments, etc.

The paper contains five sections. Section 5.2 contains assumptions and notation
used in the paper. Mathematical model is discussed in Sect. 5.3. In Sect. 5.4, Numer-
ical example is provided. Section 5.5 gives brief conclusion of the findings.
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5.2 Notation and Assumptions

5.2.1 Notation

A Fixed cost per order (in $)

C Cost of purchasing per unit (in $)

h Cost of holding an item in inventory ($/unit)

θ Deterioration rate (0 < θ < 1)

Q Initial lot size

p The selling price per unit, where p > C

E(t) The effort of sales team at t ≥ 0

R(p, E) Demand rate (t ≥ 0) units

k The coefficient of advertisement investment cost

T Cycle time (in years)

I (t) The inventory at time t (units)

π(p, T ) Seller’s profit

U The budget constraint for the promotional
investment

5.2.2 Assumptions

1. The items in the inventory deteriorate at a constant rate.
2. No shortages allowed and lead time is zero.
3. The Demand rate of R(p, t) is considered as

R(p, E) = (α + α1t − α2t2) − βp + γ E(t), where α > 0 denotes the scale
demand and α1, α2 > 0. The parameter β > 0 denotes the price elasticity.

4. The Effort level E(t) at any time t is modelled as
dE(t)
dt + ρE(t) = e(t), E(0) = E0, where ρ > 0 is the decay rate of effort level

and denotes the scale demand and e(t) is the non-negative investment rate.
5. The investment cost associated is assumed to be

IC(e(t)) = 1
2ke

2(t), k > 0 [6].
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5.3 Mathematical Model

In this section, we present the general formulations and solutions to the inventory
model. The inventory is consumed due to demand and deterioration. Thus, the dif-
ferential equation for the inventory level during the period 0 ≤ t ≤ T is

d I

dt
+ θ I (t) = −R(p, E), with I (T ) = 0 and I (0) = Q (5.1)

The profit function is described as

π(p, T ) = 1

T

T∫

0

(
pR(p, E) − hI (t) − 1

2
ke2(t)

)
dt − (CQ + A)

T
(5.2)

To optimize the objective function, we first formulate the following optimization
problem:

max
p,T,e(·)

π = 1

T

T∫

0

(
pR(p, E) − hI (t) − 1

2
ke2(t)

)
dt − (CQ + A)

T

Subject to

d I

dt
+ θ I (t) = −R(p, E), I (0) = Q, I (T ) = 0

dE(t)

dt
+ ρE(t) = e(t), e(t) ≥ 0, E(0) = E0 (5.3)

Here, one can observe that the replenishment quantity Q is also one of the decision
variables. However, Q can be determined by setting I (0) = Q, once we get the
inventory level I (t). Thus, Q is not the explicit decision variable.

In order to solve the optimization problem (5.3), first, we solve following optimal
control problem using Pontryagin’s maximum principle:

max
e(·)

J = 1

T

T∫

0

(
pR(p, E) − hI (t) − 1

2
ke2(t)

)
dt

Subject to

d I

dt
+ θ I (t) = −R(p, E), I (0) = Q, I (T ) = 0

dE(t)

dt
+ ρE(t) = e(t), 0 ≤ e(t) ≤

√
2U

k
, E(0) = E0, (5.4)
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To find the optimal advertisement investment, we define the Hamiltonian function
as [18]

H(e, I, E, λ1, λ2, t) = pR(p, E) − hI (t) − 1

2
ke2(t)

+ λ1(−R(p, E) − θ I (t)) + λ2(−ρE(t) + e(t)) (5.5)

where λ1 and λ2 are the adjoint variables satisfying the equations

λ̇1 = −∂H

∂ I
= h + λ1θ, λ1(0) = 0 (5.6)

λ̇2 = −∂H

∂E
= −γ p + γ λ1 + ρλ2, λ2(T ) = 0 (5.7)

By solving Eqs. (5.6) and (5.7), we have

λ1(t) = h
(
eθ t − 1

)
θ

(5.8)

λ2(t) = d1 + d2e
ρt + d3e

θ t

where

d1 = γ

ρ

(
p + h

θ

)
, d2 = γ h

θ(θ − ρ)
e(θ−ρ)T − d1e

−ρT and d3 = γ h

θ(θ − ρ)
(5.9)

As the Hamiltonian function H is concave, the optimal control e (t) maximizes
the Lagrangian function at all points. Thus, the investment rate e (t) is obtained as

e∗(t) =

⎧⎪⎨
⎪⎩

√
2U
k , 0 ≤ t ≤ t1

1
k

(
d1 + d2eρt + d3eθ t

)
, t1 < t ≤ t2

0, t2 < t ≤ T

(5.10)

where t1 and t2 satisfies the condition λ2(t1) = √
2kU and λ2(t2) = 0, respectively.

Using the optimal investment rate in the equation dE(t)
dt +ρE(t) = e(t), E(0) = E0,

we get

E(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω
ρ

+ e−ρt
(
E0 − ω

ρ

)
, 0 ≤ t ≤ t1

L1 + L2 e
ρ(t1−t) + L3 e

−ρt
(
e2ρt − e2ρt1

)
+L4 e

−ρt
(
e(ρ+θ)t − e(ρ+θ)t1

)
,
t1 < t ≤ t2

E(t2)e−ρ(t−t2), t2 < t ≤ T

(5.11)

where ω =
√

2U
k , L1 = d1

kρ , L2 = E(t1) − d1
ρ
, L3 = d2

2kρ and L4 = d3
k(ρ+θ)

.
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The inventory level I (t) is obtained as

I (t) =
⎧⎨
⎩

I1(t), 0 ≤ t ≤ t1
I2(t), t1 < t ≤ t2
I3(t), t2 < t ≤ T

(5.12)

(i) For 0 ≤ t ≤ t1, the inventory level is

I1(t) =
(

α2t2

θ
− α1t

θ
− 2α2t

θ2

)
− K1

(
e−tρ − e−tθ

) + K3
(
1 − e−tθ

) + Qe−tθ

(5.13)

where K1 = γ

θ−ρ

(
E0 − ω

ρ

)
, K2 = 2α2

θ3 + α1
θ2 − α

θ
+ βp

θ
, K3 = K2 − ωγ

ρθ
and

K4 =
(

α2t21
θ

− α1t1
θ

− 2α2t1
θ2

)
(ii) For t1 < t ≤ t2, the inventory level is

I2(t) =
(

α2t2

θ
− α1t

θ
− 2α2t

θ2

)
+ K2 − γ L1

θ

+ γ L4

θ − ρ
eθ t1+ρ(t1−t) + γ L3

θ − ρ
eρ(2t1−t) − γ L2

θ − ρ
eρ(t1−t)

− γ L3

θ + ρ
eρt − γ L4

2θ
eθ t + N2e

−θ t (5.14)

where N1 = K4 + K2 − γ L1

θ
− γ L2

θ−ρ
+ 2γρL3eρt1

θ2−ρ2 + γ L4(θ+ρ)eθ t1

2θ(θ−ρ)
and N2 =

eθ t1(I (t1) − N1)

(iii) For t2 < t ≤ T , the inventory level is

I3(t) =
(

α2t2

θ
− α1t

θ
− 2α2t

θ2

)
+ K2 − E(t2)γ eρ(t2−2)

θ − ρ
+ N3e

−θ t (5.15)

where K5 =
(

α2t22
θ

− α1t2
θ

− 2α2t2
θ2

)
and N3 = eθ t2

(
I (t2) + γ E(t2)

θ−ρ
− K5 − K2

)

The replenishment quantity Q is obtained as

Q = I (0) = −eθ t1(M4 + M6) − eθ t1(M5 + M7) − γ M3e(θ−ρ)T

θ − ρ

− eT θ

(
α2T 2

θ
− 2α2T

θ2
− α1T

θ

)
− K1 + K3 − eT θK4 (5.16)

where

M1 = ω

ρ
+ e−t1ρ

(
E0 − ω

ρ

)
,
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M2 = eρt1
(
M1 − L1 − L3e

ρt1 − L4e
θ t1

)

M3 = M2 + eρt2
(
L1 + L3e

ρt2 + L4e
θ t2

)

M4 = γ e−ρt2

θ − ρ
(M3 − M2) − γ

θ
(L1 + L4) − L3eρt2

θ + ρ
− L4γ t2

M5 = γ

θ

(
L1 + L4 − ω

ρ

)
+ M2γ e−ρt1

θ − ρ
+ L3γ eρt1

θ + ρ

M6 = L4γ

θ

M7 = −e−ρt1K1 + L4γ t1 − M6

Using the classical optimization, we calculate maximum profit for the numerical
example provided in the following section.

5.4 Numerical Example and Sensitivity Analysis
Example 1

α = 240, α1 = 25, α2 = 10, β = 10, γ = 0.8, C = $5 , h = $0.4,

k = 1, ρ = 0.1, A = $50, U = $80, θ = 12%.

Using Maple 18 software, the optimal values of decision variables are obtained
as (p∗, T ∗) = (15.55, 1.32). The optimum replenishment quantity is obtained as
Q∗ = 143.59 units. The value of t1 = 0.234 and t2 = 1.328 = T . The maximum
profit gained is πmax = $904.69. Figures 5.1, 5.2 and 5.3 prove the concave nature
of the profit function.

Next, we perform sensitivity analysis for the data used in example 5.1. The sen-
sitivity graphs are shown in the following Figs. 5.4, 5.5 and 5.6.

From Fig. 5.4, we can observe that

• Scale demand α increases selling price p significantly.
• A heavy decrease is observed in p when price elasticity β increases. It suggests
that when the demand is highly elastic, it is not advisable to set a high selling price.

• Other parameters don’t have much impact on selling price.
From Fig. 5.5, we can observe that

• By increasing values of γ , a significant drop is observed in cycle time. This finding
implies that with more efforts on advertisement, the demand gets a boost and the
inventory vanishes faster.
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Fig. 5.1 Concave nature of
profit function with respect
to p and T

Fig. 5.2 Concavity with
respect to p

• By increasing values of ρ, a significant rise is observed in cycle time.An increasing
scale demand and price elasticity will lead to a significant decrease in cycle time.

• Other parameters have moderate effect on cycle time.
From Fig. 5.6, we can observe that

• Scale demand α has big positive impact on retailer’s total profit while price elas-
ticity β and purchase cost C reduces profit heavily.

• Other parameters have a moderate effect on retailer’s total profit.
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Fig. 5.3 Concavity with respect to T

Fig. 5.4 Effects on selling price

As shown in Figs. 5.4, 5.5 and 5.6, associate increasing scale demand can increase
the retail price and the total profit significantly. These findings provide insight that
when the market potential is high, the player should grab the opportunity of higher
investment and earn better profits by setting a higher selling price. Sensitivity analysis
additionally reveals that an increasing purchase cost will decrease the total profit. A
comparatively high purchase cost suggests that the merchandise is a little costly. In
such situation, a player ought to scale back order amount and increase the selling price
to cut back the loss. With effective promotional efforts, the demand increases and the
inventory depletes faster. In such case, the player should increase order quantity and
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Fig. 5.5 Effects on cycle time

Fig. 5.6 Effects on profit

selling price to generate more profit from the sales. In case of deteriorating items,
the player should invest in preservation technology at his facility to cut back the loss
due to deterioration.

5.5 Conclusion

In this study, we formulated a replenishment model for a retailer when demand of
the product is influenced by both price and advertisement investment. The objective
function is maximized with respect to decision variables. The optimal retail price,
cycle time and ordering quantity is determined using classical optimization. Finally,
the model is validated by hypothetical parameter values and some useful managerial
observations are derived.

For future research, the model can be extended for the study of multiple prod-
ucts. The competition between two firms with respect to pricing and promotional
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investment policy can be an interesting study. One can also use dynamic preserva-
tion technology investment for the extension.
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Chapter 6
A Production Reliable Model
for Imperfect Items with Random
Machine Breakdown Under Learning
and Forgetting

Preeti Jawla and S. R. Singh

Abstract This chapter considers the impact of preservation technology on an “eco-
nomic production quantity” model in which the production process may not only
shift from an “in-control” state to an “out-of-control” state but also may fail at any
random point in time during production run time. Model is developed for multi-
items with imperfect quality by considering the situation of random machine failure
over infinite planning horizon. Demand rate is assumed to be multivariate. A reliable
and flexible production inventory system is considered under learning and forgetting
environment. We studied model in both crisp and fuzzy environment, and significant
features of the model are illustrated by numerical experiments. So, numerical exam-
ples along with sensitivity analysis are given to show how the solution procedure
works as well as the usages of research results.

Keywords Multi-item · Multivariate demand · Imperfect production ·
Preservation · Reliability · Volume flexibility · Learning · Forgetting · Rework ·
Machine breakdown · Fuzzy

6.1 Introduction

Over the past few epochs of research on Economic Production Quantity (EPQ) mod-
els, the heaps of disputes have appeared. The traditional EPQ model is often con-
sidered some unrealistic and idealistic assumptions. Thus, the development of the
manufacturing inventory models needs a certain amount of relaxation from these
types of assumptions to represent the actual realistic scenario to the manufacturing
industries. The foremost unrealistic assumption in using the EPQ models is that a
machine canwork always perfectly but in reality, a productionprocessmaynot always
be perfect but also may face the situation of sudden machine breakdown/failure at
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any random point in the duration production run. Sometimes, repair time of machine
depends on the type of injury occurred in machine. Rosenblatt and Lee [25] assumed
that timing from the beginning of a production run to an uncontrollable process
is an exponential distribution and the defective products can be reworked at that
instant moment with an extra cost. Groenevelt et al. [11] premeditated two inventory
production policies in which stochastic machine breakdowns have been considered.
Chung [7] discussed the bound of machine breakdown problem. Singh and Urvashi
[28] discussed the effect of machine breakdown with fuzzy demand rate. Das et al.
[8] had developed an economic production lot-sizing problem for imperfect items.
They had considered the phenomena of randommachine failure in their model under
fuzzy-stochastic environment. Hsu and Hsu [12] investigated the production pro-
cess in which the imperfect units are produced during the production time due to
machinery fault, labor raw materials, etc. Singh and Prasher [30] developed a pro-
duction inventorymodel for randommachine breakdownwith flexiblemanufacturing
and stochastic repair time. Dey and Giri [9] developed a single vendor and single
buyer integrated model with stochastic demand and imperfect production process.
Pal et al. [23] developed an optimal policy for the retailer to get perfect items by
conducting a screening process where slightly imperfect units are assembled and
are repaired by the production firm. Jawla and Singh [17] established an imperfect
production inventory model for multiple production setups. Chen [3] investigated
the manufacturer-retailer’s policy using the case of a two-echelon supply chain for
imperfect manufacturing system. Iqbal and Sarkar [14] developed an imperfect pro-
duction model for deteriorating products where the production rate is probabilistic
in nature.

The reliability of the production process is also an important factor of the man-
ufacturing system, i.e., more reliable production system means more perfection in
production (fine and good quality items) and fewer imperfects. Cheng [4] estab-
lished an inventory model in which they have formulated a general relation between
production setup cost and reliability. This model is further extended by Cheng [5]
in which they considered an EOQ model for imperfect quality items, and the pro-
duction unit cost is considered as a function of quality of an item. Tripathy et al.
[34] explored an inventory model in which they incorporated the effect of reliability,
demand, and reliability-dependent unit production cost with excess demands then
the supply. Bag et al. [2] developed a reliable economic production inventory model
and they investigated the effect of investment in flexibility enhancement on the setup
cost. Tripathy and Pattnaik [32] investigated an inventory policy under the effect of
reliability. Sarkar et al. [26] established an inventory model for imperfect quality
items in which the optimal product reliability and production rates are determined
under the effect of reliability. Tripathy and Pattnaik [33] developed an inventory
model under the effect of reliability consideration with optimization techniques to
find the optimal solution of the problem. Paul et al. [24] established a production
inventorymodelwith the consideration of uncertainty and reliability.Mahapatra et al.
[22] investigated a partial backorder inventory model in which they considered that
demand is time and reliability-dependent demand and items deteriorate with time.
Shah and Vaghela [27] discussed an imperfect production inventory model under
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inflation and maximum reliability in which demand is time- and effort-dependent.
This chapter employsmathematical modeling for solving such type ofmanufacturing
run time problem with reliability and flexibility in imperfect production system with
stochastic machine breakdown.

In the production system, these two concepts (learning and forgetting) are played
a vital role. Through the repetitive process of production process, managers learn to
improve the quality of the product, to reduce the cost parameters, etc. These concepts
are very important in improving the quality of products and many other parameters
for the inventory control system. Learning is the process in which a well-arranged
representation of experience is built. On the other hand, rearrangement or removal
of well-arranged experience is the process of forgetting. These two processes of
learning and forgetting are complementary to each other, i.e., without forgetting we
cannot learn, and converse is also true. Wright [35] is one who has taken the first
initiative for the concept of learning. He has formulated a relation between variables
of learning in quantitative form and explored a learning curve which can elaborate
performance of group as well individual, and the group includes direct or indirect
labor. Towill [31] investigated the learning curve model and analyzed the level of
complexity of learning models. Chiu and Chen [6] explored an optimal algorithm to
solve the dynamic lot-sizing problem in which they investigated the effect of learn-
ing and forgetting in setups and production. Jaber et al. [16] presented an economic
production quantity model for imperfect quality items under the effect of learning.
Khan et al. [19] established an EOQmodel for imperfect quality items with learning
effect being considered for the process of inspection. By applying these learning
models, management can enhance the performance of the organization by improv-
ing different operations, for example, improvement in utilization of capacity, better
control of inventories, and managing balance among the productions and distribu-
tion functions across the chain. Konstantaras et al. [20] explored an EOQ model for
imperfect quality items. In which they have applied the effect of learning to reduce
some fraction of imperfect quality in each delivery over an infinite and finite planning
horizon. Singh et al. [29] explored a two warehouse production inventory model for
imperfect quality items. The effect of learning production cycle is well explained
under the limited storage capacity. Glock and Jaber [10] investigated the effect of
learning and forgetting on a multistage production inventory model with rework and
scrap. Yadav et al. [36] proposed an EOQ model for imperfect quality items with
price-dependent demand rate and partially backlogged shortages under the effect of
learning to enhance the performance of system in an inflationary environment.Kumar
and Kumar [21] developed an inventory model under the effect of learning with two
level storage capacities. Jawla and Singh [18] established a reverse logistic model
with the consideration of effect of learning on inventory-related costs. Agarwal et al.
[1] proposed an inventory model for non-instantaneous decaying items with partial
backlogging under the learning effect. Yadav et al. [37] developed a two-echelon
supply chain model for imperfect production process under the effect of learning.

In this chapter, an imperfect production model with multivariate demand rate
dependent on the reliability, selling price, and no. of advertisement is established in
order to meet the demand under the effect of preservation technology [13] in which
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the manufacturing process is flexible as long as the machine is working efficiently
and hence can produce as per the demand rate. But in reality, a machine cannot
work properly or smoothly forever because of its technical issues like break down
of its spare parts may be sooner or later. Thus, the phenomenon of machine failure
is considered, and the time-to-breakdown during a production run and repair time
of the machine is taken as a random variable. Model is established for multi-items
under learning and forgetting environment and we have assumed that some imperfect
items are produced during the production process. A reliable production system is
considered, and holding cost is assumed as a function of the unit purchase cost
of raw material. We develop the model in both crisp and fuzzy environment and
for defuzzification of the expected total profit function, graded mean representation
method is used. Finally, the imperfect economic productionmodel formulti-items has
been illustrated with the help of examples. A sensitivity analysis has been performed
to study the effect of changes in some key parameters on optimal policies.

6.2 Assumptions and Notations

The assumptions and notations which are used in mathematical model formulation
are given as follows.

6.2.1 Assumptions

1. Model is developed for multi-items over infinite planning horizon.
2. The demand rate of ith item is taken as function of no. of advertisement, sell-

ing price, and reliability and is given by Di (Ai , si , ri ) = Aγ
i (ai − bi si + ciri ),

where ai is initial demand, si selling price, ri reliability, Ai no. of advertisement
and γ > 0, bi > 0, ci > 0.

3. Model considers the situation of randommachine failure/breakdown, i.e., imper-
fect items produces during production run time and these items are reworked.

4. Machine breakdowns occur randomly during a production period and repair time
of machine is independent of machine breakdown.

5. The production cost per unit item is given by Cip = Ri + Gi
pi

+ Hi pi , where Ri ,
Gi , Hi all are positive constants.

6. Holding cost is a function of unit purchase cost of raw material.
7. Items are deteriorated at a rate θi . Deteriorated items are neither repair nor replace.
8. Preservation technology is used to reduce the rate of deterioration of products.
9. Model is developed under imprecise and learning and forgetting environment.
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6.2.2 Notations

The following notations are used herein:

Pi Production rate of the given inventory system

ri The reliability of the production process

si Selling price per cycle

Ai No. of advertisement

θi Original deterioration rate of on-hand-stock, θi > 0

ξi Preservation Technology (PT) cost of ith item for reducing deterioration rate in
order to preserve the products, ξi≥ 0

ki Resultant deterioration rate, ki = θi − πi (ξi )

Si Setup cost per cycle of the given inventory system for ith item which also includes
advertisement cost of the products

Cid Deterioration cost per cycle of the given inventory system for ith item

CiR Rework cost per cycle of the given inventory system for ith item

Ci I Inspection cost per cycle of the given inventory system for ith item

Cih + ηC Holding cost per cycle of the given inventory system for ith item, C is unit
purchase cost of raw material and η > 0

Cip Unit production cost per cycle of the given inventory system for ith item

t Machine repair time

φi (t) Pdf (probability density function) of t, φi (t) = 1
λi
e

t
λi , t, λi > 0

f (Tib) Probability density function of Tib, f (Tib) = αi e−αi Tib , Tib, αi > 0

Ti1 Time when production stops

Tib Time when machine breakdown occurs (a random variable)

Ti2 Time when inventory of products vanishes and shortages start to accumulate which
causes lost sales

Ei (T ) Expected duration of a production cycle for ith item

Ei (Q) Expected total inventory in complete production cycle for ith item

Ei (PC) Expected production cost of the given inventory system for ith item

Ei (RC) Expected rework cost of the given inventory system for ith item

Ei (HC) Expected holding cost of the given inventory system for ith item

Ei (SR) Expected sales revenues of the given inventory system for ith item

Ei (IC) Expected inspection cost of the given inventory system for ith item

Ei (LS) Expected lost sales cost of the given inventory system for ith item

Ei (TC) Expected total cost of the given inventory system for ith item

Ei (T P) Expected total profit of the given inventory system for ith item
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6.3 Mathematical Formulation of the Model

Formulation of the model with multivariate demand and exponential distribution.

6.3.1 Crisp Model

In the planned inventorymodel,we consider amulti-item imperfect productionmodel
under the effect of preservation technology, depicted in Fig. 6.1. Breakdown of the
manufacturingmachines is taken into account by considering its failure rate and repair
time to be random (continuous). Since the machine breakdown has considered, the
breakdown may occur during the production period or after the production period.
The production cycle originates with nil inventories and starts at T = Ti0 and as
the production process is going on, if the machine breakdown does not occur in the
production period, inventory level increases and reaches its maximum level. The
production run is stopped at time Ti1 and after that due to the combined influence of
demand and deterioration/damageability of the items, inventory level decreases and
inventory level goes to zero level at time Ti2 and after that machine starts to produce
the items again. When the machine breakdown occurs, the production process stops
at Tib and the machine requires some time to repair. As we considered that repair
time is also stochastic, production may not always be possible and lost sales may
occur during this period.

The governing differential equation of the proposed inventory system is given by

I ′
i1(t) = ri Pi − Di − ki Ii1(t), 0 ≤ t ≤ Ti1 (6.1)

I ′
i2(t) = −Di − ki Ii2(t), Ti1 ≤ t ≤ Ti2 (6.2)

In
ve

nt
or

y 
L

ev
el

Time

Fig. 6.1 Graphical representation of the proposed inventory system
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With the initial and boundary condition Ii1(0) = 0 and Ii2(Ti2) = 0.
The solutions of the Eqs. (6.1) and (6.2) are as follows:

Ii1(t) =
(
ri Pi − Di

ki

)
(1 − e−ki t ), 0 ≤ t ≤ Ti1 (6.3)

Ii2(t) = Di

ki
(eki (Ti2−t) − 1), Ti1 ≤ t ≤ Ti2 (6.4)

Total inventory in the complete production cycle can be calculated as below:

I nvi =
Ti1∫
0

Ii1(t)dt +
Ti2∫

Ti1

Ii2(t)dt (6.5)

I nvi =
Ti1∫
0

(
ri Pi − Di

ki

)
(1 − e−ki t )dt +

Ti2∫
Ti1

Di

ki
(e−ki (Ti2−t) − 1)dt

I nvi =
(
ri Pi − Di

2

)[
T 2
i1 +

(
ri Pi − Di

Di

)(
Ti1 − ki

2
T 2
i1

)2
]

(6.6)

If the machine breakdown occurs at t = Tib, then (Eq. 6.6) can be formulated as

I nvi =
⎧⎨
⎩
( ri Pi−Di

2

)[
T 2
ib +

(
ri Pi−Di

Di

)(
Ti1 − ki

2 T
2
i1

)2]
, for Tib < Ti1( ri Pi−Di

2

)[
T 2
i1 +

(
ri Pi−Di

Di

)(
Ti1 − ki

2 T
2
i1

)2]
, for Tib > Ti1

(6.7)

The probability density function of machine breakdown is a function of Tib and
given by

f (Tib) = αi e
−αi Tib , Tib > 0 (6.8)

Then, the expected inventory is calculated as

Ei (Q) =
∫ Tib=Ti1

Tib=0
I nviαi e

−αi Tib dTib +
∫ Tib=∞

Tib=Ti1

I nviαi e
−αi Tib dTib

Ei (Q) = αi

(
ri Pi − Di

2

)[(
ri Pi
Di

)
T 3
i1

3
−

{
αi + (ki + αi )

(
ri Pi − Di

Di

)
T 4
i1

4

}]

+ e−αi Ti1

(
ri Pi − Di

Di

)
(6.9)

[
T 2
i1 +

(
ri Pi − Di

Di

)(
Ti1 − ki

2
T 2
i1

)2
]

(6.10)
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Now, from the equation of continuity,

Ii1(Ti1) = Ii2(Ti2) (6.11)

(
ri Pi − Di

ki

)
(1 − e−ki Ti1) = Di

ki
(eki (Ti2−Ti1) − 1)

Tofind the relationbetween thevariables usingTaylor series expansionof solution:

Ti2 = Ti1 +
(
ri Pi − Di

Di

)(
Ti1 − ki

2
T 2
i1

)
(6.12)

Present worth sales revenue of the given inventory system: We calculate sales
revenue in the complete production cycle for the given inventory system as

= si

⎛
⎝

Ti1∫
0

Didt +
Ti2∫

Ti1

Didt

⎞
⎠ (6.13)

= si Di

[
Ti1 +

(
ri Pi − Di

Di

)(
Ti1 − ki

2
T 2
i1

)]
(6.14)

Since there is breakdown machine possibility, if machine breakdown occurs at
t = Tib, then sales revenue can be formulated as

Srvi =
⎧⎨
⎩
si Di

[
Tib +

(
ri Pi−Di

Di

)(
Tib − ki

2 T
2
ib

)]
, if Tib < Ti1

si Di

[
Ti1 +

(
ri Pi−Di

Di

)(
Ti1 − ki

2 T
2
i1

)]
, if Tib > Ti1

(6.15)

Using the probability density function of machine breakdown time Tib, the
expected sales revenues of complete production cycle are obtained as

Ei (SR) =
Ti1∫
0

(Srvi )αi e
−αi Tib dTib +

∞∫
Ti1

(Srvi )αi e
−αi Tib dTib (6.16)

Ei (SR) = si Di

[
αi

[
T 2
i1
2

+
(
ri Pi − Di

Di

)(
T 2
i1
2

− ki
2

T 3
i1
3

)
− αi

T 3
i1
3

−αi

(
ri Pi − Di

Di

)(
T 3
i1
3

− ki
2

T 4
i1
4

)]
+

[
Ti1 +

(
ri Pi − Di

Di

)(
Ti1 − ki

2
T 2
i1

)]
e−αi Ti1

]
(6.17)

The costs which are associated with the given imperfect inventory model are
defined below.
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Present worth production cost of the given inventory system: Total production
cost for the given inventory system is given by

Pdci = Cip

Ti1∫
0

ri Pidt = Cipri Pi Ti1 (6.18)

When machine breakdown occurs at t = Tib, then from (Eq. 6.18)

Pdci =
{
Cipri Pi Tib, i f Tib < Ti1
Cipri Pi Ti1, i f Tib > Ti1

(6.19)

Then the total expected production cost for ith item can be formulated as

Ei (PC) =
∫ Tib=Ti1

Tib=0
(Pdci )αi e

−αi Tib dTib +
∫ Tib=∞

Tib=Ti1

(Pdci )αi e
−αi Tib dTib (6.20)

Ei (PC) = Cipri Pi

[
αi

(
T 2
i1

2
− αi

T 3
i1

3

)
+ Ti1e

−αi Ti1

]
(6.21)

Present worth holding cost of the given inventory system: Expected inventory
carrying cost in complete cycle:

Ei (HC) = (Cih + ηC) Ei (Q) (6.22)

Ei (HC) = (Cih + ηC)αi

(
ri Pi − Di

2

)[(
ri Pi
Di

)
T 3
i1
3

−
{

αi + (ki + αi )

(
ri Pi − Di

Di

)
T 4
i1
4

}]

+
(
ri Pi − Di

Di

)[
T 2
i1 +

(
ri Pi − Di

Di

)(
Ti1 − ki

2
T 2
i1

)2
]
e−αi Ti1 (6.23)

Present worth rework cost of the given inventory system: Total rework cost for
the given inventory system is given by

Rwki = CiR

Ti1∫
0

ri Pidt = CiRri Pi Ti1 (6.24)

When machine breakdown occurs at t = Tib, then from (Eq. 6.24)

Rwki =
{
CiRri Pi Tib, i f Tib < Ti1
CiRri Pi Ti1, i f Tib > Ti1

(6.25)
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Then the total expected rework cost for ith item can be formulated as

Ei (RC) =
∫ Tib=Ti1

Tib=0
(Rwki )αi e

−αi Tib dTib +
∫ Tib=∞

Tib=Ti1

(Rwki )αi e
−αi Tib dTib (6.26)

Ei (RC) = CiRri Pi

[
αi

(
T 2
i1

2
− αi

T 3
i1

3

)
+ Ti1e

−αi Ti1

]
(6.27)

Present worth deterioration cost of the given inventory system: The number of
deteriorated units is as follows:

Deti =
⎛
⎝

Ti1∫
0

ri Pidt −
Ti2∫

Ti1

Didt

⎞
⎠ = ri Pi Ti1 − Di (Ti2 − Ti1)

Deti = DiTi1 + (ri Pi − Di )
ki
2
T 2
i1 (6.28)

If the machine breakdown occurs at t = Tib, the total deteriorating items are given
by

Deti =
{
DiTib + (ri Pi − Di )

ki
2 T

2
ib, i f Tib < Ti1

DiTi1 + (ri Pi − Di )
ki
2 T

2
i1, i f Tib > Ti1

(6.29)

By using the probability density function of machine breakdown time Tib, the
expected deteriorating units are given by as

Ei (D) =
∫ Tib=Ti1

Tib=0
(Deti )αi e

−αi Tib dTib +
∫ Tib=∞

Tib=Ti1

(Deti )αi e
−αi Tib dTib (6.30)

Ei (D) = αi

[
Di

T 2
i1

2
+

{
(ri Pi − Di )

ki
2

− αi Di

}
T 3
i1

3
− αi (ri Pi − Di )

ki
2

T 4
i1

4

]

+ e−αi Ti1

[
DiTi1 + (ri Pi − Di )

ki
2
T 2
i1

]

The total expected deterioration cost for ith item is given by

Ei (DC) = Cid Ei (D) (6.31)

Ei (DC) = Cid

[
αi

[
Di

T 2
i1

2
+

{
(ri Pi − Di )

ki
2

− αi Di

}
T 3
i1

3
− αi (ri Pi − Di )

ki
2

T 4
i1

4

]

+e−αi Ti1

[
DiTi1 + (ri Pi − Di )

ki
2
T 2
i1

]]
(6.32)
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Present worth inspection cost of the given inventory system: Total inspection cost
for the given inventory system is given by

I nsi = Ci I

Ti1∫
0

ri Pidt = Ci I ri Pi Ti1 (6.33)

When machine breakdown occurs at t = Tib, then from (Eq. 6.33)

I nsi =
{
Ci I ri Pi Tib, i f Tib < Ti1
Ci I ri Pi Ti1, i f Tib > Ti1

(6.34)

Then the total expected rework cost for ith item can be formulated as

Ei (IC) =
∫ Tib=Ti1

Tib=0
(I nsi )αi e

−αi Tib dTib +
∫ Tib=∞

Tib=Ti1

(I nsi )αi e
−αi Tib dTib (6.35)

Ei (IC) = Ci I ri Pi

[
αi

(
T 2
i1

2
− αi

T 3
i1

3

)
+ Ti1e

−αi Ti1

]
(6.36)

Present worth lost sales cost of the given inventory system: Lost sales occurs
when repair time of machine exceeds than the period in which production is not
performed, i.e., non-production period Ti2. Here we assume that the machine repair
time t is a random variable and is exponentially distributed. Exponential probability
density function with mean 1/λ is given as

φi (t) = 1

λi
e

t
λi , f or λi > 0 (6.37)

Substituting the exponential probability density function of repair time and
machine breakdown probability density function expected lost sales cost for ith item
formulated as

Ei (LS) = CiL Di

∫ Tib=Ti1

Tib=0

∫ t=∞

t=Ti2

(t − Ti2) φi (t) αi e
−αi Tib dt dTib (6.38)

Ei (LS) = CiL Diαiλi

[
Ti1 − αi

T 2
i1

2
+ αi

λi

{
T 3
i1

3
+

(
ri Pi − Di

Di

)(
T 3
i1

3
− ki

2

T 4
i1

4

)}

− 1

λi

{
T 2
i1

2

(
ri Pi − Di

Di

)(
T 2
i1

2
− ki

2

T 3
i1

3

)}]
(6.39)

For the present inventory model, expected total replenishment time,

Ei (T ) = Ei (Ti2) + Expected repair time of the i th item
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Ei (T ) =
∫ Tib=Ti1

Tib=0
Ti2αi e

−αi Tib dTib +
∫ Tib=∞

Tib=Ti1

Ti2αi e
−αi Tib dTib

+
∫ Tib=Ti1

Tib=0

∫ Tib=∞

Tib=Ti1

(t − Ti2).φi (t).αi e
−αi Tib dt.dTib (6.40)

The expected total cost of the ith item for the given inventory model consists of
setup cost, expected inventory carrying cost, expected deterioration cost, expected
production cost, expected rework cost, expected lost sales cost, and expected inspec-
tion cost of ith item.

Expected total cost of ith item for the inventory system:

Ei (TC) = [Si + Ei (HC) + Ei (DC) + Ei (PC) + Ei (R) + Ei (LS) + Ei (I )]
(6.41)

By using the renewal reward theorem, the expected average profit of ith item for
the given inventory model can be obtained as follows:

Ei (AP) =
[
Ei (SR) − Ei (TC)

Ei (T )

]
(6.42)

The expected total average profit for the proposed inventorymodel can be obtained
as follows:

E(T AP) =
∑m

i=1
Ei (AP) =

∑m

i=1

[
Ei (SR) − Ei (TC)

Ei (T )

]
(6.43)

Or can be written as

E(T AP) =
∑m

i=1

Ei (SR) − Si − Ei (HC) − Ei (DC) − Ei (PC) − Ei (R) − Ei (LS) − Ei (I )

Ei (T )
(6.44)

From (Eq. 6.44), we get the expected total average profit for the given inventory
model.

6.3.2 Model Formulation with Learning and Forgetting
in Setup Cost

Full transmission of learning in setup cost: In this chapter, we consider learning
effect on setup cost, i.e., setup cost follows the learning curve as described byWright
[35], given by SiL which is partially constant and partially decreases due to learning
effect in each cycle and is of the form CiO + Cios

nli
, where n is the number of cycle

and l > 0 is the learning coefficient. Now, the expected total average profit for the
proposed inventory model can be obtained as follows:
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E(T AP) =
∑m

i=1

[
Ei (SR) − Si L − Ei (HC) − Ei (DC) − Ei (PC) − Ei (R) − Ei (LS) − Ei (I )

Ei (T )

]
(6.45)

Learning and forgetting in setup cost: We developed model with the assumption
that setup cost follows the learning and forgetting effect as described by the Jaber
and Bonney [15]. So, setup cost for ith item is given by SiLF = Si (y j + 1)−b, where
Si is the first setup cost for ith item, y j is strength of memory at beginning of setup j,
and b is the learning coefficient. Now, the expected total average profit for the given
inventory model can be obtained as follows:

E(T AP) =
∑m

i=1

[
Ei (SR) − Si LF − Ei (HC) − Ei (DC) − Ei (PC) − Ei (R) − Ei (LS) − Ei (I )

Ei (T )

]
(6.46)

6.3.3 Fuzzy Model Formulation

In the fuzzy model, we developed model in fuzzy sense where costs are considered
fuzzy in nature. In this model, we assume that the lost sale cost and deterioration
cost are fuzzy triangular numbers and denoted by C̃i L and C̃id and given by

C̃i L = (CaiL ,CbiL ,CciL) and C̃id = (Caid ,Cbid ,Ccid) where
CaiL ,CbiL ,CciL ,Caid ,Cbid ,Ccid are nonnegative triangular fuzzy numbers.

Then, the expected average profit for the given inventory model can be expressed
as

Ei (AP) =
[
Ei (SR) − Si − Ei (HC) − Ei (DC) − Ei (PC) − Ei (R) − Ei (LS) − Ei (I )

Ei (T )

]

Ẽi (AP) =
[
Ei (SR) − Si − Ei (HC) − Ẽi (DC) − Ei (PC) − Ei (R) − Ẽi (LS) − Ei (I )

Ei (T )

]
(6.47)

We defuzzify the fuzzy expected average profit by graded mean representation,
where defuzzified expected total average profit is

Ẽi (AP) = 1

Ei (T )
[Ei (SR) − Si − Ei (HC) − (Eai (DC), Ebi (DC), Eci (DC))

−Ei (PC) − Ei (R) − (Eai (LS), Ebi (LS), Eci (LS)) − Ei (I )]

By graded mean representation, the fuzzy expected average profit is given by

Ẽi (AP) = 1

6

{
Ẽai (AP), Ẽbi (AP), Ẽci (AP)

}

where

Ẽai (AP) =
[
Ei (SR) − Si − Ei (HC) − Eai (DC) − Ei (PC) − Ei (R) − Eai (LS) − Ei (I )

Ei (T )

]
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Ẽbi (AP) =
[
Ei (SR) − Si − Ei (HC) − Ebi (DC) − Ei (PC) − Ei (R) − Ebi (LS) − Ei (I )

Ei (T )

]

Ẽci (AP) =
[
Ei (SR) − Si − Ei (HC) − Eci (DC) − Ei (PC) − Ei (R) − Eci (LS) − Ei (I )

Ei (T )

]

After the defuzzification of fuzzy expected average profit, using the graded mean
integration formula such that:

Ẽi (AP) = 1

6

{
Ẽai (AP) + 4Ẽbi (AP) + Ẽci (AP)

}

The expected fuzzy total average profit for the given inventory model can be
obtained as follows:

Ẽ(T AP) =
∑m

i=1
Ẽi (AP) (6.48)

6.4 Optimal Solution Procedure

The objective of this chapter is to maximize the expected average profit per unit time
Ei (AP), (i = 1, 2, ..,m)with respect to time Ti1 for the developed inventory model.
The objective function of the chapter is highly nonlinear and continuous function of
variable Ti1. The necessary condition for the existence of the optimal solution is

dEi (AP)(Ti1)

dTi1
= 0, i = 1.2.3 . . .m

Provided it satisfies

d2Ei (AP)(Ti1)

dT 2
i1

< 0, i = 1.2.3 . . .m

To solve these highly nonlinear equations, we use softwareMATHEMATICA 8.0.

6.5 Numerical Examples

To demonstrate the proposed model andmethodologies, we discuss numerical exam-
ples for two items. For this purpose, we have taken some initial values in appropriate
units as follows.
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6.5.1 Crisp Model

Then the optimal E∗
1 (AP) is 8963.49 at (35.6755) and E∗

2 (AP) is 10884 at
(47.9018). Hence, the demand during the cycle is D∗

1 = 34.9951 and D∗
2 = 35.1142.

The expected total average profit for the given inventory model is E(T AP) =
19847.4889 (Tables 6.1 and 6.2).

6.5.2 Effect of Learning and Forgetting on Setup Cost

FromTables 6.3 and 6.4,wefind that as the number of cycle increases, setup decreases
while the expected profit of the proposed inventory system increases for both the
items.

Figure 6.2 shows that as we apply the effect of learning and forgetting on setup
cost of the inventory system, the expected profit increases.

6.5.3 Fuzzy Model

Extensive numerical analysis has been done to gauge the impact of the level of
fuzziness in the input parameters over the decision variable. To study these levels of
fuzziness, we consider C̃i L and C̃id (i = 1, 2, . . . ,m) as triangular fuzzy numbers.
Rest of the input parameters are the same as previously defined.

Parameters i = 1 i = 2

C̃i L (3.5, 4, 4.5) (4.5, 5, 5.5)

C̃id (2.5, 3, 3.5) (3.5, 4, 4.5)

by graded mean representation method, the solution of fuzzy model is

Ẽ1(AP) = (8971.9513, 8963.4889, 8955.0674)

and
Ẽ1(AP) = (10893.0729, 10884.0001, 10874.9556).
The expected fuzzy total average profit Ẽ(T AP) = 19847.5005.
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Table 6.2 Optimal outputs

Items i k∗
i D∗

i T ∗
i1 T ∗

i2 E∗
i (AP)

1 0.125 34.9951 35.6755 43.9778 8963.4889

2 0.1 35.1142 47.9018 58.7767 10884

Table 6.3 For first item

No. of setup Setup cost T11 T12 E1(AP)

1 100 35.6755 43.9778 8963.4889

2 95.19 35.6726 43.9731 8963.6023

3 88.4 35.6685 43.9662 8963.7624

4 83.25 35.6654 43.9611 8963.8839

5 79.14 35.6629 43.9570 8963.9808

Table 6.4 For second item

No. of setup Setup cost T21 T22 E2(AP)

1 120 47.9018 58.7767 10884

2 114.23 47.8990 58.7726 10884.1374

3 106.08 47.8953 58.7662 10884.2830

4 99.894 47.8924 58.7615 10884.3937

5 94.96 47.8901 58.7578 10884.4818

8963.3
8963.4
8963.5
8963.6
8963.7
8963.8
8963.9

8964
8964.1

1 2 3 4 5 6
For first item 

10883.85

10883.95

10884.05

10884.15

10884.25

10884.35

10884.45

10884.55

1 2 3 4 5 6

For Second item

Fig. 6.2 Effects of learning and forgetting on E1(AP) and E2(AP)
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6.6 Concavity of the Proposed Inventory System

The concavity of the expected average profit E1(AP) and E2(AP) per unit time is
shown in Fig. 6.3 w.r.t. T11 and T21, respectively.

The 3-D plots of the expected average profit E1(AP) and E2(AP) per unit time
w.r.t. two decision variables show the concavity of the function (Figs. 6.4 and 6.5).
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Fig. 6.6 Variation in E1(AP) and E2(AP) by changes in different parameters
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Fig. 6.7 Variation in time T11 and time T21 by changes in different parameters

6.7 Sensitivity Analysis

A sensitivity analysis has been carried out to study the effects of change in inventory
parameters of the proposed model on decision variables and expected average profit
function. The parameters given in examples are varied by −20, −10, 10 and 20%.
The effects of variations in D∗

i , T
∗
i1, T

∗
i2 (i = 1, 2, . . . ,m) and profit E∗

i (AP) (i =
1, 2, . . . ,m) are shown in Figs. 6.6, 6.7, 6.8 and 6.9 (Tables 6.5 and 6.6).

6.8 Effect of Inventory Parameters on Expected Average
Profit (i = 1, 2)

From Fig. 6.6, it is observed that the expected average profit E∗
i (AP) per unit time

increases with increase in holding cost Cih , pdf parameter αi , reliability ri , no. of
advertisement Ai , and selling price si while decreases with increase of deterioration
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cost Cid significantly. So, the manufacturer should take care of products to reduce
the deterioration.

6.8.1 Effect of Inventory Parameters on Time T11 and Time
T21 (i = 1, 2)

It is observed from Fig. 6.7 that the time T ∗
11 and T ∗

21 increase with increase in
deterioration costCid , pdf parameterαi , reliability ri , and selling price si anddecrease
with increase of holding cost Cih and no. of advertisement Ai significantly. T ∗

11 and
T ∗
21 are sensitive with respect to reliability ri and selling price si .
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Table 6.5 Sensitivity analysis of some parameters for first item

Parameters % change T ∗
11 T ∗

12 E∗
1 (AP)

C1h −20 36.9012 46.0181 8892.8349

−10 36.2337 44.8996 8927.1825

0 35.6755 43.9778 8963.4889

+10 35.2284 43.2353 8997.1912

+20 34.8401 42.5988 9032.6508

C1d −20 35.4721 43.6417 8973.6787

−10 35.5741 43.8101 8968.5764

0 35.6755 43.9778 8963.4889

+10 35.7765 44.1450 8958.4160

+20 35.8769 44.3115 8953.3577

α1 −20 35.1084 43.0383 8933.4366

−10 35.3968 43.5125 8947.6454

0 35.6755 43.9779 8963.4889

+10 35.9762 44.4711 8976.5253

+20 36.2672 44.9556 8991.2007

Parameters % change D∗
1 T ∗

11 T ∗
12 E∗

1 (AP)

r1 −20 34.9941 27.0891 33.6861 8717.7109

−10 34.9946 30.3396 37.6896 8849.3866

0 34.9951 35.6755 43.9779 8963.4889

+10 34.9957 47.1953 57.1499 9084.3051

+20 34.9962 61.727 66.5118 9205.6101

A1 −20 34.2229 37.4426 46.0207 8739.3414

−10 34.6284 36.4673 44.8949 8857.0102

0 34.9951 35.6755 43.9779 8963.4889

+10 35.3303 35.0156 43.2111 9060.8643

+20 35.639 34.4547 42.5575 9150.5702

s1 −20 38.7633 30.1368 37.2745 8095.4607

−10 36.8792 32.3695 40.0084 8575.9695

0 34.9951 35.6755 43.9779 8963.4889

+10 33.1111 41.2259 50.5278 9260.6476

+20 31.2270 53.1365 64.4104 9478.0209
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Table 6.6 Sensitivity analysis of some parameters for second item

Parameters % change T ∗
21 T ∗

22 E∗
2 (AP)

C2h −20 49.6684 61.6583 10798.6016

−10 48.6964 60.0666 10840.9437

0 47.9018 58.7767 10884.0001

+10 47.2396 57.7096 10927.5898

+20 46.6789 56.8117 10971.5884

C2d −20 47.6341 58.3445 10898.5846

−10 47.7683 58.5610 10891.2833

0 47.9018 58.7767 10884.0001

+10 48.0346 58.9916 10876.7349

+20 48.1668 59.2058 10869.4875

α2 −20 46.8864 57.1435 10836.9336

−10 47.3931 57.9564 10860.3147

0 47.9018 58.7767 10884.0001

+10 48.4128 59.6051 10908.0987

+20 48.9263 60.4417 10932.5146

Parameters % change D∗
2 T ∗

21 T ∗
22 E∗

2 (AP)

r2 −20 35.1129 34.6314 42.9961 10484.6881

−10 35.1136 39.3848 48.7925 10759.9131

0 35.1142 47.9018 58.7767 10884.0001

+10 35.1148 70.8630 85.1035 11039.8084

+20 35.1154 – – 11200.0026

A2 −20 34.3393 50.9615 62.3092 10611.2608

−10 34.7462 49.2562 60.3425 10754.3126

0 35.1142 47.9018 58.7767 10884.0001

+10 35.4505 46.7927 57.4915 11002.7174

+20 35.7603 45.8634 56.4121 11112.2164

s2 −20 39.9978 37.6779 46.5019 10176.3307

−10 37.5559 41.4316 51.0732 10601.0064

0 35.1142 47.9018 58.7767 10884.0001

+10 32.6724 62.6761 76.0711 11041.3036

+20 30.2306 79.7629 86.3115 11064.6854
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6.8.2 Effect of Inventory Parameters on Time T12 and Time
T22 (i = 1, 2)

From Fig. 6.8, it is observed that T ∗
12 and T

∗
22 are sensitive with respect to reliability ri

and selling price si . The time T ∗
12 and T

∗
22 increase with increase in deterioration cost

Cid , pdf parameter αi , reliability ri , and selling price si and decrease with increase
of holding cost Cih and no. of advertisement Ai significantly.

6.8.3 Effect of Inventory Parameters on Demand D1 and D2
(i = 1, 2)

It is observed from Fig. 6.9 that as we increase the value of reliability ri and no. of
advertisement Ai , demand rate parameter per unit time increases. Demand rate is
sensitive with respect to selling price si , and they are negatively correlated to each
other means by increasing values of si , demand rate decreases.

6.9 Conclusion

An EPQ model for multi-items with imperfect production process is developed by
considering the situation of random machine failure over infinite planning horizon
where machine repair time is also taken as random. To reduce the deterioration rate,
use of preservation technology has taken into account. Model has been developed in
both crisp and fuzzy environment. The impact of learning and forgetting has been
studied and graphically shown in figures on the expected average profit function.
From the graph, we observe that learning and combined effect of learning and for-
getting are beneficial for the decision maker to increase the profit of the system and
decrease the setup cost. In this model, a reliable and flexible production system is
taken to improve the production quality and goodwill of the customer. Numerical
examples and sensitivity of the inventory parameters on profit function have been
studied and shown graphically.

The major contribution of the proposed model is the consideration of preservation
technology and effect of learning and forgetting on setup cost inmulti-item imperfect
production model. From the numerical analysis, it is observed that a reliable pro-
duction system is better than a non-reliable production inventory system. From the
sensitive analysis, we observed that optimal solution of the proposed inventorymodel
is highly sensitive with respect to reliability, no. of advertisement, and selling price
while least sensitive with respect to holding cost and deterioration cost. So while
making the inventory policy decision, the decision maker pays special attention to
these factors.
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A possible future research can be to extend the investigated model for stochastic
deterioration rate, partially and complete backlogging, and different types of demand
rates like stock-dependent demand, stochastic demand, and many more.
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Chapter 7
Inventory Policies with Development Cost
for Imperfect Production and Price-Stock
Reliability-Dependent Demand

Nita H. Shah and Monika K. Naik

Abstract This article focuses on developing a model based on inventory dealing
with the product’s sell price-stock as well as reliability-dependent demand; also it
undergoes a production process which is imperfect including manufacturing of per-
fect as well as imperfect quality products. As such, each production firm believes in
the production of perfect quality goods but because of various uncontrollable barrier
factors like machinery, labor, technology, and also due to the long-run process, the
production, therefore, includes imperfect quality items along with perfect quality
products. The products which are perfect are ready to sell out; on the other hand, the
imperfect products undergo the reworking process owing a cost to become a perfect
product. By inclusion of the cost of development also by modifying the raw material
quality of production system, several considerations like product’s reliability, the
system’s reliability parameter, and the reworking cost can be upgraded. The aim of
this article is to calculate the firm’s total profit along with the estimation of opti-
mal values of production duration such that a manufacturer gets a maximum profit,
manufacturing system’s reliability parameter, and product’s reliability. The classical
optimization technique is utilized for calculating the optimal values. For the vali-
dation of developed models, numerical examples are demonstrated; then using the
concept of eigenvalues of a Hessian matrix, we have proved the concave nature of
the profit function of the system, and also the sensitivity analysis is done for each
decision variables by fluctuating the inventory parameters for generating effective
managerial insights.
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7.1 Introduction

In earlier studies, various EPQ models are derived; in some cases, the production
analysis is done based on imperfect items. Khouja and Mehrez [17] constructed an
imperfect quality inventory model and production rate as variable one with elapsed
time is to be considered until the production process moves to out-of-control state to
exponential one. An EPQ/EOQ concept for imperfect quality products is utilized by
Salameh and Jaber [33] for deriving an inventory model. An inventory model with
volume flexibility opting the production process as imperfect one was developed by
Sana et al. [34]. Amodel dealing with the production of imperfect deteriorating items
calculating the pricing policy was constructed by Chung and Wee [7] considering
inspection planning and warranty period. An EPQ model for an imperfect process
by computing the production lot size and the backorder size undergoing reworking
process was considered by Cardenas-Barron [4].

An EPQ model with imperfect quantity items considering sales return and two-
way imperfect inspection was derived by Yoo et al. [45]. An imperfect production
process that computes optimal reliability, lot size for production, and safety stock
was derived by Sarkar et al. [38]. An imperfect production process for a production
inventory model in which the unit cost of production represents a function dealing
with the reliability parameter of the product and rate of production was developed by
Sana [36]. An improvement in producing an inventory model was derived by Sana
[37] for imperfect quality items in a three-layer supply chain. A production process
which was imperfect for time-dependent demand considering time value of money
and inflation was developed by Sarkar et al. [39].

Sarkar and Sarkar [40] constructed an economic manufacturing quality model by
taking the system’s production in terms of probabilistic deterioration. A multi-item
EPQ model over fuzzy-random planning horizon utilizing learning effect on imper-
fect production was developed byManna et al. [21]. An inventorymodel in which the
production process is imperfect dealingwith the rate of production based on defective
rate as well as advertisement-dependent demand was derived by Manna et al. [22].
An improved inventory model dealing with lot sizing and quality investment with
quality cost analysis. An improved lot sizing quality investment with quality cost
analysis for production which was imperfect and inspection processes having com-
mercial return was proposed by Yoo et al. [46]. An EPQ model for time-dependent
demand for production process which is imperfect under inflationary conditions and
reliability for time-declining demand by Shah and Shah [41]. An inventory model
dealing with inventory decision in a closed-loop supply chain system with learning
and rework was proposed by Wakhid et al. [44].

Many researchers have contributed to the field of imperfect production likeRosen-
blatt and Lee [32], Ben-Daya and Hariga [3], Hayek and Salameh [14], Goyal and
Cardenas-Barron [11], Chung and Hou [6], Goyal et al. [12], and Sana et al. [34]. A
combined pricing and ordering policy for two echelon production inventory models
which was imperfect with two cycles was developed by Pal et al. [27]. A three-layer
supply chain was considered byManna et al. [19] where an inventory model in which
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the production process is imperfect dealing with two storage facilities in considera-
tion of fuzzy rough environment. Researchers likeMettas [24] and Sana [36] inserted
the development cost as a function of reliability parameter only. Practically, with the
rise in the time period, the development cost also increases.

Many scholars assumed the market demand a variable one depending on parame-
ters like selling price, stock, or time. Baker and Urban [1], Mandal and Phaujdar [20]
and Ray and Chaudhuri [31] derived inventory models dealing with stock-dependent
demand. Datta and Pal [9], Teng and Chang [43] presented an inventory system
with price sensitive and stock demand rate. Sana and Chaudhuri [35] constructed an
inventory model for stock- and advertising-dependent demand. Mondal et al. [25],
Panda and Maiti [28] and Chen et al. [5] presented the price-based demand rate. A
fuzzy inventorymodel for deteriorating itemswith stock-dependent demand rate was
presented by Indrajitsingha et al. [15].

An inventory model for deteriorating products with partial backlogging having a
stock-based demand and a boundon the extreme level of inventorywas represented by
Min and Zhou [23]. An EOQmodel was constructed by Lee andDye [18] with partial
backlogging, where stock level and deterioration rate estimated the preservation
strategies and order size to rise the total profit of system to the maximum. Khara
et al. [16] have considered the price reliability depending on the demand rate.

In several derived systems on inventory, the phenomena of deterioration are usu-
ally observed in the items, resulting in high harms in quality and also in quantity
of items. The inventory cost and management are influenced by the deterioration
of items. Ghare and Schrader [10] applied the deterioration effects in their inven-
tory modeling. Covert and Philip [8] mainly utilized Weibull distribution as well as
gamma distribution dealing with deteriorating products. A generalized model based
on the concept of deterioration was developed by Philip [29]. An inventory model for
deteriorating items dealing with strategies of selling price, service investment, and
preservation technology with selling price service investment level rate of demand
in consideration to common resource constraints was derived by Zhang et al. [47].

Many other research works considering deteriorating items were presented by
Nahmias [26], Raafat [30], Shah and Shah [42], Goyal and Giri [13] and Bakker
et al. [2].

This article deals with a rate of demand supposed to be a function of stock level,
sale price, and reliability of the product under an imperfect production system which
produces both perfect and imperfect quality products because of various types of
problems such as machinery, labor, technology and the quality of the raw material,
etc. A specific percentage of imperfect items are revised at a cost per unit item to
become a perfect one. A development cost depending on the time-varying parameter
of reliability for manufacturing system was inserted in order to reduce reworking
cost and to maintain the reliability of the system dealing with machinery along with
the computation of product reliability.

The practical application of this article is to be considered for the packaged prod-
ucts like milk products—butter, cheese; fruit juices; sliced vegetables, etc., which
are deteriorating in nature, the packing may be an imperfect undergoes reworking
and where demand depends on stock, sale prize, and reliability of the product.
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The unit production cost is assumed to be the variable reliability parameter in the
manufacturing system, the variable reliability of the item as well as time. The pur-
pose for this article is to calculate the firm’s total profit along with the calculation of
optimal values for duration of production such that a manufacturer gets a maximum
profit, reliability parameter of system, and product’s reliability. The classical opti-
mization technique is utilized for calculating the optimal values. For the validation
of developed models, numerical examples are demonstrated; then using the concept
of eigenvalues of a Hessian matrix, we have proved the concave nature of the profit
function of the system, and also the sensitivity analysis is done on each decision
variable by fluctuating the inventory parameters for generating operative managerial
insights.

The demand rate in this paper is stock, selling price, and reliability-dependent
with development cost is based on time and system reliability, and the material costs
are dependent on the reliability of product for an imperfect production process for
deteriorating inventory makes this article a unique one as demonstrated in Table 7.1.

In this paper, Sect. 7.2 consists of assumptions and notations of the model. In
Sect. 7.3, there is the formulation of the proposed mathematical model. In Sect. 7.4,

Table 7.1 Comparative study of related literature for EPQ/EOQ models

Author(s) EOQ/EPQ Development
cost depends
on

Material cost
depends on

Demand
depends on

Items are
deteriorating

Manna
et al. [22]

EPQ Constant
(labor)

Constant Time No

Manna et al.
[19]

EPQ Constant
(labor)

Constant Stock-
dependent

No

Sana [36] EPQ System
reliability

Constant Time No

Sarkar (2012) EPQ System
reliability

System
reliability

Selling price
and
advertisement
cost

No

Sana
et al. [34]

EPQ Labor Constant Constant No

Sarkar and
Sarkar [40]

EPQ System
reliability

System
reliability

Time Yes

Shah and
Shah [41]

EPQ System
reliability

Constant Time No

Khara et al.
[16]

EPQ Time and
system
reliability

Reliability of
product

Selling price
and product’s
reliability

No

This article EPQ Time and
system
reliability

Reliability of
product

Stock level,
selling price
and product’s
reliability

Yes
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the numerical example along with sensitivity analysis has been given. In Sect. 7.5,
conclusion and future research are presented.

7.2 Notations and Assumptions

7.2.1 Notations

Parameters

I(t) Inventory level in units at time t ≥ 0

P Production rate in units per year

δmin Minimum value of δ

δmax Maximum value of δ

β Percentage of defective items reworked to become perfect

DC Development cost for production at time t for δ (in dollars)

LE The static cost like labor and energy costs independent of reliability parameter δ

(in dollars)

TRD The technology, resource, and design complexity cost for production when
δ = δmax (in dollars)

k The difficulties in raising the reliability of the manufacturing system

Pp Sell price per unit perfect item (in dollars)

pim Sell price per unit imperfect item (in dollars)

Dt Demand depends on reliability r and sell price Pp

PC Production cost of unit item (in dollars)

T Fixed cycle time (in years)

Q Total number of items produced in a production cycle (in units)

MC Material cost depends on r (in dollars)

MC0 Fixed material cost (in dollars)

M1 Material cost increases the reliability of the produced product (in dollars)

h Cost of holding per unit item per time unit (in dollars)

crew Cost of reworking of per unit defective item to become perfect (in dollars)

m Variation constant for tool/die costs

x Markup for reliability

θo Deterioration coefficient

α Scale demand

B Stock availability coefficient

η Selling price parameter

(continued)
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(continued)

d The difficulties in increasing reliability of the manufacturing system

Decision variables

δ Reliability parameter of the manufacturing system

t1 Duration of production (in years)

r Reliability of the product (in years)

Functions

Dt(I, r,Pp) Demand rate depending on inventory level

I(δ, r) Inventory level (in units)

ATP(t1, δ, r) The average total profit per period (in dollars)

7.2.2 Assumptions

1. Shortages are impermissible.
2. Inventory model undergoes a production process including perfect as well as

imperfect products of a single item.
3. The production reliability is taken as e−δt (by Khara et al. [16]) where δ be the

parameter for system reliability defined as

δ = number of defective items

total number of produced itemswithin a time interval
(7.1)

So, δ value decreases, when the reliability of the system is increased.
4. As per assumption (7.3), it is observed that with the rise in time domain, there

is a decrement in the reliability of the production system. Therefore, in order
to preserve fixed reliability of the production system during the production
process, a development cost increasing with time is required. Moreover, to
raise the reliability of the system, the development cost must be raised. So, the
development cost DC (by Khara et al. [16]) should be considered as a function
of time t and δ as follows:

DC = LE + TRDte
(

d(δmax−δ)

δ−δmin

)
(7.2)

Here LE is a fixed cost like labor and energy which does not depend on δ and
TRD is the cost of technology, resource, and design complexity for production
when δ = δmax and t = 1.

5. As, manufacturing system and quality of raw material of the product both are
responsible for the reliability of the product parameterized by r. So, we consider
that thematerial costMC is an increasing functionof the reliability of the product
r given by



7 Inventory Policies with Development Cost for Imperfect … 125

MC = MC0 + M1(1 − r)−x where, MC0 > 0,M1 > 0, x > 0 (7.3)

6. As per the survey of the production, it can be concluded that the cost of pro-
duction depends on material costMC, development cost DC, and tool/die cost.
Therefore, the cost of production PC per unit item should be of the following
type:

PC = MC + DC

P
+ mP (7.4)

Here m be the proportional constant of tool or die cost, which depends on the
number of produced items P.

7. Let the rate of market demandDt represented as a function of level of inventory
in stock, reliability of the product, and selling price of an item.

Dt
(
I , r,Pp

) = (α + IB)(1 − r)−bPp
−η (7.5)

Here, the rate of demand is an increasing function of level of stock and reliability
r of the product as well as a decreasing function of selling price Pp.

8. The model is dealing with finite time horizon.
9. The inventory levels at the initial and terminal stage are zero.
10. A cost is charged for reworking/disposing of the imperfect item.
11. Let θu = θo, 0 ≤ θo ≤ 1 be the deterioration coefficient.

7.3 Mathematical Model Formulation

In a process of long run, the imperfect production systemmakes a perfect and imper-
fect product, due to various problems related to labor, machinery, and technology.
Perfect items are set for sale. In the derived model, let β percent of the items which
are defective and undergone reworking process to form a perfect at a cost pim and
left-out defective items are sold at a cheaper price per unit item. By enhancing the
technology, the reworking cost may be reduced by inserting the development cost
function DC which increases as the time t increases.

With P and e−δt be the constant rate of production and the reliability of the
manufacturing system, respectively, the number of perfect items produced by the
system is Pe−δt , and the number of imperfect items is P

(
1 − e−δt

)
. Let β percent of

the imperfect items is reworked. In the duration t1 ≤ t ≤ T , the inventory declines due
to the united effects of rate of demand and level of stock. The following differential
equation demonstrates the inventory level of the system:

dI(t)

dt
=

{
Pe−δt + βP

(
1 − e−δt

) − Dt ; 0 ≤ t ≤ t1
−Dt − θuI(t) ; t1 ≤ t ≤ T

(7.6)
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With the boundary conditions I(0) = I(T ) = 0:

I(t) =
⎧⎨
⎩

−P(1−r)bPpη(e−δtβ−e−δt−β+1)
−(1−r)bPpηδ+B

; 0 ≤ t ≤ t1
α(1−r)−bPp−η(eθuT−eθut)

B(1−r)−bPp−η+θu
; t1 < t ≤ T

(7.7)

The system’s total profit is computed by the following components:

1. The Sales Revenue:

The sales revenue of perfect items:

SRp = Pp

(∫ t1

0

(
Pe−δt + βP

(
1 − e−δt

))
dt

)
(7.8)

The sales of defective items with reduced selling price:

SRd = pim

(∫ t1

0
(1 − β)P

(
1 − e−δt

)
dt

)
(7.9)

2. The Total Production Cost:

TPC = P

(∫ t1

0
PCdt

)
(7.10)

3. The Total Holding Cost:

HC = h

(∫ t1

0
I(t)dt +

∫ T

t1

I(t)dt

)
(7.11)

4. The Total Reworking Cost:

RWC = crew

(∫ t1

0
βP

(
1 − e−δt

))
(7.12)

Therefore, the average total Profit of the system is calculated by

ATP = 1

T

(
SRp + SRd − TPC − HC − RWC

)
(7.13)

In order to maximize the average total profit, we follow the conditions stated
below.
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By evaluating the partial derivatives and equating them to zero:

∂ATP

∂δ
= 0,

∂ATP

∂r
= 0,

∂ATP

∂t1
= 0 (7.14)

For testing the concave nature of the average total profit at the gained solution,
the below listed algorithm is to be followed:

Step 1: First assign any particular hypothetical values to the inventory parameters.
Step 2: Solving the simultaneous equations stated in Eq. (7.14) using the mathemat-
ical software Maple XVIII to find the solution.
Step 3: Calculating all possible eigenvalues of Hessian matrix H presented below at
the optimal point obtained from Eq. (7.14):

H =
⎡
⎢⎣

∂2ATP
∂t21

∂2ATP
∂t1∂δ

∂2ATP
∂t1∂r

∂2ATP
∂δ∂t1

∂2ATP
∂δ2

∂2ATP
∂δ∂r

∂2ATP
∂r∂t1

∂2ATP
∂r∂δ

∂2ATP
∂r2

⎤
⎥⎦ (7.15)

If each eigenvalue is positive, then the matrix is called as positive-definite matrix.
Therefore, the average total profit is concave in nature and the process is stopped.

As such it is difficult to prove analytically the positive definiteness of Hessian
matrix, so we prefer numerical as well as graphical way of representing the solution
helping us the visualization of the concave nature of average total profit function.

7.4 Numerical Example and Sensitivity Analysis

7.4.1 Numerical Example

Example 1 Consider the following:

P = 1000 units, α = 3,Pp = 20 dollars/unit, b = 3, η = 1.001, d = 0.1,

LE = 10 dollars/unit,TRD = 10 dollars/unit, δmin = 0.01, δmax = 0.9,

pim = 18 dollars/unit, crew = 5 dollars/unit, h = 5 dollars/unit, β = 0.5,

T = 2 years,B = 0.2, θu = 0.1.

Solution:

The optimum values of the decision variables are as follows:

Reliability parameter of the manufacturing system = δ = 0.0531.
The duration of production = t1 = 1.9590 years.
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Fig. 7.1 Concavity of profit
function

The Reliability of the product (in years) r = 2.6969.
The average total profit ATP = 2390.4888 dollars.

Concavity of Total Profit function:

Therefore, by applying the algorithm, the concave nature of the average total profit
function is been verified which is demonstrated in Fig. 7.1. Now computing the
optimum values of decision variables and also undertaking the sensitivity analysis
of the values of decision variables by fluctuating the values of inventory parameters
−20 to 20%. The Hessian matrix is given by

H =
⎡
⎢⎣

∂2ATP
∂t21

∂2ATP
∂t1∂δ

∂2ATP
∂t1∂r

∂2ATP
∂δ∂t1

∂2ATP
∂δ2

∂2ATP
∂δ∂r

∂2ATP
∂r∂t1

∂2ATP
∂r∂δ

∂2ATP
∂r2

⎤
⎥⎦ =

⎡
⎣

−1203.9912 830.5764 −71.8512
830.5764 −2.4487 × 105 2631.111
−71.8512 2631.111 −620.2513

⎤
⎦

Eigenvalues of the Hessian matrix are

λ1 = −2.4490 × 105 < 0, λ2 = −1207.5819 < 0, λ3 = −585.4858 < 0

7.4.2 Sensitivity Analysis of the Optimal Inventory Policy

This section deals with the sensitivity analysis of the values of the decision variables
with respect to various inventory parameters. Table 7.2 shows the values of decision
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Table 7.2 Sensitivity analysis for decision variables with respect to various inventory parameters

Inventory
parameters

Decision
variables

Percentage variation of decision variables

−20% −10% 0 10% 20%

P δ 0.0621 1.4720 0.0531 0.0511 0.0496

r −688.833 3.9540 2.6969 2.7421 2.8066

t1 1.990 2.4939 1.9590 1.5503 1.1498

ATP 2480.017 1555.0309 2390.4888 1671.5181 1017.8692

Pp δ 0.0585 0.0548 0.0531 0.0531 0.0577

r 3.0742 2.801 2.6969 2.6932 3.3807

t1 0.3856 1.1720 1.9590 1.9983 1.9875

ATP 94.8695 863.0107 2390.4888 2486.4897 2505.8672

η δ 0.0504 0.0504 0.0531 0.0531 0.0612

r 2.6202 2.6203 2.6969 2.6970 −1446.7632

t1 1.9895 1.9895 1.9590 1.9590 1.9096

ATP 2422.1848 2422.1810 2390.4888 2390.4642 2336.7948

d δ 0.0447 0.0490 0.0531 0.0572 0.0684

r 2.6566 2.6776 2.6969 2.7147 −1749.6744

t1 1.9814 1.9693 1.9590 1.9500 1.9017

ATP 2420.7283 2404.6460 2390.4888 2377.7979 2322.0651

LE δ 0.0531 0.0531 0.0531 0.0531 0.0531

r 2.6968 2.6969 2.6969 2.6970 2.6970

t1 1.9598 1.9594 1.9590 1.9586 1.9581

ATP 2392.4482 2391.4683 2390.4888 2389.5093 2388.5302

δmin δ 0.0506 0.0519 0.0531 0.0544 0.0556

r 2.6854 2.6913 2.6969 2.7024 2.7077

t1 1.9633 1.9611 1.9590 1.9569 1.9550

ATP 2396.8724 2393.6299 2390.4888 2387.4403 2384.4769

TRD δ 0.0502 0.0542 0.0531 0.0570 0.0658

r 2.6830 2.7013 2.6969 2.7138 −1678.4046

t1 1.9703 1.9602 1.9590 1.9501 1.9025

ATP 2405.2286 2391.3240 2390.4888 2378.0879 2324.9107

δmax δ 0.0444 0.0488 0.0531 0.0574 0.0688

r 2.6549 2.6768 2.6969 2.7155 −1748.2066

t1 1.9829 1.9700 1.9590 1.9494 1.9009

ATP 2422.5322 2405.5113 2390.4888 2376.9768 2320.8915

(continued)
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Table 7.2 (continued)

Inventory
parameters

Decision
variables

Percentage variation of decision variables

−20% −10% 0 10% 20%

MC0 δ 0.0618 0.0537 0.0531 0.0530 0.0530

r −1586.4048 2.7384 2.6969 2.7014 2.7060

t1 1.9914 1.9982 1.9590 1.9172 1.8755

ATP 2531.8457 2488.9230 2390.4888 2293.5829 2198.7642

M1 δ 0.0530 0.0531 0.0531 0.0532 0.0532

r 2.6868 2.6919 2.6969 2.7018 2.7067

t1 1.9600 1.9595 1.9590 1.9585 1.9581

ATP 2391.5083 2390.9909 2390.4888 2390.0013 2389.5277

x δ 0.0612 0.0612 0.0531 0.0612 0.0513

r −1766.3859 1875.9349 2.6969 1652.7826 2.5366

t1 1.9096 1.9096 1.9590 1.9096 1.9804

ATP 2336.7947 2336.7947 2390.4888 2336.7947 2415.9664

m δ 0.0618 0.0532 0.0531 0.0587 0.0517

r −1586.4048 2.6965 2.6969 −1699.7276 2.8181

t1 1.9914 1.9632 1.9590 1.5083 1.1432

ATP 2531.8457 2400.2943 2390.4888 1482.7772 842.8551

pim δ 0.0522 0.0501 0.0531 0.0531 0.0765

r −1546.2140 2.6883 2.6969 2.6969 −1459.4028

t1 1.8258 1.9184 1.9590 1.9590 1.9732

ATP 2242.5691 2343.6451 2390.4888 2390.4888 2400.4704

crew δ 0.0841 0.0781 0.0531 0.0698 0.0555

r −1434.9683 −1454.3962 2.6969 −1670.1492 2.7040

t1 1.9910 1.9773 1.9590 1.9517 1.9814

ATP 2415.3901 2404.0580 2390.4888 2380.3736 2415.9136

T δ 0.0531 0.0531 0.0531 0.0531 0.0531

r 2.6969 2.6969 2.6969 2.6969 2.6969

t1 1.9590 1.9590 1.9590 1.9590 1.9589

ATP 2988.1183 2656.1000 2390.4888 2173.1740 1992.0818

B δ 0.0549 0.0540 0.0531 0.0523 0.0515

r 2.7566 2.7249 2.6969 2.6720 2.6497

t1 1.9443 1.9514 1.9590 1.9671 1.9757

ATP 2374.9973 2382.4910 2390.4888 2398.9743 2407.9320

θu δ 0.0531 0.0531 0.0531 0.0531 0.0531

r 2.6969 2.6969 2.6969 2.6969 2.6969

t1 1.9590 1.9590 1.9590 1.9590 1.9590

ATP 2390.4888 2390.4887 2390.4888 2390.4887 2390.4888
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variables on fluctuating the various inventory parameters in the range −20 to 20%.
The following observations are extracted from Table 7.2.

Sensitivity analysis for rate of rework for imperfect quality products in units
per year (P):

With the fluctuation of rework rate of imperfect quality items, the reliability param-
eter of the manufacturing system decreases with the declination of reliability of the
product, and the duration of production decreases with an increment in the annual
total profit.

Sensitivity analysis of sell price of product
(
Pp

)
:

Themanufacturing system’s reliability parameter decreases with declination in terms
of reliability of the product, and the duration of production increases with an incre-
ment in the annual average total profit with regard to the fluctuation of product’s
selling price.

Sensitivity analysis of markup for parameter of sell price (η):

The reliability parameter of the manufacturing system increases with the uplifting of
reliability of the product, and the duration of production decreases with a decrement
in the annual total profit with respect to the variation of the markup for sell price
parameter.

Sensitivity analysis of difficulties in increasing reliability of system (d):

With the variation in difficulties in increasing reliability of system, the system’s
reliability parameter increases with increment in the reliability of the product, and
the duration of production decreases with a decrement in the annual total profit.

Sensitivity analysis of the static cost like in terms of labor and energy is inde-
pendent of the reliability parameter δ(LE):

The reliability parameter of the manufacturing system remains constant with the
uplifting of reliability of the product, the duration of production decreases with an
increase in the annual total profit with respect to the variation of the static cost like
in terms of labor, and energy is independent of the reliability parameter δ.

Sensitivity analysis of the minimum value of (δmin):

With the variation in the minimum value of δ, the system’s reliability parameter
increases with increment in the reliability of the product, and the duration of produc-
tion decreases with a decrement in the annual total profit.

Sensitivity analysis of the cost of technology, resource, and design complexity
for production when δ = δmax and t = 1 (TRD):
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The system’s reliability parameter increases along with increment in the reliability of
the product, and the duration of production decreases with a decrement in the annual
total profit with respect to the variation of cost of resource, technology, as well as
design complexity for production of the product.

Sensitivity analysis of maximum value of δ(δmax):

With the variation in the maximum value of δ, the system’s reliability parameter
increases along with the increment of reliability of the product, and the duration of
production decreases with a decrement in the annual total profit.

Sensitivity analysis of fixed material cost (MC0):

The system’s reliability parameter increases along with the increment of reliability
of the product, and the duration of production decreases with a decrement in the
annual total profit with respect to the variation of fixed material cost of the product.

Sensitivity analysis ofmaterial cost increases the reliability of the produced item
(M1):

With the variation in the material cost, the system’s reliability parameter increases
with the increment of reliability of the product, and the duration of production
decreases with a decrement in the annual total profit.

Sensitivity analysis of markup of product’s reliability (x):

The system’s reliability parameter decreases with the decrement of reliability of the
product, and the duration of production increases with an increment in the annual
total profit with regard to the fluctuation of markup of reliability of the product.

Sensitivity analysis of variation constant of tool/die costs (m):

With the change in the variation constant of tool/die costs, the system’s reliability
parameter increases with the increment of reliability of the item, and the production
duration decreases with a decrement in the annual total profit.

Sensitivity analysis of selling price per unit imperfect item (pim):

There is an increment in the system’s reliability parameter with the increment of
reliability of the item, and the duration of production also becomes lengthier with an
increment in the annual total profit with regard to the fluctuation of selling price per
unit imperfect item.
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Sensitivity analysis of reworking cost on per unit defective item to become per-
fect (crew)

With the change in the variation constant of reworking costs, the system’s reliability
parameter decreases with the decrease in reliability of the product, and the duration
of production shortens with a decrement in the annual total profit.

Sensitivity analysis of Replenishment cycle length (T):

The system’s reliability parameter and the product’s reliability remain constant, and
the production duration decreases with a decrement in the annual total profit with
regard to the variation of replenishment cycle length.

Sensitivity analysis of coefficient of Stock availability (B)

As the stock availability coefficient varies, the system’s reliability parameter
decreases with the decrement of reliability of the product, and the duration of pro-
duction increases with an increment in the annual total profit.

Sensitivity analysis of coefficient of deterioration (θu):

There is no variation in the decision variable with the change in the inventory param-
eters. Each parameter remains constant.

7.5 Conclusion and Future Scope

This article focuses on developing a production model dealing with product’s sell
price-stock level as well as reliability-based demand; also it undergoes a produc-
tion process which is imperfect including manufacturing of perfect and imperfect
quality items. Computation of the optimal values of product’s reliability parameter
and reliability of product’s duration for production is done. A numerical illustration
yields us the following optimum solutions of decision variables like the reliability
parameter of the manufacturing system be δ = 0.0531, the duration of production
be t1 = 1.9590years, the reliability of the product (in years) be r = 2.6969, and the
average total profit ATP = 2390.4888 dollars.

By varying the various inventory parameters like the reduction in reworking cost
on per unit defective item to become perfect, increment in the selling price per unit
imperfect item and selling price per unit perfect item results in uplifting the total profit
of the system, which is desirable. So, these managerial insights would be provided
to the manufacturing firm to uplift the average total profit level of system.

Some possible future directions for extension of work are as follows:

1. For rising the demand of the firm advertising and/or service investment efforts
can be utilized.

2. The concept of discounts, learning effects could be considered.
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3. Shortages can be considered.
4. Preservation investment technology can be utilized to lower the deterioration

effect.
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Chapter 8
Imperfect Quality Item Inventory Models
Considering Carbon Emissions

Hui-Ming Wee and Yosef Daryanto

Abstract Research on inventory models with environmental consideration has
recently become a popular research stream. The amount of energy consumption
and greenhouse gas emissions is influenced by inventory decisions such as delivery
quantity and delivery frequencies. This chapter focuses on a supply chain system
which contains a percentage of imperfect quality items in its delivered lot; we also
consider carbon emission costs under a carbon tax policy. Processing the defective
items, which increases carbon emission, affects supply chain decisions. We present
two economic order quantity models considering carbon emission and defective
items with different shortage conditions. We then study low-carbon two-echelon
supply chain inventory model considering supply chain integration and imperfect
quality items. Numerical examples are provided to illustrate how these models can
be applied in practice. Sensitivity analysis is performed to gain more insight on
changing parameters in the numerical studies.

Keywords Inventory · Supply chain · Carbon emission · Imperfect quality

8.1 Introduction and Related Literature

Existing and planned legislation penalizing high energy consumption and greenhouse
gasses emission could be used to encourage many industries to develop a greener
supply chain. Until 2018, at least 51 carbon pricing initiatives have been implemented
or are scheduled for implementation worldwide [34]. 26 carbon tax initiatives and 25
emission trading systems have been implemented in various national and subnational
jurisdictions. Besides direct energy costs, changing consumer preference is another
factor driving businesses to become environmentally friendly [25].
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Freight transport and material storing and handling are significant sources of CO2

emission in logistics and supply chain activities [17]. Therefore, inventory replenish-
ment decision on how much, when, and where to order and deliver will influence the
total supply chain carbon footprint. Carbon emissions also come from the disposing
or recycling of the materials [25] as well as product return from customers [18].

Direct accounting approaches based on carbon tax mechanisms can translate the
environmental aspect of carbon emission into an economic parameter [10, 22]. In
general, the purpose of a carbon tax is to act as a financial penalty to industries that
produce emissions from their activities [2]. Bonney and Jaber [3] are among the early
researchers that incorporate carbon emission cost into theEOQmodel. Theyproposed
a simple non-classical model that includes vehicle emission and waste disposal costs
in addition to the ordering cost, purchase cost, holding cost, and transportation cost.
The vehicle emissions cost considers the effect of the vehicle emission cost per hour,
delivery distance, and vehicle’s average speed. Battini et al. [1] considered the fix and
variable transport cost and emission, warehousing holding cost and emission, and the
emission from obsolete material collection and disposal. The warehousing emissions
consider the occupied space by the inventory and the disposal emissions consider
the weight of the obsolete inventory. Recently, Kazemi et al. [15] studied the impact
of emission costs on the total profit of a buyer in an imperfect supply process to
develop some inventory replenishment models by considering warehouse operation
emission. They also developed EOQ models considering the learning effects and
inspection errors of the flawed quality items.

Other researchers incorporated carbon emission cost into the supply chain inven-
tory model. Wahab et al. [28] studied a two-echelon supply chain inventory model
considering the environmental impact of transporting inventorywith the aimof reduc-
ing CO2 emission. It considered a percentage of defective items per shipment that
will be transported back to the vendor. Jauhari et al. [14] considered carbon emis-
sion from transportation activities in a supply chain with unequal-sized shipment and
defective products. Sarkar et al. [21] assumed a fixed and variable emission cost from
transportation, and the defective items would be transported back to the vendor for
rework. Focused on a cold product supply chain, Hariga et al. [11] studied the cost
saving and carbon emission reduction by integrating emission cost into cold product
supply chain model. Cold product supply chain consumes more fuel and electricity
because it requires a special temperature-controlled truck and freezer storage unit.
Tiwari et al. [24] and Daryanto and Wee [5] considered the transportation cost and
emission, warehousing holding cost and emission, and emission from the disposal of
deteriorated items. Recently, Daryanto et al. [6] considered variable transportation
cost and carbon emission in a three-echelon supply chain.

The impact of imperfect product quality on the supply chain system has received
the attention of many researchers. These problems are believed to affect the service
level of the system and incur significant costs. For example, Salameh and Jaber [20]
and Wee et al. [33] extended the traditional economic order quantity model consid-
ering imperfect quality items and different shortage backorders. Wee et al. [32] and
Wang et al. [29] studied theEOQmodel for imperfect quality items by considering the
screening rate under different shortage backorders. Cárdenas-Barrón [4], Hayek and
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Salameh [12], andGoyal andCárdenas-Barrón [8] considered the impact of imperfect
quality in economic production quantity models. Recently, Jaggi et al. [13] studied
the impact of imperfect quality and item deterioration on two-warehouse inventory
model with a permissible delay in payment. This chapter assumes that decisions
dealing with the imperfect items in the supply chain will affect carbon emissions due
to processing the defective items.

This introduction and literature review is followed by model developments.
Section 8.2 presents the low-carbon economic order quantity (EOQ) models. The
objectives of the models are to optimize the order quantity that will maximize the
total profit. Section 8.3 consists of model development for low-carbon two-echelon
supply chain inventory models considering supply chain integration and imperfect
quality items. The objective of the model is to optimize the delivery quantity and
number of deliveries per cycle that will minimize the total cost. Section 8.4 concludes
this chapter with remarks about findings and further research in the future.

8.2 Low-Carbon EOQModels for Imperfect Quality Items

This section presents theEOQmodel for imperfect quality items considering a carbon
emission cost. This study extends previous models by considering the fixed and
variable transportation costs and emissions. The variable transportation emission
depends on vehicle loads per shipment and delivery distance. The total cost also
considers a warehouse emission cost by assuming average energy consumption per
unit stored.This study canbeused to support a company’s green initiatives in reducing
carbon emissions by optimizing their inventory decisions. Two EOQ models with
different shortage conditions are developed.

The notation for the model is presented as follows:

Decision variables

Q Optimum order size (units)

Q* Optimum order size without shortage

QB* Optimum order size with complete backorder

B Backorder quantity (units)

T Cycle length (time unit)

Parameters

D Demand rate (units/year)

A Purchase cost per unit ($/unit)

c Buyer’s ordering cost per order ($/order)

δ Defective percentage of imperfect items in Q

f (δ) The probability density function of δ

(continued)
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(continued)

Parameters

x Quality screening rate (units/minute or units/year)

Dts Demand during screening time (units)

ts Quality screening time

uc Buyer’s quality screening cost per unit item ($/unit)

hb Buyer’s holding cost per unit item per year ($/unit/year)

w Average warehouse energy consumption per unit product (kWh/unit/year)

sp Selling price per unit item ($/unit)

sv Salvage value per defective item, ($/unit; sv < sp)

d Distance traveled from supplier to buyer (km)

tf Fixed transportation cost per delivery ($)

tv Variable transportation cost ($/liter)

c1 Vehicle fuel consumption when empty (liter/km)

c2 Additional vehicle fuel consumption per ton of payload (liter/km/ton)

e1 Carbon emission cost from vehicle ($/km); e1= c1.Fe.Tx

e2 Additional carbon emission cost from transporting one unit item ($/unit/km); e2 =
c2.l.Fe.Tx

l Product weight (ton/unit)

Fe Standard emission from fuel combustion (tonCO2/liter)

Ee Standard emission from electricity generation (tonCO2/kWh)

Tx Carbon price or tax ($/tonCO2)

b Backorder cost per unit item per year ($/unit/year)

This study has certain assumptions as follows:

(1) A single product is considered.
(2) Demand rate is known and constant.
(3) The replenishment is instantaneous.
(4) Customer demand and the screening process proceeds simultaneously, start from

time 0, and the screening rate is greater than the demand rate, x > D.
(5) The defective percentage, δ, has a uniform distribution with [α, β], where 0 ≤

α < β < 1.
(6) The δ is restricted to E[δ] ≤ 1 – (D/x) to avoid a shortage during the screening

period.
(7) The defective items were withdrawn as a lot at time ts.
(8) Defective items will be sold at sv rate immediately (no holding cost).
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8.2.1 Basic EOQ Model for Imperfect Quality Items
Considering Carbon Emission

We depict the inventory level of the sustainable EOQ for imperfect quality items
without shortage in Fig. 8.1. After receiving Q units from the vendor, the buyer
undertakes a quality inspection. At time ts, the inspection is complete. As δ is the
probability of the defective products, the expected defective product per delivery is
δQ, and then this amount will be removed from the storage. Further, the inventory
level continues to decrease over the period [ts, T ] and reaches zero at time T.

The total revenue per cycle TR(Q) is the sumof total sales volume of non-defective
itemswith a sales price sp and the sales of defective itemswith a sales price sv. Hence,

T R(Q) = (1 − δ)Qsp + δQsv (8.1)

The total cost per cycle TC(Q) is presented in Eq. (8.2).

TC(Q) = CO + CP + CI + CH + CT (8.2)

in which the sum of ordering cost (Co = c), purchasing cost (Cp = AQ), and quality
screening cost (CI = ucQ).

The holding cost considers both traditional carrying cost and carbon emission cost
generated by warehousing. CH is equal to (hb+ wEeTx) multiplied by the average
amount of inventory per cycle, which is equivalent to the area in Salameh and Jaber
[20]. Because T = (1 – δ)Q/D, therefore

Fig. 8.1 Inventory level for
imperfect quality items

Q 

δQ

Dts

ts

T
Time (t)

Inventory 
level

D
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CH = (hb + wEeTx )

(
(1 − δ)2Q2

2D
+ δQ2

x

)
(8.3)

The vendor’s transportation cost consists of a fix transport cost, variable trans-
port cost, and carbon emission cost. The variable transport cost depends on delivery
distance, vehicle fuel consumption, the additional fuel consumption per ton of pay-
load, product weight, delivery quantity, and the fuel price. The carbon emission cost
depends on the delivery distance, delivery quantity, and standard vehicle emission
cost for product delivery (e1 and e2).

CT E = t f + (2dc1tv + dc2lQtv) + (2de1 + de2Q) (8.4)

Therefore, the total cost per cycle becomes

TC(Q) = c + AQ + ucQ + (hb + wEeTx )

(
(1 − δ)2Q2

2D
+ δQ2

x

)
+ t f

+ (2dc1tv + dc2lQtv) + (2de1 + de2Q) (8.5)

The objective is to maximize the total profit per unit time, TP, therefore

T P(Q) = T R(Q) − TC(Q)

T
(8.6)

Since the defective percentage, δ, has a uniform distribution, the expected value
of TP(Q) is

ET P(Q) = D

(
sp − sv + hbQ

x
+ wEeTx Q

x

)
− (hb + wEeTx )

Q

2

+ (hb + wEeTx )
Q

2
E[δ] + D

(
sv − A − uc − dc2ltv − de2

−hbQ

x
− wEeTx Q

x
− c

Q
− t f

Q
− 2dtvc1

Q
− 2de1

Q

)
E

[
1

1 − δ

]

(8.7)

Further, the expected total emission (ETE) per unit time can be derived from
Eq. (8.7) as

ET E(Q) =
(

wEe

(
(1 − E[δ])2Q2

2D
+ E[δ]Q2

x

)
+ (2dc1Fe + dc2l FeQ)

)
(

D

(1 − E[δ])Q

)
(8.8)

For a uniform distribution, notes that
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E[δ] =
∫ β

α

(δ). f (δ)dδ =
(

α + β

2

)

E

[
1

1 − δ

]
=

∫ β

α

1

1 − δ
. f (δ)dδ = 1

(β − α)
ln

(
1 − α

1 − β

)

To find Q, we must first prove the concavity of the total profit function. By taking
the first and second derivatives of ETP with respect to Q yields

∂ET P

∂Q
= D

(
hb + wEeTx

x

)
−

(
hb + wEeTx

2

)
+

(
hb + wEeTx

2

)
E[δ]

+ D

(
c

Q2
+ t f

Q2
+ 2dtvc1

Q2
+ 2de1

Q2
− hb

x
− wEeTx

x

)
E

[
1

1 − δ

]

(8.9)

∂2ET P

∂2Q
= D

(
− 2c

Q3
− 2t f

Q3
− 4dtvc1

Q3
− 4de1

Q3

)
E

[
1

1 − δ

]
(8.10)

Because all the parameter values are positive, for Q > 0, Eq. (8.10) is always neg-
ative. Therefore, the profit function is strictly concave. By setting the first derivative
equal to zero, the optimal quantity Q* can be solved. Using Maple software, one has

Q∗ =
√√√√ 2D

(
c + t f + 2dtvc1 + 2de1

)
xE

[
1

1−δ

]
(hb + wEeTx )

(
2DE

[
1

1−δ

] − 2D + x − xE[δ]
) (8.11)

If the transportation cost (tf and tr) = 0, carbon tax (Tx) = 0, and E[δ] = 0
which mean all items are in perfect quality, Eq. (8.11) becomes the traditional EOQ
formulae:

Q =
√
2Dc

hb

8.2.2 EOQ Model with Complete Backorder Considering
Carbon Emission

The inventory model for imperfect quality items with a complete backorder is
depicted in Fig. 8.2 [7]. Similar to the first model, the inventory level instantaneously
reduced δh unit at time ts due to the withdrawal of the defective items. During t2,
the shortage is accumulated with D rate and will be completely backordered upon
replenishment. The total revenue function TRB(B, Q) is similar to Eq. (8.11).



144 H.-M. Wee and Y. Daryanto

Fig. 8.2 Inventory model
for imperfect quality items
with a complete backorder
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TCB (B,Q) is the total cost per cycle. Therefore, TCB(B,Q) is the sum CO, CP, CI ,
CH , CT , and backorder cost (CB) per cycle. Hence,

TCB(B, Q) = CO + CP + CI + CH + CT + CB (8.12)

in which CO, CP, CI , and CT are similar as in Sect. 2.1.
The holding cost considers both traditional carrying cost and carbon emission cost

generated by warehousing. The average amount of inventory per cycle is equivalent
to the area in Wee et al. [33].

CH = (hb + wEeTx )

(
1

2

(Q − δQ − B)2

D
+ δQ2

x

)
(8.13)

The backorder cost [33] is

CB = 1

2

bB2

D
(8.14)

Therefore, one has

TCB(B, Q) = c + AQ + ucQ + (hb + wEeTx )

(
1

2

(Q − δQ − B)2

D
+ δQ2

x

)
+ t f

+ (2dc1tv + dc2lQtv) + (2de1 + de2Q) + 1

2

bB2

D
(8.15)

As T = (1 – δ) Q/D,

T PB(B, Q) = D

(
sp − sv + hbQ

x
+ wEeTx Q

x

)
+ (hb + wEeTx )

(
B − Q

2

)
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+ (hb + wEeTx )
Q

2
δ + D(sv − uc − A − dc2ltv − de2

−hbQ

x
− wEeTx Q

x
− c

Q
− t f

Q
− 2dtvc1

Q
− 2de1

Q

)(
1

1 − δ

)

− B2

2Q
(hb + wEeTx + b)

(
1

1 − δ

)
(8.16)

The expected total profit per unit time becomes

ET PB(B, Q) = D

(
sp − sv + hbQ

x
+ wEeTx Q

x

)
+ (hb + wEeTx )

(
B − Q

2

)

+ (hb + wEeTx )
Q

2
E[δ] + D(sv − uc − A − dc2ltv − de2

−hbQ

x
− wEeTx Q

x
− c

Q
− t f

Q
− 2dtvc1

Q
− 2de1

Q

)

E

[
1

1 − δ

]
− B2

2Q
(hb + wEeTx + b)E

[
1

1 − δ

]
(8.17)

To find B and Q, we must first prove the concavity of the total profit function. For
the function to be concave, the following sufficient conditions must be satisfied:

(
∂2ET P

∂B∂Q

)2

−
(

∂2ET P

∂B2

)(
∂2ET P

∂Q2

)
≤ 0 (8.18)

And one or both

∂2ET P

∂B2
≤ 0,

∂2ET P

∂Q2
≤ 0 (8.19)

By taking the first derivative of ETP with respect to B and Q yields

∂ET P

∂B
= hb + wEeTx −

(
B

Q
(hb + wEeTx + b)

)
E

[
1

1 − ∂

]
(8.20)

∂ET P

∂Q
= D

(
hb + wEeTx

x

)
−

(
hb + wEeTx

2

)
+

(
hb + wEeTx

2

)
E[δ]

+
(
D

(
c

Q2
+ t f

Q2
+ 2dtvc1

Q2
+ 2de1

Q2
− hb

x
− wEeTx

x

)
+ B2

2Q2

(hb + wEeTx + b)

)
E

[
1

1 − δ

]
(8.21)

Taking the second derivative, we have
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∂2ET P

∂B2
= − (hb + wEeTx + b)

Q
E

[
1

1 − δ

]
(8.22)

∂2ET P

∂Q2
=

(
D

(
− 2c

Q3
− 2t f

Q3
− 4dtvc1

Q3
− 4de1

Q3

)
− B2

Q3
(hb + wEeTx + b)

)

E

[
1

1 − δ

]
(8.23)

∂2ET P

∂B∂Q
= B

Q2
(hb + wEeTx + b)E

[
1

1 − δ

]
(8.24)

Substituting Eqs. (8.23) and (8.24) into (8.18), and for the positive value of all
the parameter, one has

(
∂2ET P

∂B∂Q

)2

−
(

∂2ET P

∂B2

)(
∂2ET P

∂Q2

)

= −2D
(
c + t f + 2dc1tv + 2de1

)
(hb + wEeTx + b)E

[
1

1−δ

]2
Q4

≤ 0 (8.25)

And from Eqs. (8.23) and (8.24), we can see that the equations in (8.19) are
satisfied. Therefore, the profit function ETPB(B,Q) is strictly concave. By setting the
first derivative equal to zero, Eqs. (8.20) and (8.21) can be solved simultaneously for
B* and QB*, resulting in

B∗ = (hb + wEeTx )Q

(hb + wEeTx + b)E
[

1
1−δ

] (8.26)

Q∗
B =

√√√√
(
2Dc + 2Dt f + 4Ddc1tv + 4Dde1 + hbB2 + wEeTx B2 + bB2

)
xE

[
1

1−δ

]
(hb + wEeTx )

(
2DE

[
1

1−δ

] − 2D + x − xE[δ]
)

(8.27)

If the transportation cost (tf and tr) = 0, carbon tax (Tx) = 0, Eqs. (8.26) and
(8.27) are similar to Wee et al.’s [33] as shown in Eqs. (8.28) and (8.29).

B∗ = hbQ

(hb + b)E
[

1
1−δ

] (8.28)

Q∗
B =

√√√√√
(
2Dc + hbB2 + bB2

)
xE

[
1

1−δ

]

hb
(
2DE

[
1

1−δ

]
− 2D + x − xE[δ]

) =

√√√√√
(
2Dc + B2hb + B2b

)
E

[
1

1−δ

]

hb
(
1 − E[δ] − 2D

x

(
1 − E

[
1

1−δ

]))
(8.29)
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If the transportation cost (tf and tr) = 0, carbon tax (Tx) = 0, b = 0, and E[δ] =
0 which mean shortage is not allowed and all items are in perfect quality, Eq. (8.29)
becomes the traditional EOQ formulae.

Further, the expected total emission per unit time can be derived from Eq. (8.15)
as

ET EB(B, Q) =
(

wEe

(
1

2

(Q − E[δ]Q − B)2

D

)
+ E[δ]Q2

x

+ (2dc1Fe + dc2l FeQ))

(
D

(1 − E[δ])Q

)
(8.30)

8.2.3 Illustrative Examples

Examples are presented to illustrate the application of themodel. The value is adopted
from Wee et al. [33] and Hariga et al. [11] with some modification.

Example 1 The values of the parameters are

D = 50, 000 units/year A = $25/unit c= $100/cycle,
hb= $5/unit/year, uc= $0.5/unit, x= 175, 200 unit/year,
sp= $50/unit, sv= $20/unit, d= 10 km,
t f = $100 /delivery, tv = $0.01/unit/km,

and the probability density function of defective items, δ, is

f (δ) =
{
25, 0 ≤ δ ≤ 0.04
0, otherwise

, E[δ] = 0.02

Also, several data to incorporate the carbon emissions are as follows: c1 =
30 L/100 km, w = 14.4 kWh/unit/year, Tx = $75/tonCO2 [11], Fe = 2.6 kgCO2/liter
diesel fuel= 2.6× 10−3 tonCO2/liter (The US EPA, [26], and Ee = 500 grCO2/kWh
= 0.5 × 10−3 tonCO2/kWh [16].

From Eq. (8.11), the optimal solution of Q* is 2,167.5 units. By substituting this
value into Eq. (8.7), one has ETP = $1,194,683.21. Further, from (8.8), the ETE is
8.65 tonCO2.

Example 2 Suppose that shortage is allowed and fully backordered. Consider the
parameter in numerical Example 1 with b = $10/unit/year.

By solving Eqs. (8.28) and (8.29) simultaneously, the optimal solutions are Q* =
2,636.1 units and B = 920.9 units. By substituting these values into Eq. (8.17), one
has ETPB= $1,199,761.40. This expected total profit is higher than the ETP when
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the shortage is not allowed in Example 1. Further, from (8.30), the ETEB is 4.72
tonCO2 which means the expected total emission when backorder exists is lower.

Without considering carbon emission, from Eqs. (8.28) and (8.29), one has Q*

= 1751.8 units and B = 572.2 units. These results are similar to Wee et al. [33].
Then, applying these values into Eq. (8.17) resulting ETPB= $1,198,959.84. The
comparison between these two ETPB shows that the proposed model by considering
emission cost results in a higher expected total profit per unit time.

8.3 Low-Carbon Supply Chain Inventory Model
for Imperfect Quality Items

This section presents a single-vendor and single-buyer integrated inventory model
for a single type of item containing a certain percentage of defective products per
delivered lot. This study extends previousmodels by considering aweight-dependent
transportation cost and emission, as well as the emission from the warehousing
activity. It also considers a fixed inspection cost and variable inspection costs.

The buyer needs to optimize the order quantity in fulfilling the customer demand.
In issuing the order, the buyer considers the probability of the defective products.
The vendor performs a single-setup multiple-delivery policy (SSMD). Therefore,
the vendor needs to optimize the number of deliveries per production cycle and
the delivery quantity. These decisions will affect transportation and carbon emission
costs. The inventory model for both the vendor and the buyer is illustrated in Fig. 8.3.
The additional notation for the model is presented as follows.

T/n

Q

Ib(t)

Q

T

Time (t)

Iv(t)

Tv2Tv1

T

Fig. 8.3 The inventory level of the vendor and the buyer with imperfect quality
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Decision variables

n Number of deliveries per production cycle (positive integer)

Q Delivery quantity (unit)

Parameters

P Production rate (unit/year)

y The expected good products per delivery (unit/delivery); y = (1-δ)Q

Tv1 Production period for the vendor in each cycle

Tv2 Nonproduction period for the vendor in each cycle

Tb Inventory cycle length per delivery for the buyer; Tb= T/n

Iv(t) Vendor’s inventory level at time t

Ib(t) Buyer’s inventory level at time t

ic Buyer’s inspection setup cost ($/delivery)

s Vendor’s production setup cost ($/order)

hv Vendor’s holding cost ($/unit/year)

tf Vendor’s fixed transportation cost per delivery ($/delivery)

tv Vendor’s variable transportation cost ($/liter)

we Warehouse emission cost per unit product ($/unit/year); we= wEeTx

ETCb The buyer’s total expected cost per year ($/year)

ETCv Vendor’s total expected cost per year ($/year)

ETC Joint total expected cost per year ($/year)

ETCe Joint total expected cost per year for model considering carbon emission ($/year)

ETEb The buyer’s total expected carbon emission per year (kgCO2/year)

ETEv Vendor’s total expected carbon emission per year (kgCO2/year)

ETE Joint total expected carbon emission per year (kgCO2/year)

ETEe Joint total expected carbon emission per year for model considering carbon emission
(kgCO2/year)

8.3.1 Buyer’s Cost Function

In one production cycle T, there are ny good products, therefore

D = ny

T
= (1 − δ)Qn

T
(8.31)
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The buyer’s total cost per year (TCb) is given by

TCb = ordering cost + inspection cost + holding cost + carbon emission cost

Since buyer’s ordering cost per order is c, the ordering cost per year (Co) is given
by

CO = c
n

T
= Dc

(1 − δ)Q
(8.32)

We consider a fixed inspection cost per delivery and variable inspection cost per
unit product similar to Sarkar et al. [21]. Since the buyer performs a 100% inspection
process with two types of inspection costs, the inspection cost per year (CI ) is given
by

CI = ic
n

T
+ ucQ

n

T
= D

(1 − p)Q
ic + D

(1 − p)
uc (8.33)

Figure 8.4 illustrates the buyer’s inventory level at any time t. After the inspection
process, the buyer only holds the good products. The buyer’s inventory per delivery
cycle is given by

Ib = Q2
(
2δD − 2xδ + xδ2 + x

)
2xD

(8.34)

Fig. 8.4 Buyer’s inventory
per delivery cycle Ib(t)

Q = y/(1-p)

Tb = T/n = (1-p)Q/D

Time (t)Q/x

pQ

D
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Therefore, the inventory holding cost per year (CHb) is given by

CHb = hb

(
Q2

(
2Dδ − 2xδ + xδ2 + x

)
2xD

)(
D

(1 − δ)Q

)
(8.35)

Buyer’s carbon emission comes only from warehousing activity such as from the
electricity it consumes. Therefore, the buyer’s carbon emission cost and the expected
total carbon emission per year can be calculated as follows:

CEb = we

(
Q2

(
2Dδ − 2xδ + xδ2 + x

)
2xD

)(
D

(1 − δ)Q

)
(8.36)

ET Eb = wEe

(
Q2

(
2DE[δ] − 2xE[δ] + xE

[
δ2

] + x
)

2xD

)(
D

(1 − δ)Q

)
(8.37)

From Eqs. (8.32), (8.33), (8.35), and (8.36), the expected buyer’s total cost per
year (ETCb) is

ETCb = D

E[1 − δ]
uc +

(
D

E[1 − δ]Q

)
(
c + ic + (hb + we)

(
Q2

(
2DE[δ] − 2xE[δ] + xE

[
δ2

] + x
)

2xD

))

(8.38)

8.3.2 Vendor’s Cost Function

After receiving the buyer’s order, the vendor runs the production until the amount
is sufficient for n deliveries. Figure 8.5 illustrates the vendor’s inventory in one
production cycle, adapted from Goyal et al. [9], Jauhari et al. [14], and Wangsa and
Wee [31]. The first delivery occurs atQ/P. The second delivery until the nth delivery
occurs in (1-p)Q/D time intervals.

The vendor’s total cost per year (TCv) is given by

TCv = setup cost + transportation cost + holding cost + carbon emission cost

Vendor’s setup cost per year (CS) is given by

CS = s

T
= sD

(1 − p)Qn
(8.39)
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Q

Time (t)

Iv(t)

Tv2

Tv1 = nQ/P

Q

nQ

Q/P (n-1)(1-p)Q/D

Depletion of vendor’s 
inventory due to 
delivery to buyer

Time (t)

(1-p)Q/D

Fig. 8.5 Vendor’s inventory per production cycle (T ) for n = 9

Vendor’s transportation cost (CT ) considers the number of deliveries n, fix trans-
portation cost per delivery tf , and variable transportation cost. Nie et al. [19],Wangsa
[30], and Wangsa and Wee [31] considered the variable transportation cost which is
affected by the lot size, shipping distance, and product weight. The vendor’s trans-
portation cost per delivery is given by Eq. (8.40). It considers the fix transportation
cost (tf ), the transportation cost of an empty truck (2dc1tv), and then it has the cost
for the truckload which depends on the delivery distance and quantity, the product
weight, the fuel consumption per ton per km, and the fuel price.

CT = D

(1 − δ)Q

(
t f + 2dc1tv + dlQc2tv

)
(8.40)

Wahab et al. [28] and Hariga et al. [11] emphasized the distance, fuel efficiency,
actual shipment weight, and CO2 emission per gallon of fuel in determining the
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emissions from transporting inventory. Therefore, considering the number of deliv-
eries, the amount of vendor’s carbon emission per year as the result of transportation
activity is

D

(1 − δ)Q
(2dc1 + dQlc2)Fe (8.41)

Vendor’s inventory is depicted in Fig. 8.5. The inventory per year can be evaluated
as follows:

Iv = Q

2

(
(n − 1) − (n − 2)D

(1 − δ)P

)

Hence, the vendor’s holding cost per year is

CHv = hv

Q

2

(
(n − 1) − (n − 2)D

(1 − δ)P

)
(8.42)

Vendor’s carbon emission from the warehousing activity is given by

wEe

(
Q

2

(
(n − 1) − (n − 2)D

(1 − δ)P

))
(8.43)

Vendor’s carbon emission comes from transportation and warehousing activities.
Therefore, based on Eqs. (8.41) and (8.43), the vendor’s carbon emission cost and
the total expected carbon emission per year can be calculated as follows:

CEv = D

(1 − δ)Q
(2de1 + dQe2) + we

Q

2

(
(n − 1) − (n − 2)D

(1 − δ)P

)
(8.44)

ET Ev = D

E[1 − δ]Q
(2dc1 + dlQc2)Fe + wEe

(
Q

2

(
(n − 1) − (n − 2)D

E[1 − δ]P

))

(8.45)

From Eqs. (8.39), (8.40), (8.43), and (8.44), the expected vendor’s total cost per
year (ETCv) is

ETCv = sD

E[1 − δ]Qn
+ D

E[1 − δ]Q
(t f + 2dc1tv + dlQc2tv + (2de1 + dQe2))

+ (hv + we)

(
Q

2

(
(n − 1) − (n − 2)D

E[1 − δ]P

))
(8.46)
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8.3.3 Integrated Decision

This section provides the model when both the vendor and the buyer cooperate and
make an integrated decision. The vendor and the buyer simultaneously specify Q
and n that minimize the joint expected total cost ETCe. The ETCe (Q,n) is the sum
of ETCv and ETCb in Eqs. (8.38) and (8.46).

TCe(Q, n) =
(

D

E[1 − δ]Q

)
(c + ic + (hb

+we)

(
Q2

(
2DE[δ] − 2xE[δ] + xE

[
δ2

] + x
)

2xD

))
+ sD

E[1 − δ]Qn

+ D

E[1 − δ]Q
(t f + 2dc1tv + dlQc2tv + (2de1 + dQe2)) + (hv

+ we)
Q

2

(
(n − 1) − (n − 2)D

E[1 − δ]P

)
+ D

E[1 − δ]
uc (8.47)

First, we also need to prove the convexity of Eq. (8.47). Fixing n and then taking
the first and second derivatives of ETCe(Q,n) with respect to Q yields

∂ETCe(Q, n)

∂Q
= 1

2PQ2xnE[1 − δ]
((PQ2nx)(hb + nhv − hv + nwe − 2hbE[δ]

+ hvE[δ] + hbE
[
δ2

] − nhvE[δ] + weE
[
δ2

] − weE[δ]

− nweE[δ]) + (
2PDQ2nE[δ]

)
(hb + we)

− (2PDnx)
( s

n
+ c + ic + t f + 2dc1tv

+2de1)−
(
DQ2nx

)
(nhv − 2hv + nwe − 2we)

)
(8.48)

∂2ETCe(Q, n)

∂Q2
= 2D

(
s + n

(
c + ic + t f + 2dc1tv + 2de1

))
E[1 − δ]nQ3

≥ 0 (8.49)

Equation (8.49) shows that the second derivative is always positive. Therefore,
for fixed n, the function ETCe(Q, n) is convex in Q. Setting Eq. (8.48) equal to zero
gives the optimal order

Q∗ =
√√√√√√

2DPx
(
s + nC + nic + nt f + 2ndc1tv + 2nde1

)
n((hv + we)(2xD + nx P − nxD − nx PE[p]) + (hb + we)(

2DPE[p] + x PE
[
p2

]) + (hv − 2hb − we)(x PE[p]) + (hb − hv)(x P)
)

(8.50)
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To find the optimal values of the positive integer number of deliveries n and the
order quantity Q, the following algorithm can be used.

Step 1 Set n = 1

Step 2 From Eq. (8.50) find Q

Step 3 Substitute Q into Eq. (8.47) to calculate the corresponding ETCe(Q,n)

Step 4 If ETCe(Q(n-1), (n-1)) ≥ ETCe(Q,n) ≤ ETCe(Q(n + 1), (n + 1))¸ then n = n* , Q = Q*,
and ETCe(Q,n) = ETC*

e , otherwise, set n = n + 1 and back to Step 2

Step 5 Substitute n* and Q* into Eqs. (8.37) and (8.45). Find ETE*
e= ETE*

b+ ETE*
v .

8.3.4 Illustrative Example

Anumerical example is presented to illustrate the application of themodel. The value
is adopted from Wangsa and Wee [31], Hariga et al. [11], and Tiwari et al. [24] with
some modification. The complete parameter values are presented in Table 8.1.

In an integrated decision, the vendor and the buyer cooperate and make the deci-
sion simultaneously. Applying the proposed solution procedure guide us to the opti-
mal value of n*= 4 and Q* = 407.50 units with the ETC*

e = $61,800.96 and the

Table 8.1 Parameter values

Parameter Value Parameter Value

P 40,000 units/year, l 0.01 ton/unit

D 10,000 units/year c1 27 L/100 km

x 175,200 unit/year c2 0.57 L/100 km/ton truckload

c $30/order Tx $75/tonCO2

ic $100/delivery Fe 2.6 kgCO2/l = 2.6 × 10−3 tonCO2/l

uc $0.5/unit Ee 0.5 kgCO2/kWh = 0.5 × 103 tonCO2/kWh

hb $45/unit/year e1 $0.05265/km

s $3,600/setup e2 $1.1115 × 10−5/unit/km

hv $38/unit/year w 1.44 kWh/unit/year

tf $50/delivery we $0.054/unit/year

tv $0.75/l δ uniformly distributed with α, β: 0 ≤ δ ≤ 0.04

d 100 km

Notes
- Vehicle fuel consumption (c1 & c2) is adopted from Volvo Truck Corporation [27] for regional
traffic truck
- Warehouse energy consumption (w) and carbon tax (tx) are adopted from Hariga et al. [11]
- Fuel standard emission (Fe) is adopted from the US. EPA [26]
- Electricity standard emission (Ee) is adopted from McCarthy [16]
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production quantity 1,630 units per cycle. The corresponding total costs from differ-
ent values of n are given in Table 8.2. The ETE*

b= 0.0057 tonCO2 and the ETE*
v=

3.6688 tonCO2. Therefore, an integrated decision results in the total expected carbon
emission per year 3.6745 tonCO2.

When we eliminate the carbon emission costs from the model (i.e., e1 = e2 = we

= 0), the optimal value of n# remains 4. For sure the ETC is lower compared to when
the emission cost is taken into account, as shown in Table 8.3. The order delivery size
Q# becomes 405.87 units, and therefore the optimal vendor’s production quantity
is 1,623.48 units per cycle. Incorporating carbon emission into the decision model
will increase the delivery size and decrease the delivery frequency. By substituting
n# and Q# into the original parameter values, the ETCe = $61,801.41. This result
is 0.0007% higher than the ETCe of n*. Also, the ETEe = 3.6886 tonCO2 which
is 0.38% higher than the ETEe of n*. These results mean that incorporating carbon
emission cost into the supply chain decision model is beneficial for the vendor and
buyer who work in a country implementing carbon emission tax.

Sensitivity analysis is performed to explore the impact of the probability of defec-
tive items (δ) and the carbon tax rate (Tx), on decision variables n*, Q*, and the
corresponding ETCe and ETEe. The results are shown in Fig. 8.6. It shows that as
the probability of defective items increases, then both the ETCe and ETEe increase.
When the carbon tax rate increases, then the ETCe increases but the ETEe decreases.

Table 8.2 Optimal solution n and Q in an integrated decision

n Q ETCb ($) ETCv ($) ETCe ($) ETEb
(tonCO2)

ETEv
(tonCO2)

ETEe
(tonCO2)

1 1203.65 32,839.70 37,273.11 70,112.81 0.0502 1.3417 1.3919

2 709.62 22,674.63 40,892.94 63,567.57 0.0175 2.1708 2.1883

3 513.73 19,052.49 42,952.91 62,005.40 0.0091 2.9412 2.9504

4* 407.50 17,374.83 44,426.13 61,800.96 0.0057 3.6688 3.6745

5 340.55 16,533.34 45,615.56 62,148.90 0.0040 4.3604 4.3644

6 294.39 16,122.59 46,645.05 62,767.64 0.0030 5.0207 5.0237

Table 8.3 Optimal solution of n when e1, e2, and we are equal to 0

n Q ETCb ($) ETCv ($) ETC ($) ETEb
(tonCO2)

ETEv
(tonCO2)

ETE
(tonCO2)

1 1202.74 32,788.49 37,183.48 69,971.98 0.0501 1.3426 1.3927

2 708.24 22,628.92 40,737.79 63,366.72 0.0174 2.1748 2.1922

3 512.18 19,012.37 42,734.44 61,746.81 0.0091 2.9497 2.9588

4# 405.87 17,341.11 44,146.18 61,487.29 0.0057 3.6829 3.6886

5 338.89 16,506.70 45,275.89 61,782.59 0.004 4.381 4.385

6 292.72 16,103.57 46,247.37 62,350.95 0.003 5.048 5.051
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Fig. 8.6 Sensitivity analysis
for different values of E[δ]
and Tx
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8.4 Concluding Remarks

In this chapter, low-carbon EOQ and vendor–buyer supply chain systems with defec-
tive items are discussed. The buyer performs a 100% inspection process with two
types of inspection costs. Two EOQ models with different shortage situations were
considered. The study incorporated carbon emissions from transportation and inven-
tory holding activities. This study shows that incorporating an emission cost in the
cost function results in a higher expected total profit per unit time. The study also
shows that the expected total emission is lower when a complete backordered short-
age is allowed.

The integrated vendor–buyer supply chain assumes an integrated system that tries
to minimize the total cost as well as the emission cost. The decisions on the number
of deliveries per production cycle and the delivery quantity affect transportation
and warehousing emissions. The study shows that incorporating a carbon emission
cost and implementing a carbon emission tax in the supply chain decision model
is beneficial for the vendor and the buyer. The sensitivity analysis shows that the
probability of defective items affects the total cost and emission. It also confirms that
when the carbon taxes rate increases, the expected total emission will decrease.

This chapter considered carbon emission and imperfect quality in a supply chain
system. The proposed models can be further extended by considering the possibility
to return and repair the defective products. These conditions will affect the total
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cost and carbon emission. In addition, further study can incorporate the effect of
item deterioration and partial backorder. The influence of consumers’ low-carbon
awareness on-demand rate such as in Tao and Xu [23] is another interesting direction
for extension.
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Chapter 9
Non-instantaneous Deteriorating Model
for Stock-Dependent Demand
with Time-Varying Holding Cost
and Random Decay Start Time

Nirmal Kumar Duari and Jobin George Varghese

Abstract In this study,we have considered an inventorymodel of non-instantaneous
deteriorating items with stock-dependent demand. Shortages are allowed and fully
backlogged. Holding cost is not always fixed; it may depend occasionally on time.
That is why we have considered holding cost as constant as well as time-dependent
in the model. Also, the effect of decay start time has been considered and they are
random. We categorize the model into three cases. In the Cases I and II, we consider
fixed decay start time with constant and time-varying holding cost, respectively. The
random decay start time has been considered in the last case. Mathematical models
have been derived to determine optimal-order quantity that minimizes the total cost.
Optimal solution has been illustrated with numerical examples and along with that
sensitivity analysis of parameters has been carried out.

Keywords Weibull distributed deterioration · Stock-dependent demand · �

distribution · Time-dependent holding cost · Random decay start time

9.1 Introduction

Inventory structure is one of the most important aspects of operations research and is
essential in commercial initiatives and engineering sectors. Little is known about the
effect of investing in non-instantaneous deterioration even though the inventory sys-
tem for instantaneous deteriorating items has been studied for a long time. Therefore,
here the inventory model has been studied for non-instantaneous deteriorating items
by bearing in mind the fact that using postponing the decay start time. As a result, the
retailer can diminish the deterioration by which the retailer can reduce the financial
losses, progress the customer service level, and increase business effectiveness.
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In the traditional inventory models, items conserved their physical features while
they were kept in the inventory. This conjecture is obviously true for most items,
but not for all cases. However, the deteriorating items are subject to continuous loss
in their utility during the course of their lifetime due to degeneration, destruction,
decay, and penalty of other reasons. Bearing this in mind, monitoring and preserving
the inventory of deteriorating items become a challenging problem for decision-
makers. Ghare and Schrader [8] recognized “a model for an exponentially decaying
inventory.” Dave and Patel [2] were the first to study “a deteriorating inventory with
linear increasing demand when scarcities are not permissible.” Recent work in this
field has been done by some researchers, which include Zhou et al. [24], who gave a
new “adjustable production development strategy for deteriorating items with time
fluctuating demand and partial lost trade.” Wu et al. [23] and Ouyang et al. [16] first
combined the idea of non-instantaneous deterioration. They also established that if
the retailer could efficiently decrease the declining rate of item by refining the storage
facility, the entire yearly pertinent inventory cost would be dropped.

Ajanta Roy [17] developed a model when demand rate is a function of selling
price, the deterioration rate is time proportional, holding cost is dependent on time,
and demand rate is dependent on selling price. Lee and Hsu [11] industrialized “a
manufacturemodel over a limited planning horizon for deteriorating itemswith time-
dependent demand with a volume restraint.” Hsu et al. [9] established a deteriorating
inventory policy when the retailer capitalizes on preservation technology to decrease
the degree of product decline. Chang et al. [1] gave “optimum replacement strategy
for non-instantaneous deteriorating items with stock reliant on demand.” Dye and
Ouyang [6] calculated a “deteriorating inventory system with inconsistent demand
and trade credit backing.” Hung [10] gave “an inventory model with general type
demand, deterioration and backorder rates.” Mishra and Singh [14] dealt with “par-
tial backlogging.” Leea and Dye [12] expressed a deteriorating inventory model with
“stock-dependent demand by permitting preservation technology price as a decision
variable in combination with replacement policy.” Maihami and Kamalabadi [13]
established a joint pricing and inventory control system for “non-instantaneous dete-
riorating items,” and assume a cost- and time-dependent demand. Sarkar [18] exam-
ined an EOQ model with “deferral in expenditures and time-varying deterioration
rate.” Dye and Hsieh [5] offered “an extended prototype” of Hsu et al. [9] in view of
“non-instantaneous decline reliant on the length of replenishment cycle.” Shah et al.
[19] combined “time-varying deterioration and holding cost rates in the inventory
model” where scarcities were permissible. Themain idea in their model is to discover
the retailer’s renewal, retailing price, and advertisement policies that make the most
of the retailer’s profit. Mishra et al. [15] and Duari et al. [3] provided an inventory
model for deteriorating matters using time-varying holding cost and time-dependent
demand. Duari et al. [4] considered shortage on deteriorating items. Udayakumar and
Geetha [7, 22] reflected ideal lot sizing strategy for non-instantaneous deteriorating
items with value and advertisement-dependent demand under incomplete backlog-
ging. Along with this some researchers also considered stock-dependent demand
in order to consider more realistic cases. Udayakumar and Geetha [22] deliberated
non-instantaneous declining items with two stages of storing under trade credit plan.
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Shaikh et al. [20] considered non-instantaneous deterioration inventory model with
price- and stock-dependent demand for fully backlogged shortages under inflation.
Tripathi et al. [21] considered inventory models for stock-dependent demand and
time-varying holding cost under different trade credits. The consideration of decay
start time is important due to rapid social changes, and the fact that it can reduce the
total cost significantly. This helps the retailers to reduce their economic losses. For
this reason, in this article we have considered an inventory model more realistic by
considering decay start time as both known and random for stock-dependent demand
with time-varying holding cost for deteriorating items.

The rest of the paper is designed as follows: Sect. 9.2 defines notation and assump-
tions. Sections 9.3 and 9.4 derive the model development and solution procedure,
respectively. Section 9.5 gives the algorithm to obtain optimal solution. Section 9.6
presents mathematical instances in order to exemplify the model and attain manage-
rial understandings. In Sect. 9.7,we provide sensitivity analysis followed bySect. 9.8,
which provides conclusion and upcoming possibility of research.

9.2 Notations and Assumptions

Given below are the notations and assumptions that have been used to develop the
projected model.

9.2.1 Notations

R Stock parameter
U Stock parameter
K Setup cost
h Holding cost per unit time
S Amount of shortage of inventory during the interval [t1, T]
s Shortages cost per unit time
Q Amount of on-hand inventory at the start of the cycle
Q1 Amount of inventory at the start of the deterioration
t0 Deterioration start time
t1 Shortage start time
T Length of the cycle
TC Total inventory cost.
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9.2.2 Assumptions

(i) Lead time is zero, i.e., the production is instantaneous.
(ii) Time horizon is infinite.
(iii) Demand is a function of on-hand inventory. The functional relationship between

demand and the instantaneous inventory level q (t) is:

D = Rqϒ, R > 0, 0 < ϒ < 1

During shortage of inventory, we have considered the demand to be fixed:

Henceϒ = 0,D = R,R > 0

(iv) The deterioration is non-instantaneous, i.e., in the interval (0, t0) there is no
deterioration.After a certain time t0, the deteriorations start and the rate of dete-
rioration of the inventory is followed by a two-parameter Weibull distribution:
� = αβt (β−1), where α > 0 and β > 0 are the scale and shape parameters.

(v) Shortages are allowed and fully backlogged.
(vi) The time-dependent holding cost is given by htn, n ≥ 1.
(vii) The rate of deterioration follows Weibull distribution. But the start time of

the deterioration may be either known or unknown. We consider decay for
both known and unknown cases. For the unknown case, the decay start time
is assumed as random and follows � distribution. The probability density
function is given by

f(x) =
{

1
�(l) l

x−1e−ldl, 0 < x < ∞
0, elsewhere

The mean of the � distribution is l. Hence, the random decay start time will be l.

9.3 Model Development

First, the level of inventory level reduces due to demand only. After some time,
deterioration starts, the level of inventory decreases gradually due to demand of the
customers and by decay of items, and then shortage arises.

At t = 0 when the cycle starts, the inventory is at a maximum level of Q
units. During the interval [0, t0], the inventory depletes due to demand. At time
t = t0, the inventory level reaches Q1 after which inventory start depleting in the
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Fig. 9.1 Inventory—time
representation

interval [t0, t1] due to deterioration. At time t = t1, the inventory level reaches zero
after which shortage of inventory takes place in the interval [t1, T].

The changes in inventory described above at any time t are given by the following
differential equations (Fig. 9.1):

dq

dt
= −Rqγ , 0 ≤ t ≤ t0 (9.1)

dq

dt
+ αβtβ−1q = −Rqγ , t0 ≤ t ≤ t1 (9.2)

And

dq

dt
= −R, t1 ≤ t ≤ T (9.3)

The boundary conditions are q(0) = Q, q(t0) = Q1, q(t1) = 0, q(T) = −S.
Then the solution of Eqs. (9.1), (9.2), and (9.3) are

q(t) = (
Qm − Rmt

) 1
m 0 ≤ t ≤ t0 (9.4)

q(t) = (Rm)
1
m

[
(t1 − t) + α

β + 1

(
tβ+1
1 − tβ+1

)
+ α

(
tβ+1 − tβ t1

)]
, t0 ≤ t ≤ t1

(9.5)

where m = 1 − U (say)

q(t) = R(t1 − t), t1 ≤ t ≤ T (9.6)
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Now at t = t0, we have q (t) = Q1. From Eq. (9.4), we have

Q1 = (
Qm − Rmt0

) 1
m and t0 =

(
Qm − Qm

1

Rm

)
(9.7)

At t = T, we have q (t) = S. From Eq. (9.6), we have

S = R(T − t1) and t1 = T − S

R
(9.8)

9.3.1 Different Costs for the Models

The ordering cost per cycle has been kept fixed at K per cycle.
The shortage cost per cycle has been calculated from Eqs. (9.6) and (9.8) as

SC = s
T∫
t1
q(t)dt = −s

R

2
(t1 − T )2 (9.9)

The deterioration cost in the interval [0, t1] is given by

DC = c
T∫
t1

θ(t)q(t)dt + c
t1∫
t0

θ(t)q(t)dt (9.10)

Since in the interval [0, t0], the inventory depletes due to demand only, i.e., in this
interval there is no deterioration; hence, the deterioration cost in the interval [0, t0]
is equal to 0:

i.e., c
T∫
t1

θ(t)q(t)dt = 0 (9.11)

Hence, the deterioration cost in the interval [t0, t1] is given by

DC = c α β(Rm)
1
m

{(
tβ+1
1

β(β + 1)
+ αtβ+1

1

2β(β + 1)

)
−
((

t1t
β

0

β
− tβ+1

0

(β + 1)

)

+ α

β + 1

(
tβ0 t

β+1
1

β
− t2β+1

0

(2β + 1)

)
+ α

(
t2β+1
0

(2β + 1)
− t1t

2β
0

2β

))}
(9.12)

In general, we considered the holding cost as fixed, i.e., a fixed amount of holding
cost h is multiplied. The holding cost is given by
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HC = h
t0∫
0
q(t)dt + h

t1∫
t0
q(t)dt (9.13)

= (Rm)
1
m

⎧⎪⎨
⎪⎩

ht21

(
β2+β

(
2αtβ1 +3

)
+2
)

2(β+1)(β+2) + ht0
(
−2αβtβ+1

0 + 2α(β + 2)t1t
β

0

)
+ht0

((
β2 + 3β + 2

)
t0 − 2(β + 2)t1

(
β + αtβ1 + 1

))
⎫⎪⎬
⎪⎭

+ 1
2hQt0

(
2 − Q−m Rt0

) (9.14)

9.4 Total Cost of the Model and Solution Procedure

Total cost of the model has been calculated based on three different cases. First,
we calculate total cost when the holding cost is fixed and t0 is known. Second, we
calculate total cost when the holding cost is time-dependent and t0 is known. Third,
we calculate total cost when the holding cost is time-dependent and t0 is random.

9.4.1 Case I: Fixed Holding Cost When t0 Is Known

The total cost of the inventory model is governed by the ordering cost, deterioration
cost, holding cost, and shortage cost which has been calculated in Eqs. (9.9), (9.12),
and (9.14). Therefore, the total cost per unit time is given as

TC = K + DC + HC + SC

T
(9.15)

= K + c α β(Rm)
1
m

{(
tβ+1
1

β(β+1) + αtβ+1
1

2β(β+1)

)
−
((

t1t
β

0
β

− tβ+1
0

(β+1)

)
+ α

β+1

(
tβ0 t

β+1
1
β

− t2β+1
0

(2β+1)

)
+ α

(
t2β+1
0

(2β+1) − t1t
2β
0

2β

))}
+(Rm)

1
m

{
ht21

(
β2+β

(
2αtβ1 +3

)
+2
)

2(β+1)(β+2) + ht0
(
−2αβtβ+1

0 + α(β + 2)t1t
β

0

)
+ht0

((
β2 + 3β + 2

)
t0 − 2(β + 2)t1

(
β + αtβ1 + 1

))}
+ 1

2hQt0
(
2 − Q−m Rt0

)− s R
2 (t1 − T )2

. (9.16)

In order to minimize the total cost TC (t0, t1), the optimum value of t1 can be
attained by solving the equation:

d(TC)

dt0
= 0 And

d(TC)

dt1
= 0. (9.17)

{
−1

2
hQ1−m R + 1

2
hQ
(
2 − Q−m Rt0

)
Rm

1
m
(
h
(
2 + 3β + β2

)
t0
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+ h
((
2 + 3β + β2

)
t0 − 2(2 + β)t1

[
1 + β + αtβ1

])
+ h

(
1
[
−2αβt1+β

0 + tβ0 t1α[2 + β]
]

+
(
−2αβ(1 + β)tβ0

+βt−1+β

0 t1α[2 + β]
)
t ′0
[
−2αβt1+β

0 + tβ0 t1α[2 + β]
]))

+ cαβ[mR]
1
m

⎛
⎝tβ0 − t1(t0t1)

−1+β −
α
(
−t2β0 + t−1+β

0 t1+β

1

)
1 + β

− α′
[

t1+2β
0

1 + 2β
− t1[t0]2β

2β

](
t2β0 − t1[t0]

−1+2β t
′
1[t0]

))}
= 0 (9.18)

And,

⎧⎨
⎩−Rs(−T + t1) + caβ[mR] 1m

⎛
⎝− αtβ0 t

β
1

β
− t0(t0t1)

−1+β

+ (1 + β)tβ1
β[1 + β] + α(1 + β)tβ1

2β[1 + β] + 1
[
t0
]
t1
[
t0
]−1+2β

α′
⎡
⎣ t1+2β

0
1 + 2β

− t1
[
t0
]2β

2β

⎤
⎦
⎞
⎠

+ Rm
1
m
(
htβ0 α[2 + β]t ′0

[
−2αβt1+β

0 + tβ0 t1α[2 + β]
]

− 2h(2 + β)t0
(
1[1 + β + α] + αβt−1+β

1 t ′1
[
1 + β + αtβ1

])

+
h
(
(2t1)

[
2 + β2 + β

[
3 + 2αtβ1

]]
+ 2αβt−1+β

1 β′[3 + 2αtβ1

](
t21

)[
2 + β2 + β

[
3 + 2αtβ1

]))
2(1 + β)(2 + β)

⎫⎬
⎭ = 0

(9.19)

The entire cost would be least if the determinant of the hessian matrix (H-matrix)
of TC (t0, t1) is positive definite for t0 = t0* and t1 = t1* obtained from Eqs. (9.18)
and (9.19), i.e.,

H =
∣∣∣∣∣

∂2TC
∂t∗20

∂2TC
∂t∗1 ∂t∗0

∂2TC
∂t∗0 ∂t∗1

∂2TC
∂t∗21

∣∣∣∣∣ ≥ 0 (9.20)

9.4.2 Case II: Time-Varying Holding Cost and Known t0

For realistic view, we consider time-dependent holding cost since inventory stored
requires maintenance and calculating the cost behind that would help in obtaining
accurate total cost. Therefore, we consider the holding cost as htn. Hence, the holding
cost of the model is given by the equation:

HC = t0∫
0
htnq(t)dt + t1∫

t0
htnq(t)dt (9.21)
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= hQt01+n
(

1
1+n − Q−m Rt0

2+n

)
+ [t12+n(2+n2+(3+2t1βα)β+β2+n(3+(2+t1βα)β))]

(1+n)(2+n)(1+n+β)(2+n+β)

−
ht01+n

(
− t0

2+n − t0β
2+n + t01+β αβ

2+n+β
+ t1((1+β)(1−t0β α+t1β α+β)+n(1+t1β α+β−t0β α(1+β)))

(1+n)(1+n+β)

)
1+β

(9.22)

The total cost of the inventorymodel is governedby the ordering cost, deterioration
cost, holding cost, and shortage cost which has been calculated in Eqs. (9.9), (9.12),
and (9.22):

TC = K + DC + HC + SC

T
(9.23)

= hQt1+n
0

(
1

1+n − Q−m Rt0
2+n

)
+ ht2+n

1

(
2+n2+

(
3+2tβ1α

)
β+β2+n

(
3+
(
2+tβ1α

)
β
))

(1+n)(2+n)(1+n+β)(2+n+β)

−
ht1+n

0

(
− t0

2+n − t0β

2+n + t
1+β
0 αβ

2+n+β
+ t1

(
(1+β)

(
1−t

β
0 α+t

β
1 α+β

)
+n
(
1+t

β
1 α+β−t

β
0 α(1+β)

)
(1+n)(1+n+β)

)

1+β

+cαβRm
1
m

(
t1+β

1

(
2+4β+tβ1α(1+β)

)
2β(1+β)(1+2β)

− t0β
(
2t1+β

1 α(1+2β)+2t0β
(
−1+

(
−2+tβ0α

)
β
)
−t1

(
−2+tβ0α

)
(1+3β+2β2)

)
2β(1+β)(1+2β)

)
− 1

2 sR(T − t)2

(9.24)

To minimize the total cost TC(t0, t1) per unit time, we use the following technique
and the optimal value of t1 can be obtained by solving the following equations:

d(TC)

dt0
= 0 And

d(TC)

dt1
= 0 (9.25)

i.e.
Q−m

(
−cm

1
m Qm Rtβ0 αβ

(
t1+β
0 αβ − t0(1 + β) − tβ0 t1α(1 + β) + t1

(
1 + tβ1 α + β

))
t0(1 + β)

+
ht1+n
0

(
Q1+m (1 + β) − QRt0(1 + β) + Qm

(
−t1+β

0 αβ + t0(1 + β) + tβ0 t1α(1 + β) − t1
(
1 + tβ1 α + β

))))
t0(1 + β)

= 0

(9.26)

And

Rs(T − t1) +
ht2+n
1

(
2t−1+β
1 αβ2 + nt−1+β

1 αβ2
)

(1 + n)(2 + n)(1 + n + β)(2 + n + β)

+
ht1+n
1

(
2 + n2 +

(
3 + 2tβ1 α

)
β + β2 + n

(
3 +

(
2 + tβ1 α

)
β
))

(1 + n)(1 + n + β)(2 + n + β)

+ cm
1
m Rαβ

⎛
⎝ t2β1 α

2(1 + 2β)
+

tβ1

(
2 + 4β + tβ1 α(1 + β)

)
2β(1 + 2β)

−
tβ0

(
2tβ1 α(1 + β)(1 + 2β) −

(
−2 + tβ0 α

)(
1 + 3β + 2β2

))
2β(1 + β)(1 + 2β)

⎞
⎠
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−
ht1+n
0

⎛
⎝ t1

(
nt1−1+βαβ+t

−1+β
1 αβ(1+β)

)
(1+n)(1+n+β)

+ (1+β)
(
1−t

β
0 α+t

β
1 α+β

)
+n
(
1+t

β
1 α+β−t

β
0 α(1+β)

)
(1+n)(1+n+β)

)

1 + β
= 0

(9.27)

The total cost would be minimum if the determinant of the hessian matrix (H-
matrix) of TC (t0, t1) is positive definite for t0 = t0* and t1 = t1* obtained from
Eqs. (9.26) and (9.27), i.e.,

H =
∣∣∣∣∣

∂2TC
∂t∗20

∂2TC
∂t∗1 ∂t∗0

∂2TC
∂t∗0 ∂t∗1

∂2TC
∂t∗21

∣∣∣∣∣ ≥ 0 (9.28)

9.4.3 Case III: Time-Dependent Holding Cost When t0 Is
Random

Again, as we assume that the holding cost is time-dependent, so the holding cost is
htn

HC = t0∫
0
htnq(t)dt + t1∫

t0
htnq(t)dt (9.28a)

The decay start time, t0, is random and that follows � distribution, whose density
function is

f(x) =
{

1
Γ (l) l

x−1e−ldl, 0 < x < ∞
0, elsewhere

(9.29)

And the mean of the �distribution is l.
Since holding cost and deterioration cost are functions of t0 random, the holding

cost anddeterioration cost should be expected holding cost and expected deterioration
cost, respectively.

The expected holding cost is given as

E(HC) = l∫
0

t0∫
0
htnq(t)dtdl + l∫

0

t1∫
t0
htnq(t)dtdl (9.30)
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= hQQ−m ((2+n)Qm−(1+n)(1+l+n)R)�[1+l+n]
(1+n)(2+n)�[l]

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
h
(
t2+n
1 (1 + β)

(
2 + n2 +

(
3 + 2tβ1 α

)
β + β2 + n

(
3 +

(
2 + tβ1 α

)
β
))

�[l]+(
2 + n2 + 3β + β2 + n(3 + 2β)

)(
1 − 2t1 − 2t1+β

1 α + β − 2t1β + n2(1 + β)+
l(1 + n)(1 + β) − n

(
−2 + t1 + t1+β

1 α − 2β + t1β
)
)�[1 + l + n]−(

2 + 3n + n2
)
α(−t1(1 + β)(2 + n + β)

+β(1 + n + β)(1 + l + n + β))�[1 + l + n + β]))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

((1+n)(2+n)(1+β)(1+n+β)(2+n+β)�[l])
(9.31)

The expected deterioration cost is given by

EDC =

⎛
⎜⎜⎝

cαβRm
1
m (t1+β

1

(
2 + 4β + tβ1α(1 + β)

)
�[l]−

2(1 + 2β)
(
t1+β

1 α + t1(1 + β) − β(l + β)
)
�[l + β]+

α
(−2β2(l + 2β) + t1

(
1 + 3β + 2β2

))
�[l + 2β])

⎞
⎟⎟⎠

2β(1 + β)(1 + 2β)�[l]
(9.32)

The total cost of the inventory model is governed by the ordering cost, expected
deterioration cost, and expected holding cost and shortage cost given by Eqs. (9.9),
(9.31), and (9.32), respectively. Therefore, the expected total cost per unit is given
by

ETC = K + EDC + EHC + SC

T
(9.33)

= hQQ−m ((2 + n)Qm − (1 + n)(1 + l + n)R
)
Γ [1 + l + n]

(1 + n)(2 + n)Γ [l]
− 1

2
sR(T − t1)

2

+

⎛
⎜⎜⎜⎜⎝

(h(t2+n
1 (1 + β)(2 + n2 + (3 + 2tβ1 α)β + β2 + n(3 + (2 + tβ1 α)β))Γ [l]+

(2 + n2 + 3β + β2 + n(3 + 2β))(1 − 2t1 − 2t1+β
1 α + β − 2t1β + n2(1 + β)+

l(1 + n)(1 + β) − n(−2 + t1 + t1+β
1 α − 2β + t1β))Γ [1 + l + n]−

(2 + 3n + n2)α(−t1(1 + β)(2 + n + β) + β(1 + n + β)(1 + l + n + β))Γ [1 + l + n + β]))

⎞
⎟⎟⎟⎟⎠

((1 + n)(2 + n)(1 + β)(1 + n + β)(2 + n + β)Γ [l])

+

⎛
⎜⎜⎝

cαβRm
1
m (t1+β

1 (2 + 4β + tβ1 α(1 + β))Γ [l]−
2(1 + 2β)

(
t1+β
1 α + t1(1 + β) − β(l + β)

)
Γ [l + β]+

α(−2β2(l + 2β) + t1(1 + 3β + 2β2))Γ [l + 2β])

⎞
⎟⎟⎠

2β(1 + β)(1 + 2β)Γ [l]
(9.34)

To minimize the total cost TC (t0, t1) per unit time, the optimal values of t0, t1 can
be obtained by solving the following equations:

d(TC)

dt0
= 0 And

d(TC)

dt1
= 0 (9.35)

And the total cost would be minimum if the determinant of the Hessian matrix
(H-matrix) of TC (t0, t1) is positive definite for t0 = t0* and t1 = t1* obtained from
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Eqs. (9.35), i.e.,

H =
∣∣∣∣∣

∂2TC
∂t∗20

∂2TC
∂t∗1 ∂t∗0

∂2TC
∂t∗0 ∂t∗1

∂2TC
∂t∗21

∣∣∣∣∣ ≥ 0 (9.36)

9.5 Algorithm to Calculate Optimum Solution

Step 1: Initialize the value of the variable α, β, U, R, K, C, Q, n, and s
Step 2: Evaluate TC (t0, t1)
Step 3: Evaluate d(TC)

dt0
and d(TC)

dt1

Step 4: Solve the simultaneous equation d(TC)

dt0
= 0 and d(TC)

dt1
= 0

Step 5: Using the results obtained in step 4, evaluate det(H)
Step 6: If the value of det(H) is greater zero, then the take the solution as optimal
solution and stop
Step 7: Otherwise, go to Step 1 and choose a different set of initial values of the
parameters
Step 8: Stop.

9.6 Numerical Results

For numerical studies, we have considered an example to illustrate the model and
examine the effectiveness of the proposed model. We set the following values of the
parameters involved in the models: α = 2, β = 0.5, U = 0.2, R = 20, K = 100, C =
50, n = 2, and s = 1.

The optimal solutions are shown in Table 9.1.
From the above table, we see that the total cost in Case II is minimum among

the three different total costs. Therefore, the model in Case II is more profitable for
known decay start time of non-instantaneous deterioration rather than the other two
cases (Figs. 9.2, 9.3, and 9.4).

Table 9.1 Optimal solutions for three different cases

Case t0 t1 Q1 Total cost

I 0.384 0.95 226.82 1508.712

II 0.625 0.95 212.21 402.109

III 0.3689 0.95 227.73 1230.185
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Fig. 9.2 The total cost function graphically for Case I

Fig. 9.3 The total cost function graphically for Case II

Fig. 9.4 The total cost function graphically for Case III
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9.7 Sensitivity Analysis

The sensitivity of TC, Q1, and t0 for Case I is given in the Table 9.2.
It is seen from the above table that the total cost increases with the increase in

the deterioration components. It also follows for stock parameters. The next figure

Table 9.2 Sensitivity for Case I with different parameters

Parameter Change Q1 t0 t1 Total cost

1.90 227.9000 0.3661 0.95 1481.42

1.95 227.3500 0.3752 0.95 1495.32

α 2.00 226.8200 0.3840 0.95 1508.71

2.05 226.3000 0.3926 0.95 1521.64

2.10 225.7973 0.4010 0.95 1534.11

0.490 227.0630 0.3801 0.95 1501.22

0.495 226.9430 0.3821 0.95 1504.99

β 0.500 226.8200 0.3840 0.95 1508.71

0.505 226.7050 0.3860 0.95 1512.39

0.510 226.5891 0.3879 0.95 1516.02

0.190 228.6284 0.3742 0.95 1497.39

0.195 227.7452 0.3791 0.95 1503.08

U 0.200 226.8239 0.3840 0.95 1508.71

0.205 225.8626 0.3891 0.95 1514.28

0.210 224.8595 0.3942 0.95 1519.77

18.00 231.5912 0.3384 0.95 1436.09

19.00 229.2564 0.3618 0.95 1474.08

R 20.00 226.8239 0.3840 0.95 1508.71

21.00 224.3001 0.4056 0.95 1540.23

22.00 221.6911 0.4264 0.95 1568.87

9.00 225.1200 0.4122 0.95 1408.03

9.50 225.9900 0.3977 0.95 1459.08

h 10.00 226.8200 0.3840 0.95 1508.71

10.50 227.6061 0.3711 0.95 1557.99

11.00 228.3472 0.3588 0.95 1604.01

1.00 226.8200 0.3840 0.95 1508.71

2.00 226.8800 0.3828 0.90 1480.47

s 3.00 229.6200 0.3400 0.85 1386.81

4.00 231.1800 0.3110 0.80 1293.77

5.00 233.2270 0.2770 0.75 1201.63
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Fig. 9.5 Effect of stock
parameters
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shows graphically the effect of stock parameters and deterioration parameters on the
total cost (Figs. 9.5 and 9.6).

The sensitivity of TC, Q1, and t0 for Case II is given in the Table 9.3.
It is seen from the above table that the total cost increases with the increase in

the deterioration components. It also follows for stock parameters. The next figure
shows graphically the effect of stock parameters and deterioration parameters on the
total cost (Figs. 9.7 and 9.8).

The sensitivity of TC, Q1, and t0 for Case III is given in the Table 9.4.
The above table shows that the total cost increases with the increase in the dete-

rioration components, while it decreases for stock parameter U and increases for R.
The next figure shows graphically the effect of stock parameters and deterioration
parameters (Figs. 9.9 and 9.10).

9.7.1 Observation and Managerial Insights Based
on Numerical Results and Sensitivity

(1) Significant effect of deterioration components has been observed for all cases.
The optimum inventory level is higher in the cases when the policy-maker has
chosen the model in the Case III, and thus this makes the retailer fulfill more
customers’ demand and in this sense the model can maximize the retailer’s
profit.

(2) Stock components have had a significant phenomenon as above, and hence the
retailer can draw the similar policy that follows from the earlier.

(3) Since the total cost is lesser, it is better to choose time-varying holding cost than
fixed holding cost from the retailer’s point of views.

(4) Consideration of shortage in inventory plays a significant role.
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Table 9.3 Sensitivity for Case II with different parameters

Parameter Change Q1 t0 t1 Total cost

1.90 212.7400 0.6174 0.95 395.73

1.95 212.5000 0.6214 0.95 398.95

α 2.00 212.2000 0.6250 0.95 402.11

2.05 212.0300 0.6291 0.95 405.19

2.10 211.8100 0.6328 0.95 408.19

0.490 212.4105 0.6229 0.95 399.99

0.495 212.3369 0.6241 0.95 401.06

β 0.500 212.2640 0.6250 0.95 402.11

0.505 212.1922 0.6265 0.95 403.15

0.510 212.1210 0.6277 0.95 404.18

0.190 214.5860 0.6201 0.95 399.98

0.195 213.4400 0.6227 0.95 401.06

U 0.200 212.2640 0.6253 0.95 402.11

0.205 211.0400 0.6280 0.95 403.14

0.210 209.7800 0.6307 0.95 404.15

18.00 217.3100 0.6018 0.944 384.17

19.00 214.8000 0.6130 0.947 393.44

R 20.00 212.2600 0.6253 0.95 402.11

21.00 209.6700 0.6363 0.952 410.18

22.00 207.0500 0.6469 0.954 417.68

9.00 211.4268 0.6392 0.95 382.47

9.50 211.8550 0.6321 0.95 392.43

h 10.00 212.2640 0.6253 0.95 402.11

10.50 212.6530 0.6189 0.95 411.53

11.00 213.0250 0.6127 0.95 420.71

1.00 212.2600 0.6250 0.95 402.11

2.00 213.7700 0.6003 0.90 365.10

s 3.00 215.2900 0.5750 0.85 331.18

4.00 216.8400 0.5490 0.80 300.41

5.00 218.4200 0.5230 0.75 272.89

Fig. 9.7 Effect of stock
parameters
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Fig. 9.8 Effect of
deterioration parameters
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Table 9.4 Sensitivity for Case III with different parameters

Parameter Change Q1 t0 t1 Total cost

1.90 229.2200 0.3440 0.95 1185.64

1.95 228.4838 0.3565 0.95 1208.14

α 2.00 227.7350 0.3689 0.95 1230.19

2.05 226.9830 0.3814 0.95 1251.78

2.10 226.2260 0.3939 0.95 1272.90

0.490 227.7634 0.3685 0.95 1230.70

0.495 227.7497 0.3687 0.95 1230.51

β 0.500 227.7350 0.3689 0.95 1230.19

0.505 227.7190 0.3692 0.95 1229.80

0.510 227.7032 0.3695 0.95 1229.34

0.190 230.1080 0.3483 0.95 1275.75

0.195 228.9850 0.3580 0.95 1253.49

U 0.200 227.7350 0.3689 0.95 1230.19

0.205 226.0320 0.3816 0.95 1205.69

0.210 224.7200 0.3963 0.95 1179.78

18.00 233.8980 0.2964 0.944 1194.58

19.00 231.0400 0.3307 0.947 1215.92

R 20.00 227.7350 0.3689 0.95 1230.19

21.00 223.8180 0.4132 0.952 1231.29

22.00 218.9700 0.4674 0.954 1232.46

9.00 225.9330 0.3988 0.95 1186.90

9.50 226.8640 0.3834 0.95 1209.06

h 10.00 227.7350 0.3689 0.95 1230.19

10.50 228.5510 0.3551 0.95 1250.36

11.00 229.3200 0.3427 0.95 1269.66

1.00 227.7350 0.3689 0.95 1230.19

2.00 229.2600 0.3430 0.90 1155.74

s 3.00 230.8100 0.3179 0.85 1082.69

4.00 232.3700 0.2921 0.80 1011.19

5.00 233.9540 0.2659 0.75 941.32
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Fig. 9.9 Effect of stock
parameters
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(5) The numerical analysis shows that the solution is quite stable and the model
is profitable for known decay start time rather than random start. Also, the
model with random decay start time will be much profitable when the optimum
inventory level is higher than others.

9.8 Concluding Remarks

We portray an inventory model for non-instantaneous deteriorating items concerning
adjournment of deterioration start time to extend the traditional EOQ model. The
goods with high deterioration proportion are at all times ordeal to the retailer’s
trade. In actual markets, the retailer can decrease the deterioration of a product and
equivalent cost by making nominal capital investment in store equipment. In this
study, we have developed a deteriorating stock reliant inventory model with time-
varying holding cost and shortages. Results of sensitivity analysis have demonstrated
manymanagerial insights. The non-instantaneous deterioration in inventorymodel is
very genuine proposition for the retailers. The decay start time has been well thought
out here for both known and random cases. The mathematical analysis of the model
shows that the solution of the model is quite stable and is more profitable for known
decay start time rather than random start on cost in one sense and on the other hand,
the random decay start is much better on inventory level.

The researchers can be extended further the model by taking more substantial
assumptions such as finite renewal rate, fuzzy and probabilistic demand rate and
taking preservation technology, etc.
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Chapter 10
Stock-Dependent Inventory Model
for Imperfect Items Under Permissible
Delay in Payments

Vinti Dhaka, Sarla Pareek and Mandeep Mittal

Abstract In the production process, the issue of quality is always ignored which
results in defective production. These defective items can be removed from the lot
through the inspection process which becomes essential for the system. Demand is
considered as stock dependent. It is continuously declined to meet the customer’s
demand which depends on the on-hand inventory up to the time t2. After that the
inventory level declines by constant demand up to time t3. Thereafter, shortages
occur and it accumulates at the rate ψ(τ − t) till t = τ when the next batch arrives.
The whole cycle repeats itself after the cycle length τ. Further, it is assumed that
payment will be made to the supplier for the goods immediately after receiving the
consignment. Whereas, in practice, supplier does offer a certain fixed period to the
retailer for settling the account. During this period, supplier charges no interest, but
beyond this period interest is being charged. On the other hand, retailer can earn
interest on the revenue generated during this period. Keeping this scenario in mind,
an attempt has been made to formulate an inventory policy for the retailer dealing
with imperfect quality items under permissible delay in payments. Results have been
analyzed with the help of a numerical example and sensitivity analysis also carried
out.

Keywords Imperfect items · Permissible delay in payments · Stock-dependent
demand

V. Dhaka (B)
Department of Mathematics, Faculty of Sciences, Shree Guru Gobind Singh Tricentenary
University, Gurugram 122505, India
e-mail: dhakavinti@gmail.com

S. Pareek
Department of Mathematics & Statistics, Banasthali Vidyapith, Banasthali, Rajasthan 304022,
India
e-mail: psarla13@gmail.com

M. Mittal
Department of Mathematics, Amity University, Noida 201303, India
e-mail: mittal_mandeep@yahoo.com

© Springer Nature Singapore Pte Ltd. 2020
N. H. Shah and M. Mittal (eds.), Optimization and Inventory Management,
Asset Analytics, https://doi.org/10.1007/978-981-13-9698-4_10

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9698-4_10&domain=pdf
mailto:dhakavinti@gmail.com
mailto:psarla13@gmail.com
mailto:mittal_mandeep@yahoo.com
https://doi.org/10.1007/978-981-13-9698-4_10


182 V. Dhaka et al.

10.1 Introduction

In general, demand does not depend on the factors like availability of stock, cost a
product is mainly assumed in the basic inventory model in today’s technology, A
very common assumption of the economic order quantity is that all the units produce
or purchased are of good quality. But in real situation demand rate is completely
dependent on availability of stock present. For example, if there is large number of
items shown on display in any store then the customers are directly influenced by the
display stock and on the other hand, if the items displayed are not large then it will
affect the customer as so. Levin et al. [16] concluded that goods which are displayed
on the shelf of any supermarket are more opted by the customer. It encourages the
consumer to buy more. Silver and Peterson [23] observed that sales at the marketing
level are directly proportional to the displayed stock.

Practically, the seller provides retailer a certain time period to settle his accounts.
During this time period, the retailer is free to sell all the inventories without paying
any interest. After this time period, the retailer has to charge an interest on that amount
to the seller. However, manager earns more profit if he delays until the final day of
the extended period. Goyal [12] was the first to propose an EOQ model with trade
credit. Chand and Ward [7] examined Goyal’s problem with the assumptions same
as the basic economic order quantity model with different results. Baron et al. [2]
developed a retailer joint ordering, pricing, and preservation technology investment
policies for deteriorating item under permissible delay in payments. Sarkar et al.
[22] developed a model for imperfect production system with probabilistic rate of
imperfect production for deteriorating products. Further, in reality, all the items
produced cannot be of perfect quality. Some of the itemswill be imperfect also. These
imperfect items were produced due to deprived production quality, insufficient and
imperfect material for manufacturing. This situation was considered by Salameh and
Jaber [21] and after that many more researchers are working on the same situation
by considering different parameters.

Author Year Supply chain Defective items Trade credit Stock-dependent
demand

Whitin [26] ✓ ✓

Wolfe [27] ✓ ✓

Levin et al. [16] ✓

Silver and
Peterson

[23] ✓

Baker and Urban [1] ✓ ✓

Mandal and
Phaujdar

[17] ✓ ✓

Datta and Pal [9] ✓ ✓

Urban [25] ✓ ✓

(continued)
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(continued)

Author Year Supply chain Defective items Trade credit Stock-dependent
demand

Pal et al. [20] ✓ ✓

Padmanabhan
and Vrat

[18] ✓ ✓

Salameh and
Jaber

[21] ✓ ✓

Datta and Paul [10] ✓ ✓

Chang [8] ✓ ✓

Pal [19] ✓ ✓ ✓

Hou and Lin [13] ✓ ✓

Goyal and
Chang

[11] ✓ ✓

Tsu-pang [24] ✓ ✓ ✓

Bhunia and
Shaikh

[3] ✓ ✓

Bhunia et al. [5] ✓

Jaggi and Mittal [15] ✓ ✓ ✓

Bhunia and
Shaikh

[4] ✓

Bhunia, Shaikh,
Pareek and
Dhaka,

[6] ✓ ✓ ✓

Jaggi et al. [14] ✓ ✓ ✓

Baron et al. [2] ✓ ✓ ✓

Sarkar et al. [22] ✓ ✓

This model ✓ ✓ ✓ ✓

In this chapter, retailer has gone through various scenarios with imperfect quality
under the permissible delay in payments. Considering these conditions with corre-
sponding optimization cases, solved in the software MAPLE 18. This model ends
with the numerical example and affectability analysis under different parameters.

Notation:

A Cost of ordering each unit

c Cost of purchasing each unit

λ Screening cost

p Selling price

ps Salvage value

Ip Rate of interest paid

(continued)
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(continued)

Ie Rate of interest earned

Q Order quantity per cycle

P The maximum inventory level per cycle

R Maximum shortage quantity per cycle

h Holding cost

c2 Backorder cost

c3 Opportunity cost

α Level of damaged items in Q

f (α) Probability density function of α

E(α) Expected estimation of α, which is equivalent to expected estimation of α, which
is equivalent to

∫ b
a α f (α)dα, 0 < a < b < 1

t1 Screening time

t2 Time point at which the inventory level reaches Q0, where Q0 is known

t3 Time point at which the shortages are allowed

τ Length of the inventory cycle

M Period of permissible delay in payments

I1(t) Inventory level at time t, where 0 ≤ t ≤ t1

I2(t) Inventory level at time t, where t1 < t ≤ t2

I3(t) Inventory level at time t, where t2 < t ≤ t3

I4(t) Inventory level at time t, where t3 < t ≤ τ

Ie f f (t1) Effective stock level at time t1 which does not include defective items

T P1(t3, τ ) The total profit when 0 ≤ M ≤ t1

T P2(t3, τ ) The total profit when t1 < M ≤ t2

T P3(t3, τ ) The total profit when t2 < M ≤ t3

T P4(t3, τ ) The total profit when t3 < M ≤ τ

T P5(t3, τ ) The total profit when τ ≤ M

Assumptions:

• Instantaneous replenishment rate.
• Lead time is considered as negligible.
• The screening and demand proceed at the same time, but the rate of screening is
greater than rate of demand.

• Defective items existing in the lot follow uniform distribution.
• Postponement in payment is offered by supplier to settle retailer’s account.
• Q be the items in the system.
• f (α) is the known probability density function, where α is the percent of defective
items.

• Screening is performed when the quantity is received by the retailer with the rate
of μ units time which is more than the rate of demand in the time period (0, t1).
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• The demand rate of the system depends upon the inventory available (stock) and
down to a certain inventory level Q0, where Q0 is fixed and known, beyond that
level it is presumed as constant, i.e., when the inventory(stock) level is I (t) and
the demand rate I (I (t)) of the item is considered as follows:

I (I (t)) =
⎧
⎨

⎩

δ[I (t)]β, 0 < t < t1
δ[I (t)]β, I (t) ≥ Q0, t1 < t < t2
W, 0 ≤ I (t) < Q0, t2 < t < t3

where δ > 0 and 0 < β < 1 are termed as scale and shape parameters, respectively,
W (> 0) is constant such that W = δQβ

0 .• Shortages are allowed then it is partially backordered, that is, only a portion of
shortages are backordered which is also a time function t denoted by ψ(t), where
t is the time till the next fulfillment with 0 ≤ θ(t) < 1. Let the fraction is given
by ψ(t) = 1

1+θ(t) , θ > 0. It is to be noted that the partial backlogging reduces to
a complete backlogging when θ → 0, i.e., ψ(t) → 1 (Fig. 10.1).

By assuming to be expected at first, a retailer buys Q(= P + R) units. It is addi-
tionally expected that each parcel may have some damaged things. “Let α be the
percent of defective things with acknowledged probability density function f (α).
Screening process has improved the situation of all the got amount at the rate λ units
per unit time which is more prominent than interest rate for the period (0–t1). In the
meanwhile, screening process of the interest happens parallel to the screening pro-
cedure and is satisfied from the products which are observed to be of perfect quality
through screening process, and there is a P unit of the close by stock.” It ceaselessly

Time

Lost sales

Q 

0 

Inventory 
Level 

 M 

t2M M 

τ

t3

Q0

Backs 
orders

R M 

M 

αP
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P

Fig. 10.1 Representation of inventory system
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decays because to satisfy the customer’s need which is reliant on the available stock
dimension up to the time t = t2 [15]. After that the stock decreases constantly up to
t = t3. The defective items are sold instantly after the inspection process has ended at
time t1 as a sole lot at a reduced price. After time t1 the adequate inventory level will
be Ie f f (t1). From that point, shortages occur and it aggregates at the rate ψ(τ − t)
till t = τ when the following cluster arrives. This entire cycle repeats itself after the
cycle length τ .

The presentation of the system is shown infigure.Hence, the governingdifferential
equation for the inventory level is as follows:

d I1(t)

dt
= −δ[I1(t)]

β; 0 < t < t1. (10.1)

Solution of differential Eq. (10.1)

I1(t) = [−δt(1 − β) + (P)1−β
] 1

1−β . (10.2)

Now, inventory level at time t1, including the defective items is

I1(t1) = [−δt1(1 − β) + (P)1−β
] 1

1−β . (10.3)

Therefore, the numbers of defective items after screening at time t1 is αP , the
effect level of inventory at t = t1 after removal of the defective items is

Ie f f (t1) = [−δt1(1 − β) + (P)1−β
] 1

1−β − αP. (10.4)

Now, the differential equation with the boundary condition at t = t1 ⇒ Ie f f (t1)
is

d I2(t)

dt
= −δ[I2(t)]

β; t1 < t < t2. (10.5)

Solution of differential Eq. (10.5) is

I2(t) = [δ(1 − β)(t1 − t)]
1

1−β + [
Ie f f (t1)

]
.

Put the value of Ie f f (t1) from Eq. (10.4)

I2(t) = P − [δ(1 − β)t]
1

1−β − αP. (10.6)

Now, at t = t2, the demand rate becomes constant, i.e.,W and the inventory level
becomes zero at t = t3.

In the interval (t2, t3) due to the effect of demand, the inventory reduces. Hence,
the governing differential equation for the inventory level is



10 Stock-Dependent Inventory Model for Imperfect Items… 187

d I3(t)

dt
= −W ; t2 < t < t3. (10.7)

Result from (10.7) equation with the boundary condition at t = t3 ⇒ I3(t) = 0

I3(t) = W (t3 − t); t2 < t < t3. (10.8)

Shortages are allowed and it is partially backlogged, i.e., the fraction is ψ(t) =
1

1+θ(t) , θ > 0

d I4(t)

dt
= − W

1 + θ(τ − t)
; t3 < t < τ. (10.9)

Result from (10.9) equation with the condition at t = t3 ⇒ I4(t) = 0

I4(t) = −W

θ
{ln|1 + θ(τ − t3)| − ln|1 + θ(τ − t)|}; t3 < t < τ. (10.10)

Hence, the order quantity per cycle is given as follows:

Q = (P + αP) + [(P)1−β] 1
1−β + Wt3 + W

θ
{ln|1 + θ(τ − t3)|}

= P(2 + α) + Wt3 + W

θ
{ln|1 + θ(τ − t3)|}.

Now, the other costs of the system are given below:

1. Sales revenue deals with the sum of revenue generated by the demand meet
during the period (τ − t) and sale of imperfect quality items is

P(1 − α)P(2 + α) + Wt3 + W

θ
{ln|1 + θ(τ − t3)|}

+ psα

(

P(2 + α) + Wt3 + W

θ
{ln|1 + θ(τ − t3)|}

)

.

2. Ordering Cost = A.
3. Purchase Cost = cQ
4.

c

(

P(2 + α) + Wt3 + W

θ
{ln|1 + θ(τ − t3)|}

)

.

5. Screening cost = γ Q

γ

(

P(2 + α) + Wt3 + W

θ
{ln|1 + θ(τ − t3)|}

)

.
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6. Holding cost =

h

[∫ t1

0
I1(t)dt +

∫ t2

t1
I2(t)dt +

∫ t3

t2
I3(t)dt

]

= h

⎡

⎢
⎢
⎢
⎢
⎣

Pt1 − [δ(1 − β)]
1

1−β

2 − β
(t1)

2−β + P(t2 − t1) − [δ(1 − β)]
1

1−β

2 − β

(
(t2)

2−β − (t1)
2−β

)

− αP(t2 − t1) + W

(
t23
2

+ t22
2

− t3t2

)

⎤

⎥
⎥
⎥
⎥
⎦

.

7. Backorder cost:

c2

T∫

t3

{−I4(t)}dt

= c2

T∫

t3

−W

θ
{ln|1 + θ(τ − t3)| − ln|1 + θ(τ − t)|}dt

= c2

[(

R + W

θ

)

(τ − t3) − W

θ2
{1 + θ(τ − t3)} log|1 + θ(τ − t3)|

]

.

8. Lost sales

c3W

T∫

t3

{

1 − 1

1 + θ(τ − t)

}

dt

= c3W

θ
{θ(τ − t3) − ln|1 + θ(τ − t3)|}.

As M is the period of permissible delay in payments offered to retailer by supplier,
there arise these different cases as follows:

Case 1: 0 ≤ M ≤ t1,
Case 2: t1 < M ≤ t2,
Case 3: t2 < M ≤ t3,
Case 4: t3 < M ≤ τ , and
Case 5: τ ≤ M .

Since the retailer’s total profit consists of the following components:

T P j = Sales Revenue − Ordering cost − HoldingCost

− shortage cost + Interest Earned − Interest Paid.
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Case 1:When 0 < M ≤ t1

Here interest is earned from the sales up to M. Although account has to be settled
at M and money is to be arranged at some stated rate of interest for financing the
remaining stocks for the period M to T.

• Interest earned

= pIe

∫ M

0
δ[I1(t)]β tdt

= pIe
δ(1 − β)

[
1 − β

2 − β

(
−δM(1 − β) + p1−β

) 2−β
1−β − p1−β(1 − β)

(
−δM(1 − β) + p1−β

) 1
2−β

]

.

• Interest payable

= cIp

[∫ t1

M
I1(t)dt +

∫ t2

t1

I2(t)dt

]

= cIp

⎡

⎣
− 1

2−β
[M(1 − β) − t1(1 − β)]

+
[

p(t2 − t1) − (δ(1 − β)
1

1−β
1−β

2−β

(

t
2−β

1−β

2 − t
2−β

1−β

1

)

− αp(t2 − t1)

]
⎤

⎦.

Case 2:When t1 < M ≤ t2

For this situation, he/she can acquire interest from sales up to M, also interest will
be earned from shortages and from the sale of defective items during (M−t1).

• Interest earned

= pIe

M∫

0

δ[I1(t)]tdt + (ps IeαQ)(M − t1)

= pIe
δ(1 − β)

[
1 − β

2 − β

(
−δM(1 − β) + p1−β

) 2−β
1−β − p1−β(1 − β)

(
−δM(1 − β) + p1−β

) 1
2−β

]

+ ps IeαQ(M − t1).

• Interest payable

= cIp

∫ t2

M
I2(t)dt

= cIp

[

p(t2 − M) − (δ(1 − β)
1

1−β
1 − β

2 − β

(

t
2−β

1−β

2 − M
2−β

1−β

)

− αp(t2 − M)

]

.
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Case 3:When t2 < M ≤ t3

The retailer can procure interest on income created from the sales tillM, and further-
more from the period (t2, M) he acquires interest on the income produced from the
sales of defective items at t2, despite the fact that he needs to settle the account atM,
for which money has to be arranged at some stated rate of interest for financing his
remaining stocks for the period (M − t3).

• Interest earned

= pIe

∫ M

0
δ[I2(t)]β tdt + (ps IeαQ)(M − t2)

= pIe
(
P(M) + δ(1 − β)M

2−β

1−β + αPM
)

+
(

ps Ieα

(

P(2 + α) + Wt3 + W

θ
{ln|1 + θ(τ − t3)|}

))

(M − t2).

• Interest payable

= cIp

∫ t3

M
I3(t)dt

= cIp

[

Wt3(t3 − M) − (t3 − M)2

2

]

.

Case 4:When t3 < M ≤ τ

The retailer can earn interest on revenue generated from the sales up to M, and
furthermore amid to earn interest on the revenue the period (t3, M) interest is earned
from revenue produced by the sales of defective items at t2, though account has to
be settled atM. For that, money has to be arranged at some stated rate of interest so
that remaining stocks could be financed for the period (M − τ).

• Interest earned

= pIe

∫ M

0
Wtdt + pIeWt3(M − t3) + pIe R(M − t1) + psαQIe(M − t1)

= pIeWM + pIeWt3(M − t3) + pIe R(M − t1) + psαQIe(M − t1).

• Interest payable = 0

Case 5:When τ ≤ M

Here the time period for delay in paymentM is more or equal to the total time length
of the cycle τ , so interest can be earned by the retailer on cash sales during the period
(0, M) and does not pay interest for the items kept in stock. Hence, the interest earned
is
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= pIe

[∫ τ

0
Wtdt + (M − τ)

∫ τ

0
Wdt + ps IeαQ(M − t3)

]

= pIe

[
Wτ 2

2
+ (M − τ)Wτ + ps IeαQ(M − t3)

]

.

Solution Procedure

The purpose of the system is to find the optimal solution and the solution is obtained
from the above different cases.

The main objective is to obtain the optimal solution from the proposed inventory
model. The problem is divided into five cases, on solving these cases optimal profit
is to be found.

Hence, the optimal average profit of the system is given by

Z∗ = Maximize {T P1(t3, τ ), T P2(t3, τ ), T P3(t3, τ ), T P4(t3, τ ), T P5(t3, τ )}.

The main objective of the model is to maximize the average profit by taking the
necessary conditions and these conditions are also equal to zero.

∂T P1(t3, τ )

∂t3
= 0,

∂T P1(t3, τ )

∂τ
= 0; ∂T P2(t3, τ )

∂t3
= 0,

∂T P2(t3, τ )

∂τ
= 0; ∂T P3(t3, τ )

∂t3

= 0,
∂T P3(t3, τ )

∂τ
= 0;

∂T P4(t3, τ )

∂t3
= 0,

∂T P4(t3, τ )

∂τ
= 0&

∂T P5(t3, τ )

∂t3
= 0,

∂T P5(t3, τ )

∂τ
= 0.

Numerical Example

For illustrating this model, consider the following values of parameters in the inven-
tory system:

A = 100perorder, c2 = 6perunit, c3 = 5perunit, δ = 50, β = 0.3,

Q0 = 15perorder, θ = 1.5, Ie = 0.10/12perunittime, Ip = 0.12/12perunittime,

M = 0.15, α = 0.01perunit, c = 25perunit, λ = 0.5/unit, ps = 10/unit,

h = 10per/units/year, Q0 = 15units/year,

μ = 17520units/year, f (α) =
{
25, 0 ≤ α ≤ 0.04
0, otherwise

E[α] = 0.02.

By putting these parameters in the system, the value of total profit = 46130.6,
order quantity = 1000, and cycle time = 0.2440 with rate of defective items 0.02.

Affectability Analysis:

With the given numerical example, sensitivity analysis has been carried out for check-
ing the better result.
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Observation from Table 10.1

From Table 10.1, the rate of defective items is to be studied with the lot size Q. It is
detected from the table that more the fraction of defective items more is the quantity
to be ordered with the increment in time t1, t2 and τ but during time t3 there is
decrement in the rate of defective items.

Observation from Table 10.2

Table 10.2 is a relation between the rate of defective itemswith the inventory cost. It is
observed from Table 10.2 that on increasing the rate of defective items the inventory
defective cost and total profit also increase while the ordering cost and holding cost
decrease.

Observation from Table 10.3
It is observed from Table 10.3 that there is an increment in the permissible delay M
from 0.15 to 0.30 due to which there is also an increment in the cycle time, order
quantity, and expected profit. Increment in the time period for delay in payment helps
the retailer to extend the expenses to the supplier without any penalty cost, which
also helps to reduce the costs sustained by the retailer and the profit also increases. In

Table 10.1 Variation of optimum quantity and cycle time with defective rate

Rate of defective Q t1 t2 t3 τ

0.01 950.80 0.0900 0.9003 0.0270 0.2801

0.02 1000.0 0.0951 0.0951 0.0260 0.2440

0.04 1100.90 0.1107 0.1104 0.0222 0.3200

0.06 1457.24 0.1456 0.1456 0.0204 0.3456

0.08 1750.67 0.1729 0.1730 0.0140 0.3605

1.00 2900.75 0.2900 0.2940 0.0089 0.5905

Table 10.2 Variation of cost and total profit with defective rate

Rate of
defective

Ordering cost Holding cost Defective cost Total profit Result
obtained from

0.01 450.25 520.27 900 45646.5 Case 4

0.02 458.01 500.42 1370 46130.6 Case 4

0.03 430.23 470.62 1800 46601.7 Case 4

0.04 400.80 450.80 2300 47120.6 Case 4

0.05 380.10 400.33 2830 47608.5 Case 4

0.06 350.44 380.50 3300 48111.2 Case 4

0.07 300.97 340.67 3850 48600.7 Case 4

0.08 270.28 300.00 4300 49090.8 Case 4

0.09 230.19 250.64 4900 49550.1 Case 4

1.00 160.54 180.20 5400 50080.5 Case 4
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Table 10.3 Variation in optimum quantity, cycle time and expected profit with respect to M

M Q t1 τ Expected profit Result obtained from

0.15 5335 0.03 0.99 36,757 Case 4

0.30 5567 0.12 1.03 39,750 Case 4

0.45 5796 0.23 1.07 42,787 Case 4

0.15 5592 0.32 1.04 38,581 Case 4

0.30 5835 0.33 1.08 41,731 Case 4

0.45 6080 0.35 1.12 449,398 Case 4

order to increase his profit, the retailer should always request for long credit periods
from the supplier.

10.2 Conclusion

This paper consists of a profit-maximizing inventory model with imperfect items
which has been developed under stock-dependent demand under the presence of
permissible delay in payments. In today’s market, procedure is acquired with some
opportunity reason for variety, a screening procedure is inescapable so as to guaran-
tee the things with the sale of good quality. Here, screening rate is thought to be more
than the interest rate, which empowers the retailer to satisfy the interest, out of the
items which are observed to be of flawless quality, alongside the screening proce-
dure.Moreover, exchange credit has likewise been demonstrated as a basic device for
budgetary development in numerous organizations, as it fills in as a decent motivator
arrangement for the purchasers. Such a circumstance is especially pervasive in huge
foundations in creating nations, which bargain in electronic parts, household mer-
chandise, and purchaser items. From the numerical examples, it has been observed
that the expected profit was found in case 4 as compared with case 1, 2, 3, and 5. An
affectability analysis is also conducted to indicate the analysis with respect to other
parameters such as ordering cost, holding cost, defective items, etc. The model has
been extended with the effect of carbon emission, learning and forgetting effect, etc.
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Chapter 11
Joint Effects of Carbon Emission,
Deterioration, and Multi-stage Inspection
Policy in an Integrated Inventory Model

Bijoy Kumar Shaw, Isha Sangal and Biswajit Sarkar

Abstract This paper discusses an integrated inventory model between vendor and
buyer for decayed type of products. The vendor produces perfect products but may
arrive some defect products in the system. To control product quality, the manufac-
turer inspects all the products to separate the defective products. After the first-stage
inspection, the defective products are reworked at a fixed cost and again inspection
takes place for the reworked products in the second-stage inspection. After com-
pletion of the second-stage inspection, the defective products are disposed at some
fixed cost and delivers good products to the buyer. The delivery of good products
is done by single-setup multi-delivery (SSMD) policy by consideration of fixed and
variable types of transportation cost. At any stage, the good quality of products may
deteriorate and the constant deterioration rate is considered for vendor and buyer,
separately. Carbon is emitted from every portion of the integrated system. This issue
is studied in this model and finally the joint total cost of the inventory model is
minimized with the help of algebraic method. To illustrate the model numerically,
some numerical examples are provided along with the sensitivity analysis and the
graphical representations of those examples.
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11.1 Introduction

Goyal [4] introduced the integrated inventory model with unlimited production rate
and this model was extended by Banerjee [1] by considering lot-for-lot production
and delivery policy. Goyal [5] extended the model of Banerjee [1] by considering
the delivery quantity, which was transported multiple times. How to control the lead
time in an integrated system was discussed by Vijayashree and Uthayakumar [28].
Among the different ordering policies, the most used policy is make-to-order (MTO)
policy where the manufacturer does not produce products until the order is received.
Hadley and Whitin [6] and Silver et al. [25] developed the economic production
quantity (EPQ) in MTO strategy with considering the finite demand and production
quantities. The deferent policies were introduced in the delivery process and deferent
delivery costs were included in the delivery process. The suitable and usable policy is
single-setup-multi-delivery (SSMD) policy, which is discussed in the recent studies.
The SSMD policy was introduced by Khouja [12]. During the production process,
the transportation cost may be fixed or variable. These two types of transportation
cost were proposed by Dey et al. [3]. To avoid shortage, the periodic ordering policy
was considered by Sarker and Parija [21]. Yan et al. [30] introduced the vendor–buyer
model by considering transportation cost and deterioration. Sarkar [17] improved the
previous model by using advance solution methodology.

Most of the machines produce perfect products in in-control state which may
produce defective products when the system goes to out-of-control state. The per-
fect and defective products are calculated during the whole production process and
defective products are inspected and repaired. Then, the second time inspection pro-
cess occurs for the repair products. Ouyang et al. [15], Yadav et al. [29], and Huang
[7] discussed the imperfect products. The time-dependent demand and selling-price-
dependent demand were introduced by Mittal et al. [14] in a delay in payments
situations for the imperfect production system. The defective products in the sys-
tem were counted and then reworked in the strategic production system under trade
credit policy introduced by Khanna et al. [11]. Effort- and time-dependent demand
in the imperfect production system with high reliability was discussed by Shah and
Vaghela [24]. Sarkar et al. [20] extended the model of Lee and Fu [13] introduced the
two-stage inspection policy through normal inspection and inspection on reworked
items. Recently, Jayaswal et al. [10] discussed the imperfect products in the trade
credit scenario and Taleizadeh et al. [26] introduced the same for multi-items in
a single machine production system. Another important thing is that products may
deteriorate in any storage. The imperfect and deterioration process in twowarehouses
were discussed by Jaggi et al. [9]. Shah et al. [23] focused on the deterioration pro-
cess in the inventory control system for the quadratic-type demand pattern and this
present study is extended from the model of Shah et al. [22]. Time-varying deterio-
ration was introduced by Chang and Dye [2] in a partial backlogging scenario. The
situation for deterioration and imperfect products was discussed by Jaggi et al. [8]
where trade credit and partial backlog scenario were studied. Sarkar [16] explained
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about the time-varying deterioration rate in an economic order quantity model.
This model introduces two-stage inspection and constant deterioration strategy with
SSMD policy.

For environment issues, any production system emits CO2 and especially carbons
in the air during transportation as well as production time. Two types of cost for
carbon emissionswere discussed bySarkar et al. [18] in variable setup cost. The three-
echelon supply chain management model with fixed and variable carbon emission
cost was studied by Sarkar et al. [19]. Tiwari et al. [27] discussed the environmental
issues in an imperfect production system. This model considers these emission issues
along with two-stage inspection and deterioration.

11.2 Problem Description

The problem definition, notation for this model, and assumptions are discussed in
this section.

11.2.1 Problem Definition

This inventory model is integrated in nature, where the defective products are pro-
duced in the production process. Generally, the defective items are produced in
out-of-control state for the long-run production process or machinery problems. To
detect the defect items, the first-stage inspection process is adopted at the manufac-
turer in the manufacturing process and then reworks of those defect items. In the
second-stage inspection, some defective products were found which were reworked.
First-stage inspection process is completed at the starting of the production process
and after finishing the reworking process, defective products are sorted out from
reworked production by the second-stage inspection. Defective items after rework
and inspection are disposed at some fixed cost. The perfect products were sent to the
market by the make-to-order (MTO) policy, i.e., after getting the order from buyer,
manufacturer produces his lot. The delivery process is done by the SSMD policy and
delivers the product by n shipments. The delivery cost is divided into two types: con-
stant cost per shipment and variable cost, which depends upon the per unit product
transported. Also, carbon is emitted from the production and transportation process.
To decrease the carbons in the air, manufacturer pays some carbon tax. This carbon
emission cost is calculated for both transportation system and production system.
Two types of carbon emission cost are fixed and variable costs. Some products may
deteriorate in the duration storage and this research assumes the concept of deteri-
oration and the corresponding deterioration cost. The aim of the model is to reduce
the total joint cost of the integrated inventory model.
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11.2.2 Notation

This subsection develops the following notation for this study:

Decision variables
n shipment number (integer number),
q delivery quantity to buyer.

Parameters
Q0 ordering lot size (units),
p0 production rate (units/time unit),
p rate of perfect products, i.e., p = up0 (units/time unit), where u = 1 − α + αβ,
d demand rate (units),
T cycle time (time unit),
I v on-hand inventory for the vendor (units),
I b on-hand inventory for the buyer (units),
A1 vendor’s setup cost ($/setup),
A2 buyer’s handling cost ($/time unit),
h1 vendor’s inventory holding cost ($/unit/time unit),
h2 buyer’s inventory holding cost ($/unit/time unit),
F constant delivery cost ($/shipment),
V variable delivery cost ($/unit),
θ constant deterioration rate,
cθ cost for unit deteriorate item ($/unit),
c f constant carbon emission cost ($/shipment),
cv variable carbon emission cost ($/unit),
C0 cost for first inspection ($/unit),
C1 cost for reworking a defective item ($/unit),
C2 cost for disposal item ($/unit),
α percentage of imperfect items in the manufacturing process,
β percentage of perfect items in the second time inspection for reworking items, and
Ic total inspection, rework, and disposal cost ($/time unit).

11.2.3 Assumptions

1. A single type of item is produced in this integrated inventory model. Vendor
encounters with an imperfect production process whose α percentage of total
produced product is defective items after first-stage inspection process. Thus,
(1 − α)Q0 number of perfect items are left within the system.

2. Now, the imperfect products are reworked, and then by second-stage inspection
process, β percentage of perfect items are detected and the rest items are dis-
posed at some disposed cost. From this stage, βαQ0 quantities perfect items are
recovered and (1 − β)αQ0 numbers of defective items are disposed.



11 Joint Effects of Carbon Emission, Deterioration … 199

3. The perfect items are distributed to the market by n shipment at a small quantity
q(≤ Q) for a fixed period q

d , where d(d ≤ p) is the demand rate of the buyer.
4. The perfect products flow from vendor’s warehouse to buyer’s warehouse. In the

duration of storage, some products may deteriorate. A fixed deterioration rate θ

is considered for the products in both warehouses.
5. The model follows a make-to-order (MTO) policy, i.e., there is no extra stock

and products are produced on the basis of the order by buyer.
6. Constant and variable types of transportation cost are considered. Constant deliv-

ery cost is effected on a shipment and variable delivery cost is effected for han-
dling and receiving the item.

7. Two types of carbon emission cost are considered by vendor, namely, constant
per shipment and variable per unit in the production process.

11.3 Mathematical Model

This model consists of an integrated vendor–buyer business system. The model is
formulated based on the make-to-order (MTO) policy, that is, vendor follows MTO
policy for production. The order quantity is Q0 for the whole system. The vendor
starts the production process at a constant rate p0. To produce the quantity Q0, some-
times themachinemay go to out-of-control state for long-run production system, and
the system may produce some defective items at the rate of α percentage. After the
first-stage inspection, αQ0 items are defective and rest items are good. The second-
stage inspection is effected after reworking and the rate of this defective item is β.
Thus, the total perfect items are Q = (1 − α + αβ)Q0 = uQ0 and defective items
are (1 − u)Q0, which are disposed at some fixed cost. The buyer does not claim
anything for those disposed and deteriorated items. The production rate for perfect
products is p = up0.

The production and the inspection process is completed in between 0 and Q0
p0

= Q
p ,

i.e., the time period is [0, t1] where t1 = Q
p . In that time period, the vendor transports

perfect items to the buyer at a quantity q(q ≤ Q) for the fixed period q
d . For theMTO

production system, there is no extra stock for the sudden demand of the buyer. The
production and inspection process has been stopped in the next time period t2. Here,
the replenishment cycle period is [0, T ], where T = t1 + t2 is the total cycle time
(See the Fig. 11.1).

The total perfect products are delivered to the buyer in n shipments. Therefore, the
total cycle period can be divided into n parts and the time duration of two successive
deliveries is T

n . During the time period T
n , assume that x is the number of deteriorated

items within the delivered items q. Then q = x + dT
n . After discussing the square

and higher powers of θ , x can be expressed as θqT
2n . Therefore,
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Fig. 11.1 The vendor–buyer joint inventory flow diagram

q = T

n

(
d + θq

2

)
or, T = 2nq

2d + θq
.

11.3.1 Buyer’s Model

Here, the total handling cost for then shipments isnA2 and the total on-hand inventory
is Ib = qT

2 . The holding cost for the buyer is more than the vendor and buyer only
pays the extra holding cost (h2 − h1) for the product. Again, the deterioration cost
can be calculated on the average inventory. Therefore, the deterioration cost per unit
time is θcθ I b

T = θcθq
2 . Therefore, the total cost per cycle is calculated for the buyer as

TCb = nA2

T
+ (h2 − h1)I b

T
+ θcθ I b

T

= A2(2d + θq)

2q
+ (h2 − h1 + θcθ )

q

2
. (11.1)
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11.3.2 Vendor’s Model

Let y be the total number of deteriorated products for the vendor in whole cycle time
T. As I v be the on-hand inventory for the vendor, then y = θ I v or I v = y

θ
. Therefore,

it can be written that the total perfect quantity is Q = nq + y. The vendor has the

total on-hand inventory T (p−d)t1
2 + qt1 = qT

(
n
2 + d

p − dn
2p

)
, where t1 = nq

p = dT
p .

But, due to deterioration, the vendor has I v as on-hand inventory. Therefore (see for
reference, Sarkar [17]),

y + θqT

2
= θqT

(
n

2
+ d

p
− dn

2p

)

or,
y

θ
= qT

2p
{n(p − d) + (2d − p)}

i.e.,
I v

T
= q

2p
{n(p − d) + (2d − p)}.

Again, the unit inspection costC0 is applicable to the total production quantity Q0

in the first-stage inspection and the total inspection cost is C0Q0. In the next stage,
the unit rework cost C1 is used on the imperfect product αQ0 units and the total
rework cost is C1αQ0. The inspection process is applied to the reworked products
αQ0 at the same inspection costC0 and the total inspection cost isC0αQ0. Here, total
defective items are (1 − β)αQ0 which are disposed at a cost C2, and consequently
the total cost for disposing is C2(1 − β)αQ0. Thus, the total inspection, rework, and
disposal cost is Ic = [C0Q0 + C1αQ0 + C0αQ0 + C2(1 − β)αQ0] and the total
cost per unit time is described as

Ic
T

= u2(2d + θq)

2u
+ u1θq

2pu
{n(p − d) + (2d − p)},

where u2 = C0(1 + α) + C1α + C2α(1 − β).

Now, the vendor’s total cost per unit time is

TCv = A1

T
+ h1 I v

T
+ Ic

T
+ θcθ I v

T
+ (nF + Vnq)

T
+ (ncf + dcv)

T

= {A1 + dcv + n(F + cf)} (2d + θq)

2nq
+ (h1u + u2θ + uθcθ ){n(p − d)

+(2d − p)} q

2pu
+ (u2 + uV )(2d + θq)

2u
. (11.2)



202 B. K. Shaw et al.

11.3.3 Coordination Policy Between Vendor and Buyer

The vendor and buyer have agreed to do business in a coordinated way. Therefore,
the total cost of the system can be calculated by combining both costs of the vendor
and buyer. Thus, the joint inventory total cost TC(q, n) for that model is the sum of
buyer’s cost as in Eq. (11.1) and vendor’s cost as in Eq. (11.2).

TC(q, n) = TCv + TCb

= {A1 + dcv + n(A2 + F + cf)} (2d + θq)

2nq
+ [{n(p − d)

+(2d − p)}(h1u + u2θ + uθcθ ) + p{u(h2 − h1 + θcθ + θV )

+u2θ}] q

2pu
+ d(u2 + uV )

u
. (11.3)

11.3.4 Solution Methodology

This model is solved by using algebraic method (for instance, see reference Sarkar
[17]). Any algebraic function of the form f (z) = a1

q + a2q + a3 may be rewritten as

f (z) =
(√

a1
z − √

a2z
)2 + 2

√
a1a2 + a3 and which can be solved by the algebraic

method instead of the classical optimization method. The minimum value occurs for

the function f (z)when the square part of the function vanishes, i.e.,
√

a1
z −√

a2z = 0

that implies z = ±
√

a1
a2
. Now, in general, the realistic value of z should be a positive

number. Therefore, z =
√

a1
a2
. For this optimum value of z, the minimum total cost

is f (z) = 2
√
a1a2 + a3.

For fixed n, Eq. (11.3) can be rewritten as

TC(q) = a1
q

+ a2q + a3, (11.4)

where a1 = d{A1+dcv+n(A2+F+cf)}
n , a2 = [{n(p − d) + (2d − p)} (h1u + u2θ +

uθcθ ) + p{u(h2 − h1 + θcθ + θV ) + u2θ}] 1
2pu , and a3 = θ{A1+dcv+n(A2+F+cf)}

2n +
d(u2+uV )

u .
Therefore, Eq. (11.4) can be transferred into the following form:

TC(q) =
(√

a1
q

− √
a2q

)2

+ 2
√
a1a2 + a3.
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Thus, TC(q) can attain its minimum value when q =
√

a1
a2

and the minimum

value is 2
√
a1a2 + a3. Therefore, the optimum value of q is as follows:

q =
√

2dpu
{
A1 + dcv + n

(
A2 + F + cf

)}
n
[{n(p − d) + (2d − p)}(h1u + u2θ + uθcθ

) + p
{
u
(
h2 − h1 + θcθ + θV

) + u2θ
}] . (11.5)

In the similar way, for fixed q, from the Eq. (11.3), we have

TC(n) = b1
n

+ b2n + b3, (11.6)

where b1 = (A1+dcv)(2d+θq)

2q , b2 = (p − d)(h1u + u2θ + uθcθ )
q

2pu ,

and b3 = (A2+F+cf)(2d+θq)

2q + [(2d − p)(h1u + u2θ + uθcθ ) +
p{u(h2 − h1 + θcθ + θV ) + u2θ}] q

2pu + d(u2+uV )

u .

With the help of algebraic method, the expression in Eq. (11.6) can be rewritten
as

TC(n) =
(√

b1
n

− √
b2n

)2

+ 2
√
b1b2 + b3.

Thus, TC(n) can attain minimum value when n =
√

b1
b2

and the minimum value

is TC(n) = 2
√
b1b2 + b3. Therefore, the number of shipment is given by

n =
√

pu(A1 + dcv)(2d + θq)

q2(p − d)(h1u + u2θ + uθcθ )
. (11.7)

Optimal interval for q and n

From Eq. (11.5), it is clear that if n increases, then q decreases. Thus, the maximum
value (qmax ) of q is obtained when n = 1 (since n ≥ 1). Therefore, q ≤ qmax , where

qmax =
√

2dpu(A1 + dcv + A2 + F + cf)

(p + d)(h1u + u2θ + uθcθ ) + p{u(h2 − h1 + θcθ + θV ) + u2θ} . (11.8)

Again, as (h1u + u2θ + uθcθ ) ≤ {u(h2 − h1 + θcθ + θV ) + u2θ}, from
Eq. (11.5), the minimum value of q is

qmin =
√

2dpu{A1 + dcv + n(A2 + F + cf)}
n{n(p − d) + 2d}{u(h2 − h1 + θcθ + θV ) + u2θ} , (11.9)

and therefore q ≥ qmin . Moreover, n ≥ 1 implies that the maximum value (nmax ) of
n is given by
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nmax = (A1 + dcv){u(h2 − h1 + θcθ + θV ) + u2θ}
(h1u + u2θ + uθcθ )(A2 + F + cf)

(
2d + θqmax

2d

)
, (11.10)

when n tends to infinity. Here, 1 ≤ n ≤ nmax .

Algorithm for finding q∗ and n∗

Using Eqs. (11.5) and (11.7), the optimum value of the delivery quantity q and
shipment number n is calculated. Using the following algorithm, the optimum values
q∗ and n∗ are derived, respectively. The steps of the algorithm are given below:

Step 1: As n ≥ 1, Eq. (11.8) gives the value of qmax and then Eq. (11.10) finds nmax .
Then search the interval of n, i.e., (1, nmax ).
Step 2: Taking the sequential integer values of n from (1, nmax ) and values of q
from Eq. (11.5) is updated. Then find the total cost TC(q, n) from Eq. (11.3) for the
corresponding values of q and n.
Step 3: Take the minimum value of TC(q, n) from step 2 for the optimum values of
q* and n*.
Step 4: Stop.

From these steps, one can find the optimum values of n and q from Eqs. (11.5) to
(11.10). Using these solutions, the minimum cost for the integrated inventory model
is found.

11.4 Numerical Experiment

To validate the model numerically, the following two examples are provided:

Example 11.1 The supportive values of parameters are taken from Yan et al.
[30]. p0 = 19, 300 units/month, d = 4, 800 units/month, A1 = $600/setup,
A2 = $25/month, h1 = $6/unit/month, h2 = $11/unit/month, F = $50/shipment,
V = $1/unit, θ = 10%, cθ = $60/unit, f = $0.2/shipment, cv = $0.4/unit,
C0 = $2/units, C1 = $2.5/units, C2 = $2/units, α = 10%, and β = 96%. Then, the
optimum values are q∗ = 366.31 units, n∗ = 5, and the corresponding minimum
cost is $34, 392.40 (See the Fig. 11.2).

Example 11.2 Another example is provided here to describe the above model where
the values of parameters are taken from Sarkar et al. [20]. p0 = 30 units/month,
d = 25 units/month, A1 = $1, 70/setup, A2 = $35/month, h1 = $3/unit/month,
h2 = $5.5/unit/month, F = $20 =/shipment, V = $3/unit, θ = 3%, cθ = $28/unit,
cf = $9/shipment, cv = $0.5/unit, C0 = $2/units, C1 = $2.5/units, C2 = $2/units,
α = 15%, and β = 96%. Then, the optimum values are q∗ = 71.78 units, n∗ = 17,
and the corresponding minimum cost is $2, 633.04 (Fig. 11.3).
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Fig. 11.2 Graphical representation of Example 11.1 of total cost z = TC(q, n) with respect to the
decision variables

Fig. 11.3 Graphical representation of Example 11.2 of total cost z = TC(q, n) with respect to the
decision variables
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11.5 Analysis Section

These two examples describe the validity of themodel numerically. The first example
generatesmore cost than the second example but aftermore investigation, anyone can
see that the better example is the first example, because the total cost with respect to
the delivery quantity is more which is comparatively better than the second example.
If the manufacturer creates a small business, then any one of those examples is
suitable for that case. However, the high value of holding cost and small delivery
quantity should follow the soft products or valuable products business policy in the
second example. The graphical representations show the variation of the decision
variables.

11.6 Sensitivity Analysis

The major changes of the parameters are shown in the sensitivity analysis table.
The changes of parametric values for−50%,−25%,+25%, and+50% of Exam-

ple 1 are shown in Table 11.1.

I. Vendor’s setup cost is more sensitive than the buyer’s handling cost. Vendor’s
setup cost is directly proportional to the total cost and negative percentage
changes are more sensitive than the positive percentage changes. As setup cost
involved a large amount of investment amount, the industrial manager is trying
to reduce their investment for setup, that is the total cost of the system can reduce
gradually. For the case of handling cost of buyer, it is more sensitive in negative
sense rather than the positive changes. This implies that the total cost of buyer
can be reduced if the cost of handling can be reduced.

II. The effect of changes for handling cost of buyer is hung over the total cost
of the entire system. The negative percentage changes are significant than the
positive changes. This implies that reduction of holding cost for the vendor can

Table 11.1 Sensitivity analysis of the total cost

Parameter Changes (in
%)

TC(q, n) (in
%)

Parameter Changes (in
%)

TC(q, n) (in
%)

h1 −50 −5.14 A1 −50 −2.61

−25 −2.47 −25 −1.28

+25 2.47 +25 1.25

+50 4.48 +50 2.46

h2 −50 −1.73 A2 −50 −0.88

−25 −0.83 −25 −0.43

+25 0.76 +25 0.41

+50 1.48 +50 0.81
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be beneficial for the industry manager and it can contribute more to the cost
reduction process. For buyer’s core, the changes in total cost due to the changes
in the holding cost are less sensitive than vendor. Even though the holding cost
of buyer is more than the vendor, but as the holding quantity is less, the effect
of the changes in the total cost due to the unit holding cost is not too much high
relative to the vendor.

11.7 Conclusions

The integrated vendor–buyer model for single type of products was a combination of
the inspection process, rework process, and the deterioration. Total cost of the entire
system was minimized with using the SSMD transportation policy. As the packaged
food products were needed special attention due to the preservative, inspection of
the production was incorporated by vendor. Otherwise, there might be a change
to deteriorate the product before its projected time period. Those packages were
reworked and inspected again for safety purpose. It can help industry manager to
keep their productions good enough as it is related to the health care of the society.
Numerical study gave the results that based on the holding area of the buyers, either
the lot size or the shipment number can be chosen. Preservation is an important
issue for deteriorated products but this is not directly included in this present study.
This model can be extended with the preservation technology. Even the inspection
and rework are included in the present study which is a limitation of the research,
which can be removed by extending the model by using backordering policy. Trade
credit policy between vendor and buyer can be incorporated for the future research
direction along with the uncertain demand of the buyer.
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Chapter 12
A Note on “Inventory and Shelf-Space
Optimization for Fresh Produce
with Expiration Date Under
Freshness-and-Stock-Dependent Demand
Rate”

Hardik N. Soni and Dipali N. Suthar

Abstract In a recent paper, Chen et al. in J Oper Res Soc 67(6):884–896, [4]
proposed an inventory model with freshness-expiration date and stock-dependent
demand, assuming nonzero ending inventory and adopting a profit maximization
function. They treated the freshness index that measures the quality of produce as
linear decreasing function. However, it is evident that the degradation in quality not
necessarily decreases linearly for every product. Therefore, in this work, we relax this
assumption and characterize the freshness index as polynomial decreasing function
to strengthen the applicability of Chen et al.’s model.

Keywords EOQ · Expiration date · Freshness-and-stock-dependent demand ·
Perishability

12.1 Introduction

It is frequently observed that the customers are reluctant to purchase perishable items
(including most dairy products, grocery items, batteries, printer ink, etc.) whose
expiration dates are approaching as it is common belief that the greater the age
of an item, higher the quality degradation. As product’s quality is directly corre-
lated with customer satisfaction and reliability, it is highly important for retailers
to better manage fresh-produce inventory and shelf-space allocation both. Consid-
ering these factors, Chen et al. [4] demonstrated an inventory model for perishable
items wherein (1) demand rate is sensitive to freshness-expiry date and stock level,
(2) the ending inventory level is nonzero because demand is positively affected by
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inventory, and (3) there is a maximum inventory level because the retailer has a lim-
ited shelf space. Under these considerations, a mathematical model was formulated
and an optimization procedure was developed to determine optimal shelf-space size,
replenishment-cycle time, and ending inventory level that maximize the total annual
profit.

Depending on the product nature, freshness indicesmust be followed as a function
of time in order to evaluate the degradation of the product quality. Researchers such
as Wu et al. [7] and Feng et al. [5] considered demand depending on freshness index
which is linearly decreasing function of time declining from 1 at the beginning of the
period to 0 at the expiration date. Banerjee and Agrawal [3] presented an inventory
model for freshness- and price-dependent demandwhere linear and exponential func-
tions were examined for freshness index. Li and Teng [6] have also considered linear
function of time for freshness index to determine pricing and lot-sizing decisions for
perishable goods when demand depends on selling price, reference price, product
freshness, and displayed stocks. Recently, Agi and Soni [1] considered linear fresh-
ness index to determine joint pricing and inventory policy for perishable products
with age, stock, and price-dependent demand rate. The aforementioned literature
considers linear form of freshness decrease. However, in reality, the reduction in
freshness attributed to technological factors as well as managerial factors including
production services, handling and preservation practices, transportation condition,
etc. Hence, reduction in freshness index cannot bewell described by a linear function.
Thus, in order to fill this gap, instead of linear decrease in freshness, we formulate
polynomial decreasing freshness index function, whose shape is flexibly determined
by changing shape parameter n [see, Eq. (12.1)]. This nonlinear degradation function
over time is a generalization of many decreasing shapes depicted in Fig. 12.1: For
0 < n < 1, convex decrease; for n = 1, linear decrease; for n > 1, concave decrease;
and for n → ∞, no decrease. An interested reader can refer Avinadav et al. [2] for
the physical interpretation of this function.

In this study, we revisit the work of Chen et al. [4] and recast the model by consid-
ering the generalized freshness index function linked to the expiration time. Further,
the model enables us to calculate the loss of profits to the retailer who overlooks the

Fig. 12.1 Freshness index
for various value of n
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decrease in the demand rate due to loss of freshness and uses only a stock-dependent
demand function (as common in the literature). This study is organized as follows:
Sect. 12.2 consists of notations and assumptions used throughout the model. Amath-
ematical model is developed in Sect. 12.3. Numerical examples are provided for the
practical implications of the model in Sect. 12.4 whereas sensitivity of the model
parameters is examined in Sect. 12.5.

12.2 Notations and Assumptions

12.2.1 Notations

All notations used in this work are adopted from Chen et al. [4].

Decision variables

E Ending inventory level in units, with E ≥ 0

T Ordering cycle time in years

t1 The length of time in years when the inventory level drops to W

Parameters

c Purchasing cost per unit, where 0 < c < p

h Holding cost per unit time

o Ordering cost per order

m Maximum lifetime (the time to its expiration date) per year

u Shelf cost per unit per year

p Selling price per unit, with p ≥ c

s Salvage price per unit

Q Economic order quantity in units

W Number of units displayed on shelf space

Variables

f (t) Freshness index at time t, which is a decreasing function during the interval [0, 1]

D(t) Freshness-expiration date and stock-dependent demand rate which is close to
zero at the expiration date

I(t) Inventory level at time t

E∗ Optimal ending inventory level in units

Q∗ Optimal order quantity in units

T ∗ Optimal ordering cycle time in years

t∗1 Optimal length of time in years when the inventory level drops to W

�(E,T , t1) Total annual profit
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12.2.2 Assumptions

Basically, we adopt assumptions same as those in Chen et al. [4], which are restated
below:

1. Perishable items such as food products deteriorate and reduce its freshness, nutri-
ent value, or effectiveness with time and finally lose its usefulness. After examin-
ing all those factors, the expiration date can be approximated by experts. So, we
assume product freshness index is 1 when it received and start decreasing with
time and reaches to 0. To represent this problem in the mathematical model, we
consider the freshness index at the time t is nonlinear degradation function from
1 initially to 0 at the maximum lifetime and given by

f (t) = 1 −
(
t

m

)n

, 0 ≤ t ≤ m. (12.1)

2. It is widely seen that a large amount of fresh produce on the shelf increases the
demand, but the display of stale items gives the contrary effect to the demand.
Hence, we assume in this paper that rancid items are withdrawn from the dis-
played shelf space.

3. Inventory system starts with maximum Q units at zero time but only W units
are displayed on the shelf and remaining units are kept in the back room. Stock
in the backroom is shifted to the shelf when sales are made until the time when
no more stocks remain in the backroom at the time t1. Hence, in [0, t1] time
interval, shelf space is full. This inventory system is depicted in Fig. 12.2. So,

Inventory level

Displayed Stock level
W

E 

Q 

t1 T m0

Fig. 12.2 Graphical representation of the system
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demand depending on shelf space and freshness index in [0, t1] time interval can
be presented by

D(t) = αW β

(
1 −

(
t

m

)n)
, 0 ≤ t ≤ t1 (12.2)

where α and β (α > 0 and 1 > β ≥ 0) are constant parameters. Equation (12.2)
reveals that T ≤ m. OtherwiseD(t) ≤ 0 if t ≥ m. Further, if β = 0 andm → ∞,
D(t) = α becomes constant. Consequently, the impact of shelf space on the
demand rate is decreasing return, and therefore we assume β < 1.

4. As a large display of merchandise impact positively on the demand, it is assumed
that ending inventory is maintained at a nonzero level E ≥ 0.

5. In the time span [t1,T ], the shelf space is partly filled up with inventory whereas
demand depends on both the displayed items and the freshness index. When the
cycle ends with ending inventory E units, it is sold at the salvage price. Then
new cycle commences by receiving order quantity Q units. In this time interval,
demand rate can be represented as

D(t) = α
[
I(t)β

](
1 −

(
t

m

)n)
, t1 ≤ t ≤ T . (12.3)

6. We assume that Q ≥ W . Otherwise, W can be reduced to Q. Consequently,
t1 ≥ 0.

7. The holding cost is assumed to be the same for both displayed items and stored
items.

8. Shortages are not permitted.
9. Replenishment rate is infinite and instantaneous.

12.3 Model Formulation

Based on the above assumptions and notation, the inventory level at different instants
of time is shown in Fig. 12.2.

The inventory level I1(t) at time t in [0, t1] time interval is given by the differential
equation:

dI1(t)

dt
= −αW β

(
1 −

(
t

m

)n)
, 0 ≤ t ≤ t1 (12.4)

with the boundary condition I1(0) = Q. By solving (12.4), we have

I1(t) = αW β tn+1

(n + 1)mn
− αW β t + Q, 0 ≤ t ≤ t1 (12.5)
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Now, in [t1,T ] time interval, the inventory level I2(t) at time t is formulated by the
differential equation as

dI2(t)

dt
= −α

[
I2(t)

β
](

1 −
(
t

m

)n)
, t1 ≤ t ≤ T (12.6)

with the boundary condition I2(T ) = E. By solving (12.6), we obtain

I2(t) =
(

α(β − 1)
(
Tn+1 − tn+1

)
mn(n + 1)

+ E1−β − α(β − 1)(T − t)

)(1−β)−1

(12.7)

Now, by using I1(t1) = I2(t1), we get order quantity Q as

Q =
(

α(β − 1)
(
Tn+1 − tn+1

1

)
mn(n + 1)

+ E1−β − α(β − 1)(T − t1)

)(1−β)−1

− αW β tn+1
1

(n + 1)mn
+ αW β t1 (12.8)

Using W = I2(t1), we get,

W =
(

α(β − 1)
(
Tn+1 − tn+1

1

)
mn(n + 1)

+ E1−β − α(β − 1)(T − t1)

)(1−β)−1

(12.9)

Now, the holding cost in the time interval [0, t1] is

H1 = h
∫ t1

0
I1(t)dt = h

∫ t1

0

(
αW β tn+1

(n + 1)mn
− αW β t + Q

)
dt (12.10)

The holding cost in the time interval [t1,T ] is

H2 = h
∫ t1

t
I2(t)dt =

∫ T

t1

(
α(β − 1)

(
Tn+1 − tn+1

)
mn(n + 1)

+E1−β − α(β − 1)(T − t)
)(1−β)−1

, t1 ≤ t ≤ T (12.11)

An integration expressed in (12.11) is too complex to derive analytical solution
explicitly. Additionally, H2 contribute in less amount to overall profit. Hence, for
mathematical simplicity, simpler form for H2 can be considered as follows. In the
time interval [t1,T ], the average inventory level can be expressed as (W + E)

/
2.

Therefore, the average holding cost during [t1,T ] is given by
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H2 ≈ h

2
(W + E)(T − t1) (12.12)

In this paper, ending inventory level is considered nonzero which may lead to higher
holding cost. Hence, the main objective of this study is to optimize ending inventory
level E, ordering cycle time T, and time at which the inventory level reaches to
maximum shelf-space t1 to maximize the profit.

The total profit = revenue received + salvage value − purchasing cost

− ordering cost − holding cost − shelf space cost (12.13)

Mathematical expression for an EOQ problem for fresh items can be presented by

Max TP(E,T , t1) = E

[
1

T

[
p(Q − E) + sE − cQ − o

− h
∫ t1

0

(
αW β tn+1

(n + 1)mn
− αW β t + Q

)
dt

−h

2
(W + E)(T − t1)

]
− uW

]
(12.14)

Subject to

Q =
(

α(β − 1)
(
Tn+1 − tn+1

1

)
mn(n + 1)

+ E1−β − α(β − 1)(T − t1)

)(1−β)−1

− αW β tn+1
1

(n + 1)mn
+ αW β t1 ≥ W,

W =
(

α(β − 1)
(
Tn+1 − tn+1

1

)
mn(n + 1)

+ E1−β − α(β − 1)(T − t1)

)(1−β)−1

and 0 ≤ E ≤ W

Likewise, as shown in Chen et al. [4], it can be established that total annual profit
TP(E,T , t1) is strictly pseudo-concave in T. Also, TP(E,T , t1) is a strictly concave
function in both E and t1, for any given T.Hence, there exists a unique global optimal
solution (E∗,T ∗, t∗1 ) that maximizes the profit.

12.4 Numerical Examples

Example 1 We have considered the same parametric values as in Chen et al. [4]. The
estimated values of the model parameters are taken as α = 50, β = 0.7, h = $ 4 per



216 H. N. Soni and D. N. Suthar

unit per year, c = $ 20 per unit, m = 0.4 years, o = $ 10 per order, u = $ 5 per unit,
s = $10 per unit, p = 40 per unit, n = 1.5. In order to maximize TP(E,T , t1), we
obtain a local optimal solution (E∗,T ∗, t∗1 )usingMaple 18.The results obtained are as
follows: the retailer’s optimal cycle time is T ∗ = 0.2991 years with t∗1 = 0.0391 years,
the optimal level of ending inventory is E∗ = 5212.16 units, the optimal size of shelf
space is W ∗ = 9857.93 units, the optimal order quantity is Q∗ = 11,065.85 units,
and the maximum total annual profit is TP(E∗,T ∗, t∗1 ) = $ 1, 36, 136.21.

Example 2 If we consider this model without effect of freshness degradation, the
results obtained with the same parametric values considered in Example 1 are as
follows: the retailer’s optimal cycle time is T ∗ = 1.48 years with t∗1 = 0.2 years, the
optimal level of ending inventory is E∗ = 99,107.58 units, the optimal size of shelf
space isW ∗ = 48,9567.67 units, the optimal order quantity isQ∗ = 58,5699.88 units,
and the maximum total annual profit is TP(E∗,T ∗, t∗1 ) = $ 21, 05, 213.29.

From above examples, it can be observed that the total profit is higher when the
effect of freshness degradation is discarded.With the effect of freshness degradation,
the reduction in demand is observed that resulted in less profit, which is obvious.
To examine how nonlinearity of freshness index impacts on the optimal policy, we
carry out the sensitivity analysis by changing the value of n.

12.5 Sensitivity Analysis

For some managerial implications, we study the effect of shape parameter, n, of
freshness index function on decision variable by increasing n at the rate of 0.5 in the
interval [0.5, 3]. The results are shown in Table 12.1.

The results of Table 12.1 reveal that the shape of freshness index (n) plays
critical role in determining optimal shelf-space size, ending inventory level, and
total annual profit. Hence, the retailer should carefully estimate the value of n
to achieve maximum profit. The results suggest that the items with higher fresh-
ness degradation rate (0 < n < 1) should order more frequently and keep shelf-
space size low that resulted in lower ending inventory level and higher profit.
On the other hand, the opposite strategy should be adopted for the items whose

Table 12.1 Sensitivity analysis of shape parameters n of freshness index

n E T t1 W TP Q

0.5 737.26 0.2468 0.0218 1373.22 22,132.78 1517.97

1 2846.86 0.2783 0.0317 5350.38 78,285.88 5970.62

1.5 5212.16 0.2991 0.0392 9857.93 136,136.21 11,065.85

2 7382.03 0.3139 0.0448 14,027.298 186,432.90 15,809.55

2.5 9264.64 0.3248 0.0491 17,667.61 228,500.77 19,970.72

3 10,874.45 0.3333 0.0525 20,795.75 263,529.80 23,559.15
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freshness degradation rate is low (n > 1). It is to be noted that for n = 1, the obtained
results are same as in Chen et al. [4].

12.6 Conclusion

This paper extends the work of Chen et al. [4] by capturing the consumer’s sensitivity
to freshness in nonlinear manner in conjunction with shelf-space sensitive demand.
Due to diverse nature of freshness degradation rate in the product, the model pro-
posed in this paper considered generalized form of freshness index function. The
general form of freshness index function allows the decision-maker to estimate con-
sumer’s sensitivity to freshness and thereby to determine proper inventory policy
for perishable items in general. Results of sensitivity analysis indicate that the shape
parameter, n, of freshness index function is significant factor in determination of prof-
itable inventory policy. Besides, the model aids the retailer to cut the losses caused
by freshness. Thus, the proposed model can serve as a tool for managing perishable
or deteriorating inventory in general.

This paper can be extended in several ways to strengthen its applicability. For
example, this work could be directly extended to allow price to be a function of
freshness. Moreover, assuming price discount when the freshness index falls below
the given threshold could enhance the research. It is also suggested to consider and
analyze the problem presented in this paper in two or three level mode.
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Chapter 13
EOQ Model Under Discounted Partial
Advance—Partial Trade Credit Policy
with Price-Dependent Demand

Swati Agrawal, Rajesh Gupta and Snigdha Banerjee

Abstract The aim of this article is to investigate an inventorymodel with discounted
partial advance payment in a single supplier–single retailer supply chain in the pres-
ence of credit periodwhen the demand rate is price sensitive. The lengths of the credit
period, advance period, as well as rate of discount on advance payment, are speci-
fied by the supplier. Conditions for unique optimal values of the decision variables,
namely, the retailer’s selling price and cycle length are obtained. Optimal values of
the decision variables are determined iteratively. An algorithm is developed and a
numerical example is presented to demonstrate the solution algorithm. Sensitivity
analysis is conducted. It is observed that optimal cycle time is affected by the two
interest rates. Optimal net profit is affected by the demand rate and the discount fac-
tor. Both, the optimal cycle time, as well as the optimal net profit is affected by the
supplier’s selling price and the proportion of units for which the advance payment is
made. Optimal retailer’s selling price is significantly affected by the discount factor,
supplier’s selling price, price elasticity of the demand function as well as the propor-
tion of units for which advance payment is made. We also observe that the retailer’s
net profit does not decrease significantly on increasing the advance period.

Keywords Inventory · Partial advance payment · Discount · Trade credit ·
Iso-elastic price-dependent demand

13.1 Introduction

In the competitive situation prevailing in the market, a major effort is required by
suppliers to provide facilities which would, in turn, attract orders from retailers. One
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such facility popular in a supplier–retailer contract is to offer goods on credit for
some interest-free period—generally termed as the trade credit period or permissible
delay in payment. The retailer may pay the entire amount or a part of it to the supplier
at the end of the credit period. Once the credit period is over, interest is charged by
the supplier on the remaining dues.

The benefits of trade credit policy in the context of marketing are identified as
leading to increased sales and as a tool to attract new retailers who deem credit
policy as a kind of price reduction. Another advantage is that due to trade credit, an
established retailermay paymore promptly resulting in a reduction in the outstanding
sales dues. Trade credit provides financial support to the retailer alongwith providing
a certification of quality from the supplier.

During the last few decades, many inventory models have been developed con-
sidering the trade credit facility. Goyal [8], Teng [27], Chang et al. [3], Sarkar [22],
Chen and Teng [5], Taleizadeh et al. [26], Tiwari et al. [30], Jaggi et al. [14] and
many others have considered trade credit when the demand is constant.

In practice, quite often, the end customer demand at the retailer is price-sensitive.
In such a situation, decisions regarding setting the retailer’s selling price and order
quantity are to be made by the retailer. Price-sensitive demand without trade credit
has been considered bymany authors, e.g., Banerjee and Sharma [2]. For an inventory
model under trade credit contract with price-sensitive demand, optimal pricing poli-
cies were obtained by Hwang and Shinn [13]. Under cooperative and noncooperative
structures, Abad and Jaggi [1] developed a model with price-dependent demand to
obtain the retailer’s optimal unit price and replenishment cycle as well as the seller’s
optimal selling price and credit period. Teng et al. [28] found the optimal selling
price and replenishment policies considering a model with price-sensitive demand
for deteriorating items. They concluded that under trade credit, the cycle time, and
order quantity will decrease. Price-sensitive demands for integrated inventory mod-
els that involve trade credit have also been developed by Ouyang et al. [21], Chen
and Kang [4] and Chung and Liao [6].

Ho et al. [12], Shah et al. [23] analyze the decision policy when the buyer receives
a cash discount if he pays any fraction of purchase cost within a shorter allowable
credit period and then clears the remaining balance in the long credit period. Such a
policy is called a two-part permissible delay.

Somemore realistic models have considered revenue earned through sales as well
as interest earned during the credit period and even later for price-sensitive demand
[15, 16, 19, 20, etc.].

Retailers are generally in search of long credit periods for the purchase of their
goods, whereas this tendency may lead to financial complications for small suppliers
and hence to supply crunch for the retailer. Hence, sometimes, it may be worthwhile
for the supplier to demand advance payment. Zhang et al. [32] stated that advance
payment is a known practice in the Chinese automobile and steel industries. Maiti
et al. [18] observed that in the bricks and tiles factories in India, sometimes a price
discount on advance payment is offered to the retailer if made at his own discretion.

In inventory literature, very little consideration has been given to the advance
payment and its influences on inventory decisions. Maiti et al. [18] developed a
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stochastic inventory model with advance payment. They assumed that the retailer’s
procurement price depended on the fraction of the advance payment. Theirmodelwas
extended by Gupta et al. [9]. However, these two papers do not consider trade credit
policy. Both advance payment and trade credit were considered by Thangam [29] for
constant demand. Full advance and partial advance partial credit were incorporated
by Zhang et al. [32] for constant demand. They conclude that in both the payment
policies, length of the period of advance payment does not affect the retailer’s optimal
policy.

Taleizadeh [25] studied a lot sizing model without credit period under price-
dependent demand with advance payment policy when the equal installments of the
advance payment of the purchase cost are specified by the supplier. For constant
demand, Wu et al. [31] studied the model when the seller requires an advance-cash-
credit (ACC) payment.

From the above-detailed literature review, we find that till now, very few papers
have considered advance payments. Out of these few papers, some have not con-
sidered trade credit [18, 24] while others, who have considered advance payment,
as well as trade credit, have regarded demand to be constant [17, 31, 32, 33] or
time dependent [7]. Although Diabat et al. have considered both advance payment
as well as delayed payment, the two are for different echelons in the supply chain
with upstream advance payment and downstream delayed payment.

In the present paper, we consider iso-elastic price-dependent demand with partial
advance payment before the supply is receivedwhen the credit period is also allowed.
The aim of this article is to study an optimal inventory model that considers ordering
and pricing decisions under discounted partial advance and partial credit periodwhen
the customer demand is an iso-elastic function of the retailer’s selling price.Weobtain
the optimal price and optimal length of replenishment cycle when shortages are not
allowed. We also examine how the variations in the model parameters affect the
optimal solution.

The rest of this paper is organized as follows: Sect. 13.2 presents the assumptions
and notations. Section 13.3 explains the working of the model, Numerical example is
given in Sect. 13.4 alongwith algorithm, sensitivity analysis andmanagerial insights.
In Sect. 13.5, we present the conclusions.

13.2 Notations and Assumptions

The following notations are used in this paper:

D demand dependent on retailer’s price rate per unit. D = α P-βR , α, β > 1.
h unit inventory holding cost per unit time.
A ordering cost per order.
I1 the interest rate paid per unit time to supplier by retailer.
IPR the interest rate per unit time to be paid by retailer to financer for loan.
IER the interest rate earned per unit time by retailer.
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t0 epoch of advance payment
MA the retailer’s advance period stipulated by the supplier.
MR the credit period provided by the supplier to the retailer.
Net the retailer’s net profit per unit time.
A1 proportion of Q for which an advance payment is made by the retailer at epoch

MA.
A2 proportion of Q for which payment is paid by the retailer at epoch MR. 0 ≤ A1

+ A2 ≤ 1.
ρ discount factor for advance booking, 0<ρ<1.Thediscount percent is 100(1–ρ).
T the retailer’s inventory cycle length (Decision variable)
PS supplier’s unit selling price.
PR retailer’s unit selling price (PR > PS). (Decision variable)
Q the retailer’s order quantity per cycle (Decision variable). Q = DT

* With any decision variable indicates its optimal value.

Assumptions

The model is developed with the following underlying assumptions:

1. The supplier provides a fixed credit period MR to the retailer for settling the
accounts.

2. The end consumer market demand rate declines with an increase in the retailer’s
selling price, D(PR) = αP-βR , where α > 0 and β being, respectively, the scaling
factor and the index of price elasticity. For notational simplicity, we will be
interchangeably using D(PR) and D in this work.

3. The retailer starts selling the goods as soon as he receives it.
4. The earnings accumulated by the retailer is withdrawn only at epoch T, or later.
5. For the payments made to supplier at t0 and MR, the retailer has to take loan

from the financial institution like banks—which we call financer, while for the
payment made at epoch T, the retailer uses a part of the earnings accumulated
till time T.

6. Shortages are not allowed.
7. Replenishment rate and time horizon are infinite.

13.3 The Model

Themodel is developedwith the stated advance period under trade credit with a price-
dependent demand so as to maximize net profit for the retailer. The retailer orders
for Q units of inventory at epoch t0, which is MA time units before the beginning of
the selling season. The ordered units arrive at the beginning of the selling season.
The payments for the ordered units are made by the retailer in three parts:



13 EOQ Model Under Discounted Partial Advance—Partial … 223

Fig. 13.1 a Time Inventory
Graph when MR ≤ T.

1. An advance payment at epoch t0 for proportion A1 of Q units is made at the
discounted rate ρPS. 0 ≤ A1 ≤ 1.

2. For the remaining quantity, payment has to be made depending on the following
two cases.

Case I: MR ≤ T
In this case, a payment at the rate PS for proportion A2 of Q units is made at the
epoch MR. No interest is paid to the supplier for this delayed payment under the
credit policy. 0 ≤ A1 + A2 ≤ 1. Payment for the remaining proportion 1 – (A1 +
A2) of Q units at the rate PS along with interest charged by the supplier from MR to
T at the rate I1. is made at epoch T.

The payments at t0 and MR are made by taking a loan from financer. The retailer
starts selling his goods from the beginning of the selling period. The sales earnings
up to Tare invested as they accumulate and interest is earned on it at the rate IER.
When the selling period ends, the payment to the supplier and loan repayment and
payment of interest for the loan to the financer will be made by the retailer from the
sales as well as interest earnings up to T (Fig. 13.1a).
Case II: MR > T
In this case, a payment for the remaining proportion (1 – A1) of Q units is made at
the rate PS at epoch MR so as to take advantage of the credit period. No interest is to
be paid for this payment, the credit period MR being larger than the cycle length T,
and no loan is to be taken by the retailer for the payment. Repayment the loan taken
from the financer at t0 and interest on it is to be repaid to the financer at epoch T, i.e.,
when the selling period ends (Fig. 13.1b).

13.3.1 Computation of Net

The retailer’s net profit for the cycle is given by
Net = Total revenue earned – (Ordering cost + Stock holding cost + Purchase

cost + Interest paid) where
Total revenue earned = Sales revenue + Interest earned
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Fig. 13.1 b Time Inventory
Graph when MR > T

Ordering cost is A

Stock holding cost is
h(DT2)

2
The total revenue earned, interest earned, interest paid and net profit per unit time

for Case I and Case II are as follows:

Case I: MR ≤ T
The total purchasing cost paid at epoch MA, MR and T of quantity (A1Q), (A2Q) and
(1 – (A1 + A2))Q, respectively, is

(ρPS)(A1Q) + PS(A2Q) + PS(1 − (A1 + A2))Q

The interest paid by the retailer till T, for the loan taken at the epochs t0 and MR,
is (T + MA)(A1Q)(ρPS)IPR + (T − MR)(A2Q)PSIPR

The interest paid by the retailer to the supplier for the amount paid at T is
(T - MR)((1 − (A1 + A2))Q)PSI1

Total revenue earned by the retailer is

PR(DT) + PR(DT)IERT

2

Hence, the net profit per unit time of the retailer is

Net 1 = PRD

(
1 + 1

2
IERT

)
− A

T
− hDT

2
− PSD[(1 − A1)(1 + I1(T − MR))

−A2(I1 − IPR)(T − MR) + A1ρ(1 + IPR(T + MA))] (13.1)

Case II: MR > T
The total purchasing cost paid at epoch MA and T of quantity(A1Q) and (1 – A1)Q,
respectively, is

(ρPS)(A1Q) + PS(1 − A1)Q
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The interest paid by the retailer till T to the financer for the amount paid at the
epoch t0 is

(T + MA)(A1Q)(ρPS)IPR

Total revenue earned by the retailer is

PR(DT) + PR(DT)IERT

2
+ PR(DT)(MR − T)IER

Hence, the net profit per unit time of the retailer is

Net 2 = PRD

[
1 + IER

(
MR − T

2

)]
− A

T
− hDT

2
− PSD{A1[1 − ρ{1 + IPR(MA + T)}] − 1}

(13.2)

The overall net profit per unit time is

Net =
{
Net1; for MR ≤ T
Net2; for MR > T

(13.3)

13.3.2 Analysis

Using assumption 3 and Q = DT, it is apparent that Net is a function of decision
variables PR and T. In order to obtain the optimal values of the decision variables
analysis of the net profit function for Case I and Case II are presented:

13.3.2.1 Necessary Conditions

The first-order (necessary) conditions for maximization of Netj with respect to T and
PR are

∂Netj(T, PR)

∂T
= 0

∂Netj(T, PR)

∂PR
= 0; j = 1, 2.

Differentiating (1) with respect to T and PR, we get, respectively

∂Net1(T, PR)

∂T
= α P−β

R

{
IERPR
2

− h

2
− PS[(1 − A1)I1 − A2(I1 − IPR) + A1IPRρ]

}
+ A

T2

(13.4)
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and

∂Net1(T, PR)

∂PR
= 1

2
αP−(β+1)

R R1 (13.5)

where

R1 = −PR(2 + IERT)(β − 1)

+ β[hT

+ 2PS{(1 − A1)(1 + I1(T − MR)) − A2(I1 − IPR)(T − MR)

+A1ρ(1 + IPR(MA + T))}]

We note that RHS of (5) is zero iff R1 = 0.
On equating (13.4) and (13.5) to zero, we get, respectively

T∗
1=

√
2A√

α P−β
R [h − IERPR + 2PS((1 − A1)I1 − A2(I1 − IPR) + A1IPRρ)]

(13.6)

And on substituting for R1, we get

P∗
R1=

β[hT + 2PS{(1 − A1)(1 + I1(T − MR)) − A2(I1 − IPR)(T − MR) + A1ρ(1 + IPR(MA + T))}]
(2 + IERT)(β − 1)

(13.7)

Similarly, differentiating (2) with respect to T and PR,we get respectively

∂Net2(T, PR)

∂T
= αP−β

R

{
− IERPR

2
− h

2
− A1IPRPSρ

}
+ A

T2 (13.8)

and

∂Net2(T, PR)

∂PR
= α

2
P−(β+1)
R R2 (13.9)

where

R2 = −PR(2 + 2IERMR − IERT)(β − 1) + β[hT − 2PS[{A1(1 − ρ(1 + IPR(MA + T))) − 1}]

On equating (13.8) and (13.9) to zero, we get, respectively

T∗
2 =

√
2A√

α P−β
R (h + IERPR + 2A1IPRPSρ)

(13.10)
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and

P∗
R2=

β(hT − 2PS[A1(1 − ρ(1 + IPR(MA + T))) − 1])

(2 + 2IERMR − IERT)(β − 1)
(13.11)

13.3.2.2 Sufficiency Conditions

The second order (sufficiency) conditions for Netj, j = 1, 2 to be maximum with
respect to T and PR, respectively, are

(i) ∂2Netj(T,PR)

∂T2 < 0, (ii) ∂2Netj(T,PR)

∂P2R
< 0

for which, wide sufficient conditions are derived in Appendix 1
For Net j to be jointly concave with respect to both the decision variables T and

PR, we require that Netj satisfies (i) or (ii) and

(iii) ∂2Netj(T,PR)

∂T2
∂2Netj(T,PR)

∂P2R
−

(
∂2Netj(T,PR)

∂T∂PR

)2
> 0

Condition (iii) has been further discussed in Appendix 2.

13.4 Algorithm

On the basis of above theoretical results, the following solution algorithm has been
developed to determine an optimal solution of the model for the given parameters α,
β, A, h, IER, IPR, I1, ρ, A1, A2, PS, MA, MR.

Step 1: Input values of all the parameters.
Step 2: We find the optimal values of T and PR for T ≥ MR, i.e., T*

1, P
*
R1 as follows:

(i) Put j = 0. Select the initial value P*R1 of PR1 as PR10 = PS.
(ii) Substitute PR = P*R1jin (6) and compute T*

1j.
Set j = j + 1.

(iii) Substitute T = T*
1j in (7) to obtainP

*
R1j+1.

(iv) Repeat (ii) – (iii) till the values of T*
1j and P*R1j stabilize, say, to T*

1 and P*R1,
respectively.

(v) Substitute T*
1 and P*R1 in (1) to obtain the optimal value of Net1*

Step 3: We find the optimal values of T and PR for T ≥ MR, i.e., T*
2, P

*
R2 as follows:

(i) Put j = 0. Set PR20 = PS a guess value of PR2.
(ii) Substitute PR = P*R2jin (10) and compute T*

2j.
Set j = j + 1.

(iii) Substitute T = T*
2j in (11) to obtainP

*
R2j+1.

(iv) Repeat (ii) – (iii) till the values of T*
2j and P*R2j stabilize, say, to T*

2 and P*R2,
respectively.
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(v) Substitute T*
2 and P*R2 in (2) to obtain the optimal value of Net2*

Step 4: The optimal net profit is Net* = Max (Net1*, Net2*). Stop.

13.4.1 Numerical Example

In this section, we provide a numerical example to illustrate the results satisfying both
the above necessary and sufficient conditions of maximization obtained in Sect. 13.3.
We apply the above algorithm to obtain optimal values of the decision variables
and to conduct sensitivity analysis. We consider the following values for the input
parameters in proper units.

Example: Let us take the following parameter values of the inventory system as
follows:α = 1,000,000, β = 2, h = 0.65, A = 50, IER = 0.06, IPR = 0.09, I1 = 0.1,
ρ = 0.4, A1 = 0.2, A2 = 0.4, PS = 5, MR = 0.08, MA = 0.04.

Plots of Net1 and Net2 with respect to T and PR for Case I (T ≥ MR) and Case II
(T < MR) are presented in Fig. 13.2a and Fig. 13.2b, respectively. From the figures,
it is clear that for this set of input parameters, Net is jointly Concave function of PR
and T for both the cases.

The optimal values are as follows:

Decision variable Case I Case II

T* 0.0908 0.0790

PR* 8.8525 8.8385

Net* 56084.2 56075.6

Case I provides a larger value of Net. Hence, the column under Case I provides
the optimal set of values.

Fig. 13.2 a Net versus T
and PR for MR ≤ T,
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Fig. 13.2 b Net versus T
and PR for MR > T

13.4.2 Sensitivity Analysis

We now study the effects of changes in the values of the system parameters α, β, h,
A, IER, IPR, I1, ρ, A1, A2, PS, MR, MA on the optimal values of retailer’s price, cycle
length and net profit.

The sensitivity analysis is performed by changing each of the parameters by +
50%, +25%, −25%, and −50% taking one parameter at a time and keeping the
values of the remaining parameters unchanged.

The results for the cost parameters and other parameters of themodel are presented
in Table 13.1 and Table 13.2, respectively.

Table 13.1 shows the change in optimal values of the decision variables and the
optimum net profit with changes in the cost parameters. We observe that increase in
Ps by 50% results in increase in T* by almost 40%, increase in PR* by almost 50%
and decrease in Net* by 33%. Increase in IER by 50% results in about 18% increase
in T* whereas surprisingly, this does not significantly affect the net profit. A 50%
decrease in IPR andI1 results in almost 14% and 13% increase in T*, respectively.
Increase in ρ by 50% results in increase in optimal cycle time by 4% and the retailers’
selling price by about 5% and net profit decreases by 4.40%. Increase in A by 50%
results in about 23% increases in T*. A 50% decrease in h results in about 23%
increase in T*.

Table 13.2 shows the change in optimal values of the decision variables and the
optimum net profit with changes in the model parameters, where the significant
changes are written in bold characters. It is seen that increase in the credit period
MR by 25% results in decline in T* and hence, Case II becoming optimal, i.e., the
inventory ordered should be such that it is sold off before the end of the credit period.

The parameters α and β are major factors that affect—the optimal values of the
cycle time, retailer’s price, as well as the net profit. A 25% increase/decrease in the
value of α result in a proportionate increase/decrease in the value of net profit. A
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Table 13.1 Sensitivity analysis of the optimal solution with change in cost parameters

Cost changing
parameter

% Change in
parameter value
(%)

% Change in optimal values Optimal case

T* PR* Net*

h = 0.65 −50 23.045 −0.122 0.371 Case I

−25 9.734 −0.061 0.176

25 −5.843 0.085 −0.142 Case II

50 −10.756 0.164 −0.276

PS = 5 −50 NV NV NV Case I

−25 NV NV NV

25 20.473 25.118 −20.061

50 39.708 50.276 −33.433

IER = 0.06 −50 −11.614 −0.024 −0.257 Case II

−25 −6.346 −0.015 −0.133 Case I

25 7.845 0.025 0.142

50 17.912 0.063 0.297

IPR = 0.09 −50 13.848 0.067 0.090 Case I

−25 6.261 0.034 0.041

25 −5.277 −0.034 −0.035

50 −9.805 −0.069 −0.064 Case I = Case II

I1 = 0.1 −50 12.691 0.108 0.037 Case I

−25 5.788 0.054 0.015

25 −4.942 −0.054 −0.010

50 −9.226 −0.109 −0.015

ρ = 0.4 −50 −4.024 −4.608 4.826 Case I

−25 −2.007 −2.304 2.356

25 1.996 2.305 −2.250

50 3.980 4.610 −4.402

A = 50 −50 NV NV NV Case II

−25 −13.486 −0.119 0.303

25 12.019 0.150 −0.232 Case I

50 22.924 0.285 −0.441

Note ‘NV’ indicates infeasible value
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Table 13.2 Sensitivity analysis of the optimal solution with respect to model parameters

Model changing
parameter

% Change in
parameter value (%)

% Change in optimal values Optimal case

T* PR* Net*

A1 = 0.2 −50 5.247 6.786 −6.355 Case I

−25 2.639 3.393 −3.281

25 −2.672 −3.392 3.511

50 −6.740 −6.784 7.296 Case II

α = 1,000,000 −50 42.376 0.527 −50.405 Case I

−25 15.753 0.196 −25.228

25 −10.711 −0.133 25.260

50 NV NV NV

β = 2 −50 NV NV NV Case I

−25 NV NV NV

25 32.166 −16.333 −65.233

50 84.485 −24.213 −87.261

MR = 0.08 −50 0.445 0.348 −0.345 Case I

−25 0.222 0.174 −0.173

25 −0.094 −0.120 0.242 Case II

50 −0.188 −0.241 0.485

MA = 0.04 −50 −0.021 −0.016 0.016 Case I

−25 −0.011 −0.008 0.008

25 0.010 0.008 −0.008

50 0.021 0.017 −0.016

Note ‘NV’ indicates non feasible value

25% decrease in α results in about 16% increase in the optimal cycle length, while
50% increase in β results in 84% increase in the optimal cycle length.

The results of sensitivity analysis presented above are also shown below graphi-
cally in order to enable a quicker comprehension (Fig 13.3a,b,c).

13.4.3 Managerial Insights

We find that among cost factors, increasing supplier’s selling price results in a sig-
nificant increase in the optimal cycle time, but a drastic decrease in the optimum
profit. Other factors that result in a significant change in optimal time are the rates
of interest to be paid by and earned by the retailer, ordering cost, discount fac-
tors well as the holding cost. However, other than the supplier’s price, net profit
is not significantly affected by cost factors. Hence supplier’s price must be nego-
tiable to attain a profitable level for the retailer. Increase in the proportion of advance
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(a) 

Fig. 13.3 a Significant change in T* with change in parameters

(b)  

Fig. 13.3 b Significant change in PR* with change in parameters

(c)  

Fig. 13.3 c Significant change in Net* with change in parameters
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payment will result in decline in optimal value of the retailer’s selling price and
hence increase in end customer demand. Thus, an increase in the proportion of order
quantity obtained at discounted price and increase in revenue earned due to increased
demand together lead to an increase in the net profit rate of the retailer. Further, an
advantage of increasing A1 is that it will contribute to increase in supplier’s corpus
fund. A completely opposite effect is seen when the discount factor is increased. The
retailer’s net profit is significantly affected by both the demand parameters. Hence,
the demand rate must be estimated with care. Increase in duration of advance pay-
ment by the supplier will not result in a reduction in the retailer’s net profit as in
Zhang [18].

13.5 Conclusion and Future Scope

In this paper, we have discussed a payment policy for supply chains with permis-
sible delay in payment and partial advance payment at a discounted price where
the retailer’s selling price is a decision variable. Iso-elastic price-dependent demand
function has been considered and useful managerial insights are obtained from sen-
sitivity analysis.

In future, other types of price-dependent demand functions may be explored for
other real-life problems. Further, being an important determinant of the retailer’s
payment policy, discount may be optimally determined using procedure similar to
Gupta et al. [10] for constant demand and Gupta et al. [11] for iso-elastic demand.

This research did not receive any specific grant from funding agencies in the
public, commercial, or nonprofit sectors.
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Appendix 1 (Sufficiency Conditions)

For Case I (T≥MR), the second-order derivatives with respect to T and PR are given
by differentiating (4) and (5), respectively, i.e.,

∂2Net1(T,PR)

∂T2 = −2A

T3 < 0

∂2Net1(T,PR)

∂P2R
= −α

2
P−(β+1)
R

[
P−1
R (β + 1)(R1) + (β − 1)(2 + IERT)

]

At PR* since ∂Net1
∂PR

= 0, we have R1 = 0.
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Since R1 = 0,

∂2Net1(T,PR)

∂P2R
〈0 If β − 1〉0, i.e., β > 1.

For Case II (T < MR), the second-order derivatives with respect to T and PR are
given by differentiating (8) and (9), respectively, i.e.,

∂2Net2(T,PR)

∂T2 = −2A

T3 < 0

∂2Net2(T,PR)

∂P2R
= −α

2
P−(β+1)
R [P−1

R (β + 1)(R2) + (β − 1)(2 + 2IERMR − IERT)

Since R2 = 0

∂2Net2(T,PR)

∂P2R
〈0, I f β − 1〉0, i.e., β > 1.

Appendix 2 (Determinant of the Hessian Matrix)

For Case I, T ≥ MR, we have

∂2Net1(T,PR)

∂T2 = −2A

T3

∂2Net1(T,PR)

∂P2R
= −α

2
P−(β+2)
R

[
P−1
R (β + 1)(R1) + (2 + IERT)(β − 1)

]

On differentiating (5), we get

∂2Net1(T,PR)

∂T∂PR
= α

2
P−(β+1)
R {−PRIER(β − 1)

+β{h + 2PS[(1 − A1)I1 − A2(I1 − IPR) + A1ρIPR]}}

The determinant of this Hessian matrix for Case I is

Hessian1 = −2A

T3

{
−α

2
P−(β+2)
R

[
P−1
R (β + 1)(R1) + (2 + IERT)(β − 1)

]}

−
[α

2
P−(β+1)
R {−PRIER(β − 1) + β[h + 2PS((1 − A1)I1 − A2(I1 − IPR)

(+A1ρIPR)]}]2
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Since R1 = 0

Hessian1 = A

T3 αP−(β+2)
R (2 + IERT)(β − 1)

−
[α

2
P−(β+1)
R {−PRIER(β − 1) + β [h + 2PS((1 − A1)I1 − A2(I1 − IPR)

+A1ρIPR)]}]2

i.e.,

Hessian1 = AA − BB

where

AA = A

T3 α P−(β+2)
R (2 + IERT)(β − 1) > 0 if β > 1.

BB =
[α

2
P−(β+1)
R {−PRIER(β − 1) + β[h + 2PS((1 − A1)I1 − A2(I1 − IPR) + A1ρIPR)]}

]2

Since ∂2Net1
∂T2 < 0, the condition for joint concavity of Net1 with respect to T and

PR is AA > BB.
For Case II, for T < MR, we have

∂2Net2(T,PR)

∂T2 = −2A

T3

∂2Net2(T,PR)

∂P2R
= −α

2
P−(β+1)
R

[
P−1
R (β + 1)(R2) + (β − 1)(2 + 2IERMR − IERT)

]

On differentiating (9) with respect to T, we get

∂2Net2(T,PR)

∂T∂PR
= α

2
P−(β+1)
R [PRIER(β − 1) + β(h + 2PSA1ρIPR)]

The determinant of the Hessian matrix for Case II is

Hessian2 = −2A

T3

{
−α

2
P−(β+1)
R

[
P−1
R (β + 1)(R2) + (β − 1)(2 + 2IERMR − IERT)

]}

−
{α

2
P−(β+1)
R [PRIER(β − 1) + β(h + 2PSA1ρIPR)]

}2

Since at PR2*, R2 = 0,

Hessian 2 = A

T3αP−(β+1)
R (β − 1)(2 + 2IERMR − IERT)
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−
{α

2
P−(β+1)
R [PRIER(β − 1) + β(h + 2PSA1ρIPR)]

}2

i.e.,

Hessian2 = CC − DD

where

CC = A

T3αP−(β+1)
R (β − 1)(2 + 2IERMR − IERT)

DD =
{α

2
P−(β+1)
R [PRIER(β − 1) + β(h + 2PSA1ρIPR)]

}2

Since ∂2Net2
∂T2 < 0, the condition for concavity of Net2 is CC > DD.
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Chapter 14
Effects of Pre- and Post-Deterioration
Price Discounts on Selling Price
in Formulation of an Ordering Policy
for an Inventory System: A Study

Mihir Suthar and Kunal T. Shukla

Abstract In present times, one of the promotional tools is offering a rebate on
retail amount for raising the market needs of a product. Also, different discount
rates are offered depending upon quality/originality/expediency. A non-deteriorating
product maintains its quality/original conditions throughout the planning horizon. A
deteriorating product may be affected by deterioration at the time of replenishment
(instantaneous deterioration) ormay be after some time (non-instantaneous). Retailer
may offer different price discounts in each case. In this chapter, optimal ordering
policies are discussed when retailer offers different price discounts to his customers,
before and after deterioration starts.Moreover, the demand for a product is considered
price sensitive. Pre-deterioration discount is considered to be smaller than the post-
deterioration discount as per the trend. Four different situations are formulated and
illustrated with support of numerical examples. Sensitivity analysis is performed to
present bureaucratic insights.

14.1 Introduction

A process that prevents original usage of an item or degrades its quality is known
as deteriorations. Deterioration may be observed as decay, dryness, evaporation,
degradation, spoilage, etc. Ghare and Schrader [5] were the first to establish an
inventory system with exponentially decayed products and deterministic demand.
Ardalan [1] gave a provisionary amount rebate to design ordering policy. Wee and
Yu [20] evolved provisional amount rebate replica regarding items deteriorating
exponentially. Chandra [3] developed an inventory model with a price discount on
backorders with ramp type demand and time varying holding cost. Rigorous survey
was presented by Nahmias [9], Rafaat [12], Shah and Shah [15], Goyal and Giri [6],
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Bakker et al. [2] regarding inventory systems for deteriorating products. However,
most of the researches assumed that deterioration takes place as the replenishment of
an item in inventory system. In reality, most commodities maintain their quality or
original conditions over a span. That is, during this span deterioration does not occur.
Normally, it is noticed that freshness of eatables, vegetables and fruits remain for
less duration without any staleness. Whereas in items like volatile liquids, radioac-
tive chemicals, trendy goods and electronic goods have more span of marinating
their quality or freshness. Wu et al. [22] and Ouyang et al. [10] were developed to
incorporate this occurrence in to the reserved stocks; they entitled the occurrence
“non-instantaneous deterioration”. Also, a suggestion was made by them to lessen
the frequency of deterioration of a product by enhancing facilities at the storehouse;
the entire year-end stock expenditure will decrease. Many researchers like Ouyang
et al. [11], Wu et al. [23], Jaggi and Verma [7], Soni and Patel [18], Shah et al. [16],
Dye [4], Wang et al. [21], Shah and Vaghela [17] and Suthar and Shukla [19] have
discussed non-instantaneous deterioration in their study. Also, Mukherjee et al. [8],
Saha et al. [14] and Roy et al. [13] have discussed price discount on back order in
their study.

Here, optimal ordering policies are discussed when retailer offers before and
after depreciating rebate in market cost. It’s considered that retailer deals with an
item having price-sensitive demand; shortages are not allowed; deterioration is non-
instantaneous. By examining the inventory system, an algorithm is proposed to define
optimal ordering policywith the aforesaid hypothesis. The chapter is outlined section
wise; Sect. 14.2 deals with assumptions and notations under consideration; Mathe-
matical formulation of an inventory system is derived in Sect. 14.3. In support of this
mathematical formulation, numerical examples are presented in Sect. 14.4 alongwith
special cases. Sensitivity analysis is presented and managerial insights are discussed
in Sect. 14.5. The learning is concluded in Sect. 14.6.

14.2 Assumptions and Notations

The following assumptions and notations are used in the formulation ofmathematical
form of the proposed model.

1. The inventory systemunder consideration is for only one item.The rate of restora-
tion is infinite. The length of planning horizon is not finite. The system does not
possess shortages.

2. During an ordering cycle 0 ≤ t ≤ T , inventory level at any instant of time is a
function say I(t), where T is cycle time.

3. The demand for a product is assumed to be selling price sensitive, say D(S);
where S is the selling price/ unit.

4. To make better demand for a product, the retailer offers a rebate on selling price
to his customer. Here, we plot a general trend to offer different price discounts
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before and after the effect of deterioration. Let, d1 be pre-deterioration and d2 be
post-deterioration discount rates over selling price S.

5. α1 = (1 − d1)
−η, η ∈ R is the effect of rebate available before the start

of deterioration (i.e., pre-deterioration) of a product over demand; and α2 =
(1 − d2)

−η, η ∈ R is the effect of rebate offered after the start of deterioration
(i.e., post-deterioration) of a product over demand.

6. During the ordering cycle, t1 is the time up to which the product does not pos-
sess deterioration. Thereafter, it deteriorates with a rate say, θ(t). Again, it is
assumed that the deteriorated product is neither repaired nor replenished during
the ordering cycle.

7. EOQQ (a decision variable), is an initial level of stock in to the inventory system.
8. Consider PC is the purchase cost/ unit; HC is the holding cost/ unit/ year; OC is

an ordering cost per order; �(T ) is an average profit of an inventory system per
time unit.

14.3 Mathematical Formulation

An inventory system is formulated with the assumption that retailer offers different
price discounts to his customers for fresh item and deteriorated item. To design
general framework, deterioration is assumed to be non-instantaneous. The depletion
of stock in inventory system is showed off in Fig. 14.1.

The level of stock at any instant time can be expressed in the form of (14.1),

dI(t)

dt
=

{ −D(S) ; 0 ≤ t ≤ t1
−D(S) − θ(t)I(t) ; t1 ≤ t ≤ T

(14.1)

where

I(T ) = 0 (14.2)

Fig. 14.1 Stock depletion during ordering cycle
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Here, retailer offers d1% rebate on selling price before deterioration starts during
[0, t1] and offers d2% rebate on selling price after deterioration starts during [t1,T ].
Three cases are formulated here depending upon the value of t1.

Model 3.1: t1 ≥ T (Inventory model for items without deterioration), Model 3.2:
t1 = 0 (Inventory model for items with instantaneous deterioration), Model 3.3:
0 < t1 < T (Inventory model for items with non-instantaneous deterioration).

And Model 3.4: Generalization of Model 3.3 for various deterioration rates (i.e.,
except this model, the rate of deterioration is assumed to be constant).

Model 3.1: t1 ≥T (Inventory model for items without deterioration)

In this case, an item is not being deteriorated and so, level of inventory depletes due
to demand only. From (14.1), the differential equation that governs the inventory
system in this case is

dI(t)

dt
= −D(S); 0 ≤ t ≤ T (14.3)

With condition (14.2), the solution of (14.3) is

I(t) = D(S)(T − t); 0 ≤ t ≤ T (14.4)

Using (14.4),

Q = I(0) = D(S) · T (14.5)

The cost components involved in the computation of total profit per ordering cycle
are as follows:

1. Ordering cost:OC = OC

2. Holding cost:HC = HC
∫ T
0 I(t) dt = HC

2 · D(S) · T 2

3. Purchase cost: PC = PC · Q = PC · D(S) · T
4. Sales Revenue:SR = S · (1 − d1) · α1 · D(S) · T = S · (1 − d1)

1−η · D(S) · T

Therefore, the profit function is defined by

�(T ) = SR − OC − PC − HC

T
(14.6)

To find maximum value of �(T ), the concepts of calculus are used. To solve,

d�(T )

dT
= 0

⇒ −1

2
HC · D(S) + OC

T 2
= 0

⇒ T =
√

2OC

HC · D(S)
(14.7)
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Moreover,

d2�(T )

dT 2
= −2OC

T 3
< 0 (14.8)

Here, Eq. (14.8) assures that the profit function is maximized with the optimal
value of T obtained from (14.7).

Model 3.2: t1 = 0 (Inventory model for items with instantaneous deterioration)

In this case, an item deteriorates throughout the ordering cycle and so, the level of
inventory depletes due to demand and deterioration both. From (14.1), the differential
equation that governs inventory system in this case is

dI(t)

dt
= −θ I(t) − D(S) ; 0 ≤ t ≤ T (14.9)

With condition (14.2), solution of (14.9) is

I(t) = D(S)

θ

(
eθ(T−t) − 1

); 0 ≤ t ≤ T (14.10)

Here, as θ and T are very small, it is assumed that

eθ(T−t) ≈ 1 + θ(T − t) + θ2(T − t)2

2
≈ 1 + θ(T − t) + θ2

(
T 2 − t2

)
2

(14.11)

So, from (14.10) and (14.11), the solution of (14.9) is

I(t) = D(S)

(
(T − t) + θ

(
T 2 − t2

)
2

)
; 0 ≤ t ≤ T (14.12)

Using (14.12),

Q = I(0) = D(S) ·
(
T + 1

2
θ · T 2

)
(14.13)

The cost components involved in the computation of total profit per ordering cycle
are as follows:

1. Ordering cost:OC = OC

2. Holding cost:HC = HC
∫ T
0 I(t)dt = HC · D(S) · (

1
3θ · T 3 + 1

2T
2
)

3. Purchase cost:PC = PC · Q = PC · D(S) · (
T + 1

2θ · T 2
)

4. Sales Revenue: SR = S · (1 − d2) · α2 · D(S) · T = S · (1 − d2)
1−η · D(S) · T

Therefore, the profit function is defined by
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�(T ) = SR − OC − PC − HC

T
(14.14)

Again, to optimize �(T ), the concepts of calculus are used. To solve,

d�(T )

dT
= 0

⇒ −2

3
T · HC · θ · D(S) − 1

2
HC · D(S)

− 1

2
PC · θ · D(S) + OC

T 2
+ 1

2
S · θ · D(S)(1 − d2)

1−η = 0

⇒ T =

⎡
⎢⎢⎣

1

4

K

HC · θ · D(S)
+ 1

4

θ · P2
C · D(S)

HC · K
+ 1

2

PC · D(S)

K
+ 1

4

HC · D(S)

θ · K − 1

4

PC

HC
− 1

4
θ

⎤
⎥⎥⎦ (14.15)

where

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

− D(S)3 · (PC · θ)2(PC · θ + 3 · HC )

+ 3 · (16 · OC · θ · D(S) − PC ) · H2
C · θ · D(S)

+ 4 · D(S)2 · HC · θ · √
6 ·

√
24 · (OC · HC · θ)2 − OC · D(S)(PC · θ + HC )3

− H3
C · D(S)3

⎞
⎟⎟⎟⎟⎟⎟⎠

Moreover,
d2Π(T )

dT 2 = −2OC
T 3 − 2

3HC ·θ ·D(S) < 0 assures that the profit function is maximized
with the optimal value of T obtained from (14.15).

Model 3.3: 0 < t1 < T (Inventory model for items with non-instantaneous deteri-
oration)

Here, an item remains unaffected over a period of time and then deteriorates for
the remaining ordering cycle. This demonstrates the case that an item is non-
instantaneous. From Eq. (14.1), the differential equation that governs inventory sys-
tem in this case is

dI(t)

dt
=

{ −D(S) ; 0 < t ≤ t1
−D(S) − θ I(t) ; t1 ≤ t < T

(14.16)

With condition (14.2), continuity at t = t1 and approximation (14.11), the solution
of (14.16) is

I(t) =
{
D(S)

(
T − t + θ

2

(
T 2 − t21

)) ; 0 < t ≤ t1
D(S)

(
T − t + θ

2

(
T 2 − t2

)) ; t1 ≤ t < T
(14.17)

Using (14.17),
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Q = I(0) = D(S)

(
T + θ

2

(
T 2 − t21

))
(14.18)

The cost components involved in the computation of total profit per ordering cycle
are as follows:

1. Ordering cost: OC = OC

2. Holding cost:HC = HC
∫ T
0 I(t) dt = HC · D(S) · (

T 3 · θ − T · t21 · θ + T 2
)

3. Purchase cost:PC = PC · Q = PC · D(S)
(
T + θ

2

(
T 2 − t21

))
4. Sales Revenue:

SR = S · (1 − d1) · α1 · D(S) · t1 + S · (1 − d2) · α2 · D(S) · (T − t1)

= S · (1 − d1)
1−η · D(S) · t1 + S · (1 − d2)

1−η · D(S) · (T − t1)

Therefore, the profit function is defined by

�(T ) = SR − OC − PC − HC

T
(14.19)

Again, to optimize �(T ), the concepts of calculus are used. To solve,

d�(T )

dT
= 0

⇒ 2OC − PC · θ · t21
T 2

− D(S)

⎛
⎜⎜⎝
2 · HC · θ · T + HC + 1

2
PC · θ

− S · t1(1 − d1)

T 2α1
+ S · t1(1 − d2)

T 2α2

⎞
⎟⎟⎠ = 0 (14.20)

One may take a help of mathematical software likeMaple, Mathematica, or MAT-
LAB to evaluate the closed form of optimal cycle time T .

Moreover,

d2�(T )

dT 2 = 1
T 3

[ − 2OC − 2 · HC · θ · D(S) · T 3 + PC · θ · t21 · D(S)

− 2 · S · t1 · D(S)
(
(1 − d2)

1−η − (1 − d1)
1−η

)
]

< 0 assures

that the profit function is maximized with the optimal value of T obtained by (14.20).

Model 3.4: Generalization of Model 3.3 for various deterioration rates

In this case, the rate of deterioration is assumed to be time dependent and all other
assumptions are as similar to Model 3.3. From Eq. (14.1), the differential equation
that governs inventory system in this case is

dI(t)

dt
=

{ −D(S) ; 0 < t ≤ t1
−D(S) − θ(t)I(t) ; t1 ≤ t < T

(14.21)

With condition (14.2), continuity at t = t1, the solution of (14.21) is
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I(t) =
⎧⎨
⎩
D(S)(t1 − t) + e

∫ t1
T −θ(x)dx

(∫ t1
T

(
−D(S)e

∫ x
T θ(x)dx

)
dx

)
; 0 < t ≤ t1

e
∫ t
T −θ(x)dx

(∫ t
T

(
−D(S)e

∫ x
T θ(x)dx

)
dx

)
; t1 ≤ t < T

(14.22)

Using (14.22),

Q = I(0) = D(S)t1 + e
∫ t1
T −θ(x)dx

(∫ t1

T

(
−D(S)e

∫ x
T θ(x)dx

)
dx

)
(14.23)

The cost components involved in the computation of total profit per ordering cycle
are as follows:

1. Ordering cost: OC = OC

2. Holding cost: HC = HC
∫ T
0 I(t) dt = HC ·

(∫ t1
0 I(t)dt + ∫ T

t1
I(t)dt

)

= HC

⎛
⎜⎜⎜⎝

1

2
D(S)t21 + e

∫ t1
T −θ(x)dx

(∫ t1

T

(
−D(S)e

∫ x
T θ(x)dx

)
dx

)
t1

+
∫ T

t1

(
e
∫ t
T −θ(x)dx

(∫ t

T

(
−D(S)e

∫ x
T θ(x)dx

)
dx

))
dt

⎞
⎟⎟⎟⎠

3. Purchase cost:

PC = PC · Q = PC ·
(
D(S)t1 + e

∫ t1
T −θ(x)dx

(∫ t1

T

(
−D(S)e

∫ x
T θ(x)dx

)
dx

))

4. Sales Revenue:

SR = S · (1 − d1) · α1 · D(S) · t1 + S · (1 − d2) · α2 · D(S) · (T − t1)

= S · (1 − d1)
1−η · D(S) · t1 + S · (1 − d2)

1−η · D(S) · (T − t1)

Therefore, the profit function is defined by

�(T ) = SR − OC − PC − HC

T
(14.24)

Again, to optimize �(T ) with an available choice of deterioration rate, the con-
cepts of calculus are used. To solve, d�(T )

dT = 0 find the optimal value of cycle time

T such that d2�(T )

dT 2 < 0. This assures that the profit function is maximized with the
optimal value of T during ordering cycle.

Remark Here, the retailer has three choices. (1) No price discount offered throughout
the planning horizon, i.e., d1 = d2 = 0, (2) Only post-deterioration discounts over
unit price is offered, i.e., d1 = 0, d2 �= 0, and (3) both pre- and post-deterioration
price discounts are offered, i.e., d1 �= 0, d2 �= 0. To compare the closed form of
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optimal T is difficult, so comparison is done numerically and illustrated in Example
14.6 and Fig. 14.7.

To demonstrate above cases, the examples for formulation are discussed below.

14.4 Numerical Examples

Example 14.1 (Model 3.1) Consider demand rate D(S) = 1000 − 0.2S, S = $20,
d1 = 0.1, η = 2, HC = $2, PC = $10,OC = $1000. By solving (14.7), the optimal
value of cycle time is T ∗ = 1.0020 years. Using (14.5) and (14.6), the optimal
values of EOQ Q is 997.99 and total profit �(T ) is $10177.34. Concavity as shown
in Fig. 14.2 validates that �(T ) is maximum

Example 14.2 (Model 3.2) Consider demand rate D(S) = 1000 − 0.2S, S = $20,
η = 2,HC = $2,PC = $10,θ = 0.2, d2 = 0.2, OC = $1000. By solving (14.15),
the optimal value of cycle time is T ∗ = 0.6785 years. Using (14.13) and (14.14), the
optimal values of EOQ Q is 721.64 and total profit �(T ) is $12053.45. Concavity
as shown in Fig. 14.3 validates that �(T ) is maximum.

Example 14.3 (Model 3.3) Consider demand rate D(S) = 1000 − 0.2S, S = $20,
d1 = 0.1, d2 = 0.2, t1 = 0.2, η = 2, θ = 0.2,HC = $2, PC = $10, OC = $1000.
By solving (14.20), the optimal value of cycle time is T ∗ = 0.6565 years. Using
(14.18) and (14.19), the optimal values of EOQ Q is 692.87 and total profit �(T ) is
$10517.21. Concavity as shown in Fig. 14.4 validates that �(T ) is maximum.

To demonstrate the Model 3.3 for other price-dependent functions, the following
examples are considered.

Fig. 14.2 Total profit �(T )

with respect to T
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Fig. 14.3 Total profit �(T )

with respect to T

Fig. 14.4 Total profit �(T )

with respect to T

Example 14.4 Consider demand rate D(S) = 100000 · S−η and all other parametric
values similar to Example 14.3. Again, by solving (14.20), the optimal value of
ordering cycle is T ∗ = 1.0809 years. Using (14.18) and (14.19), the optimal values
of EOQ Q is 298.44 and total profit �(T ) is $1782.09. Concavity as shown in
Fig. 14.5 validates that �(T ) is maximum.
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Fig. 14.5 Total profit �(T )

with respect to T

Example 14.5 Consider demand rateD(S) = 100000·e−0.2S and all other parametric
values similar to Example 14.3. Again, by solving (14.20), the optimal value of
ordering cycle is T ∗ = 0.5552 years. Using (14.18) and (14.19), the optimal values
of EOQ Q is 1065.96 and total profit �(T ) is $20724.35. Concavity as shown in
Fig. 14.6 validates that �(T ) is maximum.

Fig. 14.6 Total profit �(T )

with respect to T
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Example 14.6 Consider demand rate D(S) = 1000 − 0.2S, S = $20, t1 = 0.2,η =
2,θ = 0.2,HC = $2,PC = $10,OC = $1000. By solving (14.20), the optimal value
of cycle time T is obtained and using (14.18) and (14.19), the optimal values of Q
and �(T ).

Case T Q �(T )

d1 = d2 = 0 0.530574199 552.50 6468.76

d1 = 0, d2 �= 0 0.739484831 787.01 9883.19

d1 �= 0, d2 �= 0 0.656547800 692.87 10517.21

Form Fig. 14.7, one may observe that offering the pre- and post-deterioration
price discount is a better option to opt for the retailer.

Fig. 14.7 Variation of total
profit �(T ) with respect to T
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Fig. 14.8 Total profit �(T )

with respect to T

Example 14.7 (Model 3.4) Consider the rate of deterioration depending upon maxi-
mum lifem say θ(t) = 1

1+m−t , demand rateD(S) = 1000−0.2S, S = $20, d1 = 0.1,
d2 = 0.2, t1 = 0.2, η = 2, m = 1, HC = $2, PC = $10,OC = $1000. By solving
d�(T )

dT = 0, the optimal value of ordering cycle is T ∗ = 0.5870 years. And the opti-
mal values of EOQ Q is 633.23 and total profit �(T ) is $10827.47. Concavity as
shown in Fig. 14.8 validates that �(T ) is maximum.

On a similar path, one may try Model 3.4 for other price-sensitive demand rates
and deterioration rates. To derive managerial insights, the sensitivity with respect to
different parameters is outlined in the next section.

14.5 Sensitivity Analysis

Sensitivity with respect to various parameters is exhibited in Figs. 14.9, 14.10, and
14.11 as below, where standard values for parameters are as similar to Example 14.3.

From Fig. 14.9, one may observe that T is in direct proportion of selling price S,
post-deterioration discount rate d2, delay time of deterioration t1, η, and ordering cost
OC . Also, it is in inverse proportion to demand rate D(S), pre-deterioration discount
rate d1, deterioration rate θ , unit purchase cost PC , and unit holding cost per time
unit HC .

From Fig. 14.10, one may observe that Q is in direct proportion of D(S), S, d2,
t1, and η. Also, it is in inverse proportion to d1, θ,PC,HC and OC .

From Fig. 14.11, one may observe that �(T ) is in direct proportion of D(S), S,
d1, d2, and η. Also, it is in inverse proportion to t1, θ,PC,HC and OC .
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Fig. 14.9 Variation in length of ordering cycle T

Fig. 14.10 Variation in EOQ Q

14.6 Conclusion

In this chapter, mathematical formulation to derive an ordering policy is discussed
from retailer’s point of view, when retailer offers different price discounts before and
after deterioration starts. The demand of an item is price dependent and shortages
are not allowed. Here, four models are discussed; (3.1) An item does not deteriorate,
(3.2) Deterioration is instantaneous, (3.3) Deterioration is non-instantaneous, and
(3.4) Generalization of formulation with nonconstant deterioration rates. For Model
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Fig. 14.11 Variation in total profit �(T )

(3.3), it is assumed that retailer offers different price discounts on selling price, before
and after deterioration. Using the formulation of Model 3.3, retailer may opt for one
of the three choices. (1) No price discount offered throughout the planning horizon,
(2) Just after deterioration discounts over unit price is offered, and (3) both before
and after deterioration price rebate is offered. By comparing the optimal value of T
numerically, retailer may opt for the best decision approach. One may extend this
concept for other price-sensitive demands different demand rate and may study the
effect of pre- and post-deterioration discount rates.

Acknowledgements The authors are thankful to reviewers and editors for their constructive com-
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Chapter 15
Efficient Supplier Selection: A Way
to Better Inventory Control

Shuya Zhong, Sujeet Kumar Singh and Mark Goh

Abstract Effective supplier evaluation during the purchasing process is important
to business, as supplier selection and the success of inventory management depend
on how and which suppliers are selected. Given the popularity of supplier selection
with inventory control, this chapter presents an actual, complex supplier selection
problem involving multiple products where conflicting inventory related attributes
such as response time, delivery reliability, stock quantity, service level and the track
record of the suppliers, are involved. The challenge for this case firm is to inter-
twine supplier selection with inventory management so as to yield the best space
utilization, lower inventory carrying cost and increase end customer satisfaction.
Our main contribution is to apply fuzzy AHP and fuzzy TOPSIS to rank and choose
efficient suppliers through the linguistic ratings of a set of potential suppliers. Under
the environment of global competition, accurate demand fulfilment has becomemore
significant than ever before in supply chain management. As a result, we consider
stochastic demand parameters and model the problem with the help of triangular
fuzzy numbers. Amulti-objective mixed integer linear optimization model is formed
to assign the order volume to the selected supplier(s), with a view to executing
inventory control visually on a user interface.

15.1 Introduction

Robust supplier selection is essential to establishing a sustainable and efficient
supply chain partnership. To enhance supply chain performance, several criteria

S. Zhong · S. K. Singh · M. Goh (B)
The Logistics Institute-Asia Pacific, National University of Singapore, Singapore
119613, Singapore
e-mail: mark_goh@nus.edu.sg

M. Goh
NUS Business School, National University of Singapore, Singapore 119245, Singapore

S. Zhong
Department of Engineering, Institute for Manufacturing, University of Cambridge, Cambridge
CB3 0FS, UK

© Springer Nature Singapore Pte Ltd. 2020
N. H. Shah and M. Mittal (eds.), Optimization and Inventory Management,
Asset Analytics, https://doi.org/10.1007/978-981-13-9698-4_15

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9698-4_15&domain=pdf
mailto:mark_goh@nus.edu.sg
https://doi.org/10.1007/978-981-13-9698-4_15


256 S. Zhong et al.

encompassing the ethical, social and economic dimensions need to be considered
when selecting the most suitable supplier. The supplier selection process invariably
involves supplier evaluation in the context of the supply chain [10].

Today, firms are more supplier dependent due to their outsourcing initiatives.
Typically, when a supply chain actor seeks to design a method to assess and choose
suppliers, specific technical requirements such as product quality, buffer stock levels,
service levels and shelf life are introduced and measured accordingly. This calls
for a range of selection methods, and draws on supplier flexibility to cater to the
user requirements [10]. This makes the supplier evaluation process more critical for
enhancing the overall performance of the firm. This process demands the decision
makers of the firm to be cognizant of and embrace the numerous conflicting objectives
and criteria during evaluation [2]. Multiple-Criteria Decision-Making (MCDM), as
a technique, affords research and practice to offer and consider a suite of conflicting
operational criteria, in addition to simplifying the buying firm’s needs and arriving
at a satisficing outcome [4, 22]. From the extant literature [1, 10, 11, 24], this area of
study has grown in maturity, with recent MCDMmodels combining the adoption of
the evaluation and implementation approaches using a myriad of quantitative as well
as qualitative practices. Consequently, many MCDM systems, tools, and techniques
have been developed to model and implement the supplier management practices,
albeit not much of a focus yet on inventory control.

The supplier evaluation process includes a strategic focus on a win-win relation-
ship among the buyer(s) and supplier(s), whereby close collaboration is critical and
almost necessary. This needs the requisite skills and capabilities from both parties
[22]. As the buying firms require a thorough identification of the skills and capabili-
ties, thismakes the process of selecting the strategic supply partnersmore challenging
as some suppliers may be limited by their capacity or flexibility [14]. Thus, the ven-
dor selection process necessitates the need to help the buying firms make better,
holistic decisions to deal with the actual complexities in the field. In short, simpli-
fying the complex managerial decision-making process is primary [23], but not at
the expense of weakened inventory control. Inventory control is identified as one of
the major drivers for any supply chain, and hence maintaining the actual required
inventory level is an essential task for a firm [20]. High inventory levels enhance the
service capacity to the customers. At the same time, it increases the cost of hold-
ing, whereas lowering the inventory levels may cause shortages, which consequently
questions the firm’s reputation [9]. Therefore, a correlated practice of supplier selec-
tion and order/inventory management is important for the competitive performance
of firms. Cárdenas-Barrón et al. [3] proposed an efficient heuristics for solving the
multi-product, multi-period, inventory lot sizing together with the supplier selection
problem using the technique of reducing the feasible region and then optimizing
it. They compared the solution with the existing methods with the help of several
benchmarking instances and found their approach to be promising. Recently, Duan
and Ventura [9] presented a mixed integer linear programming model addressing a
coordinated inventory planning model for a serial supply chain that minimizes the
overall incurred cost including procurement, inventory holding, production and trans-
portation, incorporating the supplier’s price break scheme and flexible time periods.
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Several interesting works integrating the supplier’s selection and inventory manage-
ment are also found in Parsa et al. [17], Choudhary and Shankar [6, 7], Mazdeh et al.
[15], and Purohit et al. [19], and references therein.

Given the popularity of supplier selection with inventory management, this
research aims to integrate the supplier selection problem, in the presence of mul-
tiple capacitated suppliers, and inventory policy under a variety of supply contracts
and service options by applying fuzzy AHP and fuzzy TOPSIS; and then the order
allocation problem to the selected suppliers by developing a multi-objective mathe-
matical model. Further, the multi-objective model is solved using the non-dominated
sorting genetic algorithm II (NSGA-II).

In summary, this chapter presents an actual case of supplier selection for a
Singapore-based logistics provider, who is keen to lift the operational efficiency
of the firm’s supply network and improve inventory management.

The rest of this chapter is set as such. Section 15.2 details the case study. The
set of criteria used to select the suppliers are detailed, and an easy to apply opera-
tional framework using fuzzy AHP for supplier selection and their order manage-
ment are provided. Next, we show how fuzzy TOPSIS is used to rank the suppliers.
Section 15.3 dives into the equivalent chance-constrained program and highlights
the sensitivity analysis performed on the results. Section 15.4 concludes.

15.2 Supplier Selection: A Case Study

This study is conducted on a logistics player involved in procuring goods from the
suppliers, managing warehousing facilities and stock on behalf of the downstream
client, and providing last mile delivery to healthcare corporate customers. The firm
wants to efficiently select suppliers to maintain the quality of the materials procured
as the final products are very time-sensitive and patient care centric. Specifically, the
firm wants to reshape the healthcare supply chain ecosystem by choosing suppliers
who pave the way to better inventory control overall. MCDM approaches such as
AHP and TOPSIS are used to assess and select the suppliers. Then, a multi-objective
optimization program is formulated to determine the optimal order allocation for
the selected supplier. The genetic algorithm, NSGA-II, is used to solve the multi-
objective program and a user-friendly interface is developed through MATLAB for
the case firm.

One key task is to construct a set of criteria to choose the suppliers, based on
an overarching consideration of the lead time, service reliability, stock quantity and
supplier reputation, so as to obtain the best volumetric space usage, inventory cost,
and customer satisfaction.

Criteria Set Formulation for Supplier Selection
Figure 15.1 shows the criteria used by the firm to choose the suppliers of medical
examination gloves. From the compliance requirements set on the sample products,
as well as the related literature review, a comprehensive decision hierarchy structure
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for supplier selection is constructed (see Fig. 15.2). The first hierarchical level is the
goal, followed by the 3 main- and 11 sub-criteria. Table 15.1 shows the criteria set,
comprising 3 main- and 11 sub-criteria. The suppliers who will be assessed using
the criteria are determined at level 3. The firm can choose a supplier(s) through the
evaluation outcomes. All the criteria are measured with the help of the data received
from the requests to the suppliers in the invitation to tender.
Operational Framework for Order Management
Figure 15.3 shows a 4-stage operational framework; with Phase I: criteria set formu-
lation, Phase II: criteria weight calculation by fuzzy AHP, Phase III: supplier ranking
by fuzzy TOPSIS and Phase IV: order allocation by multi-objective programming.
Phase I. Criteria set formulation
An expert panel is formed, and five suppliers Sp1, …, Sp5 are considered for evalua-
tion. The criteria set is identified, and the decision hierarchy structure is determined
as shown in Fig. 15.2. This structure forms the output of Phase I, and is the input to
Phase II.
Phase II. Criteria weight calculation by fuzzy AHP
Next, the criteria weights are found using fuzzy AHP, and they form the input for
Phase III. AHP is a technique that structures a multi-criteria, multi-person, multi-
period problem hierarchically for an easy solution [21]. Fuzzy AHP, which captures
the imprecise human judgment using linguistic variables, combines AHP with fuzzy

Service (S) Cost (C) Risk (R)
S S S

321

S S
5

Goa

Criteria

C C R R R

Options S
p1

S
p2

S
p3

S
p4

S
p5

R

Select supplier

4 21 1 2 3 4

Fig. 15.2 Supplier evaluation decision hierarchy structure
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Table 15.1 Supplier selection criteria set
Criteria Sub-criteria Description

Service 
(S)

Compliance with 
tender (S1)

Level of compliance to the terms and conditions in the tender invita-
tion.

Product quality 
(S2) 

Portion of products that meet the firm’s expectations on quality, as 
measured by the amount of damaged and deteriorated goods, and end 
user experience of the comfort and fit of the products.

Product shelf life 
(S3)

Length of the product shelf life at delivery.

Past performance 
(S4) 

Track record of the supplier, measured by customer volume or 
transacted volumes, and the evidence of undamaged, on time, and full 
truckload deliveries.

Responsiveness 
(S5)

The time taken by the supplier to process an order request, arrange 
production, fulfil shipment, and provide after-sales service.

Cost (C)

Pricing (C1) 
Holding cost and purchase cost. Suppliers who can consolidate 

stock for disposal, monitor the market cost of the product, and proa c-
tively streamline the cost on the firm’s behalf are preferred.

Investment in 
R&D (C2) 

Portion of supplier’s investment devoted to research and develo p-
ment activities such as new product design and technologies, and pr o-
totype development.

Risk (R)

Output flexibility 
(R1)

Production and delivery flexibility level of supplier in response to 
critical demand surges.

Buffer capacity 
(R2)

Portion of the vendor’s safety stock to cope with surge orders.

Political & ec o-
nomic stability (R3)

Political climate of the supplier’s host country and government pol i-
cies may affect the long term vendor relationship.

Geographical l o-
cation (R4) 

Supplier location, physical and social status. The origin country of 
the supplier, plant location, likelihoo d of the occurrence of natural c a-
lamities should be verified.

Fig. 15.3 4-phase
framework for order
management
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Table 15.2 5-level linguistic scale to evaluate criteria weights in the pairwise comparison matrix

Linguistic term on importance Triangular fuzzy number

Equally important (1, 1, 3)

Moderately more (1, 3, 5)

Strongly more (3, 5, 7)

Very strongly more (5, 7, 9)

Extremely more (7, 9, 9)

set theory to solve hierarchical fuzzy problems. The steps for fuzzy AHP are as
follows: [5, 13].

Step 1. Firm specifies the relative importance scale for pairwise
comparison matrices.

From Table 15.2, a 5-level linguistic scale is formed, where the triangular fuzzy
number (lij , mij, uij) = (1, 1, 3) ranks the lowest, and (7, 9, 9) ranks the highest.

Step 2. Construct fuzzy pairwise comparison matrices.
Using the linguistic scale in Table 15.2, the firm’s decision makers construct

pairwise comparisons for the main- and sub-criteria as shown in Tables 15.3, 15.4,
15.5, and 15.6. For example, in Table 15.3, the cost criterion outweighs the risk

Table 15.3 Pairwise comparison matrix of main criteria (S, C, R)

Main crite-
ria S C R 

S (1,1,1) (1/7,1/5,1/3) (1/3,1,1)
C (3,5,7) (1,1,1) (1,3,5)
R (1,1,3) (1/5,1/3,1) (1,1,1)

3.1828, 0.1576= =maxλ  CR

Table 15.4 Pairwise comparison matrix for S

Sub
-

crite-
ria

S1 S2 S3 S4 S5

S1 (1,1,1) (5,7,9) (5,7,9) (5,7,9) (5,7,9)
S2 (1/9,1/7,1/5) (1,1,1) (3,5,7) (5,7,9) (1,3,5)
S3 (1/9,1/7,1/5) (1/7,1/5,1/3) (1,1,1) (1,3,5) (1,3,5)
S4 (1/9,1/7,1/5) (1/9,1/7,1/5) (1/5,1/3,1) (1,1,1) (1/5,1/3,1)
S5 (1/9,1/7,1/5) (1/5,1/3,1) (1/5,1/3,1) (1,3,5) (1,1,1)

5.8539, 0.1906= =maxλ  CR
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Table 15.5 Pairwise comparison matrix for C

Sub-criteria C1 C2
C1 (1,1,1) (5,7,9)
C2 (1/9,1/7,1/5) (1,1,1)

Table 15.6 Pairwise comparison matrix for R

Sub-criteria R1 R2 R3 R4

R1

R2 (1/3,1,1) (1,1,1) (5,7,9) (1,3,5)  

R4 (1/5,1/3,1) (1/5,1/3,1) (1/3,1,1) (1,1,1)  

4.3963, 0.1468= =max  CR

(1,1,1) (1,1,3) (3,5,7) (1,3,5) 

(1/7,1/5,1/3) (1/9,1/7,1/5) (1,1,1) (1,1,3) R3

criterion and far outweighs the service criterion, while the risk and service criteria
are on a par. The consistency ratio (CR) for each matrix is found (see Table 15.7).
An upper bound of 0.2 is set as the threshold for the CR to determine acceptability of
the comparison matrix. The decision-making group updates the initial comparison
values in the pairwise comparisonmatrix until the CR threshold condition is satisfied.

Step 3. For each pairwise comparison matrix, compute the fuzzy synthetic extent,

S̃i =
⎛
⎝

n∑
j=1

li j ,
n∑
j=1

mi j ,

n∑
j=1

ui j

⎞
⎠ ⊗

(
1∑n

i=1
∑n

j=1 ui j
,

1∑n
i=1

∑n
j=1 mi j

,
1∑n

i=1
∑n

j=1 li j

)
(15.2.1)

Step 4. Compute the degree of possibility of S̃i ≥ S̃ j between two fuzzy synthetic
extents,

Pos(S̃i ≥ S̃ j ) =

⎧⎪⎨
⎪⎩

1, ifmi ≥ m j
ui−l j

(ui−mi )+(m j−l j )
, if ui ≥ l j , i, j = 1, . . . , n; j �= i.

0, else

(15.2.2)

Step 5. Compute the degree of possibility of S̃i over all the other fuzzy synthetic
extents,
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Pos
(
S̃i ≥ S̃ j | j = 1, . . . , n; j �= i

)
= min

j∈{1,··· ,n}, j �=i
Pos

(
S̃i ≥ S̃ j

)
, i = 1, . . . , n.

(15.2.3)

Step 6. Calculate the weight vectorW = (w1, · · · ,wn)
T of the fuzzy comparison

matrices, where

wi =
Pos

(
S̃i ≥ S̃ j | j = 1, . . . , n; j �= i

)

∑n
k=1 Pos

(
S̃k ≥ S̃ j | j = 1, . . . , n; j �= k

) . (15.2.4)

After normalizing the local weights (LW) of the sub-criteria, the global weight
GW can be obtained as shown in Table 15.8.
Phase III. Supplier rank determination by fuzzy TOPSIS
Once the weights of all of the 11 criteria (Table 15.8, col 5) are found, fuzzy TOPSIS
is used to rank the suppliers. The corresponding output and the preference degree of
the suppliers are applied in Phase IV for order allocation. TOPSIS, or the technique
for order performance by similarity to the ideal solution, as highlighted by Hwang
andYoon [12], is anMCDMapproach premised on the notion that the best alternative
is closest to the positive ideal solution (PIS) but is farthest from the negative ideal
solution (NIS). Most TOPSIS approaches view human judgment as deterministic;
however, it is not always possible to measure by crisp values in practice. A better
way is to use linguistic variables rather than deterministic values as fuzzy set theory
performs well with linguistic values. As such, fuzzy TOPSIS is amenable to solving
practical problems in fuzzy environments. The steps for fuzzy TOPSIS are set as
follows [13, 18]:

Step 1. Choose the linguistic rating values for the potential suppliers with respect
to the criteria.

Table 15.8 Criteria weights for supplier evaluation (criterion importance)

Main criteria Weight of 
main criteria Sub-criteria LW of sub-

criteria 
GW of sub-

criteria Rank 

Service (S) 0.030956 

Compliance with contract 
(S1) 

0.585155 0.018114 6 

Product quality (S2) 0.349624 0.010823 7 
Product shelf life (S3) 0.064051 0.001983 8 
Track record (S4) 0.000585 0.000018 10 
Responsiveness (S5) 0.000585 0.000018 10 

Cost (C) 0.691166 Pricing (C1) 0.999001 0.690475 1 
Investment in R&D (C2) 0.000999 0.00069 9 

Risk (R) 0.277878 

Output flexibility (R1) 0.345761 0.096079 2 

Buffer capacity (R2) 0.307825 0.085538 3 
Political & economic sta-
bility (R3) 

0.196295 0.054546 4 

Geographical location 
(R4) 

0.150119 0.041715 5 
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Table 15.9 5-linguistic scale
to evaluate ratings of
suppliers

Linguistic term Triangular fuzzy number

Bad (B) (1, 1, 3)

Fair (F) (1, 3, 5)

Average (A) (3, 5, 7)

Good (G) (5, 7, 9)

Excellent (E) (7, 9, 9)

Four decision makers DM1, …, DM4 are invited to grade all the 5 potential
suppliers on the 11 criteria. Table 15.10 shows the performance ratings by linguistic
terms (Table 15.9) of each decision maker on a potential supplier.

Step 2. Calculate aggregated fuzzy ratings X̃i j
(
ai j , bi j , ci j

)
for the potential sup-

pliers, where

ai j = min
k

{
ai jk

}
, bi j = 1

k

K∑
k=1

bi jk, ci j = max
k

{
ci jk

}
, (15.2.5)

and form the fuzzy decision matrix D̃ using X̃i j .
Step 3. Form the normalized fuzzy decision matrix R̃ as

R̃ = [
r̃i j

]
m×n

, i = 1, . . . ,m; j = 1, . . . , n, (15.2.6)

where

r̃i j =
(
ai j
c∗
j

,
bi j
c∗
j

,
ci j
c∗
j

)
and c∗

j = max
i

ci j (benefit criteria) (15.2.7)

r̃i j =
(
a−
j

ai j
,
a−
j

bi j
,
a−
j

ci j

)
and a−

j = min
i

ai j (cost criteria). (15.2.8)

S5 and C1 are the only cost criteria. The rest is the benefit criteria.
Step 4. Construct the weighted normalized matrix Ṽ as

Ṽ = [
ṽi j

]
m×n, i = 1, . . . ,m; j = 1, . . . , n,where ṽi j = r̃i j (·)gwj . (15.2.9)

Step 5. Determine the fuzzy PIS (FPIS) and fuzzy NIS (FNIS) as

A∗ = (
ṽ∗
1, . . . , ṽ

∗
n

)
,where ṽ∗

j = (1, 1, 1)for benefit criteria, and ṽ∗
j

= (0, 0, 0)for cost criteria, j = 1, . . . , n (15.2.10)

A− = (
ṽ−
1 , . . . , ṽ−

n

)
,whereṽ−

j = (0, 0, 0)for benefit criteria, and ṽ−
j
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Fig. 15.4 Main interface of the program of supplier selection approach (Phases II and III)

=(1, 1, 1)for cost criteria, j = 1, . . . , n. (15.2.11)

Step 6. Find the distance of each potential supplier from FPIS and FNIS as

d+
i =

n∑
j=1

dv
(
ṽi j , ṽ

∗
j

)
, i = 1, . . . ,m (15.2.12)

d−
i =

n∑
j=1

dv
(
ṽi j , ṽ

−
j

)
, i = 1, . . . ,m, (15.2.13)

where dv measures the distance between two fuzzy variables, i.e.

dv(x̃, ỹ) =
√
1

3

[(
ax − ay

)2 + (
bx − by

)2 + (
cx − cy

)2]
. (15.2.14)

Step 7. Compute the closeness coefficient (CCi ) of each potential supplier as

CCi = d−
i

d−
i + d+

i

. (15.2.15)

Step 8. Rank the potential suppliers from best to worst, according to CCi.
Table 15.11 shows how the potential suppliers are ranked from best to worst

using CCi. The preference degree of the suppliers is also found according to CCi.
The decision makers can then decide on the number of suppliers to choose based
on the rankings. The top three suppliers (Sp1, Sp2 and Sp5) are marked in red. To
diversify the risk, the firm could use several vendors for one product instead of the
prevailing one-vendor practice.
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Figure 15.4 shows the MATLAB 17.0 program used to implement the supplier
selection approach (Phases II and III).

We developed a program for the company to implement the supplier selection
approach (Phases II and III) in MATLAB. Since the program is packaged as a black
box, all the input operations are required and triggered in the command window
of the ‘Main.m’ interface (see Fig. 15.4), by following the instructions in green
carefully and evaluating the four functions ‘UserInput’, ‘Consistency’, ‘FuzzyAHP’
and ‘Fuzzytopsis’ successively. The first three functions pertain to Phase II, and
the last function is for Phase III. The data provided by the decision makers (see
Tables 15.3, 15.4, 15.5, 15.6, and 15.10) are inputs and can be found in ‘Input.xlsx’.
The results of the supplier selection, i.e. the contents of Tables 15.8 and 15.11 can
be found in ‘Results.xlsx’.
Phase IV. Order allocation by multi-objective optimization—A multi-objective
program is used to determine the amount allocated to the selected suppliers Sp1 and
Sp2. Table 15.12 shows the rest of the supplier data that are also the input data to the
modelling system.

Our bi-objective program, with profit and service performance maximization,
trade-off, the proportion (x : Sp1’s proportion, 1 − x : Sp2’s proportion) from each
supplier in every purchase. The profit maximization objective is the profit from
holding the product. Here, only the relevant cost components are discussed. The
service performance maximization objective is measured by the supplier preference
degree as weights. Thus, the model is presented as

max PF = (cS1 − cB1)x + (cS2 − cB2)(1 − x) (15.2.16)

max SP = w1x + w2(1 − x) (15.2.17)

s.t. 0 < x < 1 (15.2.18)

From Table 15.12, clearly, the two objectives conflict with each other. The results
of the order proportions for suppliers Sp1 and Sp2 are found in Table 15.13. As the
order allocation problem is formulated as profit and performance objectives with
conflicting measures, only a sacrifice on one objective can bring the other closer to
the optimal goal. Thus, satisficing solutions with different priorities (profit, service
performance, and compromise solutions) are found for the decisionmakers to choose
by combining practical situations. We provide three satisficing solutions for each of
the three strategies.

In Table 15.13, among all the solutions, the solution with Sp1 proportion 1% has
the highest profit of 0.1098 and lowest performance level at 0.9582,while the solution
with Sp1 proportion 99% has the lowest profit of 0.0902 and highest performance
level at 0.9996. Itmeans thatwhen the decisionmakers adopt a profit priority strategy,
Sp1 acts as the support of Sp2.When the decisionmakers adopt a service performance
priority strategy, Sp2 acts as the support of Sp1. Also, with more suppliers selected,
the disruption risk is reduced especially when faced with major health emergencies,
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Table 15.11 Suppliers ranked by fuzzy TOPSIS

Alterna-
tive

Rank Preference 
degree

Sp1 0.189756 1 1
Sp2 0.189162 2 0.957790
Sp3 0.185891 4 0.725322
Sp4 0.175684 5 0
Sp5 0.187844 3 0.864158

Table 15.12 Data related to suppliers

Supplier Preference
degree wi

Product Buying cost cBi
($)

Selling cost cSi
($)

Profit
cSi − cBi ($)

Sp1 1 P6 0.88 0.97 0.09

P7

P8

P9

Sp2 0.9578 P10 1.06 1.17 0.11

P11

P12

P13

Table 15.13 Order proportions for suppliers Sp1and Sp2

Strategy
Order

proportion 
for Sp1 (%)

Order
proportion 
for Sp2 (%)

PF SP

Profit priority 
solutions

1 99 0.1098 0.9582
3 97 0.1094 0.9591
4 96 0.1092 0.9595

Service per-
formance prior-
ity solutions

99 1 0.0902 0.9996
98 2 0.0904 0.9992
96 4 0.0908 0.9983

Compromise 
solutions

50 50 0.1 0.9789
47 53 0.1006 0.9776
46 54 0.1008 0.9772
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and reduces the potential negative impacts from the supply failures or poor decision-
making in selecting unknown or untested suppliers.

15.3 Sensitivity Analysis and Managerial Insights

Asensitivity analysis is undertaken on the order allocation, so as to offer a generalized
approach for handling the order allocation problem. FollowingMendoza andVentura
[16], we propose a fuzzy multi-objective program for the order allocation problem
that (1) determines the number of orders given to the chosen vendors (Ji : number
of orders to supplier i in one order cycle. An order cycle contains orders from
different suppliers, and the next order cycle only starts after the former one finishes);
and (2) determine the size of each order (Qi : quantity placed with supplier i in an
order). For the purpose of contrast, we form two groups containing two suppliers
(Sp2 and Sp1) and three suppliers (Sp5, Sp2 and Sp1), respectively, for illustrating
the purchase of a product called NH (disguised for data privacy) (25G * 25 mm).

Next, we assume the following. The firm can order from a supplier many
times within an order cycle. Once all the orders in an order cycle are firm,
the cycle is refreshed. The inventory holding cost rate is r = 0.2/unit/year.
A triangular fuzzy annual customer demand of the NH product is d̃ ∼
T (200000, 291200, 700000), the expected annual demand with E

[
d̃
]

= 1/4 ∗
(200000 + 2 ∗ 291200 + 700000) and the annual purchase amount from the sup-
pliers is 370,000 (vssi = [(370000 − 291200)/291200]Qi ). The firm sets the safety
stock level at 90% (ssi = 0.9Qi ), and the amount in each order of the firm is at least
1,200. The order quantities are capped at M = 3, 5, 10, 15, 20, 25, 30. Table 15.14
shows the rest of the supplier data that are also an input for the modelling system.

We build a fuzzy multi-objective programming model which has an annual cost
minimization objective and a service performance maximization objective, con-
strained by supplier capacity and certain order quantities per order cycle. The first
cost minimization objective contains the holding and purchase costs. The service
performance maximization objective is measured by the supplier preference degree
as weights. Thus, the model is written as

Table 15.14 Data related to
suppliers

Supplier Preference
degree wi

Unit price pi
($)

Annual
capacity
(units)

Sp1 1 62 640,000

Sp2 0.7659 51 680,000

Sp4 0.5861 40 650,000
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min AC = r d̃ ·
∑n

i=1 pi Ji (0.5Qi + ssi )∑n
i=1 Ji Qi

+ d̃ ·
∑n

i=1 pi Ji (Qi + vssi )∑n
i=1 Ji Qi

(15.3.1)

max SP =
∑n

i=1 wi Ji Qi∑n
i=1 Ji Qi

(15.3.2)

s.t. d̃ · Jj Q j∑n
i=1 Ji Qi

≤ c j , j = 1, 2, . . . , n (15.3.3)

n∑
i=1

Ji = M, (15.3.4)

Qi ≥ 1200, i = 1, 2, . . . , n (15.3.5)

Ji , Qi , M ∈ Z+. (15.3.6)

In Models (15.3.1)–(15.3.6), the first objective function and the first set of con-
straints are fuzzy quantities. In thismodel, the expected values of the fuzzy objectives
are used to obtain the decisions with optimal expected returns, as well as to provide
confidence levels α j within which the fuzzy constraints hold.

Therefore, themodel can be rewritten as a fuzzy chance-constrained programming
by replacing the first objective function and the first set of constraints as

min E[AC] =
(
r ·

∑n
i=1 pi Ji (0.5Qi + ssi )∑n

i=1 Ji Qi
+

∑n
i=1 pi Ji (Qi + vssi )∑n

i=1 Ji Qi

)
· E

[
d̃
]

(15.3.7)

max SP =
∑n

i=1 wi Ji Qi∑n
i=1 Ji Qi

(15.3.8)

s.t. Cr

{
Ji Qi − c j

n∑
i=1

Ji Qi ≤ 0

}
≥ α j , j = 1, 2, . . . , n, (15.3.9)

n∑
i=1

Ji = M, (15.3.10)

Qi ≥ 1200, i = 1, 2, . . . , n, (15.3.11)

Ji , Qi , M ∈ Z+. (15.3.12)

Models (15.3.7)–(15.3.12) can be converted to the equivalent deterministic pro-
gramming by transforming the chance constraint (15.3.9) as

�−1
(
α j

)
Jj Q j − c j

n∑
i=1

Ji Qi ≤ 0, j = 1, 2, . . . , n, (15.3.13)
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where �−1 is the inverse credibility distribution of d̃. A triangular fuzzy number
ξ ∼ T (a1, a2, a3) would have its �−1(α) as

�−1(α) =
{

(2a2 − 2a1)α + a1, ifα < 0.5
(2a3 − 2a2)α + 2a2 − a3, ifα ≥ 0.5.

(15.3.14)

At the confidence level α j = 0.85, (15.3.13) can be rewritten as

[
(2a3 − 2a2)α j + 2a2 − a3

]
Jj Q j − c j

n∑
i=1

Ji Qi ≤ 0, j = 1, 2, . . . , n.

(15.3.15)

We apply the non-dominated sorting genetic algorithm - II (NSGA-II) devel-
oped by Deb et al. [8] to solve the deterministic Models (15.3.7)–(15.3.8), (15.3.15),
(15.3.10)–(15.3.12). NSGA-II offers a more superior solution set and yields better
convergence near the Pareto frontier compared to the other multi-objective evolu-
tionary algorithms used in most problems.

We then obtain Pareto-optimal solutions from the algorithm, and the exam-
ple results of the annual procurement plans and specific purchase strategies for
(a) 2-supplier case and (b) 3-supplier case are displayed in Tables 15.15, 15.16,
and Tables 15.17, 15.18, respectively. The annual procurement plan, Tables 15.15
and 15.17, give an overview of the total annual amount ordered from the suppli-
ers with corresponding cost and performance values, while the specific purchase
strategy, Tables 15.16 and 15.18, are the detailed ways for the firm to place orders
in each order cycle. Since our order allocation problem is formulated as cost and
performance objectives with conflicting measures, only by sacrificing one objective
can we bring the other closer to the optimal goal. Thus, satisficing solutions with
different priorities are acquired for the decision maker to choose, by combining the
practical options. Tables 15.15, 15.16, 15.17, and 15.18 provide a suite of decision
choices, for example, solutions in the cases that have a different number of suppliers
selected (2 and 3), different order quantity limits (3, 5, 10, 15, 20, 25, 30), as well as
different priorities (cost priority, performance priority, and compromise solutions)
to the two objectives.

1. Light blue lines refer to Pareto-optimal solutions on performance priority.
2. Dark blue lines refer to compromise solutions among Pareto-optimal solutions.
3. For the annual procurement plan with a cost priority solution of 30 orders/order

cycle, it can only complete 0.035 order cycle in a year, so it will not involve orders
from Sp1 in the annual plan according to the purchase strategy of the same item
in Table 15.16.

4. If the firm signs 1-year contracts with the suppliers, Table 15.15 shows that it
is better not to deploy 30 orders in 1 order cycle because it takes too long to
complete an order cycle and some suppliers cannot be assigned to any order in
that year.
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Table 15.15 Annual procurement plans for two suppliers Sp2 and Sp1
To-

tal 
#or-
ders
per
order
cycle

Annual 
quantity 
from Sp2

Annual 
quantity 
from Sp1

AC ($) SP
(%)

Time 
per or-
der cy-
cle

#An-
nual or-
der cy-
cles

3

367,900 2,700 60,030,000 76.78 47.2
weeks 1.1

12,600 358,000 72,455,000 99.28 6.4
weeks 8.1

178,200 192,400 66,647,000 88.76 4.9
days 74.1

5

361,000 9,600 60,276,000 77.22 12.5
weeks 4.2

6,400 364,200 72,667,000 99.67 31.5
weeks 1.7

183,600 187,000 66,603,000 88.68 5.9
weeks 8.8

10

366,700 3,900 60,165,000 77.02 29.6
weeks 1.8

3,400 367,200 72,788,000 99.89 48.4
weeks 1.1

199,800 170,800 66,320,000 88.17 9.2
weeks 5.6

15

367,800 2,800 60,077,000 76.86 33.6
weeks 1.5

6,000 364,600 72,663,000 99.66 11.6
weeks 4.5

194,600 176,000 66,281,000 88.10 10
weeks 5.2

20

365,800 4,800 60,171,000 77.03 17.8
weeks 2.9

2,800 367,800 72,801,000 99.91 49.8
weeks 1

188,000 182,600 66,653,000 88.77 6.9
weeks 7.6

25

368,200 2,400 60,014,000 76.75 49.7
weeks 1

3,400 367,200 72,787,000 99.88 48
weeks 1.1

234,100 136,500 65,397,000 86.50 15.1
weeks 3.4

30

370,600 0 59,971,000 76.67 28
years 0.035

1,200 369,400 72,850,000 99.997 29
years 0.034

354,900 15,700 66,102,000 87.78 1.8
years 0.55

Note 1 White lines refer to Pareto-optimal solutions on cost priority
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Table 15.16 Order allocation schedules for two suppliers—Sp2 and Sp1

Total #or-
ders per or-
der cycle

1 J (Sp2) 2 J (Sp1) 1Q (Sp2) 2Q (Sp1)

3
2 1 167,000 2,700
1 2 1,400 22,100
1 2 2,400 1,300

5
3 2 28,800 1,200
1 4 3,200 55,300
3 2 6,800 10,900

10
9 1 23,000 3,900
1 9 1,700 38,100
9 1 3,700 32,600

15
14 1 16,900 2,800
1 14 1,200 5,800
7 8 5,200 4,400

20
18 2 6,900 1,200
1 19 1,400 18,600
5 15 4,700 1,700

25
23 2 15,300 1,200
1 24 1,700 14,200
20 5 3,100 9,100

30
29 1 359,600 36,200
1 29 1,200 370,600
13 17 27,300 19,100

Managerial Insights: From Table 15.15, among the cost priority solutions (white
lines), the solution with order no. 30 has the lowest cost of $59,971,000 and lowest
performance level at 76.67%, while the solution with order no. 5 has the highest cost
of $60,276,000 and best performance level at 77.22%. Further, for the cost priority
solutions, the cost is proportional to the order quantity from Sp2 who has the lower
unit price at $51 (see Table 15.14).

Similarly, among the performance priority solutions (light blue lines), the solution
with order no. 30 has the highest performance level of 99.997% and the highest cost
at $72,850,000, while the solution with order no. 3 has the lowest performance level
of 99.28% and the lowest cost at $72,455,000. Also, for the performance priority
solutions, the performance level corresponds to the order quantity from Sp1 who has
a higher preference degree (Table 15.17).

In addition, comparing the 2-supplier case (Table 15.15) with the 3-supplier case
(Table 15.17), better results on both the cost and performance criteria can be obtained
from the 3-supplier case. This suggests that if more suppliers were selected by the
firm for the order allocation, the supply side risk can be better diversified.
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Table 15.17 Annual procurement plans for suppliers Sp5, Sp2, Sp1
Total
#or-
ders
per
order
cycle

Annual 
quantity 
from Sp4

Annual 
quantity 
from Sp2

Annual 
quantity 
from Sp1

AC ($) SP (%)

Time 
for 
one 
order
cycle

#An-
nual or-
der cy-
cles

3

363,100 3,900 3,600 47,475,000 59.34 14.1
weeks 3.7

7,800 2,800 360,000 72,516,000 99.45 49.7
weeks 1

194,200 6,000 170,400 60,016,000 79.40 12.1
weeks 4.3

5

363,300 3,600 3,700 47,395,000 59.21 50.6
weeks 1

4,000 2,400 364,200 72,661,000 99.69 49.4
weeks 1.1

187,200 10,800 172,600 60,046,000 79.42 6.1
weeks 8.6

10

368,200 1,200 1,200 47,127,000 58.80 1
year 1

2,400 2,400 365,800 72,723,000 99.79 50.7
weeks 1

162,800 15,400 192,400 60,962,000 80.85 4.7
weeks 11

15

370,600 0 0 47,059,000 58.70 12.7
years 0.079

3,800 2,700 364,100 72,823,000 99.95 12.7
years 0.079

187,300 6,300 177,000 59,991,000 79.36 16.8
weeks 3.1

20

370,600 0 0 47,013,000 58.63 17.2
years 0.058

6,600 9,200 354,800 72,802,000 99.92 15.9
years 0.063

259,200 1,300 110,100 60,874,000 80.82 1.5
years 0.66

25

370,600 0 0 47,010,000 58.62 21.8
years 0.046

10,600 25,300 334,700 72,781,000 99.88 23.1
years 0.043

200,200 2,800 167,600 58,857,000 77.57 26.1
weeks 2

30

370,600 0 0 47,005,000 58.62 28
years 0.036

2,400 1,200 367,000 72,844,000 99.99 27
years 0.037

208,000 2,400 160,200 59,926,000 79.29 29.4
weeks 1.8
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Table 15.18 Order allocation schedules for three suppliers Sp5, Sp2, Sp1
To-

tal #or-
ders
per or-
der cy-
cle

1J
(Sp5)

2J
(Sp2)

3J
(Sp1)

1Q
(Sp5)

2Q
(Sp2)

3Q
(Sp1)

3
1 1 1 98,300 1,300 1,200
1 1 1 3,900 1,400 349,000
1 1 1 42,000 1,500 42,600

5
1 3 1 353,300 1,200 3,700
1 1 3 2,000 1,200 116,300
2 1 2 10,400 1,200 10,600

10
8 1 1 46,000 1,200 1,200
1 1 8 1,200 1,200 44,900
2 1 7 7,400 1,400 2,500

15
13 1 1 361,800 1,200 10,000
1 1 13 3,800 2,700 361,900
4 1 10 14,600 2,100 5,900

20
18 1 1 354,200 1,200 2,400
1 1 18 6,600 9,200 326,100
12 1 7 21,600 1,300 42,900

25
23 1 1 350,700 1,200 2,100
1 1 23 10,600 25,300 370,600
13 1 11 7,700 1,400 7,700

30
28 1 1 370,600 1,200 1,200
2 1 27 1,200 1,200 370,600
16 1 13 6,500 1,200 8,000

15.4 Conclusion

This study offers some practical and implementable improvements to the current
procurement methodologies by establishing a criteria set for suppliers and product
selection through MCDM and multi-objective modelling. To model the supplier’s
ability to serve in terms of the response time, reliability, stock quantity, the necessary
criteria are translated into seeking to maximize space usage, lower inventory carry-
ing cost and increase end customer satisfaction. An operational framework has been
developed to process andmanage order quantities under the conditions of local sourc-
ing, supplier selection, order allocation, contract storage, nearshore re-distribution,
assured finished goods shipment and emergency manufacturing/ordering. An extant
study has been undertaken and the sensitivity is analysed. Some managerial insights
are provided for completeness. This study finds that if more suppliers are selected for
order allocation, there could be better attainment on the cost and performance goals,
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as doing so mitigates the risk present in public health crisis situations, and lessens
the impact of a supply disruption, or poor decision-making when choosing untested
suppliers.

There are several future research directions that may be pursued after this work.
Immediate extensions are incorporating some more important issues like allowing
for shortages, supply availability for emergency management, and a flexible bud-
get capacity. Another future direction could be to apply the proposed algorithm to
large scale problems such as having a number of suppliers and products dispersed
geographically, and the resulting problem can be integrated with the vehicle routing
problem (VRP) or the inventory routing problem (IRP) with several other objectives
for better trade-off performances.
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Chapter 16
Supply Chain Network Optimization
Through Player Selection Using
Multi-objective Genetic Algorithm

Poonam Mishra, Isha Talati and Azharuddin Shaikh

Abstract This paper is an effort to study an integrated supply chain network com-
prising of suppliers, manufacturers, distributors, and retailers with the key objective
of minimizing the overall cost of supply chain. Players of supply chain network
are selected on the basis of multi criteria. Multi-objective GA has been used to
select business players under constraints. Further, the output of GA is visualized
through 3D-radVis techniques with respect to location, shape, range, and distribution
of non-dominated Pareto front. The paper also proposes an algorithm to analyze other
integrated supply chain problems belong to this class. The model is also validated
through a numerical example. This model is useful to manufacturers and distribu-
tors who involved with the industries like automobile, textile, food and electronic
gadgets, etc. for the sustainable supply chain management.

Keywords Supply partner selection · Multi-echelon integrated model ·
Multi-objective GA · 3D-RadVis visualization technique

16.1 Introduction

Due to globalization and bottleneck competition, organizations are increasingly
focusing on increasing efficiency by identifying their core competencies. At the
same time, organizations are required to choose supply chain partners strategically
to achieve business goals. Organizations can choose different criteria for different
levels of supply chain partners as per the requirement. Many of the times, these crite-
ria are conflicting in nature that gives rise to a multi-objective problem with a set of
constraints. Many traditional methods are available for optimization but they either
unable to give or stuck with local minimum, while genetic algorithm works well in
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this type of scenario too. After optimizing multi-objective problems, we get non-
dominated solutions, which are difficult to visualize. The three-dimensional radial
coordinate visualization (3D-RadVis) is capable of mapping M-dimensional objec-
tive space to three-dimensional objective space radial coordinate plot. It preserves
the relative location of solutions, shape of the Pareto front, distribution of solutions,
trade-off of Pareto-optimal front, and convergence trend of an optimization process.

In this article, we consider an integrated supply chain network. The network
consists of suppliers, manufacturer with finite production plant, distributors, and
retailers. Selection of players is done on the basis of multi criteria. We present an
approach for selecting business players under constraint using multi-objective GA.
We have used 3D-RadVis technique for visualization of location, shape, range, and
distribution of non-dominated Pareto front. To check the effectiveness of model,
numerical example is carried out. The selection has done at each stage of the supply
network. We have optimized the total cost of the entire supply chain by choosing
appropriate supply players.

The flow of the article is as follows, Sect. 16.2 gives literature review, Sect. 16.3
gives problem description of this supply chain model. Section 16.4 comprise of
notations and assumptions. Section 16.5 demonstrates mathematical model of the
problem. Section 16.6 proposes algorithm to solve the problem. Validity of algorithm
and observations are shown in Sect. 16.7. Conclusion is mentioned in Sect. 16.8.

16.2 Literature Review

There is a good number of papers in literatures that have worked on supplier and
vendor selection. All previous work on supplier selection can be classified into two
categories (i) qualitative models and (ii) quantitative models. In qualitative models,
supplier is selected on the basis of multiple criterion as price, delivery time, quality
etc. Multi-objective optimization can be used to optimize these problems as they
are multi-objective with conflicting goals. First, Weber and Current [18] applied
a multi-objective approach for selection of supplier. Other researchers also solved
multi-objective problems by different techniques like data envelopment analysis[19],
multi-objective Genetic Algorithm [2], fuzzy set theory [1], fuzzy AHP and fuzzy
multi-objective linear programming [14], meta heuristic algorithm [13], and NSGA-
II [3].

Genetic algorithm (GA) works on Darwin’s theory of “Survival of fittest”. Tra-
ditional methods is normally stuck with local optimum in the complex optimiza-
tion problem. For such problems, heuristic algorithm like genetic algorithm, ant
colony, etc. gives global optimum. First, Schaffer [12] developeda software system
VEGA for vector evaluated GA. Srinivas and Dab [15] presented a new algorithm
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non-dominated sorting genetic algorithm (NSGA), which eliminates the limitation of
VEGA. Multi-objective GA was applied by Murata et al. [8] for flow shop schedul-
ing problem and Parks and Miller [10] for selection of breeding. Srinivas et al. [16]
analyzed sensitivity to determine parameters of GA.

Inmulti-objective optimization, visualization of true Pareto front or obtained non-
dominated solution is very difficult. Obayashi and Sasaki [9] used self-organizing
map to visualize trade-off of Pareto solution. But in self-organizing map method, the
parameter space itself is not visualized and this limitation was addressed by Pryke
et al. [11] applying Heat map method. To produce range, shape, and distribution
in 4D, prospection method was used by Tusar and Filipic [17]. In four or more
dimensions, different techniques such as 3D-RadVis, Sammon mapping, Parallel
Coordinate plot, and 3D-RadVis Antenna were used by Ibrahim et al. [5], He and
Yen [4], Li et al. [7], Ibrahim et al. [6], respectively.

This paper is a sincere effort to choose the best possible supply chain players on
the basis of well-defined criteria, so that efficient and sustainable supply chain can
be achieved for the items that need a long network-based supply chain. The total cost
of supply chain is minimized using multi-objective GA. Optimization at each stage
is visualized by Pareto-optimal front representation.

16.3 Problem Description

Due to globalization and competitive market optimizing resources in order to min-
imize the total cost of supply chain is very crucial. The selection of supply players
objectively at different stages plays a vital role in total cost minimization. Thus, in
the proposed model, the entire supply chain cost is minimized by choosing appro-
priate supply players. The problem description of the present model is given below
in Fig. 16.1.

Manufacturer selects the best supplier on the base of price, transportation cost,
quality, delivery tim,e and supplier supply capacity for each item. The manufacturer
has finite(n) plants. He selects plant on the base of production cost, transportation
cost, quality, production time, and production capacity of each item. Evaluation
of best distributor is being done on the basis of purchase cost, transportation cost,
distribution coverage area, delivery time, and storage capacity. While purchase cost,
transportation cost, customer selection, delivery tim, and storage capacity are taken
into consideration to select best retailer.
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Fig. 16.1 Present model

16.4 Notations and Assumptions

16.4.1 Notations

i = 1, 2, . . . , t Index of items

j = 1, 2, . . . ,m Index of candidate suppliers

k = 1, 2, . . . , n Index of plants

λ = 1, 2, . . . , p Index of candidate distributors

ν = 1, 2, . . . , q Index of candidate retailers

Di Demand of item i

Pi j Price from supplier j to manufacturer to supply item i/unit ($)

Pik Processing cost of plant k for item i/unit ($)

Piλ Purchase cost of distributor λ from manufacturer to receive item i/unit ($)

Piν Purchase cost of retailer v from distributor to receive item i/unit ($)

Ti jk Transportation cost form supplier j to plant k for item i/unit ($)

Tikλ Transportation cost form plant k to distributor λ for item i/unit ($)

Tiλν Transportation cost form distributor λ to retailer v for item i/unit ($)

Ci j Supply capacity of supplier j to supply item i

(continued)
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(continued)

i = 1, 2, . . . , t Index of items

Cik Production capacity of plant k to produce item i

Ciλ Storage capacity of distributor λ to store item i

Ciν Storage capacity of retailer v to store item i

qi j Defective quality of supplier j when supplying item i

qik Defective quality of plant k when supplying item i

qiλ Outside distribution area of distributor λ when distribute item i

uiν Unsatisfied customer from retailer v for item i

Qi j Acceptable defective quality from supplier j for item i

Qik Acceptable defective quality from plant k for item i

Aiλ Acceptable outside distribution area form distributor λ for item i

Uiν Acceptable Unsatisfied customer from retailer v for item i

li j Late delivery of supplier j when supply item i

lik Late delivery of plant k when supply item i

liλ Late delivery of distributor λ when supply item i

liν Late delivery of retailer v when supply item i

Li j Acceptable late delivery form supplier j for item i

Lik Acceptable late delivery form plant k for item i

Liλ Acceptable late delivery form distributor λ for item i

Liν Acceptable late delivery form retailer _ for item i

T RCi jk Total transportation cost form supplier j to plant k for item i/unit ($)

T RCikλ Total transportation cost form plant k to distributor λ for item i/unit ($)

T RCiλν Total transportation cost form distributor λ to retailer v for item i/unit ($)

TC Total cost for item i

PUC Total purchasing cost for item i

PRC Total processing cost for item i

T RC Total transportation cost

MIC Total manufacturer inventory carrying cost

DIC Total distributor inventory carrying cost

RIC Total retailer inventory carrying cost

I NC Total inventory carrying cost for system

16.4.2 Assumptions

• Demand of customer is deterministic.
• Supplier’s supply capacity of each item is limited.
• Supplier selection is done on the base of quality and delivery performance.
• Manufacturer contains finite number of plants.
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• Plants production capacity of each item is limited.
• Plant’s selection is done on the base of quality and production time.
• Distributor selection is done on the base of distributor coverage area and delivery
performance.

• Distributor’s storage capacity of each item is limited.
• Retailer’s storage capacity of each item is limited.
• Retailer selection is done on the base of customer satisfaction and delivery per-
formance.

• Inventory carrying cost for any player of supply chain remains fixed.

16.5 Multi-echelon Inventory Model

The total cost for entire supply chain is derived as below. We want to minimize by
selecting the best business players at different stages

TC = PUC + PRC + TRC + INC (16.1)

The basic costs involved as below
Purchasing cost:
Purchasing cost is defined as follows:

PUC =
∑

i

∑

j

xi j Pi j (16.2)

where xi j = order quantity of ith item from jth supplier
Processing cost:
Total processing cost for different plants is defined as follows:

PRC =
∑

i

∑

k

yik Pik (16.3)

where yik = Order quantity of ith item produce by kth plant
Transportation cost:
Transportation from distributor k to retailer is given below

T RC =
∑

i

(
T RCi jk + T RCikλ + T RCiλν

)
(16.4)

whereT RCi jk = ∑
k
yikTi jk and yik = Order quantity of ith item produce by kth plant

T RCikλ =
∑

λ
ziλTikλ and ziλ

= order quantity of ith item supply formmanufacturer to distributor λ
T RCiλν = ∑

ν

wiνTiλν andwiν = order quantity of ith item from distributor to retailer k
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Inventory carrying cost:
Here, we take fix carrying cost per item for any player of supply chain

I NC = yM IC + zDIC + wRIC (16.5)

where yi = ∑
i yik zi = ∑

i ziλwi = ∑
i wiν

The constraints are involved in present model are the following:

∑

j

xi j ≥ Di (16.6)

All the items customer demand must be fulfilled by the supplier.
Quality supply by the supplier to manufacturer is less than or equal to supply

capacity of supplier.

xi j ≤ Ci j (16.7)

Aggregate quality supply by the supplier to manufacturer must be acceptable

∑

j

xi j qi j ≤ Qi Di (16.8)

Aggregate delivery time taken by supplier to manufacturer must be acceptable

∑

j

xi j li j ≤ Li j Di (16.9)

All the items customer demand must be fulfilled by the manufacturer.

∑

k

yik ≥ Di (16.10)

Product produced by each plant is less than or equal to the production capacity of
plants

yik ≤ Cik (16.11)

Aggregate quality produce plant must be acceptable

∑

k

yikqik ≤ Qik Di (16.12)

Aggregate delivery time taken by the plant to distributor must be acceptable
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∑

k

yiklik ≤ Lik Di (16.13)

All the items customer demand must be fulfilled by the distributor.

∑

λ

ziλ ≥ Di (16.14)

Quality supply by themanufacturer to distributor is less than or equal to the storage
capacity of distributor.

ziλ ≤ Ciλ (16.15)

Aggregate distribution area covered by the distributor must be acceptable

∑

λ

ziλqiλ ≤ AiλDi (16.16)

Aggregate delivery time taken distributor to retailer must be acceptable

∑

λ

ziλliλ ≤ LiλDi (16.17)

All the items customer demand must be fulfilled by retailer.

∑

ν

wiν ≥ Di (16.18)

Quality supply by distributor to retailer is less than or equal to storage capacity
of retailer.

wiν ≤ Ciν (16.19)

Aggregate customer satisfaction must be acceptable

∑

ν

wiνuiν ≤ UiνDi (16.20)

Aggregate delivery time taken by the retailer to customer must be acceptable

∑

ν

wiνliν ≤ LiνDi (16.21)

So, for the best supplier selection, we have the following objective function and
constraints:
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min f1 = ∑
i

∑
j
xi j Pi j

subject to
∑
j
xi j ≥ Di ; xi j ≤ Ci j ; ∑

j
xi j qi j ≤ Qi Di ; ∑

j
xi j li j ≤ Li j Di

(16.22)

For the best plant selection, we have the following objective function and con-
straints:

min f2 = ∑
i

∑
k
yik Pik

subject to
∑
k
yik ≥ Di ; yik ≤ Cik; ∑

k
yikqik ≤ Qik Di ; ∑

k
yiklik ≤ Lik Di

(16.23)

For the best distributor selection, we have the following objective function and
constraints:

min f3 = ∑
i

∑
λ

ziλPiλ

subject to
∑
λ

ziλ ≥ Di ; ziλ ≤ Ciλ; ∑
λ

ziλqiλ ≤ AiλDi ; ∑
λ

ziλliλ ≤ LiλDi

(16.24)

For the best retailer selection, we have the following objective function and con-
straints:

min f4 = ∑
i

∑
ν

wiνPiν

subject to
∑
ν

wiν ≥ Di ; wiν ≤ Ciν; ∑
ν

wiνuiν ≤ UiνDi ; ∑
ν

wiνliν ≤ LiνDi

(16.25)

16.6 Computational Algorithm

16.6.1 Multi-objective GA

he total cost function for all items and individual cost function are considered to be
fitness function and minimized using the belowmentioned algorithm.MATLAB 14a
is used for running iterations.

1. Set numerical values for different parameters except for decision variables
xi j,yik,ziλ andwiν in the fitness function.

2. Start with an initial population of 20 chromosomes.
3. Rank the chromosomes on the basis of their fitness score.
4. Chromosomes with good fitness score will get an entry in mating pool.
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5. Perform stochastic uniform crossover for reproduction. Crossover fraction is
considered 0.8 and two elites are considered at each generation.

6. Again rank members of new generation on the basis of their fitness function and
select members, which can create next generation.

7. Perform Step 3 and Step 4 till absolute difference between two successive mem-
bers is negligible, i.e., |xi+1 − xi | < ε

(
ε = 10−5

)
.

16.6.2 3D-RadVis Visualization Technique

For N Pareto front, the solution of M objectives are as follows:

1. Compute

x =
M∑
i=1

f Norm
i, j cos(θ j)

M∑
i=1

f Norm
i, j

; y =
M∑
i=1

f Norm
i, j sin(θ j)

M∑
i=1

f Norm
i, j

;

where f Norm
i = fi (x)−min( fi (x))

max( fi (x))−min( fi (x))
2. px = x + 1
3. py = y + 1
4. Find normal vector perpendicular to the extreme point n = norm(z); where z is

hyperplane.
5. Calculate c = n · z1
6. For i = 1 toNfindD = abs( fi ·n−c)

‖n‖
7. Finally, we convert R = [x, y, D]

16.7 Numerical Example and Results

Consider supply chain with three suppliers, one manufacturer with three plants, three
distributors, and three retailers

Di = 50; Qi j = Qik = Qiν = Aiλ = Li j = Lik = Liλ = Liν = 3%(/unit);
MIC = 2($/unit); DIC = 4($/unit); RIC = 1 : 5($/unit)

Suppliers, plants, distributors, and other retailers-related information are given in
Tables 16.1, 16.2, 16.3, and 16.4, respectively.

Supplier selection:
The results obtained using multi-objective GA is shown in Table 16.6 (Appendix).
Visualization of the same by 3D-RadV in MATLAB14a is shown in Fig. 16.2. At z
= 0, we get the minimum total cost of all three items.
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Fig. 16.2 Visualization of Pareto-optimal front representation to select supplier

FromTable 16.6 (Appendix) andFig. 16.2, it is clear that second solution is the best
because it minimizes the cost and fulfill the required demand. So, the manufacturer
order quantity from different supplier’s are given in Table 16.5.

Plant selection:
The results obtained using multi-objective GA is shown in Table 16.7 (Appendix).
Visualization of the same by 3D-RadV in MATLAB14a is shown in Fig. 16.3. At z
= 0, we get the minimum total cost of all three items.

From Table 16.7 (Appendix) and Fig. 16.3, it is clear that 18th solution is the best
because it minimizes the cost and fulfill the required demand. The optimal quantity
sending from manufacturer to plants is shown in Table 16.5.

Distributor selection:
The results obtained using multi-objective GA is shown in Table 16.8 (Appendix).
Visualization of the same by 3D-RadV in MATLAB14a is shown in Fig. 16.4. At z
= 0, we get the minimum total cost of all three items.

From Table 16.8 (Appendix) and Fig. 16.4, it is clear that 57th solution is the best
because it minimizes the cost and fulfills the required demand. So, the manufacturer
supply from different quantities to the distributor is given in Table 16.5.

Retailer Selection:
The results obtained using multi-objective GA is shown in Table 16.9 (Appendix).
Visualization of the same by 3D-RadV in MATLAB14a is shown in Fig. 16.5. At z
= 0, we get the minimum total cost of all three items.
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Fig. 16.3 Visualization of Pareto-optimal front representation to select plant

Fig. 16.4 Visualization of Pareto-optimal front representation to select distributor

From Table 16.9 (Appendix) and Fig. 16.3, it is clear that 13th solution is the best
because it minimizes the cost and fulfills the required demand. So, the distributor
supply quantity from different retailers is given in Table 16.5.

So, the total cost for supply chain is

TC = PUC + PRC + TRC + INC = 812.19 + 255 + 88.85 + 1208 = 2364.4($)
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Fig. 16.5 Visualization of Pareto-optimal front representation to select retailer

16.8 Conclusions

This paper proposes total supply chain cost minimization through selecting the best
supplier, plant, distributor, and retailer simultaneously. These selections criteria are
production capacity, acceptable quality of the products delivery time, and distribution
region and customer satisfaction. This all leads to amulti-objective constrained prob-
lem with conflicting constraints. Problem is optimized with multi-objective genetic
algorithm and further, optimal case is visualized by 3D-RadVis method using MAT-
LAB14a. Numerical example and results show that it is not only fulfill customer’s
demand under constraints but also minimize total cost of supply chain by selecting
appropriate business players. This model may be extended with the selection of sup-
ply partners under more criteria depending on different industries, supply partner
evaluation through data gathering process, etc. The multiple trade-off between these
objectives is worthy of further investigation using 3D-RadVis Antenna technique.

Appendix

See Tables 16.6, 16.7, 16.8, and 16.9.
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Chapter 17
Allocation of Order Amongst Available
Suppliers Using Multi-objective Genetic
Algorithm

Azharuddin Shaikh, Poonam Mishra and Isha Talati

Abstract In a supply chain, procurement of items is done on the basis of indi-
vidual performance, whereas the performance of supply chain can be improved by
using scientific techniques. In this chapter, we discuss the manufacturer’s problem
of procuring several items from the available suppliers; where, supplies from each
supplier are constrained. The manufacturer needs to determine which item is to be
procured from which supplier and in what quantity. The allocation of order amongst
suppliers is done on the basis of multiple criteria such as unit price, quality, supply
capacity, delivery time, and unit transportation cost. To demonstrate the scenario,
we formulate the mathematical model, which leads to a multi-objective optimization
problem. The optimization is done using multi-objective genetic algorithm, which
gives a set of Pareto-optimal solutions, then we utilize 3D-RadVis technique to get
the best solution. To validate the model, numerical example is presented.

Keywords Multi-objective Genetic Algorithm · Order allocation · Supplier
selection · 3D-RadVis

17.1 Introduction

In supply chain activities, organizations of all shapes and sizes are outsourcing dif-
ferent activities to enhance their performance. Amongst these activities, selection
of supply partner plays a vital role for their efficient functioning. Several criterion
should be considered for selecting the supply partners. For a manufacturing firm, if
the suppliers are chosen cleverly, it could lead to an effective supply network. The
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supplier selection can be done more effectively by employing the scientific tech-
niques. The area of selecting supplier has gained ample attention and several
researchers have given their contribution for creating a sustainable supply network.
Timmerman [23] formulated linear weighting models to study vendor performance
evaluation.Weber andCurrent [27]were the first to usemulti-objective programming
for selecting vendors under multiple criteria. In their model, different constraints
affected the number of vendors to be employed. This problem was solved by [26]
with data envelopment analysis (DEA) tool. Amin and Zhang [1] studied supplier
selection model in an integrated closed-loop supply chain. Shaw et al. [21] used
fuzzy AHP and fuzzy multi-objective linear programming for supplier selection in
developing a low carbon supply chain. Seifbarghy and Esfandiari [20] established
multi-objective supplier selection model with transportation cost. A supplier pre-
selection model was formulated by [3] for platform-based products. Izadikhah et al.
[10] used DEA approach to study supplier’s sustainability in the presence of dual-
role factor and volume discounts. Later, [11] extended the same work by considering
volume discount and negative data.

Genetic algorithm (GA) is one of the commonly used heuristic search techniques
that mimics the evolutionary process of nature [5]. It is inspired by Darwin’s theory
of “Survival of fittest” and is one of the emerging areas of artificial intelligence. It
is a calculus-free optimization method with least possibility of getting stuck at local
optima. Genetic algorithm starts with a random set of solution called population.
This method runs iteratively and in every iteration, population is updated by means
of three basic genetic operators, i.e., selection/reproduction, crossover, andmutation.
The process is continuously repeated until the desired accuracy is attained and each
of this iteration is called generation. The fundamental perception of this algorithm
was anticipated by Prof. J. H. Holland of the University of Michigan [7]. Thereafter,
this field evolved with the contribution given by number of researchers. One can
find the details on the development of this area in the books of [4, 5, 13, 18] and
others. [19] used genetic algorithm in machine learning. After that, many researchers
utilized GA to solve their optimization problem. Srinivasan and Deb [22] employed
nondominated GA to solve their multi-objective optimization problem. Murata et al.
[14] scheduled flow shop using multi-objective GA. Parks and Miller [16] did the
selection of breeding usingmulti-objectiveGA.Basnet andWeintraub [2] formulated
supplier selection under bi-criteria and solved it using multi-objective GA. For an
overview of evolutionary algorithms for many-objective optimization problems, one
can refer to [25].

In multi-objective programming (MOP), the goal is to optimize all the objective
functions simultaneously. A single solution may not be optimal for all the objectives
simultaneously when objectives are complex in nature. In that case, we get a Pareto-
optimal solution set which means the MOP has number of optimal solutions. From
this set of solution, we select an appropriate optimal solution. To visualize this set of
solution in terms of quality, shape, and distribution of solution set, different meth-
ods exists in available literature. [15] used self-organizing map to reveal visualiza-
tion and data mining of Pareto solutions. For population-based multi-objective algo-
rithms, [17] proposed heatmap visualization. In case of evolutionary multi-objective
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optimization, refer [24] for a review on visualization of pareto front approximations.
For many-objective optimization, [6] gave the performance metric for visualization;
while [12] explained how to use parallel coordinates for understanding the solu-
tion set. Finally, [8, 9] gave 3D-RadVis technique for reading and measuring the
performance of solution set.

In this chapter,we propose an approach to solvemanufacturer problemof selecting
supplier and allocating the order. After the mathematical modeling, a Pareto-optimal
solution set is obtained by employing multi-objective GA. Next, based on literature
survey, it has been found that three-dimensional radial coordinate visualization (3D-
RadVis) technique is not used by any researcher working on supplier selection. This
methodmaps themulti-objective function (withM-objectives) to a three-dimensional
radial coordinate plot. Therefore, we use this technique to get the best solution from
the Pareto-optimal solution set. The benefit of using this method is it reserves rel-
ative location and distribution of solution set preserving the convergence trend of
optimization process without affecting the shape of pareto front. Further, the paper
is arranged in the subsequent manner. In Sect. 17.2, notations and assumptions are
given that are used to formulate mathematical model along with the description
of problem. In Sect. 17.3, the mathematical model under given assumption is for-
mulated. Multi-objective genetic algorithm (MOGA) and 3D-RadVis visualization
technique are discussed in Sect. 17.4. In Sect. 17.5, numerical example is presented
which is optimized by using (MOGA) and 3D-RadVis visualization technique. Then,
conclusion and references concludes the paper.

17.2 Notations and Assumptions

We use the following notations and assumptions for the proposed model:

Notations

i = 1, 2, . . .m Index of Item
j = 1, 2, . . . p Index of Supplier
Di Demand of ith item
Pi Manufacturer’s processing cost for ith item
MICi Manufacturer’s inventory carrying cost for ith item
xij Order quantity of ith item from jth supplier (decision variable)
Pij Unit purchase cost of ith item from jth supplier
Oij Unit transportation cost of ith item from jth supplier
qij Defective quality of ith item from jth supplier
Qai Quality acceptable for ith item
lij Late delivery of ith item from jth supplier
Lai Late delivery acceptable for ith item
Cij Capacity of jth supplier to supply ith item
TC Manufacturer total cost
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Fig. 17.1 Supply chain with single manufacturer and multiple suppliers

Assumptions

1. Demand of each item is known.
2. Supply capacity from each supplier is limited.
3. Supplier selection is done on the basis of quality, cost, delivery performance, and

transportation cost.
4. Allocation of order is to be done in such a way that the demand of each item (i)

is satisfied.

Problem

Here, we discuss the manufacturer’s problem of procuring (m) items from the (p)
available suppliers; where, supplies from each supplier is constrained. The objective
is to determinewhich item is to be procured fromwhich supplier and inwhat quantity.
The allocation of order amongst suppliers is done on the basis of multiple criteria
such as unit price, quality, supply capacity, delivery time, and unit transportation
cost. The pictorial representation of this supply chain is shown in Fig.17.1.

Next, we formulate the problem mathematically with an objective of minimizing
four functions under given constraints. This multi-objective function is then opti-
mized using MOGA which gives a Pareto-optimal solution set. Next, we utilize
3D-RadVis technique on this solution set to get the best solution.

17.3 Mathematical Model

In the proposed model, our aim is to meet the requirement of manufacturer at a
minimal cost. Along with this objective there are certain constraints which are to be
taken into consideration.
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First, we consider the cost bared by manufacturer, which are as follows:
The purchase cost of required item i is given by the sum of product of quantity
ordered from jth supplier and selling price of ith item from supplier j. Therefore, the
purchase cost for all items is

PC =
∑

i

∑

j

xijPij (17.1)

Next, the processing cost for all items is given by

PRC =
∑

i

xiPi (17.2)

where, xi = ∑
j xij

The holding cost for manufacturer is

HC =
∑

i

xiMICi (17.3)

Finally, the transportation cost of item i is given by the sum of quantity ordered
from supplier j times the unit transportation charge of item i from supplier j. There-
fore, the transportation cost for all items is

TRC =
∑

i

∑

j

xijOij (17.4)

Hence, the manufacturer’s total cost is given by

TC = PC + PRC + HC + TRC (17.5)

The next task is to frame the multi-objective function along with the constraints
involved for procuring the items.

The two objective functions of minimizing purchase cost (say f1) and transporta-
tion cost (say f2) have already been discussed in (17.1) and (17.4).Whereas, the other
two objective of minimizing the defective quality and late delivery is given by (17.6)
and (17.7).

f3 = ∑
i

∑
j
xijqij; Defective quality (17.6)

f4 = ∑
i

∑
j
xijlij; Late delivery (17.7)
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Further, the constrained involved are

1. The supplied item (i) from the available suppliers should be adequate to meet the
manufacturer demand. That is ∑

j

xij ≥ Di (17.8)

2. The quantity of item (i) obtained from available supplier (j) should be less than
or equal to supply capacity of supplier (j). That is

xij ≤ Cij (17.9)

3. The aggregate defective quality of item (i) ordered should be less than or equal
to acceptable quality of manufacturer. That is

∑

j

xijqij ≤ QaiDi (17.10)

4. The aggregate late delivery time of item (i) ordered should be less than or equal
to acceptable delivery time of manufacturer. That is

∑

j

xijlij ≤ LaiDi (17.11)

Multi-objective Function

Hence, the goal is to allocate order such that the manufacturer gets good quality
of material in lesser delivery time with minimum purchase cost and transportation
cost. So, the manufacturer has the following multi-objective function with certain
constraints:

Minimize,
f1 = ∑

i

∑
j
xijPij; Purchase cost

f2 = ∑
i

∑
j
xijOij; Transportation cost

f3 = ∑
i

∑
j
xijqij; Defective quality

f4 = ∑
i

∑
j
xijlij; Late delivery

(17.12)

Subject to,

∑
j
xij ≥ Di; Demand constraint

xij ≤ Cij; Supplier capacity constraint
∑
j
xijqij ≤ QaiDi; Acceptable quality constraint

∑
j
xijlij ≤ LaiDi; Acceptable late delivery constraint
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17.4 Algorithm

17.4.1 Multi-objective Genetic Algorithm

Generally, a multi-objective optimization problem is represented as

min (f̄ (x̄)) = (f1(x̄), f2(x̄), . . . fn(x̄))

subject to, c̄(x̄) ≤ 0

where fi : Rn → Rm is the list of objective function; c̄(x̄) is the list of constraints and
x̄ ∈ S (feasible region).

In MOP, the aim is to optimize all the objective functions simultaneously. A
single solution may not optimize all objectives simultaneously when objectives are
complex in nature. In that case, we get a Pareto-optimal solution set, which means
the MOP has number of optimal solutions. The solution obtained are such that one
cannot further optimize any of the objective without affecting at least one of the other
objective values. This Pareto-optimal solution set is termed as Pareto-optimal front.

Genetic algorithm (GA) is one of the commonly used heuristic search techniques
that mimics the evolutionary process of nature. It is inspired by Darwin’s theory of
“Survival of fittest” and is one of the emerging area of artificial intelligence. It is a
calculus free optimization method. GA starts with a random set of solution called
population. This method runs iteratively and in every iteration population is updated
bymeans of three basic genetic operators, i.e., selection/reproduction, crossover, and
mutation giving successfully a better and better solution. The process is continuously
repeated until the desired accuracy is attained and each of this iteration is called
generation.

Here, to minimize the objective functions given in (17.12) subject to the given
constraints, we use the algorithm given below:

1. For the involved parameters, allot numerical values except for the decision vari-
ables (xij).

2. Start with an initial population of 50 for five or less decision variables else with
200.

3. Evaluate the fitness value for each individual of this population and rank the
individual on the basis of fitness score.

4. From the population, individuals with good fitness score will enter the mating
pool.

5. Next for reproduction, perform stochastic uniform crossover with 0.8 fraction
value and considering two elites at each generation.

6. For the new generation obtained repeat from Step 3.
7. Repeat the algorithm till the desired accuracy of (10−4) is attained.
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17.4.2 3D-RadVis Visualization Technique

In multi-objective optimization problem, imagining Pareto-optimal solution or non-
dominated solutions is not an easy task. For the obtained solutions, an effective
visualization technique is required to study their distribution, position, range and
shape. The commonly used existing methods fails to show the shape of pareto front.
Therefore, in this chapter we use three-dimensional radial coordinate visualization
(3D-RadVis). This method maps the multi-objective function (with M-objectives)
to a three-dimensional radial coordinate plot. Therefore, we use this technique to
get the best solution from the Pareto- optimal solution set. The benefit of using this
method is it reserves relative position and distribution of solution set preserving
the convergence trend of optimization process without affecting the shape of pareto
front. References [8, 9] for detailed explanation of this method. Next, the algorithm
to obtain 3D-RadVis plot is listed below. For N Pareto-optimal, the solution of M
objectives is

1. Compute

x =
∑M

j=1 f
Norm
i,j cos

(
θj

)

∑M
j=1 f

Norm
i,j

; y =
∑M

j=1 f
Norm
i,j sin

(
θj

)

∑M
j=1 f

Norm
i,j

where f Normi = fi(x) − min(fi(x))

max(fi(x)) − min(fi(x))

2. px = x + 1 and py = y + 1
3. Find normal vector perpendicular to the extreme point n = norm(z); where z is

hyperplane.
4. Calculate c = n · z1
5. For i = 1 to n find d = abs(fi ·n−c)

‖n‖
6. Finally, we convert 3D-RadVis R = [x, y, d ]

17.5 Numerical Example

Example 1 To provide managerial insight, let us consider a manufacturer’s problem
of procuring two items from three suppliers with the available data D1 = 50 units,
D2 = 80 units,Qa1 = 5%,Qa2 = 8%,La1 = 3%,La2 = 5%,P1 = 10 ($/unit),P2 =
5 ($/unit),MIC1 = 2 ($/unit), andMIC2 = 3 ($/unit) other details of the suppliers
is given in Table17.1.

We use the MOGA to acquire a Pareto-optimal solution set, the solution set
obtained is given in Table17.2. Next, 3D-RadVis technique in applied to this solution
set and values of R = [x, y, d ] is also shown in Table17.2. For the obtained solution,
3D-RadVis plot is shown in Fig. 17.2, while normalized 3D-RadVis plot is shown in
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Table 17.1 Supplier Infromation

Supplier’s Supplier 1 Supplier 2 Supplier 3

Items 1 2 1 2 1 2

Price ($) 8 20 10 15 9 18

Unit transportation cost ($) 0.8 1 1.2 1.2 0.5 1.5

Supplier capacity 40 100 30 50 50 70

Quality (%) 7 3 4 4 6 5

Late delivery per unit time 0.01 0.05 0.02 0.1 0.025 0.07

Fig. 17.2 3D-RadVis plot

Fig. 17.3 Normalized
3D-RadVis plot

Fig. 17.3. Hence, after using this technique, the optimal order allocated among the
available suppliers is highlighted in Table17.2. Therefore, the manufacturer’s total
cost is $3288.32 corresponding to this solution.
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Table 17.2 Pareto-optimal front for available suppliers

x11 x12 x13 x21 x22 x23 x y d

1 4 30 16 2 8 70 0.9114 0.0758 5.5800

2 6 28 17 72 8 0 0.9309 0.0562 57.2450

3 20 30 0 2 8 70 0.9088 0.0785 0.0000

4 7 29 15 74 6 0 0.9309 0.0564 62.8450

5 6 30 15 74 6 0 0.9308 0.0565 64.0350

6 7 28 16 73 7 1 0.9308 0.0564 61.1950

7 5 30 15 9 10 61 0.9135 0.0737 12.9250

8 10 29 12 35 8 38 0.9200 0.0672 31.1100

9 6 28 17 50 7 23 0.9250 0.0622 51.6100

10 9 28 13 55 8 17 0.9257 0.0615 43.3100

11 7 29 14 52 8 21 0.9252 0.0620 48.0450

12 7 28 16 59 8 13 0.9273 0.0598 50.3350

13 7 28 16 74 6 0 0.9311 0.0561 62.0050

14 19 30 1 6 8 66 0.9101 0.0772 4.9300

15 6 30 15 72 6 1 0.9304 0.0568 62.9000

16 3 29 18 3 8 69 0.9122 0.0750 5.4100

17 6 28 16 39 7 34 0.9218 0.0653 34.8250

18 9 28 13 48 7 26 0.9237 0.0635 42.8150

19 6 29 15 71 7 3 0.9301 0.0572 61.9250

20 5 28 17 56 8 17 0.9267 0.0605 50.1600

21 5 27 17 57 7 16 0.9270 0.0601 54.2800

22 1 25 23 3 8 69 0.9133 0.0737 4.3050

23 5 28 17 46 7 27 0.9240 0.0632 40.1500

24 7 28 16 66 8 7 0.9290 0.0581 57.5450

25 7 28 14 43 8 30 0.9226 0.0645 38.1600

26 7 28 16 59 8 13 0.9271 0.0600 48.8100

27 17 30 4 15 8 57 0.9133 0.0740 13.3850

28 0 25 25 2 8 70 0.9134 0.0736 3.0100

29 6 28 16 62 8 11 0.9281 0.0590 51.8600

30 19 30 1 4 8 68 0.9095 0.0778 1.9650

31 6 27 16 53 8 20 0.9257 0.0615 48.6000

32 5 30 15 14 10 57 0.9149 0.0723 17.0550

33 11 29 11 26 7 47 0.9175 0.0698 25.4900

34 7 29 14 64 7 9 0.9281 0.0592 55.8150

35 7 28 15 56 8 16 0.9263 0.0609 46.2850

36 6 28 16 31 8 41 0.9198 0.0674 30.3850

37 6 27 17 61 8 12 0.9281 0.0590 51.8300

38 10 29 11 28 8 44 0.9182 0.0690 27.2200

(continued)
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Table 17.2 (continued)

x11 x12 x13 x21 x22 x23 x y d

39 17 30 3 9 8 63 0.9112 0.0761 9.3450

40 8 29 14 54 7 19 0.9256 0.0616 48.5600

41 7 28 15 36 7 37 0.9208 0.0664 32.6100

42 12 29 9 44 7 29 0.9223 0.0650 36.7200

43 11 29 11 42 8 30 0.9220 0.0652 34.8700

44 13 30 7 10 8 62 0.9123 0.0750 10.3650

45 16 30 4 12 7 61 0.9125 0.0748 16.9350

46 7 28 15 60 7 13 0.9274 0.0597 51.5850

47 5 30 15 16 10 55 0.9154 0.0718 17.9300

48 7 28 15 60 8 12 0.9274 0.0597 50.1700

49 7 29 14 20 7 52 0.9165 0.0708 21.8500

50 4 27 19 42 8 31 0.9232 0.0640 36.0800

51 6 28 16 68 8 5 0.9295 0.0577 59.3050

52 13 30 7 36 7 37 0.9196 0.0677 30.9000

53 12 29 10 24 7 49 0.9168 0.0705 23.7950

54 9 29 12 51 7 22 0.9243 0.0629 44.8900

55 6 28 17 40 8 34 0.9222 0.0649 40.2900

56 5 30 15 13 10 58 0.9145 0.0727 16.4650

57 5 30 15 2 8 70 0.9114 0.0759 5.5350

58 12 29 9 22 7 51 0.9159 0.0713 21.2800

59 13 28 9 2 8 70 0.9105 0.0767 1.3400

60 12 29 9 23 8 50 0.9162 0.0710 22.0050

61 5 30 16 11 10 60 0.9140 0.0732 13.9800

62 7 29 14 44 8 29 0.9230 0.0642 41.0100

63 6 29 15 45 8 28 0.9234 0.0638 44.3300

64 19 30 1 7 8 65 0.9104 0.0769 5.9000

65 7 29 15 51 8 22 0.9248 0.0624 50.5700

66 6 28 16 64 8 8 0.9286 0.0585 54.9050

67 6 28 16 52 8 20 0.9256 0.0616 47.9800

68 7 29 14 52 8 21 0.9252 0.0620 48.4400

69 1 25 24 8 8 64 0.9149 0.0722 8.3400

70 20 30 0 3 7 70 0.9092 0.0782 6.8650

17.6 Conclusion

This chapter discusses themanufacturer problem of allocating order among available
suppliers. The selection criteria depends on quality of items delivered, delivery time
taken, unit cost, and transportation cost. This scenario is modeled mathematically
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and it leads to multi-objective optimization problem with certain constraints. Using
hypothetical data, we acquire a Pareto-optimal solution set by employing heuristic
search algorithm calledMOGA. Finally, we get the best solution for themanufacturer
by using 3D-RadVis method.

Further, this research work can be extended by incorporating some more selec-
tion criterion. Quantity discounts is also in fashion, so discount on purchased quan-
tity from supplier if order is above threshold quantity can also be considered. One
can also have more number of manufacturing units with finite production capacity
and then there could be two MOP, i.e., (1) allocating order among suppliers and
(2) allocating lot size among available plants. In a similar manner, one can incorpo-
rate distributors and retailer selection.
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Chapter 18
Some Studies on EPQ Model of
Substitutable Products Under Imprecise
Environment

R. L. Das and R. K. Jana

Abstract In current scenario, big departmental stores used to work more efficiently
with the items that can be substituted either with optimum order quantities or selling
prices of the products. At the time of purchase, customer of one particular item
transfers to relevant substitutable itembecause of difference in prices or the quantities
that can be purchased in bulk. In this chapter, the inventory problem is determined
in total profitmaximization problemwith crisp, random, fuzzy, fuzzy-random, rough,
and fuzzy-rough constraints. The problem is solved through a gradient-based search
technique—GRG (Generalized Reduced Gradient) method. The prices and optimal
order quantities of substitutable items are obtained so that total profit for store owner
is maximum.

Keywords Selling price · Optimal order quantities · Substitution · Inventory
problems · Profit · EPQ model · Finite budget constraint

18.1 Introduction

Inventories are the essential thing needed on most of the places [9]. The function
of inventory is inimitable if it passes through the channel of producer to distributor
and then finally to a customer. But the absence of inventory shows a tragic moment
for customers as far as future profit is concerned. When product becomes out of
stock the behavior of customer changes, henceforth, the following situation arises; a
customer may step aside from that shop andmove to some other place or he may wait
for an item or he may take similar product from the store itself. The phenomenon
in the third case is known as product substitution [11]. In a nutshell, it depicts how
inventory of product will not only effect the demand but also the demand of other
products.
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Further, there are several researchers [1, 4, 8, 14, 15, 21, 24, 30, 33–36] who has
worked with EPQ models under different segment that includes prices deterioration,
price discount, trade credit, product back-logging, stock dependent, and many such
criterions that gave a rise to workout with product substitution.

Later, Seyed et al. [28] showed that SQP has satisfactory performance in terms
of optimum solutions, number of iterations to achieve the optimum solution, in-
feasibility, optimal error, and complementary. Analyzing the models having all the
parameters with random variables, the problem can be expressed in various other
constraints known as chance constraint, which help to convert the problem into crisp
type. Charnes constraint was initially developed by Charnes et al. [5]. Further, Liu
and Iwamura [17] inculcated fuzzy parameters in the problem. To reduce the prob-
lems into crisp ones, Charnes constraint is the vital source used by Panda et al. [25],
Katagiri et al. [13], Liu [16]. Ultimately, Merigo et al. [19] gave an overview of
fuzzy research with concerned journals, papers, institutions, and the authors with a
picturesque representation that becomes easy to analyzewith bibliometric indicators.

Conventional inventory models were usually developed over infinite timing and
planning horizon. As any system involves cost like technological change, design, and
specification change,managerial prospects change, it is reluctant to fulfill assumption
of infinite planning horizon by [6, 12]. Moreover, the likeliness of some particular
product also depends on seasonal business period. In order to overcome with as such
knot, it is better to use finite budget horizon as random. Moon et al. [22] developed
an EOQ model in random planning horizon. Astonishingly, Cárdenas–Barrón et al.
[2] covered 40+ papers covering extensive scope of inventory management. Later,
researchers were able to propagate with new directions. Besides, Maiti et al. [18]
solved inventory models with stock dependent demand under random planning hori-
zon. Toward this way, there are many more research work carried by Roy et al. [27]
and Guria et al. [10]. Recently, in 2016, Nobil et al. [23] considered multi-product
problems with nonidentical machines that consist of different production capacities
with the effective use of Hybrid Genetic Algorithm that dominates the results of
general algebraic modeling system. The determination of production-shipment poli-
cies for a vendor–buyer system by deriving the optimal replenishment lot size and
shipment policy for an EPQ inventory model was derived by Cárdenas–Barrón et al.
[3]. Taleizadeh et al. [31] showed a manufacturing process of each production cy-
cle, where defective items are identified whilst considering scrap and the others that
would convert in a perfect quality items, solving a real life case problem. In 2018, a
supply chain model with integrated thermal recovery and electricity generation from
industrial waste heat was analyzed by Zanoni et al. [39]. Again, Taleizadeh et al. [32]
derives Vendor Managed Inventory model for two-level supply chain that optimizes
the retail price along with the replenishment duration of raw materials.

Henceforth,Merigo et al. [20] portrayed average price useful for firm, countries, or
regions.Moreover,while studying rangeof opinions and environmental uncertainties,
we can calculate world average price.
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• In general, the practicality of substitution between products can be beneficial to
include in the needs of customer satisfaction effects on classical inventory models.
Furthermore, it can determine the positions of customers changing their priorities
due to optimumorder quantities and selling price issueswhich is ourmain concern.
Also, it is a fact that the demand of an item is influenced by the selling price of
that item, i.e., whenever the selling price of an item increases, the demand of that
item decreases and vice versa.

• Unit production cost is normally assumed constant in EPQ Models. Whereas, in
reality, it depends on several factors such as raw materials, labors engaged, and
rate of production. This involves some expenditures and hence unit production
cost increases with this process.

So far, these lacunas were ignored by the researchers. The main purpose of this
present study is to develop a mathematical model with and without shortages for
computing the economic order quantities, where production process and substitution
effect are taken into account. Further, themodels are formulated in the form of a profit
maximization problem with crisp, random, fuzzy, fuzzy-random, rough, and fuzzy-
rough constraints and then solving it through a gradient-based search technique—
GRG (Generalized Reduced Gradient) method. The optimal order quantities and
qualities of substitutable products are determined so that total profit for the store
owner is maximum. Also, the concavity of the models is derived with providing two
illustrations for the practical usage of the proposed methods.

18.2 Mathematical Prerequisites

Following to Liu and Iwamura [17], the following Lemmas1 and 2 are easily derived.

Lemma 1 If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number, Pos

(ã > b) ≥ α iff
a3 − b

a3 − a2
≥ α, where “Pos” represents possibility measure.

Lemma 2 If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number, Nes

(ã > b) ≥ α iff
b − a1

a2 − a1
≤ 1 − α, where “Nes” represents necessity measure.

Fuzzy-random variable [29]: Let R is the set of real numbers, Fc(R) is set of all
fuzzy variables, and Gc(R) is all of non-empty bounded close interval. In a given
probability space (�, F, P), a mapping ξ : � → Fc(R) is called a fuzzy-random
variable in (�, F, P), if ∀ α ∈(0,1], the set-valued function ξα : � → Gc(R) defined
by ξα(ω) = (ξ(ω))α = {x |x ∈ R, μξ(ω)(x) ≥ α},∀ω ∈ �, is Fmeasurable.Different
semantics of fuzzy-random variable are also presented by Xu and Zhou [37].

Theorem 1 Let ˜̄ξ is LR fuzzy- random variable, for any ω ∈ �, the membership

function of ˜̄ξ(ω) is



334 R. L. Das and R. K. Jana

μ ˜̄ξ(ω)
(t) =

⎧
⎪⎪⎨

⎪⎪⎩

L

(
ξ̄ (ω)−t

ξL

)

for t ≤ ξ̄ (ω)

R

(
t−ξ̄ (ω)

ξR

)

for t ≥ ξ̄ (ω)

where the random variable ξ̄ (ω) is normally distributed with mean mξ and standard

deviation σξ and ξL , ξR are the left and right spreads of ˜̄ξ(ω). The reference functions
L: [0, 1] → [0, 1], R: [0, 1] → [0, 1] satisfies that L(1) = R(1) = 0, L(0) = R(0) =
1, and both are monotone function. Then

{
Pr [Pos{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ

Pr [Nec{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ
are equivalent to

t ≤
{

mξ + σξ	
−1(1 − γ ) + ξR R−1(δ)

mξ + σξ	
−1(1 − γ ) − ξL L−1(1 − δ)

where 	 is standard normally distributed, δ, γ ∈ [0, 1] are predetermined confidence
levels.

Proof According to definition of possibility [7, 22, 38] we get, Pos[ ˜̄ξ(ω) ≥ t] ≥
δ ⇔ R

[
t−ξ̄ (ω)

ξR

]

≤ δ ⇔ ξ̄ (ω) ≥ t − ξR R−1(δ). So for predetermined level δ, γ ∈
[0, 1] we have

Pr [Pos{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ

⇔ Pr [ξ̄ (ω) ≥ t − ξR R−1(δ)] ≥ γ

⇔ Pr [ ξ̄ (ω)−mξ

σξ
≥ t−ξR R−1(δ)−mξ

σξ
] ≥ γ

⇔ 	

(
t−ξR R−1(δ)−mξ

σξ

)

≤ 1 − γ

⇔ t ≤ mξ + σξ	
−1(1 − γ ) + ξR R−1(δ)

Similarly from the measure of necessity [7, 22, 38], we have

Nes[ ˜̄ξ(ω) ≥ t] ≥ δ ⇔ L

[
ξ̄ (ω)−t

ξL

]

≥ 1 − δ ⇔ ξ̄ (ω) ≥ t + ξL L−1(1 − δ)

So for predetermined level δ, γ ∈ [0, 1], we have
Pr [Nes{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ

⇔ t ≤ mξ + σξ	
−1(1 − γ ) − ξL L−1(1 − δ)

The proof is complete.

Theorem 2 Let ξ̂ = ([a, b][c, d]), c ≤ a ≤ b ≤ d be a rough variable and a rough
event is ξ̂ ≥ t . Then T r{ξ̂ ≥ t} ≥ α iff

t ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d − α(d−c)
η

, b ≤ t ≤ d
η(b−a)+(1−η)b(d−c)−α(d−c)(b−a)

η(b−a)+(1−η)(d−c) , a ≤ t ≤ b

d + (1−η−α)(d−c)
η

, c ≤ t ≤ a
c
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Theorem 3 Let ˜̂
ξ = (ξ̂ − L , ξ̂ , ξ̂ + R) is a fuzzy- rough variable characterized the

following membership function:

μ ˜̂
ξ
(t) =

⎧
⎪⎨

⎪⎩

t−ξ̂+ξL

ξL
for ξ̂ − ξL ≤ t ≤ ξ̂

ξ̂+ξR−t
ξR

for ξ̂ ≤ t ≤ ξ̂ + ξR

0 otherwise.

where ξL and ξR are left and right spreads of ˜̂
ξ , and ξ̂ = ([a, b][c, d]) be a rough

variable, characterized by the above mentioned trust measure function, then for an

event ˜̂
ξ ≥ t ,

{
T r [Pos( ˜̂ξ ≥ t) ≥ β] ≥ α are equivalent to

T r [Nec( ˜̂ξ ≥ t) ≥ β] ≥ α

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d − α(d−c)
η

+ (1 − β)ξR, b ≤ t − (1 − β)ξR ≤ d
η(b−a)+(1−η)b(d−c)−α(d−c)(b−a)

η(b−a)+(1−η)(d−c) + (1 − β)ξR,

a ≤ t − (1 − β)ξR ≤ b
d + (1−η−α)(d−c)

η
+ (1 − β)ξR, c ≤ t − (1 − β)ξR ≤ a

c + (1 − β)ξR

t ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d − α(d−c)
η

− βξL , b ≤ t + βξL ≤ d
η(b−a)+(1−η)b(d−c)−α(d−c)(b−a)

η(b−a)+(1−η)(d−c) − βξL , a ≤ t + βξL ≤ b

d + (1−η−α)(d−c)
η

− βξL , c ≤ t + βξL ≤ a
c − βξL

18.3 Assumptions and Notations

18.3.1 Assumptions

• Multi-product Economical Production Quantity inventory models are considered
for i th items (where i = 1, 2). Products are substituted on the basis of their selling
prices.

• Lead time is zero with single period model.
• Shortages are partially allowed in one of the model.
• The inventory system considers two substitutable items and the demand of the
items are price dependent.

• The time horizon is infinite also unit production cost as well as setup cost is
constant.

• The inventory in building up at a constant rate of (Pi − Di ) units per unit time
during [0, ti ].
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• During substitution, demandof a product ismore or equally sensitive to the changes
due to its own price than the changes due to its competitors price.
That is, for the demand set d11 ≥ d12 and d21 ≥ d22.

• During substitution, loss of customers of product-1 is due to its own price is more
or equal than the gain of customers of product-2 due to price of product-1.
That is, for the demand set d11 ≥ d22 and d21 ≥ d12.

• For two substitutable products under price with demands(1), there is loss of sales
(i.e., cust.) or no loss in the system if and only if s1(d1-d2)+s2(d2-d1) ≥ 0.
That is, for the demand set d11 ≥ Max(d12, d21), d22 ≥ Max(d12, d21).

18.3.2 Notations

Decision Variables:

• Qi : Total quantity produced unit for both the items.
• si : Selling price for both the items.

Parameters:

• ti : Production run time in one cycle for first and second item.
• T : Cycle time in appropriate unit.
• Di : Effected/Resulted Demand in the market.
where, D1 = d10 − d11s1 + d12s2, D2 = d20 + d21s1 − d22s2

• Pi : Production rates in unit per unit time.
• Chi : Holding cost per unit per unit time.
• C0i : Setup cost per unit per time period.
• Pci : Production cost for both the item.
• di0: Market based original Demand.
• di1, di2: Measures of each products consumer demand to its own price and com-
petitor’s price, respectively.

• B: Finite Budget constraint.

18.4 Model 1 : EPQ Model Having Substitution with the
Constant Demand and Same Time Period

See Fig. 18.1.

18.4.1 Model Formulation

In this EPQ model during production time, ti inventory increases at rate Pi and
decreases at rate (Pi − Di ) units during a production run for the i th item. For
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Fig. 18.1 Substitution with
constant demand and same
time period

multi-item production processes with different demand functions, the governing dif-
ferential equations are

d I1
dt

=
{

P1 − D1, 0 ≤ t ≤ t1
−D1, t1 ≤ t ≤ T

d I2
dt

=
{

P2 − D2, 0 ≤ t ≤ t2
−D2, t2 ≤ t ≤ T

with the boundary conditions,

I1(0) = 0 = I1(T ),

I2(0) = 0 = I2(T )

Also, continuity conditions hold at t1 and t2. Hence, solving the above equations, we
have
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I1 =
{

(P1 − D1)t, 0 ≤ t ≤ t1
D1(T − t), t1 ≤ t ≤ T

I2 =
{

(P2 − D2)t, 0 ≤ t ≤ t1
D2(T − t), t1 ≤ t ≤ T

According to our problem

t1 + t2 = t ′
1 + t ′

2 = T

Using continuity condition at t1, we have

(P1 − D1)t1 = D1(T − t1) ⇒ T = P1t1
D1

= Q1

D1

Similarly, using continuity conditions at t2 we have

(P2 − D2)t
′
1 = D2(T − t ′

1),⇒ T = P2t2
D2

= Q2

D2
⇒ Q2 = D2Q1

D1

Also,

D1(t1 + t2) = P1t1 ⇒ (P1 − D1)t1 = D1t2 ⇒ t2 = (P1 − D1)t1
D1

Similarly, ⇒ t ′
2 = (P2 − D2)t ′

1

D2

Again, we have

P1t1 = Q1 or t1 = Q1

P1
Also, P2t ′

1 = Q2 or t1
′ = Q2

P2

Hence, we have the value of T, t1, t ′
1, t2, t ′

2, respectively. Now, holding cost will
be for complete time horizon and for multi-item would be

Chi = Ch1

2
(P1 − D1)t1

2 + Ch1D1

2
(t2

2) + Ch2

2
(P2 − D2)(t1

′
)2 + Ch2D2

2
(t2

′
)2

Substituting values of t2, t2
′
, t1, t1

′
in the expression of holding cost, we have

Chi = 1

2

⎡

⎣
Ch1(P1 − D1)t12 + Ch2(P2 − D2)(t1

′
)2 + Ch1D1

(
(P1−D1)

2

D1
2

)
(t1)2

+Ch2D2

(
(P2−D2)

2

D2
2

)
(t1

′
)2

⎤

⎦
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Holding Cost for both the items will be

Chi = Ch1

2
(P1 − D1)

Q1
2

P1D1
+ Ch2

2
(P2 − D2)

D2Q1
2

P2D1
2

Production Cost for both the items can be determined by

Pci = Pc1 ∗ Q1 + Pc2 ∗ Q2 or Pc1 ∗ Q1 + Pc2 ∗ D2Q1

D1

Similarly, Setup cost for both the item will be

C0i = C01 + C02

Hence, Total Models Cost (TMC) can be expressed as = SC + PC + HC ,

C01 + C01 +
{

Pc1 ∗ Q1 + Pc2 ∗ D2Q1
D1

}
+

{
Ch2D2

2Q1
2

2D1
2 P1

+ (Ch1D1+Ch2D2)Q1
2

2D1
2 − Ch1Q1

2

2P1
− Ch2D2Q1

2

D1
2 P2

}

Also, Total Selling Price for both the models is given by

TSP = Q1S1 + D2Q1
D1

S2

Finally, the Total Profit (TP) in terms of (Q1, s1, s2) will be

Q1S1 + D2Q1

D1
S2 −

⎧
⎪⎪⎨

⎪⎪⎩

C01 + C02 +
{

Pc1 ∗ Q1 + Pc2 ∗ D2Q1
D1

}

+
{

Ch2D2
2Q1

2

2D1
2 P1

+ (Ch1D1+Ch2D2)Q1
2

2D1
2

−Ch1Q1
2

2P1
− Ch2D2Q1

2

D1
2 P2

}

⎫
⎪⎪⎬

⎪⎪⎭

18.5 Model 2 : EPQ Model Substitution Considering
Shortage in One of the Items with Constant Demand
and Same Time Period

See Fig. 18.2.

18.5.1 Model Formulation

In this EPQ model during production time, ti inventory increases at rate Pi and
decreases at rate (Pi − Di ) units during a production run for the i th item. For
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Fig. 18.2 Substitution
considering shortage in one
of the item with constant
demand and same time
period

multi-item production processes with different demand functions, the governing dif-
ferential equations are

d I1
dt

=
{

P1 − D1, 0 ≤ t ≤ t1
−D1, t1 ≤ t ≤ t1 + t2

d I2
dt

=
⎧
⎨

⎩

P2 − D2, 0 ≤ t ≤ t1′
−D2 t1′ ≤ t ≤ t1′ + t2′

d20 − d22S2 + λd10, t1′ + t2′ ≤ t ≤ T

Shortage cost will be d B1
dt = D1, t1 + t2 ≤ t ≤ T .

with boundary conditions,

I1(0) = 0 = I1(t1 + t2),
I2(0) = 0 = I2(T )

Here, the continuity conditions holds at t1, t ′
1, t1 + t2, t ′

1 + t ′
2 .
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Solving the above equations we have

I1 =
{

(P1 − D1)t, 0 ≤ t ≤ t1
D1(t1 + t2 − t), t1 ≤ t ≤ t1 + t2

B1 = D1(t − t1 + t2), t1 + t2 ≤ t ≤ T .

I2 =
⎧
⎨

⎩

(P2 − D2)t, 0 ≤ t ≤ t1′
P2Dt ′1 − D2t, t1′ ≤ t ≤ t1′ + t2 ′

d20 − d22S2 + d10(T − t), t1′ + t2 ′ ≤ t ≤ T

According to our problem, we have

t1 + t2 + t3 = t1
′ + t2

′ + t3
′ = T

⇒t1 + t2 = t1
′ + t2

′

⇒t ′2 = t1 + t2 − t ′1
Also, t3 = t ′3

Again P1t1 = Q1 or t1 = Q1
P1
,

Similarly, P2t ′
1 = Q2 or t ′

1 = Q2
P2

Using continuity equation at t2 and t ′
2, we have

(P1 − D1)t1 = D1t2 or t2 = (P1 − D1)t1
D1

Using t1 = Q1
P1
, Similarly, t ′

2 = Q1
D1

− Q2
P2

Using continuity equation at t3 and t ′
3, we have

(P2 − D2) t1
′ = D2t2

′ + (d20 − d22S2 + λd10) t3
′

⇒ t ′3 = D1Q2 − D2Q1

D1(d20 − d22S2 + λd10)

We know that t3 = t3
′
. Hence, we obtained the value of t1, t2, t3, t1

′
, t2

′
, t3

′
respectively.

Now, substituting them in holding cost for both the items we have.
Holding Cost (Ch1) for First-item is

= Ch1

2

[
(P1 − D1)t1

2 + (D1) t2
2
]

= Ch1

2

[

(P1 − D1)

(
Q1

P1

)2

+ (D1)

(
Q1

D1
− Q2

P2

)2
]

Holding Cost (Ch2) for Second-item is
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= Ch2

2

[

(P2 − D2)

(
Q2

P2

)2

+ (P2 − D2)

(
Q2

P2

) (
Q1

D1
− Q2

P2

)

+ (d20 − d22s2 + λd10)

(
Q1

D1
− Q2

P2

)(
D1Q2 − D2Q1

D1 (d20 − d22s2 + λd10)

)

+ (d20 − d22s2 + λd10)

(
D1Q2 − D2Q1

D1 (d20 − d22s2 + λd10)

)2
]

Finally, the Holding cost (Chi ) for both the items will be

= Ch1
2

[
Q1

2

P1D1
(P1 − D1)

]

+Ch2
2

⎡

⎢
⎢
⎢
⎣

(P2 − D2)
Q2

2

P2
2 + 2Q2

(
Q1
D1

− Q2
P2

)

−D2

(
Q1
D1

− Q2
P2

)2

+ (D1Q2−D2Q1)
2

D1
2(d20−d22s2+λd10)

⎤

⎥
⎥
⎥
⎦

The Production Cost (Pci ) involving in this models will be

Pci = Pc1 ∗ Q1 + Pc2 ∗ Q2

Also, Setup cost (SC) for both the models are,
C0i = C01 + C02

Hence, Total Model Cost (TMC) can be expressed as
= SC + PC + HC,

C01 + C02 + Pc1Q1+Pc2Q2 + Ch1
2

(
Q1

2

P1D1
(P1 − D1)

)

+Ch2
2

⎡

⎣
(P2 − D2)

Q2
2

P2
2 + 2Q2

(
Q1
D1

− Q2
P2

)

− D2

(
Q1
D1

− Q2
P2

)2 + (D1Q2−D2Q1)
2

D1
2(d20−d22s2+λd10)

⎤

⎦

+ Sc1
2

(
D1Q2−D2Q1

d20−d22s2+λd10

)2

Shortage cost for both the items will be

Sci = Sc1
2

(
D1Q2 − D2Q1

d20 − d22s2 + λd10

)2

So, Total Selling Price (TSP) will be

TSP = Q1S1 + Q2S2

Henceforth, Total Profit (TP) in terms of Q1,s1,s2 will be
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= Q1S1 + Q2S2 − C01 + C02 + Pc1Q1+Pc2Q2

+Ch1
2

(
Q1

2

P1D1
(P1 − D1)

)

+Ch2
2

⎡

⎣
(P2 − D2)

Q2
2

P2
2 + 2Q2

(
Q1
D1

− Q2
P2

)

− D2

(
Q1
D1

− Q2
P2

)2 + (D1Q2−D2Q1)
2

D1
2(d20−d22s2+λd10)

⎤

⎦

+ Sc1
2

(
D1Q2−D2Q1

d20−d22s2+λd10

)2

18.6 Different Types of Budget Constraints

Crisp Budget Constraint

For the crisp finite budget constraint we have to consider it as p1Q1 + p2Q2 ≤ B.

Random Budget Constraint

In this consideration, the models remain same as developed above, except the budget
constraint of the system. Here, B̄ is random. For this type of model, we impose
constraint as

Pr(B̄ ≥ p1Q1 + p2Q2) ≥ j,

where j ∈ (0, 1) is a specified permissible probability.

or, p1Q1 + p2Q2 ≤ mb + σb	
−1(1 − j), (cf. Rao [26])

where mb and σb are the expectation and standard deviation of normally distributed
random variable B̄, respectively and 	−1(x) denotes inverse function of standard

normal distribution of standard normal variate
B̄ − mb

σb
.

Fuzzy Budget Constraint

If the space horizon B̃ is fuzzy in nature, it can be expressed by the fuzzy constraint
B̃ ≥ p1Q1 + p2Q2 which is interpreted in the setting of possibility and necessity
theory (cf. Dubois et al. [7]). The above constraint reduces to

Pos(B̃ ≥ p1Q1 + p2Q2) ≥ ρ1, and

Nes(B̃ ≥ p1Q1 + p2Q2) ≥ ρ2

where ρ1 and ρ2 represent the degree of impreciseness. Let B̃ = (B1, B2, B3) be
TFN then, using Lemmas1 and 2, we get

p1Q1 + p2Q2 ≤
{

(1 − ρ1)B3 + ρ1B2, in possibility sense
(1 − ρ2)B2 + ρ2B1, in necessity sense.



344 R. L. Das and R. K. Jana

Fuzzy-Random Budget Constraint

In this case, the Space Constraint ˜̄B is fuzzy-random in nature and the fuzzy-random

constraint is ˜̄B ≥ p1Q1 + p2Q2. It stands for the relations, which are interpreted
in the setting of possibility and necessity theories (cf. Dubois et al. [7]) along with
chance the constraint. The above constraint reduces to

Pr
[
Pos( ˜̄B ≥ p1Q1 + p2Q2) ≥ ρ3

] ≥ j1, and

Pr
[
Nes( ˜̄B ≥ p1Q1 + p2Q2) ≥ ρ4

] ≥ j2

where (ρ3 and ρ4) and ( j1 and j2) represent the degree of impreciseness and uncer-

tainty due to randomness, respectively. Let ˜̄B = (B̄, Bl , Br ) be L-R fuzzy-random
variable then, according to Theorem1, we get

p1Q1 + p2Q2 ≤

⎧
⎪⎪⎨

⎪⎪⎩

mb + σb	
−1(1 − j1) + R−1(ρ3)Br ,

in possibility sense
mb + σb	

−1(1 − j2) − L−1(1 − ρ4)Bl,

in necessity sense.

where mb and σb are the expectation and standard deviation of normally distributed
random variable B̄, respectively, and 	−1(x) denotes inverse function of standard
normal distribution of standard normal variate B̄−mb

σb
.

Rough Budget Constraint

If the space constraint B̂ is rough in nature, the rough constraint B̂ ≥ p1Q1 + p2Q2

is reduced to the crisp form as T r(B̂ ≥ p1Q1 + p2Q2) ≥ tr1. (using T heorem 2)

i.e. p1Q1 + p2Q2

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B4 − tr1(B4−B3)

ξ1
, if B2 ≤ p1Q1 + p2Q2 ≤ B4

ξ1(B2 − B1)

+(1 − ξ1)B2(B4 − B3)

−tr1(B4 − B3)(B2 − B1)

ξ1(B2 − B1)

+(1 − ξ1)(B4 − B3)

, if B1 ≤ p1Q1 + p2Q2 ≤ B2

B4 + (1−ξ1−tr1)(B4−B3)

ξ1
, if B3 ≤ p1Q1 + p2Q2 ≤ B1

B3

where B̂ = ([B1, B2][B3, B4]), 0 ≤ B3 ≤ B1 ≤ B2 ≤ B4, is a rough variable and
ξ1 ∈ (0, 1) and tr1 ∈ [0, 1] is the confidence level.
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Fuzzy-Rough Budget Constraint

If the space Constraint ˜̂S is fuzzy-rough in nature, the fuzzy-rough constraint ˜̂S ≥
p1Q1 + p2Q2 is reduced in the following forms which are crisp in nature.

Tr
[
Pos( ˜̂B ≥ p1Q1 + p2Q2) ≥ ρ5

] ≥ tr2, and

Tr
[
Nes( ˜̂B ≥ p1Q1 + p2Q2) ≥ ρ6

] ≥ tr2

According to Theorem3, the above constraints are finally reduced to the following
forms.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1Q1 + p2Q2

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B4 − tr2(B4−B3)

ξ2
+ (1 − ρ5)BR,

if B2 ≤ p1Q1 + p2Q2 − (1 − ρ5)BR ≤ B4
ξ2(B2−B1)+(1−ξ2)B2(B4−B3)−tr2(B4−B3)(B2−B1)

ξ2(B2−B1)+(1−ξ2)(B4−B3)+(1 − ρ5)BR, if B1 ≤ p1Q1 + p2Q2 − (1 − ρ5)BR ≤ B2

B4 + (1−ξ2−tr2)(B4−B3)

ξ2
+ (1 − ρ5)BR,

if B3 ≤ p1Q1 + p2Q2 − (1 − ρ5)BR ≤ B1

B3 + (1 − ρ5)BR

and
p1Q1 + p2Q2

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B4 − tr2(B4−B3)

ξ2
− ρ6BL ,

if B2 ≤ p1Q1 + p2Q2 + ρ6BL ≤ B4
ξ2(B2−B1)+(1−ξ2)B2(B4−B3)−tr2(B4−B3)(B2−B1)

ξ2(B2−B1)+(1−ξ2)(B4−B3)−ρ6BL , if B1 ≤ p1Q1 + p2Q2 + ρ6BL ≤ B2

B4 + (1−ξ2−tr2)(B4−B3)

ξ2
+ (1 − ρ6)BR,

if B3 ≤ p1Q1 + p2Q2 + ρ6BL ≤ B1

B3 − ρ6BL

where ˜̂B = (B̂ − BL , B̂, B̂ + BR), B̂ = ([B1, B2][B3, B4]), 0 ≤ B3 ≤ B1 ≤ B2 ≤
B4, is a fuzzy-rough variable and ξ2 ∈ (0, 1) and ρ5, ρ6 ∈ [0, 1], tr2 ∈ [0, 1] are the
possibility and trust confidence levels, respectively.

18.7 Solution Methodology and Numerical Solution of Both
the Models

We have considered following examples:

Example 1 The demand for two items in a company is 300 and 350 units per year,
respectively. Annual demand is fixed and known. The company can produce the
items at rate 500 and 400 per year. Also, the holding cost of each unit is 0.50 and
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0.70 paise per year. Company maintains the setup cost as 700 and 800 per production
run for both items. Production cost for both the items are destined with Rs 12 and
Rs 10 per year for both the items. Finally, the model has inculcated measure of each
products consumer demand to its own price, i.e., d11 = 10.75 and d21 = 1.70 per
unit per year along with consumer’s demand to its competitor price, i.e., d22 = 12.80
and d12 = 1.50 respectively.

Finally, calculate

1: Total Profit (T P) with the production quantity (Q1, Q2) along with the produc-
tion run time (t1, t2) and total production cycle time (T )? and
2: Net effected demand (D1, D2) along with selling price (s1, s2)?

Example 2 Considering the first example, all the parameters are same except the
measure of each products consumer demand to its own price, i.e., d11 = 11.75 and
d21 = 1.70 (same as Example1) per unit per year along with consumer’s demand to
its competitor price, i.e., d22 = 8.80 and d12 = 1.50 (same as Example1).

Note: The input parameters were selected for the given models based on the perfor-
mance in the iteration process that has been precisely solved using GRG technique.
A technique that helps us to determine the decision variable and unknowns by its
own characterization. Moreover, our given input parameters enables and ensures the
user for specific sensitivity values that will be perfect for any company as values
considered here are from increasing to decreasing order wherein it shows the nature
of the graph in 2D and 3D. Also, sensitivity analysis of the model can be considered
along with the input parameters, wherein a company can decide upto what extent
values can be utilized so as to get the proper optimum results along with the decision
variables whilst reducing time and space complexities.

18.8 Applications and Extensions of Proposed Model

i. Different techniques are developed/presented to transform the imprecise param-
eters/objectives to corresponding deterministic ones. For the solution of single-
objective, different optimization techniques such as GRG, GA, GAwith Varying
Population size (GAVP), MOGA, and Rough Age based GA (RAGA) can be
developed and used.

ii. These models can be extended using the bi-fuzzy, type-2 fuzzy, random-fuzzy
numbers, etc. for different model parameters.

iii. Moreover the developed optimization techniques are quite general in formulation
and hence these models can be used for decision making problems in other areas
such as transportation, Supply-chain, Power-Control, Portfolio selection,
etc.
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iv. Different types of optimization techniques (Particle SwarmOptimization (PSO),
Ant Colony Optimization (ACO), Geometric Programming (GP), and various
other heuristic methods) can also be applied to the models.

v. Carbon emission due to transportation can be included in the models along with
during the production.

vi. Finally, major application considering in a LED company where two types of
LED—good quality and low-quality LED are produced or in the rice mills where
two types of rice—fine quality and raw quality rices are produced, the products
are substitutable and the customers (i.e., retailers) very often change the brand
on the basis of selling price and order quantities. This analysis will be helpful
for the production managers of the said LED company to fix the optimum prices,
maintain the quality level, net effected demand rates, etc. for minimum cost. The
responsiveness parameters (d10 & d20) and its degree of substitution to selling
price and order quantities can be obtained from the experts or may be calculated
from past data. The present problem can also be applied for the managers of big
departmental stores like industrial units, manufacturing units, etc., where several
substitutable products are sold. In these places also, customers of one brand very
often change over to other brand. Here, the replenishment may be considered as
procurement/ productions with infinite rate.

18.9 Sensitivity Analysis and Discussion of Models

From Tables18.1, 18.2, 18.3, 18.5 and 18.7.

• Table18.1 represents the optimum results for Examples1 and 2 for which further
sensitivity analysis have been carried out in Tables18.2 and 18.3 with the different
means in the degree of substitution.

• Tables18.2 and 18.3 especially from sr. 1 to 5 represents the optimum results
when the degree of substitution decreases the corresponding values of T P , Q∗

1,
Q∗

2, s1, s2, D1, D2, t1, t2, t3, t
′
1, t

′
2, t

′
3 and T for both the model increases and vice

versa happens from sr. 6 to 10. Thus, in both the Tables18.2 and 18.3 it can be
observed that measures of each products consumer demand to its own price as well
as competitor price that depends on the selling price not only effect the Quantities
(Q∗

1, Q∗
2) and Total Profit (T P) but it also effects the rest of the parameters thereby

achieving the accurate results.
• Tables18.5 and 18.7 through the given input values from Tables 18.4 and 18.6 in
Model 1 andModel 2 are circumscribed here. As the Budget constraints is involved
in both the models in an uncertain environments such as crisp, fuzzy, random,
fuzzy-random, rough, and fuzzy-rough value of B can be determined through
relation p1Q1 + p2Q2 ≤ B. Thus, value of B is known and it is maximum viz.
above crisp constraint sense. Interesting thing about Tables 18.5 and 18.7 is that
as the Budget constraint(B) decreases then rest of the optimum results are
decreasing except selling price (s1, s2) that increases. Hence, it determines that
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Table 18.1 Output results of Examples1 and 2

Product’s characteristics Product 1 Product 2

Profit
selling price

T P = 44010.14

S1 = 24.88 S2 = 25.81

Produced quantity Q1 = 2390.87 Q2 = 3808.427

Effected demand D1 = 71.25 D2 = 113.50

Production run time t1 = 7.96 t2 = 10.88

Cycle time T = 33.55

Product’s characteristics Product 1 Product 2

Profit
Selling price

T P = 20095.91

S1 = 23.00 S2 = 35.03

Produced quantity Q1 = 1212.50 Q2 = 1191.97

Effected demand D1 = 82.19 D2 = 80.79

Production run time t1 = 2.42, t2 = 12.32,
t3 = 0.10

t
′
1 = 2.97, t

′
2 = 11.77,

t
′
3 = 0.10

Cycle time T = 14.76

Budget Constraint(B) should not be limited to selling price, i.e., if the quantities
produced(Q∗

1, Q∗
2) decreases it doesn’t mean selling price will also decrease .A

shopkeeper can retain the selling price or increase whether there’s a pitfall in (Q∗
1

and Q∗
2) as per market condition.

From Figs. 18.3, 18.4, 18.5, 18.6, 18.7, and 18.8.
• Considering the optimal values of Model-1, the Total Profit(T P) is plotted in
Figs. 18.3 and 18.4 against the different values of s1, s2 and q1 respectively. This
shows the nature of the various values corresponding from Table18.2 and the peak
level on the graph is the maximum value from same table.

• Figure18.5 is obtained by plotting the Total Profit (T P) against the different values
of Selling Prices (s1 and s2). This Total profit (T P) maximization is a convex
function against selling price rate only.

• Considering the optimal values Model-2, the Total Profit (T P) is plotted in
Figs. 18.6 and 18.7 against the different values of s1, s2, q1, and q2, respectively.
This figure shows the nature of the various values corresponding from Table18.3
and the peak level on the graph is the maximum value from same table.

• Figure18.8 is obtained by plotting the Total Profit (T P) against the different values
of Selling Prices (s1 and s2). This Total Profit (T P) maximization is a convex
function against selling price rate only.
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Fig. 18.3 Nature of 2D
graph considering total profit
against selling price (s1) and
(s2)
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Fig. 18.4 Nature of 2D
graph considering total profit
against quantity (q1)
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Fig. 18.5 Concavity
property of total profit (T P)

with respect to selling prices
(S1, S2) of Model 1

24.0

24.5

25.0

25.5

24
25

26
27

43600

43800

44000

44200

3-D Graph of Total Profit (TP ) V/s Selling
prices (S1, S2)

Fig. 18.6 Nature of 2D
graph considering total profit
against quantities (q1) and
(q2)
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Fig. 18.7 Nature of 2D
graph considering total profit
against selling prices (s1)
and (s2)
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Fig. 18.8 Concavity
property of total profit (T P)

with respect to selling prices
(S1, S2) of Model 2
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18.10 Conclusion and Future Work

In this paper, production cost of the substitutable products on thebasis of sellingprices
and optimum order quantities have been circumscribed over finite time horizon, opti-
mum quantities, and production rate cycles so that the total profit is maximum. Also,
sensitivity analysis have been carried out particularly from the tables based on certain
inputs, which derives the total profit along with uncertain finite budget constraints.
Furthermore, this paper can be extended with others types of production-inventory
models such as inventory models with trade credit, two warehouses inventory sys-
tem, and EPQ model with price discount whilst introducing (AUD/IQD) on the
substitutable products. Moreover, considering different cases of demand units where
one-way substitution, i.e., D2 = 0 or D1 = 0 individually can also be possible for
multi-items also for those products where shortages are entertained from either of
the items and vice versa. This investigation will be helpful for the managers of stores
or production cum sale companies where substitutable products are produced and
sold.

The virgin ideas presented in this paper are as follows:

• Reliability for the production process,
• More substitutable products,
• Supply chain system incorporating retailers and customers,
• Production cum sale of two substitutable products with can be incurred with effect
of selling prices.
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Chapter 19
An Effective MILP Model for Food
Grain Inventory Transportation
in India—A Heuristic Approach

Sayan Chakraborty, Kaushik Bhattacharjee and S. P. Sarmah

Abstract In this work, we investigate a real-life inventory transportation problem
faced by the Food Corporation of India (FCI). FCI is the central agency responsible
for procurement, storage, and transportation of food grains over a large geographical
area of India. Due to lopsided procurement and consumption of major food grains
(i.e., rice & wheat) transportation of food grains across the warehouses becomes
inevitable. FCI faces a significant challenge to find the optimal amount of food grains
to be stored at each warehouse and transported among the warehouses to meet the
demand during each period. In this study, we formulate anMILPmodel to determine
the optimal inventory transportation decisions related to food grain transportation in
India and demonstrate it via a case study. Commercial optimization packages can
be used to solve the problem of this class. However, as we see, they fail to provide
a solution for large size problem instances. Therefore, we propose a heuristic-based
solution approach to solve the problem. It is seen that under a practical time limit,
the proposed heuristic performs significantly well in terms of accuracy as compared
to commercial optimizations packages. The nature of the study is generic in nature
and can be also applied to various similar real-life problem scenarios.

Keywords Inventory · Food grain transportation · Heuristic · Public distribution
system · India

19.1 Introduction

Tomeet the demand of the growing population of the country, since the green revolu-
tion back in early 1960, India has continuously improved its agronomic technology
to improve crop production. Indian Public Distribution System (PDS) had its origin
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in the “rationing” system that was introduced long back by the British during the time
of World War II. Over this period, the system has undergone several changes and
became one of the most complex PDS in the world. Food Corporation of India (FCI)
is the central nodal agency responsible for procurement, storage, and transportation
of food grains on behalf of Government of India (GOI). FCI procures the food grain
from farmers at minimum support price (MSP) and distributes the food grains over
a large geographical area of India to be sold to the consumers at a central issue price
(CIP).

It is a great challenge faced by the FCI to plan the transportation of food grains
to avoid shortages over the country as sufficient amount of inventory has to be
maintained in each warehouse for strategic buffer level at the end of each period. FCI
along with state government agencies (SGAs) procures food grains from farmers and
stores them at various warehouses of the procuring states across the country. After
that, food grains from warehouses of surplus states (stored food grain is more than
the demand) are transported to warehouses of deficit states (Stored food grain is less
than the demand). The food grain transportation flow of FCI is depicted in Fig. 19.1.

FCI has several owned and hired warehouses of different capacities across the
country for storage of food grains. Due to lopsided procurement and consumption of
twomajor food grains (i.e., rice &wheat), transportation of food grains across differ-
ent warehouses is inevitable for the smooth functioning of PDS. Moreover, it may so
happen that procurement of one particular food grain is very high in one state (e.g.,

Decentralized procurement takes place and 
food grain is stored in respec ve warehouses 

of state

State sa sfies it’s own demand by 
decentralized procurement

Food grain is received at the deficit state 
warehouse 

State distributes the food grain among it’s 
deficit regions

Stock is taken to Mandal/Block level of 
respec ve states

Food grain is 
distributed among 

it’s beneficiaries via 
FPS

Excess requirement 
(if any) is calculated 
and communicated 

to FCI

FCI plans the 
movement of food 

grain based on state 
demand

Fig. 19.1 Flow of food grain transportation under FCI
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Rice procurement in Punjab), but the consumption is less due to low population. In
this scenario, the food grains have to be transported from one particular warehouse
(surplus) of that state to another warehouse (deficit) over the year depending upon
the consumption rate and capacity of the deficit state warehouses. Due to this capac-
ity variation, intrastate transportation also becomes necessary as well as interstate
transportation.

However, due to the poor transportation plan, wastage of food grains due to
improper scientific storage, underutilization of storage space, additional emergency
transportation, and penalty costs and demurrage charges toward railway is observed.
As per the published reports (Phillip 2016), from 2010 to 2016, a total of more than
56,000 tons of food grains were damaged due to poor transportation planning.

FCI has several owned and hired warehouses over the country for storage of food
grains for future use. The procurement and storage capacity and consumption of
various states are different across India. Moreover, the cultivation schedule of the
two prior crops, wheat and rice varies. Wheat is harvested in Rabbi Season (Decem-
ber–March) and rice in Kharif season (June–September). FCI procures rice in Kharif
marketing season and wheat in Rabbi marketing seasons from various farmers or
agricultural cooperative societies. This procured food grains are stored at temporary
storage and hence after, moved to nearest warehouses as soon as possible. Due to this,
after procurement, the food grains need to transport to various otherwarehouses (both
intrastate and interstate) according to the demand. Also, the consumption pattern and
available storage capacity are different across the states, so year wise movement of
food grains become inevitable between warehouses to maintain smooth operation
of PDS. As per available data, there is a daily movement of 2 million gunny bags
(50 kg), over an average distance of 1500 km and it accounts for an annual cost
of 47.2737 billion INR [7]. Despite this, due to lack of storage capacity at the end
of procuring seasons, when the food grain stock is high, FCI cannot lift the stock
from the SGAs which results in carrying overcharges to SGAs. FCI has incurred
1635 crore INR from 2011 to 2012 as carryover charges to various SGAs across the
country [7]. Moreover, 45% of the food grains are wasted at the distribution stage in
India. Hence, in order to minimize waste, it is important to plan the transport of food
grains properly. In the present scenario, food grain transportation is inevitable due
to a mismatch in procurement quantity, demand, and available storage capacity with
the states [5]. Hence, FCI needs to plan for optimal transportation quantity which
will fulfill the demand of the beneficiaries across the country as well as minimizing
the total cost incurred in the process.

By the tenth day of every month, each regional office of the FCI submits a report
to the headquarter indicating the stock position, anticipated offtake, and anticipated
procurement of the region. Based on that report, food grains are moved from the
surplus warehouses to the deficit warehouses to meet the demand of the region.
Once it is done, the food grains have to be moved downstream for distribution.
PDS in India operates through a vast network of fair price shops for distribution of
food grains toward beneficiaries. Each fair price shops are allocated to a distributor
for stock replenishment. These distributors are affiliated to a block-level warehouse
for periodic replenishment of its stock. Food grains are moved to these block-level
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warehouses from a central warehouse, once the central warehouse is replenished by
other central warehouses of the same or neighbor states.

In this study, we formulate an MILP model to aid food grain transportation
decisions among central warehouses. The remainder of the article is as follows, in
Sect. 19.2, we discuss a brief overview of the related literature, and Sects. 19.3 and
19.4 defines the problem and the mathematical model respectively. In Sects. 19.5 and
19.6, solution methodology and computational results are provided. In Sect. 19.7,
we present a case study on the problem and Sect. 19.8 concludes the study.

19.2 Literature Review

In the context of the inventory transportation problem, consideration and minimiza-
tion of inventory storage, handling, and transportations costs are an essential aspect
[4]. Jointly optimized the inventory and transportation costs in a supply chain in
an integrated manner. Since that seminal work, many researchers have explored
the domain of inventory transportation problem [11]. Studied decisions related to
inventory and outbound transportation decisions with pre-shipping and late-shipping
considerations. Later, Berman and Wang (2006) developed a nonlinear model for
appropriate distribution strategy which minimizes total cost and solved it using
Lagrangian relaxation and heuristics approach [2]. Formulated anMIPmodel to opti-
mize allocation and transportation of customer order jointly. Kang et al. [10] studied
the optimal distribution strategies minimizing the fixed vehicle cost and inventory
cost. However, they only considered single capacity vehicles for their study [1]. Pre-
sented a case study of wheat transportation in Iran. They formulated the problem as
anMILP to minimize the inventory and transportation cost of wheat transportation in
Iran. In the agricultural industry, In the more recent context, Nguyen [14] proposed a
heuristics approach for flower industry of California to minimize transportation cost.
Carlson et al. (2014) investigated a case of pulp inventory distribution and planning
problem of Sweden and solved it using robust optimization. [20] have taken up a
MIP model to integrate multimodal transport into the cellulosic biofuel supply chain
design. In their work, they have considered three different types of transport mode.
They concluded that adapting various types of transport modes, the supply chain can
become more cost-effective. Few other essential case studies have been undergone
by Guimareaes et al. [9, 17] in the context of the food industry [18]. Investigated
the transportation and storage problem of India and proposed a heuristic approach
based on activity-based decision rules and [13] developed a model for perishable
open-dating foods under shortages.

A real-world problem of storage and distribution of food grain faced by Food
Corporation of India has been considered here in this study. The problem is char-
acterized by heterogeneous state-bound warehouses which vary in storage capacity,
demand quantity, and availability of transport. Different transport modes have been
considered in this study. One can refer to [16] for a brief literature on multimodal
freight transportation planning. To highlight a few, Moccia et al. (2010) studied a
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transportation problem in amultimodal networkwith shipment consolidation options
[8]. Presented a dynamic programming algorithm to determine optimal intermodal
freight routing. They have introduced several pruning rules to improve algorithm per-
formance [6]. Developed a service network design model for freight consolidation
carriers under resource constraints and solved it using a newly developed approach
combining column generation, meta-heuristic and exact optimization techniques.

19.3 Problem Definition

The procurement of food grains is carried out every year in the producing states
during specific procurement seasons each of length 3–5 months. Also, the quantity
of the procured food grains varies from state to state. The food grain procured in a
state during a month is stored in the warehouses of that state up to the maximum
available space in the warehouses in that month itself, otherwise kept in open space.
The distribution of food grains (rice and wheat) is done across various warehouses
over both intrastate and interstate scenario to maintain the overall required inventory
level across warehouses and to minimize the operating cost.

In case the quantity of a procured/available food grain in a warehouse of a state
is not sufficient to satisfy its demand (deficit state), grain transportation is required
from surplus warehouses of the same state or other states to satisfy the demand. It
is seen that trucks of different capacities are the primary mode for transportation
of food grains between warehouses as well as fair price shops. Third-party logistics
service provider provides the trucks and availability is subject to the time period with
respect to every warehouse.

The costs that are associated with this process are ordering/material handling
costs, inventory holding costs, and transportation costs between warehouses. In the
aspect, it is important to minimize the underutilization of hired storage capacity
(truck) and warehouse storage space to minimize the total cost.

Based on this scenario, a mathematical model is developed to aid food grain
transportation based on the following assumptions.

Assumptions:

i. We consider Indian PDS to have a vast network of warehouses to fulfill the
demand of beneficiaries by the distribution of food grains. The warehouses are
assumed to be located across the study region.

ii. Various time (transportation time, loading time, and unloading time) and cost
parameters (transportation cost, loading cost at the source, and unloading cost)
associated with the model are assumed to be known.

iii. The demand and consumption pattern is deterministic and known. Shortages are
not allowed.

iv. The transportation cost between the two warehouses consists of a fixed cost
and a variable cost incurred proportional to the quantity of food grain to be
transported.
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v. The quantity of food grain transported to a warehouse from any other warehouse
can be delivered within a single time period.

vi. Various cost and time parameters are independent of the type of the food grain.

19.4 Mathematical Model

Graph G = {V, A} represents the distribution network model; where V is the set of
vertex defined as V = {S, D}, A is the set of edges given by A = {S → D}, S is the
set of source nodes and D is the set of demand nodes, respectively. This particular
problem can be formulated as follows:

If cost is taken as the primary factor of decision making, then the model is given
by:

Minimize:

∑

a∈A

(
Cm
a + lCm

a + uCm
a

)
.qm

a + δma .xma (19.1)

Subject to,

∑

a∈{N→D}
qa ≤ Rn ∀n ∈ S (19.2)

∑

a∈{S→N }
qa ≥ Qn ∀n ∈ D (19.3)

max
m∈M

(
tma + ltma .qm

a + utma .qm
a

) + εma .xam ≤ Wt
a ∀a ∈ A (19.4)

∑

a∈{N→D}
qm
a ≤ Tm

a ∀m ∈ M (19.5)

qa ≥ 0, xam ∈ {0, 1}, ∀a ∈ A,m∀M (19.6)

where,

Cm
a = Transportation cost of transport mode m at arc a

xma = When transported through arc a by transport mode m, zero or one
qm
a = Quantity of crop at arc a transported by mode m
Tm
a = Maximum available vehicle at arc a of mode m

lCm
a = Loading cost at arc a in mode m

ucma = Unloading cost at arc a in mode m
δma = Variable cost of arc a for mode m
Rn = Quantity available at node n of supply network S
Qn = Demand quantity at node n of demand network D
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Wt
a = Maximum allowable time at arc a

Wc
a = Maximum allowable cost at arc a

tma = Transportation time of transport mode m at arc a
ltma = Loading time at arc a for transport mode m
utma = Unloading time at arc a for transport mode m
εma = Variable time of arc a for mode m

The first term in the objective function (19.1) is the cost of transportation by
different modes of transport from one warehouse to another, incurred if there is
any transportation between the two warehouses. The second and third terms are the
loading cost of food grain at the surplus warehouse and unloading cost at deficit
warehouse, respectively. These costs can be called as material handling cost, if any.
The last term is the variable cost, incurs if there are any other certain costs associated
with the movement of food grains from one warehouse to another.

The first constraint (19.2) ensures that no surpluswarehouse transports food grains
beyond its ability to supply. Second constraint (19.3) enforces that the quantity sup-
plied by all the surplus warehouses are at least as much as to satisfy the requirement
of each deficit warehouses.

Third constraint (19.4) represents the consideration of allowable time constraint
in the model. The first term in this constraint is the transportation time required for
one mode of transport from one warehouse to another. The second and third terms
are the loading time at supply point and unloading time at demand point. The last
term stands for the excess variable time, if any, from one source to one destination.
This constraint ensures that the maximum time required for transportation from one
surplus warehouse to another deficit warehouse is within the allowable time.

Fourth constraint (19.5) ensures that the quantity transported from each surplus
warehouse to each deficit warehouse by any transport mode does not exceed the
available transportation capacity at that particular warehouse of that transport mode.

Fifth constraint (19.6) is the binary constraint enforces the value of 0 if there
is no food grain transportation between one pair of warehouse and 1 if there is
transportation between the two warehouses. Also, all the parameters and decision
variables involved in this model are integers in nature. It can also be seen that the
size of the problem (the number of variables and constraints) increases with the type
of mode of transport involved and the number of surplus and deficit warehouses.

19.5 Solution Methodology

Commercial optimization packages can be used to solve the problem of this class.
However, as we see, they fail to provide a solution for large size problem instances
in a practical time limit. Therefore, we propose a heuristic-based solution approach
to solve the problem. The decisions involved with this problem are (i) how much to
transport from which warehouse to where? And (ii) what is the optimal combination
of the mode of the vehicle to minimize the cost.
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The input parameter which is necessary to know is the present inventory level of
the warehouses along with the latitude and longitude of the same. The latitude and
longitude of the warehouses are used for distance calculation. In order to know the
monthly demand of one particular warehouse, population-based data of that region
can be used. After determination of the present stock level of the all the warehouses,
warehouses which are in the deficit condition can be found out. Food grains have to
be moved to these deficit warehouses from nearby surplus warehouses to maintain
steady inventory level over these warehouses. Figure 19.2 explains the scenario of
food grain transportation in India.

After the identification of the source (surplus) and destination (deficit) ware-
houses, it is necessary to allocate food grains from surplus warehouses to the deficit
warehouses. In order to do it, a suitable food grain transportation model has to
be developed. Trucks of different capacities have been considered in this problem
for food grain transportation. This makes the given problem scenario multimodal.
In order to efficiently solve this problem, one approach is to transform the multi-
modal transportation problem to a single mode transportation problem by assigning
weights for each of the modes, and then calculate the weighted cost matrix. After the
weighted cost matrix is calculated, the transportation problem can be solved by the
weighted cost matrix. After this solution is obtained, the exact mode and quantity
from one source to another can be determined by a dynamic programming approach.
We establish the following decision rule for the necessary decision-making.

Fig. 19.2 a Warehouses before food grain transportation. b Pictorial representation of food grain
transportation. c Warehouses after food grain transportation
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Decision rule 1: The arc with higher cost and time in one node will be eliminated.
Decision rule 2: If the cost is the same in both arcs, but the time is different then the
arc with the longer time is eliminated. In case the time is the same, the one with the
higher cost is eliminated.

The following flowchart describes the heuristic procedure.

19.6 Results and Discussion

The quality of the proposed algorithm is tested over a large number of randomly
generated problem instances. The proposed algorithm is coded on a computer with
Intel Core i5-4570TCPUwith 8GBRAM.The solutions obtained using the proposed
approach is comparedwith the exact solution obtained using IBM ILOGCplexV12.5
optimization studio for a variety of the problem instances.

For the effective comparison of results, three scenarios have been constructed
to test the performance of the algorithm. For the generation of these scenarios, a
parameter Alpha (α) has been considered which is denotes the ratio between the
surplus and deficit warehouse. Therefore, a higher value of α will signify more
number of deficit warehouses and vice versa. After that, we consider three cases by
setting up an alpha value ranging from 0.1 < α < 2.

Scenario I: α < 0.5 (i.e., less number of deficit warehouses).
Scenario II: 0.4 < α < 0.9 (i.e., medium number deficit warehouses).
Scenario III: α > 1 (i.e., high number of deficit warehouses).

Now, for each scenario, seven different instance sizes with five experiments for
each instance have been performed, and results are compared with CPLEX solutions
(See,Appendixes 1, 2, and 3). The average best solution gap obtained (1.57%)was for
Scenario 1 (Alpha < 0.4, Instance size 50).The worst average solution gap obtained
(11.71%) was for Scenario 2 (0.4 < Alpha < 0.8). It is also seen that the algorithm
performs significantly well for Scenario 3 (Appendix 3). It is also observed that
CPLEX failed to provide an optimal solution for many of the cases in practical time
limit and it’s convergence rate decreases significantly after ten minutes of runtime.

19.7 Case Study

The solution methodology mentioned above was implemented as a case study for a
district of West Bengal named Cooch Bihar. The area of the district is 3387 km2, and
the approximate population is about 2,822,780 (Census 2011).As per the givenmodel
assumptions, nine warehouses have been identified across the district. The initial
stock position has been generated randomly. The demand data for each warehouse
has been generated as per the NFSAAct 2013 based on the population of the district.
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Tables 19.1 and 19.2 show the related data regarding the problem area collected from
various primary and secondary sources. Figure 19.3 shows a pictorial view of the
study area where the green and red dots represent surplus and deficit warehouses
respectively Fig. 19.4.

Based on the transportation threshold quantity and population data, the amount
which has to be delivered to the deficit warehouses has been calculated. The distance
matrix has been formed by the latitude and longitudinal values of the sites. Practical
cost and time parameters have been considered while the problem is being solved.
The decisions involved with the study problem are (i) how much to transport from
which warehouse to where? And (ii) what is the optimal combination of the mode
of the vehicle to minimize the cost. The obtained results are shown in Table 19.3.

Table 19.1 Data related to Cooch Behar district

Sr. No. Name of the site Zip code Population Stock position
(MT)

Cut off quantity
(MT)

1 CB central 735304 2303571 3240

2 Sitalkuchi 736101 582599 816 239

3 Sitai 736135 460228 645 249

4 Haldibari 735122 93867 132 182

5 Mathabhanga 736146 383004 537 226

6 Tufangaunj 735301 133275 187 188

7 Dinhata 736167 96347 135 252

8 Cooch Behar I 736158 163708 230 701

9 Meckliganj 736159 390543 547 182

Table 19.2 Data setting of the food grain inventory transportation problem

Sr No. Type Vehicle 1 Vehicle 2 Vehicle 3

1 Booking Cost 1000 1500 2000

2 Capacity (Ton) 7.5 9 15

3 Cost/km (INR) 10 15 20

4 Average Speed (Km/h) 30 30 30

5 Loading Cost (INR/Ton) 30 30 30

6 Unloading Cost (INR/Ton) 30 30 30

7 Loading time (Min/Ton) 6 6 6

8 Unloading time (Min/Ton) 5 5 5
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Fig. 19.3 Flowchart for the proposed solution algorithm

Fig. 19.4 Map of Cooch Behar district
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Table 19.3 Results of the study

Sr. No. Source zip
code

Destination
zip code

Distance
(Km)

Transport
quantity
(Ton)

Req. no. of
vehicle type
1

Req. no. of
vehicle type
2

Req. no. of
vehicle type
3

1 736101 735304 248 361 8 4 18

2 736135 735304 229 396 8 4 20

3 736159 735304 256 248 5 4 12

4 736146 735122 166 50 7 0 0

5 736146 735301 31 7 1 0 0

6 736159 736167 182 117 16 0 0

7 736101 736158 32 216 11 0 9

8 736146 736158 21 255 13 1 10

19.8 Conclusion

A real-life problem of food grain transportation has been considered in this study. An
MILP model is formulated and solved by an efficient heuristics to determine optimal
inventory transportation decisions related to food grain transportation in India. It is
seen that under a practical time limit, the proposed heuristics perform significantly
well regarding accuracy as compared to commercial optimization packages. For bet-
ter understanding, thementioned solution approachwas demonstrated as a case study
for a district of West Bengal named Cooch Bihar. The proposed solution approach
is flexible and can be extended for large size problem instances to plan food grain
transportation of the country. Therefore, this heuristic approach can aid as a decision
support tool for the FCI. The nature of the study is generic and can be applied to
various similar real-life transportation problem scenarios.

Appendix 1

Results for scenario 1

Sl. No. Instance
size

Alpha Number of
source

Number of
destination

Heuristic CPLEX Gap
(%)Value Solution

time
Value Time limit

(sec)

1 50 0.2821 39 11 1651450 0.0312 1616545 3600 2.1592

2 50 0.3158 38 12 1612530 0.0312 1596100 3600 1.0294

3 50 0.3158 38 12 1479995 0.0156 1451435 3600 1.9677

4 50 0.1905 42 8 2181265 0.0156 2146540 3600 1.6177

5 50 0.2500 40 10 1530045 0.0468 1513665 3600 1.0821

6 100 0.2658 79 21 3302700 0.0468 3243850 3600 1.8142

7 100 0.1494 87 13 4535025 0.0624 4469196 3600 1.4729

(continued)
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(continued)

Sl. No. Instance
size

Alpha Number of
source

Number of
destination

Heuristic CPLEX Gap
(%)Value Solution

time
Value Time limit

(sec)

8 100 0.2821 78 22 3378030 0.0468 3309245 3600 2.0786

9 100 0.2658 79 21 2885435 0.0624 2846836 3600 1.3559

10 100 0.2346 81 19 2803930 0.0312 2746175 3600 2.1031

11 200 0.1628 172 28 7232030 0.1092 7106100 3600 1.7721

12 200 0.2346 162 38 7839570 0.156 7642490 3600 2.5787

13 200 0.1765 170 30 7725335 0.1248 7607955 3600 1.5429

14 200 0.2422 161 39 7247205 0.0936 7118755 3600 1.8044

15 200 0.2195 164 36 8172980 0.1248 7914580 3600 3.2649

16 300 0.2245 245 55 9210160 0.2496 9059235 3600 1.6660

17 300 0.2000 250 50 10485170 0.2028 10292360 3600 1.8733

18 300 0.2712 236 64 11873735 0.2652 11475055 3600 3.4743

19 300 0.2195 246 54 9526675 0.2184 9306545 3600 2.3653

20 300 0.1811 254 46 11082185 0.1872 10763540 3600 2.9604

21 500 0.2225 409 91 16181110 0.9516 15718415 3600 2.9436

22 500 0.2225 409 91 20159315 0.78 19193905 3600 5.0298

23 500 0.2658 395 105 16636445 0.8736 16274570 3600 2.2236

24 500 0.2107 413 87 13790340 0.8424 13522505 3600 1.9807

25 500 0.2563 398 102 18860395 0.8892 18210625 3600 3.5681

26 800 0.2289 651 149 29411205 2.7456 28235380 3600 4.1644

27 800 0.2214 655 145 31008890 3.1668 29714055 3600 4.3577

28 800 0.2289 651 149 25387080 3.042 24376880 3600 4.1441

29 800 0.2140 659 141 31594345 3.1668 29911875 3600 5.6248

30 800 0.2422 644 156 32154915 2.8704 30253295 3600 6.2857

31 1200 0.2371 970 230 41726305 13.96 39525370 3600 5.5684

32 1200 0.2500 960 240 51643170 11.62 48340740 3600 6.8316

33 1200 0.2513 959 241 44470050 14.6644 41633685 3600 6.8127

34 1200 0.2295 976 224 41368565 12.3548 39685200 3600 4.2418

35 1200 0.2346 972 228 37756320 10.3274 36494555 3600 3.4574

Appendix 2

Results for scenario 2

Sl. No. Instance
size

Alpha Number of
source

Number of
destination

Heuristic CPLEX Gap
(%)Value Solution

time
Value Time limit

(sec)

1 50 0.5625 32 18 812325 0.3120 798040 3600 1.7900

2 50 0.5152 33 17 1042685 0.0156 1020880 3600 2.1359

3 50 0.5152 33 17 1217230 0.0468 1203455 3600 1.1446

4 50 0.3514 37 13 1475270 0.3900 1457215 3600 1.2390

5 50 0.5152 33 17 1659900 0.3744 1634145 3600 1.5761

(continued)
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(continued)

Sl. No. Instance
size

Alpha Number of
source

Number of
destination

Heuristic CPLEX Gap
(%)Value Solution

time
Value Time limit

(sec)

6 100 0.7857 56 44 1746685 0.2496 1734845 3600 0.6825

7 100 0.3889 72 28 3219010 0.2184 3179825 3600 1.2323

8 100 0.6949 59 41 1979970 0.5148 1924935 3600 2.8591

9 100 0.6667 60 40 1952025 0.2028 1926705 3600 1.3142

10 100 0.4706 68 32 2713960 0.1404 2641405 3600 2.7468

11 200 0.5625 128 72 4079020 0.3432 4035880 3600 1.0689

12 200 0.4697 132 62 4695785 0.3432 4646840 3600 1.0533

13 200 0.3514 148 52 6683790 0.1872 6561325 3600 1.8665

14 200 0.3986 143 57 6245100 0.2340 6127485 3600 1.9195

15 200 0.4815 135 65 4476170 0.1716 4391710 3600 1.9232

16 300 0.5306 196 104 7042970 1.0452 6821860 3600 3.2412

17 300 0.5873 189 111 6664130 0.5148 6352040 3600 4.9132

18 300 0.4634 205 95 6981260 0.5772 6783870 3600 2.9097

19 300 0.5385 195 105 7646975 0.4212 7434005 3600 2.8648

20 300 0.5789 190 110 5799355 0.4056 5686215 3600 1.9897

21 500 0.5106 331 169 11217725 2.5272 10825845 3600 3.6199

22 500 0.4620 342 158 15632570 1.6068 14790680 3600 5.6920

23 500 0.5291 327 173 12132230 1.4196 11658955 3600 4.0593

24 500 0.6393 305 195 10457775 1.5444 10070425 3600 3.8464

25 500 0.4837 337 163 11598800 1.2636 11238320 3600 3.2076

26 800 0.5326 522 278 20317015 7.1136 18580980 3600 9.3431

27 800 0.5748 508 292 23043050 7.0900 21287010 3600 8.2494

28 800 0.4981 534 266 20013165 6.8900 18659160 3600 7.2565

29 800 0.5355 521 279 18633300 6.3000 17779830 3600 4.8002

30 800 0.6097 497 303 19422815 8.0300 17808285 3600 9.0662

31 1200 0.4634 820 380 30810930 23.0200 28035140 3600 9.9011

32 1200 0.5748 762 438 28919055 24.6600 26148415 3600 10.5958

33 1200 0.5228 788 412 28866420 19.9200 26852685 3600 7.4992

34 1200 0.5464 776 424 31690120 24.7700 27829950 3600 13.8706

35 1200 0.5564 771 429 33647415 23.6100 28825775 3600 16.7268

Appendix 3

Results for scenario 3

Sl. No. Instance
size

Alpha Number
of
source

Number
of
destination

Heuristic CPLEX Gap
(%)Value Solution

Time
Value Time limit

(sec)

1 50 6.1429 7 43 4981685 0.0398 4921825 3600 1.2162

2 50 6.1429 7 43 3223425 0.0778 3187710 3600 1.1204

3 50 7.3333 6 44 2079975 0.0381 2036070 3600 2.1564

(continued)
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(continued)

Sl. No. Instance
size

Alpha Number
of
source

Number
of
destination

Heuristic CPLEX Gap
(%)Value Solution

Time
Value Time limit

(sec)

4 50 3.5455 11 39 1494890 0.0627 1464555 3600 2.0713

5 50 2.3333 15 35 1328165 0.0498 1306285 3600 1.6750

6 100 3.3478 23 77 3299650 0.2451 3181875 3600 3.7014

7 100 3.3478 23 77 3690860 0.0727 3556420 3600 3.7802

8 100 4.2632 19 81 3642470 0.0679 3521515 3600 3.4347

9 100 3.1667 24 76 2711575 0.0668 2602320 3600 4.1984

10 100 3.1667 24 76 3641430 0.0738 3536805 3600 2.9582

11 200 5.0606 33 167 7072930 0.12 6822750 3600 3.6668

12 200 3.4444 45 155 8074245 0.1248 7733115 3600 4.4113

13 200 4.5556 36 164 7490365 0.1248 7181364 3600 4.3028

14 200 3.6512 43 157 6645620 0.1092 6394775 3600 3.9227

15 200 3.5455 44 156 7642950 0.1404 7289610 3600 4.8472

16 300 4.5556 54 246 12233600 0.234 11416165 3600 7.1603

17 300 3.9180 61 239 9274165 0.234 8949305 3600 3.6300

18 300 3.6875 64 236 8131880 0.2496 7869360 3600 3.3360

19 300 4.4545 55 245 13339635 0.2496 13402075 3600a −0.4659

20 300 4.8824 51 249 11978365 0.3276 11336165 3600 5.6651

21 500 4.2083 96 404 17876425 0.78 16801105 3600 6.4003

22 500 3.5872 109 391 15447495 0.9204 14839285 3600 4.0986

23 500 4.2083 96 404 18047305 1.014 18872055 3600a −4.3702

24 500 3.5872 109 391 16618755 1.2168 17630594 3600a −5.7391

25 500 4.0000 100 400 18938390 0.8736 17745595 3600 6.7216

26 800 4.3691 149 651 35611425 3.6036 34186968 3600 4.1667

27 800 7.2474 97 703 35365390 3.3852 33080785 3600 6.9061

28 800 3.6784 171 629 23279945 3.744 22551970 3600 3.2280

29 800 3.5977 174 626 24362435 4.47 23197980 3600 5.0196

30 800 4.2632 152 648 31086625 4.0092 29056840 3600 6.9856

31 1200 3.7431 253 947 46173110 13.6498 45190590 3600 2.1742

32 1200 4.3333 225 975 51691665 11.2478 46962155 3600 10.0709

33 1200 4.5046 218 982 40734345 9.3758 37940585 3600 7.3635

34 1200 4.0633 237 963 44112455 13.2444 39902870 3600 10.5496

35 1200 3.7244 254 946 40565095 12.4648 37375475 3600 8.5340

aExceeded CPLEX time limit
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Chapter 20
Fuzzy Based Inventory Model
with Credit Financing Under Learning
Process

Mahesh Kumar Jayaswal, Isha Sangal and Mandeep Mittal

Abstract Whilst business dealings, the cost of items is a vital consideration for the
buyer in order to purchase goods as well as to minimize the items’ cost. For the
accomplishment of the same, the buyer performs a new task after a fluent repetition
over daily dealing of goods and this new task is entitled as learning. Nowadays,
learning’s awareness is increasing across various disciplines because learning effect
has a direct impact on the calculation of profit or loss and it is a promotional deemed
effective tool for inventory management. The supplier wants an appreciable coor-
dination with the buyers and analyzes with full detail, the concerned cost and the
demand parameters as to how suitable the demand and the respective costs should
be for the buyer. Fuzzy analysis is a good tool for examining the performance as
well as the output of imprecise parameters involved in the business procedure. In
this paper, we are assuming the holding costs to be partially constant and reduced
per shipment, owing to the learning effects for finding an optimal cycle time and
optimal average cost using the notion of learning effect with trade credit financing
for EOQ under the fuzzy environment. The selling price, demand rate, and ordering
cost per unit have been assumed to be imprecise in nature. In addition, these entities
are also called fuzzy triangular numbers. The total optimal cost in fuzzy environment
is de-fuzzified with the help of the centroid method. Toward the conclusion of this
paper, some numerical examples as well as sensitivity analysis have been illustrated
to verify this model.

Keywords Learning effect · Inventory · Economic order quantity · Credit
financing · Fuzzy environment
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20.1 Introduction

Typically, in the business market, the supplier offers a trade credit financing policy
to upgrade his sales and profit and pose as a focus for the new buyers. Consequently,
in practical implementation, the supplier will permit a designated predetermined
time period to arrange money for the buyer that the supplier owes to the buyer for
the items delivered. Prior to the conclusion of the specified trade credit financing
time, the items can be sold by the buyer; he could procure interest, and accumulate
revenue for the same. In cases, where the cash could not be arranged within the
stipulated time for trade credit financing, then a higher rate of interest is imposed
and charged. Goyal [6] initially, recommended the formulation of EOQ utilizing
trade credit financing. Shah [18, 19], Aggarwal and Jaggi [1], proposed the EOQ
model with trade credit financing specifically for the articles which are decaying
in quality. The Learning phenomenon is a mathematical tool which is implemented
during business for reduction of ordering cost, holding costs, aswell as screening cost.
There have been many researchers who have been working constantly in evolving
the mathematical model employing and implementing the learning effect.

The Learning curve, developed by Wright [22] is a mathematical tool. In his first
attempt he successfully derived the mathematical formula which derives the rela-
tionship between learning variables in quantitative shape and also went on to derive
the result in the proposition of the LC (learning curve). Again, different from the
excess of review on LC, there is a scarcity of review on forgetting curves. Baloff [4]
discussed about themathematical behavior of the learning theory (learning slope var-
ied widely and also explained with viable justification, the outcomes of the practical
aspects to prepare the learning curve parameters by developed skill and analytical
study in collection learning). Salameh et al. [16] considered a limited manufactured
stock form (Production inventory model) with the outcome of human knowledge and
also discussed about the variable demand rate and learning in time to optimize the
cost. Jaber et al. [7] explained the theory of forgetting using manufacture breaks,
learning curves and also discussed the optimal manufacturing amount in order to
minimize the whole stock price. Jaber et al. [8] have been working on assuming
optimal lot sizing using the conditions of bounded learning cases and focus more
on EOQ and minimization of the whole stock cost keeping the learning curves in
consideration.

Jaber et al. [9] discussed and explored a comparative study of the learning and
forgetting theory and also analytically focused on the comparison of different types
of models such as VRVF, VRIF, and LFCM. Jaber et al. [13] discussed about optimal
lot sizing with shortage and back ordering, considering them under learning. Jaber
et al. [11] discussed that in the EOQmodel for imperfect quality articles, the defective
percentage per batch decreases according to the LC (Learning curve).

Khan et al. [15] considered anEOQ formulation for articleswith defective features
that use learning in screening and maximizing production together with minimizing
the cost of production. Jaber et al. [12] discussed on how to merge the average
dispensation time process to give way with respect to the number of lot. Anzanello
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and Fogliatto [3] suggested a different kind of implementation of learning curves
model and these authors focused on how this model could be used and implemented
in distinct mathematical forms. Jaggi et al. [14] discussed about the production
inventory model with financing policies of imperfect items under the acceptable
backlogging case. Jaber et al. [10] took a manufactured stockmodel with LC and FC,
that is the “learning and forgetting” theory in consideration and also discussed how
muchminimization of the number of order (shipments) of a batch frommanufacturer
to the subsequent cycle was required or implied. Mostly, researchers considered all
the parameters of the inventorymodel such as demand rate, selling price, holding cost
as ordering cost, etc., either as fixed, dependent on time or probabilistic in nature for
the improvement of EOQ. Generally, an author assumes various types of parameters,
in the formulation of inventory design or models either as a fixed, dependent on
time or uncertain or flexible in nature for the improvement of the EOQ. Though, in
practical scenarios, such type of components may have little formulations from the
certain values and they do not necessarily follow any type of probability distribution
as they are discontinuous in nature. Suppose, such components are treated as fuzzy
components, then they will be other sensible. Teng et al. [21] proposed a task by
using the optimal trade credit strategies and lot size policies in economic production
quantity models with learning curve affecting the production costs. Givi et al. [5]
discussed the modeling of worker reliability with learning and fatigue. In the paper,
Sangal and Rani [17] discussed the working policy of a fuzzy environment inventory
model with partial backlogging under the learning effect and they also discussed the
optimal policy for non-instantaneous decaying inventory model with learning effect
in the paper by Aggarwal [2]. The fuzzy inventory model with items subjected to the
learning effect on the holding costwas developed.We assumed the inventory problem
in which the demand parameter, ordering cost, as well as the purchasing cost to be
fuzzy variables so as to control the uncertainty of business market. In this paper, we
have improved an EOQ with permissible delay in payment in the fuzzy environment
using learning effect. Some parameters in the considered inventorymodel like selling
price per item, ordering cost per order, and demand ratemay be fixed or not with a few
imprecision in their values. In practical implications, the components of an inventory
model are uncertain, inaccurate, and the determination of a maximum cycle length
is difficult as it is a non-stochastic indistinguishable managerial process. Such types
of problems have been tried to be solved by this model and the verification of the
result has been illustrated by appropriate examples. Sensitivity analysis as well as
conclusion has been presented in the last section.

20.2 Assumptions and Notations

The mathematical model is derived using the following notations and assumptions.
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20.2.1 Assumptions

The subsequent assumptions have been incorporated to expand the present model:

• The demand rate for an item is imprecise in nature.
• Demand is fulfilled, and no shortages are allowed.
• Selling price of items is imprecise in nature.
• Ordering cost of an item is imprecise in nature.
• The rate of replenishment is immediate.
• Lead time is zero and insignificant.
• The supplier provides a predetermined credit period to clear up the accounts to the
buyer which is suggested by Jaggi et al. [14].

• Holding cost is partially constant and partially decreases in each shipment (n)
owing to the learning power of employees and suggested by Aggarwal et al. [2])

h(n) = ho + h1
nλ

, ho, h1 > 0 and 0 < λ < 1

20.2.2 Notations

D fixed demand per annum
˜D fuzzy demand per annum
Ac ordering cost per order in dollars
˜Ac fuzzy ordering cost per lot in dollar
Pc selling price per unit
˜Pc fuzzy unit selling price
Cc unit purchase cost
h(n) unit inventory variable holding cost per lot excluding the interest charges
Qo order quantity
Ms The offered trade credit by the supplier to the buyer to settle the account
I HC1 holding cost per cycle
IC1 interest paid/charged under the condition, Ms ≤ Tc
I E1 interest gained under the condition, Ms ≤ Tc
IC2 interest paid under the condition, Ms ≥ Tc
I E2 interest paid under the condition, Ms ≥ Tc
Ic interest paid per $ in stock per year by the retailer
Ie interest gained per $ per year by the buyer
Tc cycle time in year
�1(Tc) the whole concerned cost per unit time with case Ms ≤ Tc
�2(Tc) the whole concerned cost per unit time with case Ms ≥ Tc
˜�1(Tc) fuzzy whole concerned cost per unit time with case Ms ≤ Tc
˜�2(Tc) fuzzy whole concerned cost per unit time with case Ms ≥ Tc
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˜�3(Tc) de-fuzzy whole concerned cost per unit time with case Ms ≤ Tc
˜�4(Tc) de-fuzzy whole concerned cost per unit time with case Ms ≥ Tc
n number of shipment
λ learning factor
Tc1 the whole cycle time under the condition, Ms ≤ Tc
Tc2 the whole cycle time under the condition, Ms ≥ Tc
˜Tc1 de-fuzzy the whole cycle time under the condition, Ms ≤ Tc
˜Tc2 de-fuzzy whole cycle time under the condition, Ms ≥ Tc

20.3 Crisp Formulation Model

Assume that q(t) is the inventory stock at any time t(0 ≤ t ≤ Tc). At the initial
position the inventory level is Q0.Now the cost parameters below, related to inventory
stock (Fig. 20.1),

The cost of placing an order,

OC1 = Ac

Tc
(20.1)

The inventory carrying cost per cycle,

I HC1 = 1

Tc
h(n)

Tc
∫

0

Dt dt = h(n)DTc
2

(20.2)

The interest paid and interest gained, are the two cases that arise depending on
the lengths of Tc and Ms . These cases are presented in the graphed form in Figs. 20.2
and 20.3.

Fig. 20.1 Inventory system
with order quantity and time
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Fig. 20.2 Inventory process
of trade credit financing for
case-1

Fig. 20.3 Inventory process
of trade credit financing for
case-2

Case-1: Ms ≤ Tc
The buyer gains interest at a rate of Ie on the average sales income generated for the
time 0 to Ms . Further, the buyer has to settle the account at credit period Ms and must
arrange for finances to pay the seller for the lasting inventory store at the precise rate
of interest, Ic, from Ms to Tc.

Therefore, the buyers gain an interest for the average inventory during time period
0 to Ms , i.e., Ie IcDM2

s /2Tc and buyers pay an interest for the unsold items after Ms

which is equal to Cc IcD(Tc − Ms)
2/2Tc.

Hence, the whole concerned cost per unit time is,

�1(Tc) = OC1 + I HC1 + IC1 − I E1

�1(Tc) = Ac

Tc
+ h(n)DTc

2
+ Cc Ic(Tc − Mc)

2

2Tc
− pc IeDM2

s

2Tc
(20.3)

Case-2: Ms ≥ Tc



20 Fuzzy Based Inventory Model with Credit Financing … 383

In this case, no interest is payable by the buyer, who only gains an interest on the
income generated from 0 to Ms and equal to Pc IeD

(

Ms − Tc
2

)

and IC2 = 0.
Hence, the whole concerned cost per unit time is,

�2(Tc) = OC1 + I HC1 + IC2 − I E2

�2(Tc) = Ac

Tc
+ h(n)DTc

2
− Pc IeD

(

Ms − Tc
2

)

(20.4)

Hence, the whole relevant cost �(Tc) per time unit is,

�(Tc) =
{

�1(Tc), Ms ≤ Tc
�2(Tc), Ms ≥ Tc

(20.5)

where,

�1(Tc) = Ac

Tc
+ h(n)DTc

2
+ Cc Ic(Tc − Mc)

2

2Tc
− pc IeDM2

s

2Tc

and

�2(Tc) = Ac

Tc
+ h(n)DTc

2
− Pc IeD

(

Ms − Tc
2

)

.

It can be easily checked or verified that �1(Ms) = �2(Ms), so �(Tc) is a contin-
uous function of Tc.

The necessary and sufficient conditions for �1(Tc) to be optimum are as follows,

d�1(Tc)

dTc
= − Ac

T 2
c

+ h(n)D

2
+ Cc IcD

2
− Cc IcDM2

s

2T 2
c

+ Ps IeDM2
s

2T 2
c

and d2�1(Tc)
dT 2

c
= 2Ac

T 3
c

− Cc IcDM2
s

T 3
c

− Ps Ie DM2
s

T 3
c

> 0 respectively. For the maximum cycle

length of time Tc1, set
d�1(Tc)
dTc

= 0 which gives

Tc = Tc1 =
√

2Ac + DM2
s (Cc Ic − Pc Ie)

D(h(n) + Cc Ic)
(20.6)

Now,

dψ2(Tc)

dTc
= − Ac

T 2
c

+ h(n)D

2
+ Pc IeD

2

and
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d2�2(Tc)

dT 2
c

= 2Ac

T 3
c

> 0

For the optimal cycle time Tc2, set
d�2(Tc)
dTc

= 0 which gives

Tc = Tc2(say) =
√

2Ac

D(h(n) + Pc Ie)
(20.7)

20.4 Fuzzy Methodology

As per assumption, Ac, D and Pc are not known precisely and let Ac, D and Pc be
defined as triangular fuzzy numbers such that ˜Ac = [a1, a2, a3], ˜D = [d1, d2, d3]
and ˜Pc = [p1, p2, p3] where (a1 < a2 < a3), (d1 < d2 < d3), and (p1 < p2 < p3)
are based on subjective judgments.

We apply arithmetic operators on fuzzy quantities and then de-fuzzify the same
to convert them into crisp output.

The membership functions for ˜Ac, ˜D and ˜Pc are defined as follows

μ
˜Ac

(

˜Ac
) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, i f Ac < a1
Ac−a1
a2−a1

, i f a1 ≤ A < a2
a3−Ac
a3−a2

, i f a2 ≤ Ac < a3
0, i f Ac ≥ a3

(I)

μ
˜D

(

˜D
) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, i f D < d1
D−d1
d2−d1

, i f d1 ≤ D < d2
d3−D
d3−d2

, i f d2 ≤ D < d3
0, i f D ≥ d3

(II)

μ
˜Pc

(

˜Pc
) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, i f Pc < p1
Pc−p1
p2−p1

, i f p1 ≤ Pc < p2
p3−Pc
p̃3− p̃2

, i f p2 ≤ Pc < p3
0, i f Pc ≥ p3

(III)
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The de-fuzzified ˜�1(Tc) and ˜�2(Tc) by centroid method are defined as illustrated
below,

˜�3(Tc) = ˜�11(Tc) + ˜�12(Tc) + ˜�13

3Tc
. (IV)

˜�4(Tc) = ˜�21(Tc) + ˜�22(Tc) + ˜�23(Tc)

3Tc
. (V)

20.4.1 Fuzzy Inventory Model

During the formulation of the fuzzy process, we consider that the demand rate,
ordering cost and selling price are all imprecise in nature and are termed as fuzzy
numbers and are denoted by D̃, Ãc and P̃c respectively. Here, we assume that
˜D = (d1, d2, d3), ˜A = (a1, a2, a3) and ˜Pc = (p1, p2, p3) are positive triangular
fuzzy numbers.

20.4.2 Derivation of ˜Ψ1(Tc) and ˜Ψ2(Tc)

The fuzzy annual whole concerned cost can be formulated as,

˜�(Tc) =
{

˜�1(Tc), Ms ≤ Tc
˜�2(Tc), Ms ≥ Tc

(20.8)

Where,

˜�1(Tc) = Y11˜Ac + Y12 ˜D + Y13 ˜Pc ˜D

˜�11(Tc) = Y11a1 + Y12d1 + Y13 p1d1 (20.9)

˜�12(Tc) = Y11a2 + Y12d2 + Y13 p2d2 (20.10)

˜�13(Tc) = Y11a3 + Y12d3 + Y13 p3d3 (20.11)

and

˜�2(Tc) = Y21˜Ac + Y22 ˜D + Y23 ˜Pc ˜D

˜�21(Tc) = Y21a1 + Y22d1 + Y23 p1d1 (20.12)
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˜�22(Tc) = Y21a2 + Y22d2 + Y23 p2d2 (20.13)

˜�23(Tc) = Y21a3 + Y22d3 + Y23 p3d3 (20.14)

where, Y11 = Y21 = 1
Tc

, Y12 = h(n).Tc
2 + Cc Ic

2

[

Tc + M2
s

Tc
− 2Ms

]

, Y13 = − IeM2
s

2Tc

Y22 = h(n).Tc
2

, Y23 = Ie

[

Tc
2

− Ms

]

.

From Eqs. (20.9), (20.10), and (20.11) we have de-fuzzified ˜�1(Tc) by centroid
method which is equal to

˜�3(Tc) = ˜�11(Tc) + ˜�12(Tc) + ˜�13(Tc)

3Tc
.

˜�3(Tc) = Y11(a1 + a2 + a3) + Y12(d1 + d2 + d2) + Y13(p1d1 + p2d2 + p3d3)

3Tc
.

(20.15)

From Eqs. (20.12), (20.13), and (20.14) we have de-fuzzified ˜�1(Tc) by centroid
method which is equal

˜�4(Tc) = ˜�21(Tc) + ˜�22(Tc) + ˜�23(Tc)

3Tc
.

˜�4(Tc) = Y21(a1 + a2 + a3) + Y22(d1 + d2 + d2) + Y23(p1d1 + p2d2 + p3d3)

3Tc
.

(20.16)

20.4.3 Solution Procedure

The necessary and sufficient conditions for ˜�3(Tc) to be optimum and for the optimal
cycle time ˜Tc1, set

d˜�3(Tc)
dTc

= 0, from Eq. (20.15) which gives

˜Tc1 =
√

2(a1 + a2 + a3) + (d1 + d2 + d3)M2
s (Cc Ic − (p1 + p2 + p3)Ie)

(d1 + d2 + d3)(h(n) + Cc Ic)
(20.17)

and for the optimal cycle time Tc2, set
d˜�4(Tc)
dTc

= 0, from Eq. (20.16)which gives
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Tc = ˜Tc2(say) =
√

2(a1 + a2 + a3)

(d1 + d2 + d3) (h(n) + (p1 + p2 + p3)Ie)
(20.18)

For the total cost function of this system to be convex, the sufficient condition

must hold
d˜�4(˜Tc2)

dTc
> 0.

20.4.4 Algorithm Procedure

To find out the maximum cycle length of time (between ˜TC1 and ˜TC2 ) and whole
maximum average cost (between ˜�3

(

˜Tc1
)

and ˜�4
(

˜Tc2
)

) for various values of Ms , the
following algorithms employed in the form different sequential steps and followed
[14].

Step-1: Find out ˜Tc1 and ˜Tc2 by solving Eqs. (20.17) and (20.18).
Step-2: If ˜Tc1 ≤ Ms , then calculate ˜T c2 and ˜�4

(

˜Tc2
)

, otherwise go to step-3.
Step-3: If ˜Tc1 > Ms , then calculate ˜�3

(

˜Tc1
)

.
Step-4: Find out the concerning cycle length of time and whole maximum cost.

20.5 Model Illustrated Examples

The almost inventory parameters have taken from Shah et al. [20];

˜Ac = (48, 50, 52), ˜Pc = (118, 120, 122), ˜D = (480, 500, 520), Ie = 0.12/year, Ic = 0.15/year,

MS = 0.068 year, n = 1, λ = 0.10, h1 = $5/unit/year, h0 = $4/unit/year,Cc = $50/unit

After using algorithm we got fuzzy optimal cycle time, ˜Tc2 = 0.061 year and
fuzzy total cost corresponding fuzzy optimal cycle time is ˜�4

(

˜Tc2
) = 136.097$.

After simplification of Eqs. (20.16) with the help of mathematica software 0.8, we

got,
d2�4(˜Tc2)

dT 2
c2

= 29 > 0, where ˜Tc2 = 0.061 year which represents the convexity of
the cost function for the retailer’s and shown in Fig. 20.4.

20.6 Sensitivity Analysis

20.6.1 Observations

From Table 20.1, we observed that, when the values of Ms increased, the maximum
cycle length of time and the optimal average cost for the retailer did not increase owing
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Fig. 20.4 Convexity of total average cost

Table 20.1 Impact of trade credit on cycle length and average cost

Fuzzy unit selling
price ˜Pc

Trade credit period
(in year) Ms

Optimal cycle (in
year) ˜Tc2
In year

Average cost
˜�4

(

˜Tc2
)

(118, 120, 122) 0.063 0.061 254

(118, 120, 122) 0.065 0.061 195

(118, 120, 122) 0.068 0.061 136

to the learning phenomenon.We analyzed that the retailer would not order additional
quantity to receive the gain of delayed cash payment more often. From Table 20.2,
we analyzed that whenever the number of shipments increased, the optimal cycle
time increased but the average cost decreased in each shipment due to the learning
effect. From Table 20.3, we observed that when the values of learning rate increased
the maximum cycle length of time increased and the average cost decreased in each
shipment owing to the process of learning. From Fig. 20.5, we were able to analyze
that whenever the number of shipments increased, the average cost decreased in each
shipment due to the phenomenon of learning.

Table 20.2 Variation of fuzzy average cost and optimal cycle length with respect to number of
shipments under learning effect

Number of shipment n Optimal cycle ˜Tc2 Average cost for the case-2 ˜�4
(

˜Tc2
)

1 0.061 136

2 0.062 131

3 0.062 129

4 0.062 128
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Table 20.3 Impact of learning factor with variable shipment on cycle length and average cost

Learning factor γ Optimal cycle ˜Tc2 Average cost for the case-2 ˜�4
(

˜Tc2
)

0.10 0.061 136

0.20 0.062 128

0.30 0.062 118

0.40 0.062 109

Fig. 20.5 Variation of cost with the number of shipments

20.7 Conclusion

This paper covered as well as reported both the mathematical and management areas
and also went on to design an intelligent automation policy and a preventive inven-
tory cost maintenance which employed and implemented the learning effect. This
combination of work has been done in this article for contributing to the industrial
sector. In general, some industries have some constraints to apply machinery system
instead of human labor. This area requires extensive research to find out the opti-
mal solution with profit maximization or cost minimization. In this contemporary
research paper, we have attempted to find a solution to such a type of problem by
implementing the learning effect. In this paper, an EOQ model has been modified
under the fuzzy environment where permissible setback in cash is allowed from the
seller to his buyer under the learning effect. The fuzzy whole variable cost and the
fuzzy cycle length of time have been derived and de-fuzzified. The fuzzy optimal
total cost and the fuzzy optimal cycle length of time have been obtained by employ-
ing the centroid method. Sensitivity analysis as well as observations exposed that a
longer value of the allowable setback time period reduced the whole cycle length of
time and the whole cost of the retailer under the learning effect.
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Chapter 21
A Fuzzy Two-Echelon Supply Chain
Model for Deteriorating Items with Time
Varying Holding Cost Involving Lead
Time as a Decision Variable

Srabani Shee and Tripti Chakrabarti

Abstract In this paper, we have developed a two-stage supply chain production-
inventory model for deteriorating product with time-dependent demand under fuzzy
environment. Here we describe an EOQ model with changeable lead time and time-
dependent holding cost. This situation is very common in the market, once an enter-
prise has some key technology or product that others have not, as a supplier, it can
decide the prices and lead time of the technology or product to the buyers or retailers
according to its need. Then the retailer determines his optimal order strategy, i.e.,
decides on the quantity of products to order from the suppliers. Under this circum-
stance, the problem that lead time, as a controllable variable of the supplier, and how
it affects the cost to the supplier, retailer and whole supply chain is very important
to the supplier and retailer because double-win benefits is a base of existence for the
supply chain. In reality it is seen that we cannot define all parameters precisely due
to imprecision or uncertainty in the environment. So we have defined the inventory
parameters, such as set up cost, stock-out cost, and deterioration cost as triangular
fuzzy numbers. The signed distance method and graded mean integration method
have been used for defuzzification. To illustrate the proposed model a numerical
example and sensitivity analysis with respect to different associated parameters has
been presented.
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21.1 Introduction

The Economic Order Quantity (EOQ) model, where cumulative holding cost is a
convex function of time, is in contrast with the classic EOQ model where holding
cost is a linear function of time. Ferguson et al. [1] considered an EOQ model
with nonlinear holding cost to the inventory management of perishables. Misra [2]
developed an inventory model for time-dependent holding cost and deterioration
with salvage value and shortages. Mahata and Goswami [3] developed a fuzzy EOQ
model with stock-dependent demand rate and nonlinear holding cost by taking fuzzy
deterioration rate. In recent years, EOQ research has many new directions, such as
economic order quantity with random supplier capacity, quantity discounts for the
vendor’s benefit and the buyer–vendor coordination of inventory, ordering, pricing,
etc. Viswanathan [4] studied the optimal strategy for the integrated vendor–buyer
inventory model. Goyal and Gupta [5] reviewed integrated inventory models: the
buyer–vendor coordination. Piplani and Viswannathan [6] coordinated supply chain
inventories through common replenishment epochs. Liao and Shyu [7] developed
a model that can be used to determine the length of lead time that minimizes the
expected total cost. The lead time is the only decision variable in many researchers’
model. Hariga and Ben-Dayu [8] studied a continuous review inventorymodel where
the lead time, the recorder point, and the ordering quantity are decision variables.
Hsiao and Lin [9] proposed a buyer–vendor EOQ model with changeable lead time
in supply chain. Ben-Daya and Raouf [10] studied a model where both lead time and
order quantity are considered as decision variables. Ouyang et al. [11] extended Ben-
Dayu and Raouf’s model considering shortages where the total amount of stock-outs
is considered as a mixture of backorders and lost sales.

The control and maintenance of any inventory of deteriorating items plays an
important role in any supply chain management system as most physical goods such
as food products and beverages, pharmaceuticals, radioactive substance, gasoline,
etc. deteriorate over time. Various researchers have investigated these issues over
time. Misra [12] first studied optimum production lot size model for a system with
deteriorating inventory. Goyal andGiri [13] developed a production-inventorymodel
of a product with time varying demand, production, and deterioration rates. Yang and
Wee [14], proposed a multi-lot-size production-inventory system for deteriorating
items where production and demand rates are constant. Sana et al. [15] considered a
production-inventory model for deteriorating items with trended demand and short-
ages. Manna and Chiang [16] proposed an economic production quantity model for
deteriorating items where demand rate is ramp type. Al-Khamis et al. [17] developed
an optimal policy for a finite horizon batching inventory model. Pal et al. [18] con-
sidered a production-inventory model for deteriorating item with ramp type demand
allowing inflation and shortages under fuzziness.

In the crisp environment, all parameters associatedwith themodel such as produc-
tion rate, demand rate, deterioration rate, set up cost, holding cost, shortage cost, etc.
are known and have definite value but in reality, most of the variables are highly
uncertain. In such situations, these variables are described as fuzzy parameters.
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Several researchers like Jaggi et al. [19], Yao and Chiang [20], Wang et al. [21],
Yao and Lee [22], Kao and Hsu [23], Dutta et al. [24] and Saha [25] have developed
inventory models under fuzzy environment. In this area, a lot of research papers have
been published by several researchers viz., Bera et al. [26], He et al. [27], Dutta and
Kumar [28], Mishra et al. [29] etc. Priyan andManivannan [30] represented an Opti-
mal inventory modeling of supply chain system involving quality inspection errors
and fuzzy effective rate. Sonia et al. [31] proposed a two-warehouse inventory model
under conditionally permissible delay in payment where the deterioration rate and
demand rate are fuzzy in nature.

In this paper, we consider an EOQmodel involving lead time as a decision variable
with time varying holding cost on an Integrated System in Supply Chain. Here we
considered various costs, such as setup cost, holding cost, cost of deteriorating items
taken as triangular fuzzy numbers and demand rate is time dependent. Later on, the
fuzzy total cost is defuzzified by using signed distance method and graded mead
integration method. The problem is then solved by using LINGO 17.0 software.

21.2 Assumptions and Notations

The proposed model is developed under the following notations and assumptions.

21.2.1 Notations

1. D(t) = aebt ,where 0〈b〈1, t〉0, a〉0, the market’s demand rate is exponentially
increasing in nature

2. Q is the Retailer’s initial inventory level (quantity)
3. θ is the constant deterioration rate, 0 < θ < 1
4. hr (t) is the Retailer’s holding cost per unit increases with the time t, hr (t) =

c1tn,where c1 and n ≥ 1 are constant
5. ˜hr is the Retailer’s fuzzy holding cost per unit
6. hs(t) is the Supplier’s holding cost per unit which is a linear function of time t,

hs(t) = h1 + h2t,where h1, h2 > 0 are constant
7. ˜hs is the Supplier’s fuzzy holding cost per unit
8. Ir (t) is the Retailer’s inventory level at any time t
9. Is(t) is the Supplier’s inventory level at any time t
10. c2 is the Retailer’s stock-out cost per unit
11. c̃2 is the Retailer’s fuzzy stock-out cost per unit
12. c3 is the Retailer’s set up cost for each order
13. c̃3 is the Retailer’s fuzzy set up cost for each order
14. c4 is the Supplier’s set up cost for each order
15. c̃4 is the Supplier’s fuzzy set up cost for each order
16. c5 is the Retailer’s deterioration cost per unit
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17. c̃5 is the Retailer’s fuzzy deterioration cost per unit
18. c6 is the Supplier’s deterioration cost per unit
19. c̃6 is the Supplier’s fuzzy deterioration cost per unit
20. T is the Retailer’s order cycle time, a decision variable
21. L is the Supplier’s lead time, a decision variable
22. TC is the total cost per unit time
23. ˜TC is the fuzzified value of TC
24. TCs is the defuzzified value of ˜TC when signed distance method of defuzzifi-

cation is used
25. TCG is the defuzzified value of ˜TC when graded mean integration method of

defuzzification is used.

21.2.2 Assumptions

1. The inventory system involves production of single item.
2. The set up cost and deterioration cost are fuzzy.
3. The deterioration rate is constant fraction of on hand inventory.
4. The demand for product is time dependent.
5. The model is developed for finite time horizon.

21.3 Mathematical Model

In the distribution channel system with one retailer and one supplier, the supplier
holds monopolistic status and the retailer is the follower. When retailer’s inventory
is zero, he issues orders to the supplier immediately. The supplier always delivers
the product to him after a span of L in order to get the biggest profits or for another
reason that causes the retailer to be out of stock.

21.3.1 Retailer’s Model

The retailer’s initial inventory level is Q at time t = 0. The inventory level gradually
depletes to zero at time t = T − L due to demand and deterioration. The changes in
inventory level can be described by the following differential equations:



21 A Fuzzy Two-Echelon Supply Chain Model for Deteriorating Items … 395

Retailer’s 
Inventory

Time 
0

T-L

Q 

Retailer’s Inventory model

d Ir (t)

dt
+ θ Ir (t) = −aebt , 0 ≤ t ≤ T − L (21.1)

d Ir (t)

dt
= −aebt , T − L ≤ t ≤ T (21.2)

With the boundary conditions

Ir (0) = Q, Ir (T − L) = 0 (21.3)

Solving (21.1) and (21.2) we get,

Ir (t) = Qe−θ t + a

b + θ

(

e−θ t − ebt
)

, 0 ≤ t ≤ T − L (21.4)

Ir (t) = a

b

(

eb(T−L) − ebt
)

, T − L ≤ t ≤ T (21.5)

From the condition Ir (T − L) = 0 and the Eq. (21.4) we have,

Q = a

b + θ

(

e(b+θ)(T−L) − 1
)

(21.6)

Now, the holding cost of retailer

= c1

T−L
∫

0

tn
{

Qe−θ t + a

b + θ

(

e−θ t − ebt
)

}

dt

= c1

{

Q(T − L)n+1

n + 1
− (Qθ + a)(T − L)n+2

n + 2

}
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Stock-out cost of retailer

= −c2

T
∫

T−L

{a

b

(

eb(T−L) − ebt
)

}

dt

= c2a

b2
{

ebT − (bL + 1)eb(T−L)
}

Deterioration cost of retailer

= c5

T−L
∫

0

θ

{

Qe−θ t + a

b + θ

(

e−θ t − ebt
)

}

dt

= c5θ

{

Q(T − L) − (Qθ + a)(T − L)2

2

}

Set up cost of retailer

= c3

Therefore, the retailer’s average total cost in cycle T is

Cr (T, L) = 1

T

[

c1

{

Q(T − L)n+1

n + 1
− (Qθ + a)(T − L)n+2

n + 2

}

+ c2a

b2
{

ebT − (bL + 1)eb(T−L)
}

+c5θ

{

Q(T − L) − (Qθ + a)(T − L)2

2

}

+ c3

]

(21.7)

21.3.2 Supplier’s Model

The inventory cycle starts at t = 0. The initial inventory level isQ. The inventory level
gradually depletes to zero at time t = T − L due to demand and deterioration. The
change in inventory level can be described by the following differential equations:
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Supplier’s
Inventory

Time 
0 T-L 

Supplier’s Inventory model

d Is(t)

dt
+ θ Is(t) = −aebt , 0 ≤ t ≤ T − L (21.8)

With the boundary conditions

Is(0) = Q, Is(T − L) = 0 (21.9)

Solving (21.8) we get,

Is(t) = Qe−θ t + a

b + θ

(

e−θ t − ebt
)

, 0 ≤ t ≤ T − L (21.10)

Now, the Supplier’s holding cost-

=
T−L
∫

0

(h1 + h2t)

{

Qe−θ t + a

b + θ

(

e−θ t − ebt
)

}

dt

=
[

Qh1(T − L) + {Qh2 − h1(Qθ + a)} (T − L)2

2
− h2(Qθ + a)

(T − L)3

3

]

The deterioration cost of Supplier-

= c6

T−L
∫

0

θ

{

Qe−θ t + a

b + θ

(

e−θ t − ebt
)

}

dt

= c6θ

{

Q(T − L) − (Qθ + a)(T − L)2

2

}

Set up cost of retailer
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= c4

Therefore, the supplier’s average total cost in cycle T is

Cs(T, L) = 1

T

[

Qh1(T − L) + {Qh2 − h1(Qθ + a)} (T − L)2

2

4 − h2(Qθ + a)
(T − L)3

3

+c6θ

{

Q(T − L) − (Qθ + a)(T − L)2

2

}

+ c4

]

(21.11)

Therefore, the total average cost in cycle T is

TC(T, L) = Cr (T, L) + Cs(T, L)

= 1

T

[

c1

{

Q(T − L)n+1

n + 1
− (Qθ + a)(T − L)n+2

n + 2

}

+ c2a

b2
{

ebT − (bL + 1)eb(T−L)
} + Qh1(T − L)

+ {Qh2 − h1(Qθ + a)} (T − L)2

2
− h2(Qθ + a)

(T − L)3

3

+(c5 + c6)θ

{

Q(T − L) − (Qθ + a)(T − L)2

2

}

+ c3 + c4

]

(21.12)

The objective in the following is to find the solutions for the optimal values of T
and L (say T ∗ and L∗) that minimize the total average cost TC(T, L).

The necessary condition for minimization of TC(T, L) are

∂TC(T, L)

∂T
= 0

and

∂TC(T, L)

∂L
= 0 (21.13)

The sufficient condition for minimization of TC(T, L) requires that it must be a
convex function for T > 0, L > 0.

Now the function TC(T, L) will be convex if

∣

∣

∣

∣

∣

∂2TC(T,L)

∂T 2
∂2TC(T,L)

∂T ∂L
∂2TC(T,L)

∂L∂T
∂2TC(T,L)

∂L2

∣

∣

∣

∣

∣

> 0 (21.14)
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Equation (21.13) can be solved simultaneously by some computer-oriented
numerical technique to obtain retailer’s optimal order cycle time T ∗ and supplier’s
optimal lead time L∗.

21.3.3 Fuzzy Model

Next we fuzzify the parameters c1, c2, c3, c4, c5, c6, h1, h2
Let, c̃1 = (x1, y1, z1), c̃2 = (x2, y2, z2), c̃3 = (x3, y3, z3), c̃4 = (x4, y4, z4),

c̃5 = (x5, y5, z5), c̃6 = (x6, y6, z6), ˜h1 = (α1, α2, α3), ˜h2 = (β1, β2, β3).
Then, ˜TC = 1

T

[

c̃1U + c̃2V + (c̃3 + c̃4) + (c̃5 + c̃6)W + ˜h1X + ˜h2Y
]

where,

U =
{

Q(T − L)n+1

n + 1
− (Qθ + a)(T − L)n+2

n + 2

}

V = a

b2
{

ebT − (bL + 1)eb(T−L)
}

W = θ

{

Q(T − L) − (Qθ + a)(T − L)2

2

}

X =
{

Q(T − L) − (Qθ + a)(T − L)2

2

}

Y =
{

Q
(T − L)2

2
− (Qθ + a)

(T − L)3

3

}

Now, ˜TC = (TC1, TC2, TC3) (say)
where,

TC1 = 1

T
[x1U + x2V + (x3 + x4) + (x5 + x6)W + α1X + β1Y ]

TC2 = 1

T
[y1U + y2V + (y3 + y4) + (y5 + y6)W + α2X + β2Y ]

TC3 = 1

T
[z1U + z2V + (z3 + z4) + (z5 + z6)W + α3X + β3Y ]

(i) Signed Distance Method

TCs = 1

4
(TC1 + 2TC2 + TC3)

= 1

4T
[(x1 + 2y1 + z1)U + (x2 + 2y2 + z2)V

+ {(x3 + x4) + 2(y3 + y4) + (z3 + z4)}
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+ {(x5 + x6) + 2(y5 + y6) + (z5 + z6)}W
+(α1 + 2α2 + α3)X + (β1 + 2β2 + β3)Y ]

The objective in the following is to find the solutions for the optimal values of Ts
and Ls that minimize the total average cost TCs(T, L).

The necessary condition for minimization of TCs(T, L) are
∂TCs (T,L)

∂T = 0 and ∂TCs (T,L)

∂L = 0
The sufficient condition for minimization of TCs(T, L) requires that it must be a

convex function for T > 0, L > 0.
Now the function TC(T, L) will be convex if

∣

∣

∣

∣

∣

∂2TCs (T,L)

∂T 2
∂2TCs (T,L)

∂T ∂L
∂2TCs (T,L)

∂L∂T
∂2TCs (T,L)

∂L2

∣

∣

∣

∣

∣

> 0

(ii) Graded Mean Integration method

TCG = 1

6
(TC1 + 4TC2 + TC3) = 1

6T
[(x1 + 4y1 + z1)U + (x2 + 4y2 + z2)V

+ {(x3 + x4) + 4(y3 + y4) + (z3 + z4)}
+ {(x5 + x6) + 4(y5 + y6) + (z5 + z6)}W
+(α1 + 4α2 + α3)X + (β1 + 4β2 + β3)Y ]

The objective in the following is to find the solutions for the optimal values of TG
and LG that minimize the total average cost TCG(T, L).

The necessary condition for minimization of TCG(T, L) are
∂TCG (T,L)

∂T = 0 and ∂TCG (T,L)

∂L = 0
The sufficient condition for minimization of TCG(T, L) requires that it must be

a convex function for T > 0, L > 0.
Now the function TC(T, L) will be convex if

∣

∣

∣

∣

∣

∂2TCG (T,L)

∂T 2
∂2TCG (T,L)

∂T ∂L
∂2TCG (T,L)

∂L∂T
∂2TCG (T,L)

∂L2

∣

∣

∣

∣

∣

> 0

.

21.4 Numerical Examples

We consider the following numerical values of the parameters in appropriate units
to analyze the model:

c1 = 2, c2 = 8, c3 = 100, c4 = 200, c5 = 5, c6 = 7, h1 = 0.2, θ = 0.01, h2 =
0.1, a = 40, b = 0.5, n = 2 in appropriate units.
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Table 21.1 Optimal solutions for various values of “n”

n Retailer’s
optimal order
cycle time T ∗

Supplier’s
optimal lead
time L∗

Retailer’s
optimal cost C∗

r

Supplier’s
optimal cost C∗

s

Total optimal
cost TC∗

2 2.2109 1.0634 102.4426 96.8688 199.3114

3 2.2025 1.0505 99.3425 97.3046 196.6471

4 2.1937 1.0469 97.6576 97.6171 195.2747

5 2.1857 1.0470 96.6479 97.8549 194.5028

6 2.1787 1.0486 96.0011 98.0431 194.0442

7 2.1726 1.0508 95.5658 98.1965 193.7623

8 2.1674 1.0531 95.2620 98.3241 193.5861

Equations (21.12) and (21.13) are now solved simultaneously for the above param-
eter values using a gradient-based nonlinear optimization technique (LINGO 17.0)
and get the results shown in Table 21.1. It is verified that all the solutions in Table 21.1
for different values of n, satisfy the convexity condition for TC(T, L).

For Fuzzy Model, we consider the following numerical values of the parameters
in appropriate units to analyze the Fuzzy model:

c̃1 = (1, 2, 3), c2 = (7, 8, 9), c̃3 = (95, 100, 105),

c̃4 = (195, 200, 205), c̃5 = (4, 5, 6), c̃6 = (6, 7, 8),

˜h1 = (0.1, 0.2, 0.3), ˜h2 = (0.05, 0.1, 0.15), θ = 0.01, a = 40, b = 0.5, n = 2

We obtain, TCs = 198.1792 and Retailer’s optimal order cycle time Ts = 2.2053
and Supplier’s optimal lead time Ls = 1.0594 for Signed Distance Method.

TCG = 198.5569 and Retailer’s optimal order cycle time TG = 2.2072 and
Supplier’s optimal lead time LG = 1.0607 for Graded Mean Integration Method.

21.5 Sensitivity Analysis

The sensitivity analysis is performed by changing the value of each of the parameters
a, b, θ , n, taking one parameter at each time and keeping the remaining parameters
unchanged. We now study the sensitivity of the optimal solution to changes in the
values of different parameters associated with the model (Figs. 21.1, 21.2, 21.3, 21.4,
21.5, 21.6, 21.7 and 21.8).
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Fig. 21.1 Impact of a on
TCS
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Fig. 21.3 Impact of b on
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Fig. 21.5 Impact of
deterioration rate on TCS
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Fig. 21.6 Impact of
deterioration rate on TCG
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Table 21.2 Sensitivity on “a”

Change value Signed distance method Graded mean integration method

a Ts Ls TCs TG LG TCG

40 2.2053 1.0594 198.1792 2.2072 1.0607 198.5569

42 2.1274 1.0038 205.7881 2.1292 1.0051 206.1796

44 2.0598 0.9561 212.8665 2.0616 0.9574 213.2709

46 2.0003 0.9145 219.4997 2.0020 0.9157 219.9161

Table 21.3 Sensitivity on “b”

Change value Signed distance method Graded mean integration method

b Ts Ls TCs TG LG TCG

0.5 2.2053 1.0594 198.1792 2.2072 1.0607 198.5569

0.7 1.7098 0.5700 243.9281 1.7111 0.5708 244.4153

0.9 1.4506 0.3377 278.4718 1.4516 0.3381 279.0460

1.1 1.2926 0.2138 305.7972 1.2934 0.2141 306.4417

Table 21.4 Sensitivity on “θ”

Change value Signed distance method Graded mean integration method

θ Ts Ls TCs TG LG TCG

0.01 2.2053 1.0594 198.1792 2.2072 1.0607 198.5569

0.03 2.1973 1.0973 202.6988 2.1992 1.0987 203.0779

0.05 2.1885 1.1338 206.8084 2.1904 1.1352 207.1890

0.07 2.1793 1.1688 210.5376 2.1813 1.1702 210.9199

21.5.1 Observation

The following are noted on the basis of the sensitivity analysis-

1. From Tables 21.2 and 21.3 it is observed that, an increase in parameter ′a′ and ′b′
causes increment in total cost for both the models (TCs and TCG). In contrast,
the rise in these two parameters results in decrease in cycle time and lead time for
both the developed models. Also we observed that TCs and TCG are moderately
sensitive to change in ′a′. On the other side TCs and TCG are highly sensitive
due to the changes in the value of ′b′.

2. As the deterioration rate increases hence the total cost TCs and TCG and the lead
time increases but the cycle time decreases for both models (from Table 21.4).
Here also TCs and TCG are moderately sensitive due to change in ′θ ′.

3. The total cost, cycle time, and lead time (for both models) decreases as the
parameter “n” increases (from Table 21.5).
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Table 21.5 Sensitivity on “n”

Change value Signed distance method Graded mean integration method

n Ts Ls TCs TG LG TCG

2 2.2053 1.0594 198.1792 2.2070 1.0607 198.5569

4 2.1883 1.0426 194.1337 2.1901 0.0441 194.5143

6 2.1733 1.0441 192.8953 2.1751 1.0456 193.2785

8 2.1621 1.0485 192.4312 2.1638 1.0501 192.8165

21.6 Conclusion

In this paper, we have developed the optimal order strategy of a supplier retailer’s
inventory model for deteriorating items under fuzzy environment. If we take h2 = 0
in Supplier’s holding cost and n = 0 in retailer’s holding cost, then both holding
costs become constant. In that case the supplier will gain more profit compared to
the retailer. Taking holding cost and demand rate constant, some researchers have
developed amodelwhere it is observed that supplier’s average total cost decreases and
the retailer’s average total cost increases. We observed that the total cost is minimum
corresponding to the value of the cycle time T when Signed distance method of
defuzzification is used. Also, the cycle time T and the lead time L are minimum
with corresponding total cost when the signed distance method is used. In future the
obtained optimal solutions can be improved by using different algebraic procedure
or Geometric Programming Problem approach for the case of Posynomial functions
which arise in Engineering problems.
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Chapter 22
Transportation-Inventory Model for
Electronic Markets Under Time Varying
Demand, Retailer’s Incentives
and Product Exchange Scheme

Arindum Mukhopadhyay

Abstract Exchange offers are popular in many businesses to attract new customers.
Availability of novel varieties, stiff competition, and regulatory restriction of dis-
carding old products enhances to facilitate such offers in the market. Although, the
reduction of out-of-pocket expenses to the customers helps to increase the sale of
products; it also elevates the decision problem for managing the inventories of the
exchanged products for the retailers. In view of this, the present article addresses
inventory decision modeling in a system where a customer can buy products from
the electronic-market retailer either by paying the full price or getting some price-
discount for exchanging old products. Retailer bears transportation costs for the new
and exchanged products. Four models are formulated and numerical examples are
presented. Sensitivity analysis is also performed to understand the effect of various
parameters in the models.

Keywords Exchange offer · Inventory · Time varying demand · Transportation ·
Optimization

22.1 Introduction

The inventory systems are indispensable in any business. Be it manufacturing,
agribusiness, healthcare, logistics or any other; without storing an inventory one
cannot continue smooth operations. In particular, retail business is completely based
on storage of inventories and sometimes it also generates demands for the products.
Nowadays, there have been trends of various kinds of exchange offers in the elec-
tronic marketplace of products such as utensils, smartphones, computers, batteries,
automobiles, televisions, etc. The commonality among these products is that, all of
them are more or less consumer durables. They are driven by trends, fashion, or
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technology which advances with time. On one side, the long life of the product pre-
vents customers from buying a new one; keeping average demand of such products
low for the customers. From the perspectives of the retailers, it is difficult to sell
products to the consumers who are already using some older version or older model
of that product. This motivates retailers to incentivize their customers to purchase
the newer version of the product by giving a discount in lieu of their old function-
ing products. Also the retailer can use it to increase the selling of products during
low-demand period or to liquidate excess inventories. The retailer may also sell the
product without the exchange offer and the exchange offer works as discount to a
segment of customers whowant to upgrade from their older models to the latest ones.
The products bought by the company can be used for various purposes—it can be
sold to some secondary markets to price sensitive low-budget customers either in the
same form or after some modifications. Sometimes, few parts of the products may be
used to assemble to produce new products, which reduces the cost of manufacturing
new products.

Exchange offers are often driven by external factors. There may exist sometimes
mandatory regulations by authorities which prevents the user of the product to con-
tinue using it. In many countries, Automobiles cannot be used after a certain number
of years because it may create much more pollution than the latest models. Besides
this, the trends of the consumers; who are inclined toward sustainability also moti-
vates such kind of offers because it preventswaste disposals (whichmay be hazardous
sometimes), and reduces resource consumptions for manufacturing (such resources
may be rare or costly raw materials or components). It has been observed that, in
automobiles there has been usage of 25−30% of used high quality materials which
not only reduces manufacturing cost (Belvedre [3]), but also addresses the greater
dimensions of environment consciousness. Due to these advantages more and more
consumer durables retailers are moving toward the trend of selling products using
exchange offers.On one hand, this reduces the out-of-pocket cost to customers; on the
other hand it creates problem for the retail manager for managing inventories of both
types of products viz. new and exchanged. In particular, following new challenges
a manager of a company faces in company’s product exchange offers—1. Exactly
specifying criteria for selecting eligible product for exchange in terms of quality and
specifications 2. Managing transportation of the exchanged product from customer
to company 3. Managing inventory of exchanged products 4. Refurbishment and
5. Selling it to secondary market. From the retailers’ perspectives, the exchanged
old product may be of variety of uses for its company. Firstly, there is a secondary
market with abundant customers who may consider functioning older products due
to low cost. Sometimes, retailer may also consider to send the old exchanged prod-
ucts to the manufacturer, who can use it for remanufacturing, component reuse and
remanufacturing, or raw material recovery.

In essence, this article presents some inventory models with product exchange
on the basis of two way transportation for decision on optimal policy. Although, the
models deal with two different types of storage for new and exchanged items it is
assumed that single transportation mode is used for forward and reverse logistics.
This assumption will reduce the complexity of the model. Furthermore, the objective
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of ourmodel is tomaximize the average total profit. Themodel proposed in this article
will enhance the future research on inventory systems that deal with exchange offers
and reverse logistics. The rest of this manuscript is organized as follows. The litera-
ture review is presented in Sect. 22.2. In Sect. 22.3 the notation and assumptions used
in this paper are provided. The mathematical models are formulated in Sect. 22.4.
Sections22.5 and 22.6 presents sensitivity analysis and managerial insights respec-
tively. Finally, the conclusions and future research are provided in Sect. 22.7.

22.2 Literature Review

Because this article constitutes of two types of inventory models, namely inventory
model with time varying demand and inventory model for exchange offer; It seems
fair that the review of literature needs to incorporate both types separately. Many
authors have worked in the area of deterministic inventory models with time varying
demand. The article by Silver and Meal [37] was the first to consider the modeling
of EOQ for the general case of a deterministic time varying demand pattern. It devel-
oped a computable method to solve the problem, but it was computationally tedious
for obtaining the reorder time and thus unimplementable. To overcome this issue,
Silver and Meal [37] approached the same inventory model with a novel heuristics
that generates an approximate operating schedule incurring a negligible additional
cost. With a different approach to obtain analytic solution for the optimal policy for
an inventory system with linear time varying demand over a finite planning horizon,
Donaldson [11] investigated and discussed some characteristics of themodel. Ritchie
[34] investigated an inventory model with linear time varying demand and obtained
a practical solution method for the optimal policy. Various other researchers, notably
Phelps [32] andMitra et al. [28]made remarkable contributions in developing heuris-
tic solution procedures. Goswami and Chaudhuri [16] investigated an EOQ model
for deteriorating items with shortages and a linear trend in demand. Goswami and
Chaudhuri [17] considered two warehouse facilities when the demand was varying
linearly over time. Datta and Pal [9] developed alternative method for improvement
in solution procedure in the previous models of linearly time varying demand by
assuming that successive replenishment cycles are in Arithmetic Progression. The
method provides optimal number of replenishments and optimal replenishment time.
[21] incorporated some improvement in the model of Goswami and Chaudhuri [16]
and provided implementable examples. Goyal et al. [18] approached linearly time
varying demand with shortage using novel replenishment policy where replenish-
ment cycle starts with shortage and after a period of shortage replenishment is made.
They have developed four heuristics procedures to follow the new replenishment
procedure. Bose et al. [4] incorporated the concept of Inflation and time-discounting
in an inventory model with linearly time varying demand and shown that some of
the previous models can be developed as a special case of their model. Chakrabarti
and Chaudhuri [5] developed an inventory model with linear time varying demand,
where shortage in every replenishment cycle was considered within finite time
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horizon. Chang et al. [6] incorporated permissible delay of payment in an inventory
model with time varying demand. Goyal and Giri [19] investigated on an inven-
tory model of deteriorating products with linear time varying demand, time varying
production rate, and time varying deterioration rate. Alamri and Balkhi [1] inves-
tigated an inventory model for a perishable product with time varying demand, in
which effect of learning and forgetting effects were also considered. Lee an Hsu [25]
applied heuristics method in an inventory system with deteriorating products under
time varying demand when inventory was stored in two warehouses. Sarkar [35]
investigated an inventory model with time varying demand under delay in payment,
when deterioration rate is considered as dependent on time. Mishra et al. [27] inves-
tigated an inventory model with deteriorating products under time varying demand
rate, deterioration rate and holding cost functions. Mukhopadhyay and Goswami
[30] investigated an inventory system for the deteriorating product where demand
and holding cost were linear functions of time. They have obtained optimal policy
and provided some implications of their model. Singh et al. [39] studied an inventory
system with linear time varying demand and time varying deterioration rate where
they applied a customized Newton–Raphson Based solution approach. Uthayakumar
andKaruppasamy [41] considered linear time varying demand and two other demand
formulations for healthcare industries applications in their article where they have
obtained optimal policy in terms of optimal replenishment time, economic order
quantity, and total cost. Recently, Mukhopadhyay [31] developed an inventory sys-
tem with time varying demand under uncertainty for imperfect items with product
deterioration, variable selling price, partial backlogging, and selling price dependent
time varying demand. It was shown that his model was a generalization of previous
other models.

Although there is not much literature on product exchange offers in inventory
systems, there are various studies on recycling and reverse logistics which address
similar aspects, as in exchange offers. Mitra [29] studied remanufacturing resulted
from product exchange offer in terms of revenue management perspective and devel-
oped a pricing model to maximize the expected revenue from the recovered prod-
ucts. Seitz [36] explored through in-depth case studies within the remanufacturing
facilities of a major European Vehicle Manufacturer to identify the motive for the
exchange offer. Pourmohammadi et al. [33] applied case study approach to discuss
the positive impact of product exchange. Geyer and Doctori Blass [14] observed
that product exchange offer has positive effect on the behavior of cell-phone cus-
tomers who usually simply stored the old phones instead of using reverse logistics
channel. Das and Dutta [8]applied system dynamics framework to investigate inclu-
sion of Product Exchange and Three Way Recovery policy in closed-loop supply
chain system. Daaboul [7] observed that cost is the major motivator for a manufac-
turer to go for reverse logistics and developed a method to integrate reverse logistics
design with environmental impacts by closed-loop product lifecycle management.
Belvedere and Grando [3] explored reverse logistics in Renault car company and its
closed-loop supply chains. Islam and Huda [22] reviewed the literature on Reverse
logistics and closed-loop supply chain ofWaste Electrical and Electronic Equipment
in which some concepts of product exchange is also covered.
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22.3 Mathematical Model

Notations and Assumptions

For convenience, the following notation is used throughout the entire paper:
D1: demand rate of the product without exchange offer
D2: demand rate of the product with exchange offer
T : cycle time
I : inventory size
y: order quantity of new product
y1: quantity of new product sold without exchange
y2: quantity of new product sold with exchange
co: order cost
ch1: inventory holding cost per unit per unit-time for new product
ch1: inventory holding cost per unit per unit-time for exchanged product
ct : transportation cost
Δ: discount per product, a random variable
E(•): Expected value of random variable
p: selling price of the new product
R0: selling price of the refurbished exchanged product
r1, r2: lower and upper limit of the exchange rebate respectively
HC1: total holding cost for new products
HC2: total holding cost for exchanged products
OC: total ordering cost for new products
PC: total purchase cost for new products
TrC: total transportation cost
a, b, c, d : positive constants as demand-rate parameters.

Next, the inventory models are based on the following assumptions:

1. Single category of product is considered.
2. Demand is deterministic.
3. Assuming product is abundant, shortage will be prohibited.
4. Exchange products are similar in size to the new product. This assumption will

help in calculation of transportation costs.
5. The product is sold with or without exchange and the exchange is applicable to

same category of product. The demand for without exchange D1 is independent
of D2.

6. The exchanged goods have lesser value than new products.
7. The valuation of exchanged product follows uniform distribution.
8. The inventory level at the end of the planning horizon will be zero.
9. The cost parameters are deterministic.

10. There are different holding cost for new and exchanged items.
11. The product is transported through single transportation mode.
12. For the demand parameters to bemeaningful, wemust have a ≥ b · T , c ≥ d · T .
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22.4 Model Formulation

In all of our models we assume that demand starts when inventory lot size is y. There
are two types of demand: one is without product exchange (D1) and another is along
with product exchange (D2). We assume that both types of demands occur together
during selling season and one order−cycle ends as the inventory becomes zero. Based
on the aforementioned assumptions and notations, total cost will be formulated for
the retailer which will help to determine optimal lot size and optimal total cost for
various models. In these models, the transportation and holding cost have been given
more attention, because of the electronic retailing and two types of products (new
and old) respectively.

In order to capture various modeling environment, we consider four situations:
(i) All the cost components and demand are constant
(ii) Transportation cost depends on quantity
(iii) Transportation cost depends on quantity and holding costs depend on time
(iv) Transportation cost depends on quantity, Demand is declining function w.r.t.
time, and holding costs depend on time (Figs. 22.1, 22.2, 22.3 and 22.4).

Constant Demand and constant Cost components

Before calculating cost, let us calculate the inventory level at any time t ∈ [0,T ].
During this interval the inventory of new item is governed by equation:

dI

dt
= −(D1 + D2), I(0) = y (22.1)

Fig. 22.1 Inventory-Time diagram under constant demand when D1 < D2
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Fig. 22.2 Inventory-Time diagram under constant demand when D1 > D2

Fig. 22.3 Inventory-Time diagram under variable demand when a > c, b ≤ d

This gives
I(t) = y − (D1 + D2)t (22.2)

From (22.2), at t = T , y = 0 giving y = (D1 + D2)T
The inventory of used item during t ∈ [0,T ] is governed by equation:
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Fig. 22.4 Inventory-Time diagram under variable demand when a < c, b ≥ d

dJ

dt
= D2, J (0) = 0 (22.3)

This gives
J (t) = D2t (22.4)

We calculate various costs as follows:
Purchase cost (PC) = cp · y = cp(D1 + D2)T
Ordering cost(OC) = co
Inventory holding cost for new items: (HC1) = ch1

∫ T
0 I(t)dt = ch1

[
yT − (D1 +

D2)
T 2

2

]

Putting the value of y, we get
HC1 = ch1(D1+D2)T 2

2
Inventory holding cost for exchanged items:
(HC2) = ch2

∫ T
0 J (t)dt = ch2

[
D2

T 2

2

]

Since for the exchanged items, onward and return transportation are used; so trans-
portation cost will be incurred twice. This gives,
Transportation Cost (TrC) = cty1 + 2cty2 = ct(D1 · T + 2 · D2.T )

Total cost(TC) = OC + PC + HC1 + HC2 + TrC
TC = co + cp(D1 + D2)T + ch1(D1+D2)T 2

2 + ch2
[
D2

T 2

2

] + ct(D1 · T + 2 · D2.T
Because under random phenomenon, it can be possible that the exchange value of
old product returned by the customer can be any number between minimum possi-
ble exchange value r1 and maximum possible exchange value r2. That means any
exchange price between r1 and r2 are equally likely. This is the reason for selecting
uniform distribution.
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Now average exchange value= Mean of the distribution U (r1, r2) = r1+r2
2

Revenue from selling new products:
= (Revenue from selling without exchange) + (Expected revenue from selling with
exchange)
= D1Tp + D2T (p − r1+r2

2 ) = pT (D1 + D2) − D2T
r1+r2
2

Revenue from reselling old products after some refurbishment:
= D2TR0

Now we can calculate, “Total Revenue”:
TR(T ) = pT (D1 + D2) + D2T (R0 − r1+r2

2 )

Total Average Profit(TAP) is calculated as follows:
TAP(T ) = TR(T )−TC(T )

T

TAP(T ) = p(D1 + D2) + D2

(

R0 − r1 + r2
2

)

− co
T

− cp(D1 + D2)

−ch1(D1 + D2)T

2
− ch2D2

T

2
− ct(D1 + 2D2) (22.5)

In order to optimize TAP(T ), we need to differentiate w.r.t. T TAP′(T ) = 0,
gives

T =
√

2co
ch1(D1 + D2) + ch2D2

(22.6)

It can be observed that from above expression for T , that optimal cycle time inde-
pendent of transportation cost.

Constant Demand and variable Transportation cost

Sometimes it is observed that transportation cost is variable rather than being a
constant (for example, it may depend on time, distance, or quantity). We shall con-
sider only quantity-dependent transportation cost because for a local retailer in a
town or city the distance of picking-up is constant on average. Similarly, time is
also less important factor for such kind of transportation. Therefore it is assumed
that transportation cost is dependent on quantity transported. Including the variable
transportation cost gives

ct(q) = λ0 + λ1q

This give the expression for total transportation cost as follows:

TrC = (λ0 + λ1D1T )D1T + 2(λ0 + λ1D2T )D2T

= λ0(D1 + 2D2) + λ1(D
2
1 + 2D2

2)T
2 (22.7)

As per the aforementioned assumption, the other cost components are remaining
unchanged; modified expression for total cost changes.
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Now we can calculate, Total cost(TC) = OC + PC + HC1 + HC2 + LC

TC = co + cp(D1 + D2)T + ch1(D1 + D2)T 2

2
+ ch2

[

D2
T 2

2

]

+λ0(D1 + 2D2) + λ1(D
2
1 + 2D2

2)T
2

(22.8)

This gives the modified expression for total average profit for this situation,

TAP(T ) = TR(T )−TC(T )

T

TAP(T ) = p(D1 + D2) + D2

(

R0 − r1 + r2
2

)

− co
T

+ cp(D1 + D2)

− ch1(D1 + D2)T

2
− ch2D2

T

2
− λ0(D1 + 2D2) − λ1(D

2
1 + 2D2

2)T (22.9)

Differentiating with respect to variable T ;
TAP′(T ) = 0 gives the expression of optimal cycle time as follows:

T =
√

2co
ch1D1 + ch2(D1 + D2) + 2λ1(D2

1 + 2D2
2)

(22.10)

As it is obvious from above expression for T , that optimal cycle time depend on the
transportation cost.

Quantity-dependent transportation cost and time varying holding costs

It may be possible that holding cost may be dependent on the duration in which
products are stored and storing longer may cost more to the retailer. This is related
to opportunity cost in some manner.
ch1(t) = μ0 + μ1t
ch2(t) = ν0 + ν1t
This gives new expressions for both types of holding costs:

HC1 = ∫ T
0 ch2(t)I(t)dt = ∫ T

0 (μ0 + μ1t){y − (D1 + D2)t}dt

HC1 = μ0(D1 + D2)T
2 + (μ1 − μ0(D1 + D2))

T 2

2
− μ1(D1 + D2)

T 3

3
(22.11)

HC2 =
∫ T

0
ch2(t)J (t)dt =

∫ T

0
(ν0 + ν1t)D2tdt = ν0

T 2

2
+ ν1D2

T 3

3
(22.12)

Due to above-mentioned changes, we can calculate new expression of Total cost(TC)

as follows:
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TC = OC + PC + HC1 + HC2 + LC

TC = co + cp(D1 + D2)T + μ0(D1 + D2)T
2 + (μ1 − μ0(D1 + D2))

T2

2
−

μ1(D1 + D2)
T3

3
+ ν0

T2

2
+ ν1D2

T3

3
+ λ0(D1 + 2D2) + λ1(D

2
1 + 2D2

2)T
2

(22.13)

Total Average Profit(TAP) is calculated as follows:

TAP(T ) = TR(T )−TC(T )

T

TAP(T ) = p(D1 + D2) + D2

(

R0 − r1 + r2
2

)

− co
T

− cp(D1 + D2)

−μ0(D1 + D2)T − (μ1 − μ0(D1 + D2))
T

2
− μ1(D1 + D2)

T2

3
− ν0

T

2

−ν1D2
T2

3
− λ0(D1 + 2D2) − λ1(D

2
1 + 2D2

2)T (22.14)

Given above formulation of TAP(T ), we now calculate first and second order deriva-
tives respectively.

TAP′(T ) = co
T 2

− μ0(D1 + D2) −
(

μ1 − μ0(D1 + D2))

2
− 2Tμ1(D1 + D2)

3

)

−ν0

2
− 2ν1D2T

3
− λ1(D

2
1 + 2D2

2) (22.15)

The formulation of TAP′(T ) shows that TAP′(T ) = 0 is a cubic equation in T .

TAP′′(T ) = −2

3

[
3co
T 3

+ μ1D1 + ν1D2

]

(22.16)

Because all the terms inside [] is positive, we can say that TAP′′(T ) < 0. Thus,
TAP(T ) is concave function of T and hence atleast one of the positive root of
TAP′(T ) = 0 gives the optimal solution.

Quantity-dependent transportation cost with time varying demand and holding
costs

In addition to the above, let us assume that demand and holding costs are functions of
time. There is a valid reason for assuming such criteria as the demand for the durable
goods decline with time due to either availability of multiple options for purchase
from competitors or better options due to technological innovation or incremental
improvement (in terms of capacity, quality, efficiency, or cost).
D1(t) = a − bt
D2(t) = c − dt
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We now find the new expressions for y, I , J ,HC1, and HC2

The expression of total inventory becomes,
y = ∫ T

0 (D1(t) + D2(t))dt = (a + c)T − (b+d)T 2

2
The inventory of new products are governed by differential as follows

dI

dt
= −(D1 + D2), I(0) = y (22.17)

I(t) = y − (a + c)t + (b + d)
t2

2
(22.18)

The inventory of exchanged products are governed by expression as follows

dJ

dt
= D2, J (0) = 0 (22.19)

J (t) = ct − dt2

2
(22.20)

Based on above I(t) and J (t), expressions of both the holding costs are obtained.
HC1 = ∫ T

0 (μ0 + μ1t)(y − (a + c)t + (b + d) t
2

2 )dt

HC1 = μ0

[

yT − (a + c)
T2

2
+ (b + d)

T3

6

]

+ μ1

[

y
T2

2
− (a + c)

T3

3
+ (b + d)

T4

8

]

(22.21)

HC2 = ∫ T
0 (ν0 + ν1t)(ct − dt2

2 )dt

HC2 = ν0

[
cT 2

2
− dT 3

6

]

+ ν1

[
cT 3

3
− dT 4

8

]

(22.22)

Expressions of transportation cost are obtained as follows:
TrC = (λ0 + λ1y1)y1 + (λ0 + λ1y2)y2
where y1 = ∫ T

0 (D1(t))dt = aT − bT 2

2

and, y2 = cT − dT 2

2
This gives, transportation cost:
TrC = λ0

[
(a + c)T − (b+d)T 2

2

] + λ1
[(
aT − bT 2

2

)2 + (
cT − dT 2

2

)2]

Based on the above, we calculate total cost:

TC = co + cp

[

(a + c)T − (b + d)
T 2

2

]

+ μ0

[

yT − (a + c)
T 2

2
+ (b + d)

T 3

6

]

+μ1

[

y
T 2

2
− (a + c)

T 3

3
− (b + d)

T 4

8

]

+ν0

[
cT 2

2
− dT 3

6

]

+ ν1

[
cT 3

3
− dT 4

8

]

(22.23)
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The expression of total revenue is given by:
TR = py1 + y2(p − r1+r2

2 )

= p(aT − bT 2

2 ) + (p − r1+r2
2 (cT − dT 2

2 )

Finally, the expression of total average profit is calculated as follows:

TAP(T ) = TR−TC
T

TAP(T ) = p

(

a − bT

2

)

+
(

R0 − r1 + r2
2

)(

c − dT

2

)

− co
T

− cp

[

a + c − (b + d)
T

2

]

−μ0

[

y − (a + c)
T

2
+ (b + d)

T2

6

]

− μ1

[

y
T

2
− (a + c)

T2

3
+ (b + d)

T3

8

]

−ν0

[
cT

2
− dT2

6

]

− ν1

[
cT2

3
− dT3

8

]

(22.24)

We have, y = y1 + y2 = aT − bT 2

2 + cT − dT 2

2 ; putting the value of y in above, we
get

TAP′(T ) = −pb

2
− d

2

(

R0 − r1 + r2
2

)

+ co
T2 + cp

b + d

2
− μ0

[
a + c

2
− 2(b + d)T

3

]

−μ1

[

(a + c)T − 3(b + d)T2

4

]

− ν0

[
c

2
− dT2

2

]

− ν1

[
2cT

3
− 3dT2

8

]

(22.25)

The structure of the above expression clearly shows that equation TAP′(T ) = 0 is a
polynomial equation of degree 4 in T . So we can obtain the solution using numerical
methods by MS-Excel software. Convexity for particular parameter value can be
shown graphically.

Theorem 22.1 The model in Sect.3.2.1 can be derived from model in Sect.3.2.2.

Proof Putting λ1 = 0 in the model 3.2.2., we get ct = λ0. Finally, putting in (22.9),
we get the expression of T identical as (22.6).
Under that special condition, total average profit can be seen as identical in both the
models. �

22.5 Numerical Examples and Sensitivity Analysis

Using the aforementioned procedure for obtaining optimal solution, the optimum
values of decision variables T and BB and total optimal profit have been calculated
for some initial values of the parameters of our model. Afterwards, in the sensitivity
analysis, by changing each parameter of the model from −30,−10% to 10, 30%,
effect on the change in optimal policy will be observed.
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22.5.1 Numerical Problem

The models developed above is illustrated by the following numerical data:
For 3.2.1D1 = 30,000 products per year,D2 = 20,000 products per year, cp = 100$
per product, co = 3000$, ch1 = 20$ per product per year, ch2 = 5$ per product per
year, p = 200$, R0 = 50$, r1 = 20$, r2 = 60$ ct = 0.5$ per product$
We obtain optimal values as T ∗ = 0.739 Years, y∗ = 3692.75, TAP∗ =
5,083,759.62$
For 3.2.2, We incorporate transportation cost parameters λ0 = 0.5, λ1 = 0.01; other
parameters remain equal to the previous, we obtain:
T ∗ = 0.0149, y∗ = 743.979, TAP∗ = 4,761,763.097
For 3.2.3, We use μ0 = 20, μ1 = 0.4 instead of ch1 Also, ν0 = 5, ν1 = 0.1 instead
of ch2 other parameters remain equal to the previous, we obtain:
We obtain T ∗ = 0.013, y∗ = 707.979, TAP∗ = 4,537,613.51
The reason behind decrements in the optimal values is due to the effect of increased
transportation cost, which depends on the quantity. This motivates lower order quan-
tity and cycle time and profit reduces correspondingly. For 3.2.4, We use a = 30,000
and b = 2 instead of D2; c = 20,000, d = 3, instead of D2. Other parameters are
identical as earlier.
We obtain T ∗ = 0.0137, y∗ = 699.302, TAP∗ = 4,495,237.51
In this scenario, the reason for decrement of profit is due to reduction in demand
rate. This also motivates to order less than non-decreasing demand scenario; hence
the optimal order quantity reduces in this case (Figs. 22.5 and 22.6).

Fig. 22.5 TAP versus T for case 3.2.3
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Fig. 22.6 TAP versus T for case 3.2.4

Table 22.1 Sensitivity analysis for model 3.2.1

Parameter % change Value T y TAP

ct −40 0.3 0.07385 3692.745 5,097,759.62

−20 0.4 0.07385 3692.745 5,090,759.62

20 0.6 0.07385 3692.745 5,076,759.62

40 0.7 0.07385 3692.745 5,069,759.62

ch1 −40 12 0.0926 4629.1 5,100,192.59

−20 16 0.0817 4082.483 5,091,515.31

20 24 0.0679 3396.831 5,076,682.39

40 28 0.0632 3162.278 5,070,131.67

ch12 −40 3 0.0752 3761.77 5,085,250.39

−20 4 0.0745 3726.78 5,084,501.55

20 6 0.0731 3659.62 5,083,024.39

40 7 0.0725 3627.38 5,082,295.71

22.5.2 Sensitivity Analysis

It can be observed in Table22.1, that effect of change on the vital cost parameters
which are the holding costs and transportation cost is considered. We can observe
that due to constant nature of the transportation cost, its effect can not be observed
in the order quantity; although it has an effect on total average profit. Increase of the
transportation cost reduces total average profit proportionately.
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Table 22.2 Sensitivity analysis for model 3.2.2

Parameter % change Value T y TAP

λ0 −40 0.3 0.01488 743.97 4,775,763.10

−20 0.4 0.01488 743.97 4,768,763.1

20 0.6 0.01488 743.97 4,754,763.10

40 0.7 0.01488 743.97 4,747,763.10

λ1 −40 0.006 0.00618 308.999 4,194,124.11

−20 0.008 0.005357 267.835 4,044,910.72

20 0.012 0.004378 218.88 3,794,379.70

40 0.014 0.004054 202.693 3,684,932.43

ch1 −40 12 0.004797 239.87 3,914,320.18

−20 16 0.004795 239.78 3,913,840.54

20 24 0.004727 239.59 3,912,881.79

40 28 0.004790 239.50 3,912,402.69

ch2 −40 3 0.004794 239.70 3,913,456.95

−20 4 0.004794 239.69 3,913,409.01

20 6 0.004793 239.67 3,913,313.14

40 7 0.004793 239.66 3,913,265.20

In Table22.2, the effect of change on the transportation and holding cost parame-
ters are shown. One can observe that there is inverse effect of variable transportation
cost component on the order quantity;whichmeans higher transportation cost implies
lower order quantity. On the other hand, the fixed component of the transportation
cost has no effect on the order quantity but it has an effect on total average profit.
Increase in the fixed transportation cost reduces total average profit proportionately.
Also for the holding cost of new items ch1, we can observe that there is marginal
effect on the order quantity but there is moderate effect on the total average profit.
Lastly, the holding cost of exchanged items ch1, we can observe that there is further
marginal effect on the order quantity but there is moderate effect on the total average
profit.

22.6 Managerial Implications

In the era of cut-throat competition in the electronic retailing markets it is difficult to
remain competitive. To have more market share, various retailers offer assortment of
schemes to sell their products. One of the most popular scheme is product exchange
offer where customers can exchange their old products with new ones by paying
marginal difference in price. Based on those situations, the models formulated in this
article suggest various insights for managers. The basic model shows that if all costs
are fixed then cycle time and order quantity are independent of transportation cost.
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But, when the transportation cost becomes dependent upon the quantity transported,
the cycle time and optimal order quantity both depend on the transportation cost in
an inverse manner. In other words, higher transportation cost motivates the retailer
to order in lower quantities. This predicts that in electronic retailing, transportation
can be one of the vital cost which managers should take into account. Besides this,
the models also show that declining demand has drastic effect on the profit of the
retailer.

22.7 Conclusion

The model formulated in this article contributes to the inventory system literature in
several uniquemanners. First, unlike previous inventorymodels, thismodel addresses
the situation when product is sold in the electronic-market with optional exchange
offer. This implies that the customer can buy the product either by paying full price
or paying discounted price after availing exchange offer. The optimal policy of the
model shows that there is a significant role of transportation cost when transportation
cost depends on the quantity transported. This can be vital. Secondly, the model
formulated in this article partially addresses the environmental aspects of inventory
modeling, where reverse logistics have been explored. This makes our model more
applicable for recent business trends. One can further explore to study quantitatively
the effect of product exchange offers in sales of such products which further affect
the inventory behavior. Besides this, multiple warehouses, imperfect products, and
supply network can also be included in the formulation of the some advancedmodels.
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Chapter 23
Electronic Components’ Supply Chain
Management of Electronic Industrial
Development for Warehouse and Its
Impact on the Environment Using
Particle Swarm Optimization Algorithm

Ajay Singh Yadav, Anupam Swami, Navin Ahlawat, Dhowmya Bhatt
and Geethanjali Kher

Abstract The electronic component model inventory is a method of balancing
investments to achieve the service-level goal. Here you can see the electronic compo-
nents warehouse and the distribution centers for the electronic components inventory.
Environmental heritage policy, electronic components, and electronic component
warehouses are very important issues, as the supply chain of electronic components
for chemicals is directly linked to people’s lives. Variable electronic component
order quantity, economical electronic component order quantity, electronic compo-
nent time order quantity, electronic component removal order quantity, and electronic
environment component order quantity inventory rules are usually used in the mod-
ern trend for inventory management of parts of electronics. However, effectively
managing the inventory of a substance in electronic components is a difficult prob-
lem due to its properties. We have proposed the PSO inventory policy for resellers
of electronic component warehouses in the electronic supply chain. We also model
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a model designed to measure the effectiveness of administrative strategies. The pro-
posed algorithm for artificial bee colony (PSO) determines the optimal product at
the time of the order using the current stock. The simulation results show that the
ABC algorithm for artificial bee colonies is an effective way to manage electronic
component warehouses and electronic component supply chains.

Keywords Electronic parts’ supply chain · Electronic components warehouses ·
Electronic components inventory · Particle swarm optimization algorithm (PSO)
and economic order quantity of electronic components

23.1 Introduction

As explained above, the storage center for electronic components and distribution
of electronic components occupies an important place in the business unit. Every
entrepreneur needs it during the transaction, whether it is finished products or raw
materials. In the current market scenario and the globalization of the market, the
business climate is very competitive and no one wants to lose goodwill in the market
and tries to satisfy customer demand. To this end, resellers and retailers always store
the goods in their store. In this damn commercial environment, sellers offer discounts
onbulkpurchases during the festival season, and they alsooffer a loanprogram to fund
resellers to attract their retailers. In order to benefit from these suppliers’ instructions,
retailers needed more space to store the products they had purchased as part of the
offer. However, because of their small footprint in crowded markets, retailers face
storage problems in their own stores and therefore require different storage spaces
to store their overbought products. To solve this problem, they rent another storage
space for a short rental period. This rented warehouse becomes additional storage
space provided by private/public or government agencies, and these spaces are used
as secondary storage space. The acquisition of leased space for storage integrated the
concept of storage and distribution center for electronic components into inventory
modeling. In the electronic component modeling inventory, the concept of electronic
component warehouse and electronic component distribution centers was introduced
for the first time in the concept of electronic components warehouse and distribution
centers, with limited capacity (electronic component distribution centers) and others
with unlimited capacity (Electronic Components Warehouse). In this concept, it is
often assumed that the accounting costs of electronic component warehouse items
are higher than those of electronic component distribution centers because of better
storage facilities provided by the owner of an additional warehouse. Therefore, it
is economical to first consume goods held in the stock of electronic components in
order to reduce the cost of maintaining the stock of electronic components. The latter
will discuss the benefits and limitations of the electronic component warehouse and
electronic component modeling distribution centers versus the electronic component
modeling model at a warehouse.
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Today, the environment is a necessary issue, a more lively topic, but today peo-
ple do not know about it. Outside of rural society, even in cosmopolitan life, this
is not so popular. Therefore, environmental protection has become a simple state
program. This relationship is very close to the whole society. If there is no natural
connection between people, environmental protection remains an impossible dream.
Direct communication with the environment is inherent. In our environment, we find
all kinds of animals, plants, and other living things. They all make the environment
together. In various scientific disciplines such as physics, chemistry, biology, etc.,
the basic principles of the subject and related experimental subjects are considered.
However, the current requirement is to focus on practical environmental knowledge
and associated practical knowledge. Modern society should be broader in environ-
mental issues. In addition, information about preventive measures is needed to deal
with this. In this mechanical age, we are experiencing this situation. Contamination
stands before us to destroy the whole environment in the form of a curse. The whole
world is in serious test. However, there is not enough reference material. In fact, it
is necessary for knowledge to relate to the environment so that the public can easily
understand the problem. In such a disgusting situation, society must fulfill its duties
and responsibilities. This can create an understanding of the environment in society.
In fact, living and nonliving creatures together form nature. Air, water, and earth are
in nonliving areas, while living things form in relation to animals and plants. The
important relationship between these components is that they depend on their vital
relationships. Although man is the most conscious and sensitive person in the world
of the Jiva, he depends on other animals, plants, air, water, and earth to meet his
needs. The organisms present in the human environment form the structure of plants,
air, water, and soil. Education through education is a powerful tool for the diverse
development of human life. Their main goal is to give people physical, mental, social,
cultural, and spiritual wisdom. Knowledge of the natural environment is very impor-
tant to achieve the goals of education. The tradition of knowledge about the natural
environment has been part of Indian culture from the very beginning. However, in
the modern materialist era, circumstances will be different. On the one hand, new
inventions are emerging in various fields of science and technology. On the other
hand, the same speed affects the human environment. By acquiring knowledge of
the links between the environment and education, many important functions in this
sense can be performed. The environment is closely related to science. However, in
their education, there are no scientific subtleties. Students should learn nature and
environmental knowledge in a simple and understandable language. This knowledge
should initially be superficial in introductory form. Other technical aspects should
be taken into account. The price of most electronic components’ supply chains will
be highly correlated with the overall profitability of the supply chain, which is the
difference between the income received by the customer and the total value of the
supply chain. The higher the profitability of the supply chains of electronic com-
ponents, the higher the supply chain. The success of the supply chain of electronic
components should be measured by the profitability of the supply chain of electronic
components, and not by the profit obtained at each stage. Cash flows are only a
means of exchange in the supply chain if different owners are at different stages.
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All information, products, or cash flows lead to costs in the supply chain. Therefore,
proper control over these rivers is key to the success of the electronic component
supply chain. Effective supply chain management of electronic components includes
managing the properties and products of the supply chain of electronic components,
information, and flow of funds to maximize the overall profitability of the supply
chain of electronic components. In fact, in order for everything to be done correctly
and quickly, especially for a large number of products, someone needs a system
that performs a number of tasks. Prepare forecasts, calculate the appropriate safety
margin, set an economical order quantity, set the optimum discount amount, correct
the discrepancies, and ensure complete transparency of changes in the supply chain
of electronic components so that they can immediately respond to this modifica-
tion. The supply chain of electronic components is only as strong as the relationship
between sellers, buyers, and other participants. It is important to consider these other
companies and suppliers as partners in the success of the supply chain of electronic
components, and this should be the main priority of the organization.

23.2 Literature Review and Survey of Electronic
Components’ Supply Chain Management

Nagurney et al. [1] presented a supply chain network operations management of
a blood banking system with cost and risk minimization. Yadav and Swami [2]
analyzed an integrated supply chain model for deteriorating items with linear stock-
dependent demand under imprecise and inflationary environment. Yadav and Swami
[3] discuss a partial backlogging production-inventory lot-size model with time-
varying holding cost and Weibull deterioration. Yadav et al. [4] presented a supply
chain inventory model for decaying items with two warehouses and partial ordering
under inflation. Yadav et al. [5] proposed an inventory model for deteriorating items
with two warehouses and variable holding cost. Yadav et al. [6] analyzed an inven-
tory of electronic components model for deteriorating items with warehousing using
genetic algorithm. Yadav et al. [7] discussed an analysis of green supply chain inven-
tory management for warehouse with environmental collaboration and sustainability
performance using genetic algorithm. Yadav and Kumar [8] presented an electronic
components’ supply chain management for warehouse with environmental collab-
oration and neural networks. Yadav et al. [9] analyzed an effect of inflation on a
two-warehouse inventory model for deteriorating items with time-varying demand
and shortages. Yadav et al. [10] discussed an inflationary inventory model for dete-
riorating items under two storage systems. Yadav et al. [11] proposed a fuzzy-based
two-warehouse inventory model for non-instantaneous deteriorating items with con-
ditionally permissible delay in payment. Yadav [12] analyzed an analysis of sup-
ply chain management in inventory optimization for warehouse with logistics using
genetic algorithm. Yadav et al. [13] discussed a supply chain inventory model for
two warehouses with soft computing optimization. Yadav et al. [14] presented a



23 Electronic Components’ Supply Chain Management of Electronic … 431

multi-objective optimization for electronic component inventory model and deteri-
orating items with two warehouses using genetic algorithm. Yadav [15] analyzed a
modeling and analysis of supply chain inventory model with two warehouses and
economic load dispatch problem using genetic algorithm. Yadav et al. [16] dis-
cussed a particle swarm optimization for inventory of auto-industry model for two
warehouses with deteriorating items. Yadav et al. [17] presented a supply chain man-
agement of chemical industry for deteriorating items with warehouse using genetic
algorithm. Yadav [18] discussed an analysis of seven stages of supply chain manage-
ment in electronic component inventory optimization for warehouse with economic
load dispatch using GA and PSO. Yadav et al. [19] gave a multi-objective genetic
algorithm optimization in inventory model for deteriorating items with shortages
using supply chain management. Yadav et al. [20] analyzed a supply chain man-
agement in inventory optimization for deteriorating items with genetic algorithm.
Yadav et al. [21] discussed a modeling and analysis of supply chain management
in inventory optimization for deteriorating items with genetic algorithm and particle
swarm optimization. Yadav et al. [22] presented a multi-objective particle swarm
optimization and genetic algorithm in inventory model for deteriorating items with
shortages using supply chain management. Yadav et al. [23] proposed a soft comput-
ing optimization of two-warehouse inventory model with genetic algorithm. Yadav
et al. [24] analyzed a multi-objective genetic algorithm involving green supply chain
management. Yadav et al. [25] presented a multi-objective particle swarm optimiza-
tion algorithm involving green supply chain inventory management. Yadav et al.
[26] gave a green supply chain management for warehouse with particle swarm opti-
mization algorithm. Yadav et al. [27] analyzed an analysis of seven stages of supply
chain management in electronic component inventory optimization for warehouse
with economic load dispatch using genetic algorithm. Yadav et al. [28] discussed an
analysis of six stages of supply chainmanagement in inventory optimization forware-
house with artificial bee colony algorithm using genetic algorithm. Yadav et al. [29]
presented an analysis of electronic component inventory optimization in six stages
of supply chain management for warehouse with abc using genetic algorithm and
PSO. Yadav et al. [30] discussed a two-warehouse inventory model with ramp-type
demand and partial backordering for Weibull distribution deterioration. Yadav et al.
[31] proposed a two-storage model for deteriorating items with holding cost under
inflation and genetic algorithms. Singh et al. [32] analyzed a two-warehouse model
for deteriorating items with holding cost under particle swarm optimization. Singh
et al. [33] presented a two-warehouse model for deteriorating itemswith holding cost
under inflation and soft computing techniques. Sharma et al. [34] gave an optimal
ordering policy for non-instantaneous deteriorating items with conditionally permis-
sible delay in payment under two storage managements. Yadav et al. [35] discussed
an analysis of genetic algorithm and particle swarm optimization for warehouse with
supply chain management in inventory control. Swami et al. [36] analyzed inventory
policies for deteriorating item with stock-dependent demand and variable holding
costs under permissible delay in payment. Swami et al. [37] discussed an inventory
model with price-sensitive demand, variable holding cost, and trade credit under
inflation. Gupta et al. [38] proposed a binary multi-objective genetic algorithm and
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PSO involving supply chain inventory optimization with shortages, inflation. Yadav
et al. [39] analyzed a soft computing optimization based two-warehouse inventory
model for deteriorating items with shortages using genetic algorithm. Yadav and
Swami [40] presented a two-warehouse inventory model for deteriorating items with
ramp-type demand rate and inflation. Yadav and Swami [41] discussed an effect of
permissible delay on two-warehouse inventory model for deteriorating items with
shortages. Yadav and Swami [42] analyzed a two-warehouse inventory model for
decaying items with exponential demand and variable holding cost.

23.3 Related Works

23.3.1 Electronic Parts’ Supply Chain

The ecological source of raw materials is almost identical to other logistics. Spare
parts for electronics are exported to electronic components warehouses in the process
of production and packaging at an electronic component production plant. The deliv-
ery method is determined by the characteristics of each raw material. Figure 23.1
illustrates the rawmaterials supply chain process. Parts of electronics are divided into
prescription and general types. Eco-friendly packaging allows you to purchase elec-
tronic components in distribution centers for electronic components and electronic
components. However, this requires a recipe, whichwas published on the recipe elec-
tronic components. Electronic component warehouses transfer the electronic com-

Electronic 
components Raw Electronic components

Manufacture

Electronic components 
warehouses

Electronic 
components
Retailer’s

Distribu on Center

Electronic components Product 
packaging disposal

Fig. 23.1 Electronic parts’ supply chain
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ponents directive to electronic distribution centers or the electronic component seller
in accordance with the distribution guidelines. This latter process differs according
to the type of raw material used. In particular, the seller must notify the government
of the delivery, purchase, and use of therapeutic products. Electronic component dis-
tribution centers provide the patient with electronic materials, such as injections or
blends. Electronic component resource stores sell general recipes or electronic com-
ponent resources according to the rules. This process provides electronic components
for the final disposal of electronic products.

23.3.2 Electronic Components Inventory Policy

Listing policy is open to uncertainty at all stages of the supply chain. For this strategic
work remain raw materials and products. The ideal number in the list is close to
0. However, stocks of electronic components absorb some reserve reserves due to
uncertainty. A reduction problem may arise if the stock is set at the lowest point
and vice versa. In accordance with the optimal inventory management strategy, the
list policy can be divided into variable order quantity, economical order quantity
of electronic components, order quantity of electronic components time, and order
quantity. The number of variable commands is also called the V-system. If the list
falls below the threshold, the agent automatically controls the specified number of
products. It is easy to control the number of control variables, and the product is
suitable that it is impossible to control and forecast demand. Due to an extensive list
of variable order quantities, the cause of the warehouse can cause problems. TOQEC
is also called the P system. The agent controls the deficit by regularly checking
stock. However, it should ensure the safety of stocks compared to other methods,
since inventory instability is considered only in the following list. Order quantity
MRP is a combination of variables, order quantity and. The order of the manager is
the sum of R if the list falls below the threshold. R is obtained by reducing the amount
of electricity to the appropriate amount. The amount of environmental control (EQE)
is a periodic guide. The manager checks the stock for the normal order duration U
and adds an R in advance. This policy is useful when demand is stable. Otherwise,
it is difficult to determine the quantity ordered.

23.3.3 Particle Swarm Optimization Algorithm

Optimization of a swarm of particles is initiated by a set of random solutions, and
a random velocity is assigned to each potential solution. Solutions, called particles,
then fall into the problem space. Each particle follows its coordinates in the space of
tasks related to the best solution or suitability, provided that the value of the physical
state is also preserved. This value is called pbest. The generic version of PSO is
another best value for money: the best value for money that has ever been achieved
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by a fraction of the population. This value is called gbest. At each stage, when a
particle changes direction and moves to its pbest and gbest, this is a global version
of PSO, when in addition to pbest each particle is looking for a better solution,
called nbest or lbest, in the local environment topological environment. Particles are
achieved. The process is called a local version of PSO.

1: P: = 0
2: {Mx , Nx ,Ux , Vx }Xx=1: = initialize()
3: for a: = 1: U
4: for b: = 1: X
5: for r: = 1: R
6: n(a+1)

xc = ynaxc + c1d1
[
Vxc − ma

xc

] + c2d2
[
Uxc − ma

xc

]

7: Ma+1
x = Ma

x + mNa
x + ∈a

8: end
9: Mx: = enforce Constraints(X)
10: Yx := f(Mx )

11: ifMx � e ∀ e ∈ P
12: P: = e ∈P/e ≮ Mx

13: P: = P ∪ Mx

14: end
15: end
16: ifMx ≤ Vx ∨ (Mx ≮ Vx ∧ Vx ≮ Mx)
17: Vx: = Mx

18: end
19: Ux: = selectGuide(X, A)
20: end

We are using those basic steps for finding the optimal resources for an organization
in medium-range prospective using MATLAB software package.

23.4 Model Design

23.4.1 Electronic Parts’ Supply Chain

Based on the analysis of process management results, we prepare simulations for
a global configuration of electronic component inventory management and a phar-
maceutical supply chain. To implement methods of environmental management of
stocks, we need to analyze the goods and their properties in the supply chain. The
data component for analyzing the list data includes the maximum and minimum
stock, the order cycle, and the delivery time. And we determine sales prices, sales,
delivery costs, order numbers, average stocks, stock prices, and net income based on
data components. Resource management models should be modeled and emulated.
The supply chain includes an electronic component plant, electronic component
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warehouses, electronic component distribution centers, and electronic component
retailers. The plant of electronic components develops and manufactures new elec-
tronic components from rawmaterials. Produced electronic components are stored in
packaging and labeling conditions depending on these types and sizes. The company
needed a number of pieces of electronics in eachwarehouse of electronic components
to handle ships.

The electronic component warehouse imports electronic components from an
electronic component plant. Imported electronic components are stored in a con-
tainer by type and characteristics. The production of electronic components requires
a reduction in rawmaterials. Ordering the required number of electronic components
in electronic component warehouses requires environmentally sound inventory man-
agement, which takes into account the costs of maintenance and administration. Due
to the nature of the supply chain, the environmental distribution center and the stor-
age of raw materials are located at a lower level. Electronic component warehouses
are asked to supply electronic components from distribution centers for electronic
components and pharmaceuticals and export the required quantity. As a result, it is
difficult to predict demand. The environmentally friendly distribution center receives
electronic components from an electronic component warehouse. Electronic parts
can be used directly from electronic components distribution centers with a doctor’s
prescription. Unused list can be issued in the nearest resources. This delivery occurs
when the electronic component vendor requests electronic components. The ecologi-
cal retailer is the last step in the supply chain, providing direct electronic components
for packaging electronic components. Universal raw materials can be sold directly
to the electronic components of the product packaging products. On the contrary,
proof is required for some parts of the electronics. Spare parts for electronics can be
obtained from the electronic component warehouse or electronic distribution cen-
ters. There is an urgent need to get through the distribution centers of electronic
components. Bulk purchases are part of the electronic component warehouse.

23.4.2 Electronic Parts Model

The supply chain consists of four stages: production of electronic components, ware-
houses of electronic components, distribution centers for electronic components, and
storage of goods. Parts of electronics were classified into six types, called A and J
values, and are associated with the demand for products for production, as well as
classification data for specific products. There are differences in the delivery time,
price, and demand for each product. Product margin is 40% of sales. We believe that,
despite the product type, the list and shipping cost are the same. The parameters of
the raw material models are presented in Table 23.1.
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Table 23.1 Characteristic by electronic parts

Product Rate Demand Lead
time

Holding
cost (%)

Cost of
loss (%)

Environment
cost (%)

Packaging
disposal
cost (%)

EC1 19,174 288.96 3 year Price * 19 Price * 110 Price * 115 Price * 113

EC2 18,156 255.25 3 year Price * 19 Price * 110 Price * 115 Price * 113

EC3 17,256 244.77 3 year Price * 19 Price * 110 Price * 115 Price * 113

EC4 15,126 266.89 3 year Price * 19 Price * 110 Price * 115 Price * 113

EC5 16,756 277.49 3 year Price * 19 Price * 110 Price * 115 Price * 113

EC6 11,256 256.63 3 year Price * 19 Price * 110 Price * 115 Price * 113

EC7 11,789 257.23 3 year Price * 19 Price * 110 Price * 115 Price * 113

EC8 14,759 212.78 3 year Price * 19 Price * 110 Price * 115 Price * 113

EC9 12,358 290.13 3 year Price * 19 Price * 110 Price * 115 Price * 113

EC10 13,459 260.36 3 year Price * 9 Price * 10 Price * 15 Price * 113

23.4.3 Electronic Components Inventory Policy

In this study, wemeasure the reduction in quantity and frequency for the supply chain
of electronic components, the net profit and cost of stocks of electronic components,
individual stocks, and the total stock of electronic components. Due to a defect,
expenses are only added to the retail store. In contrast, transportation and environ-
mental costs arise in both phases. We select the variable order quantity of electronic
components, the economical quantity of the order of electronic components, the
quantity of the temporary order, the quantity of the order for removing electronic
components, and the quantity of the order of electronic components of the environ-
ment and electronic components. The proposed algorithm for artificial bee colonies
calculates the optimal order at certain points in time. The particle swarm optimization
algorithm uses current minimum and maximum stocks to calculate orders for each
electronic component. Particle swarm optimization algorithm calculates the optimal
order for each electronic part at the time of ordering. We have determined the local
mass and the total calculation at 0.74. This is the most commonly used value for
finding the optimal point. The number of iterations is set to 112. The optimal order
is calculated after the 2100th repetition. All calculations are based on the fitness
function given in Eq. 23.1.

Format function = minimum requirement + quantity + maximum quantity

+ order quantity + order quantity for disposal

+ order quantity in the environment (23.1)

This formatting function calculates the current and quantity ordered. For this
calculation, the ordered quantity must be greater than the minimum required capac-
ity. GA increases net profit using a fitness function to maintain minimal potential.
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Table 23.2 Detail method

Method Note

Economic order quantity of electronic
components

Order quantity = Max electronic components
inventory capacity * 74%
Order time = Max electronic components
inventory capacity * 60%

Variables order quantity of electronic
components

Order quantity = Max electronic components
inventory capacity * 40%
Order time = Max electronic components
inventory capacity * 60%

Time order quantity of electronic components Order quantity = Max electronic components
inventory capacity—current electronic
components inventory
Order time = 3 Year

Disposal order quantity of electronic
components

Waste order quantity = Max electronic
components inventory capacity—current
electronic components inventory
Order time = Max electronic components
inventory capacity * 60%

Environment order quantity of electronic
components

(Water + Air + Waste) Quantity = Max
electronic components inventory capacity *
10%
Order time = 10 Day

Particle swarm optimization algorithm (PSO) Order quantity = PSO result
Order time = Max electronic components
inventory capacity * 65%

Table 23.2 shows the specific configurations of individual methods. Order time is 4
days, and time is 60% of the maximum. Results are calculated separately for each
electronic component.

23.5 Industrial Development and Its Impact
on Environment

Outstanding technological advances have increased our ability to produce goods
and improve living conditions. However, it caused less important events, such as
pollution. The impact of deteriorating quality of life has been affected. In the past,
improvements in the quality of life created by new technologies have adversely
affected the environment. Recently, however, some doubts have arisen that advances
in technology will improve the quality of life. It can be seen that the increase in
productivity not only aggravates the deterioration of the quality of raw materials but
also reduces the environment due to the loss of waste. On one hand, the environment
is a source of energy and materials that are converted into goods and services to meet
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Fig. 23.2 The environmental impacts of each stage

the needs of people. On the other hand, it is synchronized with waste and emissions
produced by producers and consumers (Fig. 23.2).

The number and variety of chemicals used daily are increasing rapidly. Their
design sometimes uses new chemicals whose effects on health are unknown or harm-
ful. Although these chemicals are of great benefit to society, they potentially threaten
the waste generated during the production process. Millions of tons of toxic or other
hazardous substances are released into the environment every year. One of the most
disturbing features of the problem is that the long-term effects of exposure to chem-
icals are very small. We now know that some of these periods can cause cancer, that
nervousness can be delayed, distortions of children in cities, and mutations. Many
other chemicals are likely to have similar effects, but since they take time to identify,
and their causes are difficult to determine, we still do not know who is dangerous.
The situation is also problematic, since these chemicals are very complex in the
environment and can spread and turn into other substances with different effects.

23.6 Simulation

The simulated raw materials for electronic components are used to compare and
check the inventory management list of electronic components in the supply chain.
As shown in the figures, the virtual system includes 110 manufacturers of electronic
components, wholesale, 110 centers of distribution of electronic components, and
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155 commodity stores. Table 23.3 presents the 155 parameters of raw materials for
modeling.

Supply chain modeling was carried out with each management method for 700
virtual days. We obtained the results by calculating the sum of 5000 simulations. To
evaluate each inventorymanagementmethod for electronic components, we compare
sales prices, sales invoices, order numbers, shipping costs, stock prices, and net
income. Equation 10 describes the calculation of distribution costs, stock prices, and
net income.

Electronic components delivery Cost =
10∫

1

Electronic components sales account1

∗ Electroniccomponents account1 ∗ 1.29 + Environment Cost

+ packaging disposal Cost

Electronic components stock Cost =
10∫

1

current Electronic components

inventory quantity1 ∗ 1.798 + Environment Cost + packaging disposal Cost

Electronic components net Profit =
10∫

1

(Electronic components sales cost ∗ 1.23)

Table 23.3 Product parameter

Product Max electronic
components
inventory
capacity

Minimum
required
electronic
components
inventory
capacity

Initial electronic
components
inventory

Price Demand (%)

EC-1 18,000 24,000 41,000 36,000 15.3

EC-2 17,910 22,100 41,100 32,100 15.1

EC-3 17,820 22,090 41,090 33,000 15.0

EC-4 17,620 22,080 41,080 34,000 14.9

EC-5 17,930 22,070 41,170 35,000 14.0

EC-6 17,710 22,060 41,360 36,000 11.1

EC-7 17,610 22,050 41,950 37,000 10.4

EC-8 16,560 22,010 41,810 38,000 09.7

EC-9 16,640 22,020 41,520 31,000 09.2

EC-10 16,120 22,070 41,470 32,000 08.4
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− Electronic components delivery cost − Electronic componentsstock cost

+ Environment Cost + packagingdisposal Cost

Electronic components Transportation Costs =
100∫

10

Electronic components Sales

Account1 ∗ Electronics parts Account1 ∗ 11.29 + Environmental Costs

+ Packaging Disposal Costs

Electronic components inventory Costs =
10∫

1

Current Electronic components

inventory1 ∗ 11, 798 + Environmental Costs + Packaging Disposal Costs

Electronic components Net Profit =
100∫

10

(Electronic components Sales Costs ∗ 1.23)

− Electronic components Transportation Costs − Electronic components

Storage Costs + Environmental Costs + Packaging Disposal Costs

.

23.6.1 Simulation Result

Simulation results are shown in Table 23.4.

Table 23.4 Simulation result electronic components supply

Product Electronic
components
sale price

Electronic
components
sale
account

Electronic
components
order count

Electronic
components
delivery
cost

Electronic
components
stock price

Electronic
components
net profit

VOQEC 31,279.413 42.218 35.480 1,948.382 17,760.334 25,803.048

TOQEC 32,322.720 41.405 32.685 1,979.682 19,235.473 23,813.933

DOQEC 33,263.033 41.278 36.181 1,857.891 18,408.974 23,838.348

EOQEC 35,258.522 41.896 33.176 1,817.756 19,335.446 23,050.207

PSO 38,761.324 41.275 31.362 1,902.840 16,657.568 26,044.121

Total
average

34,377.002 41.614 37.777 1,921.310 18,519.559 24,509.932
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This simulation determines the optimal policy and reduces the gap between the
number of orders and the sales account. The order of theMRP electronic components
and the time control of the electronic components TOQ are not suitable, since they
have the greatest difference (41.280) between the quantity of the order of the model
and the sales invoice. Variable control loudness 83.262 and datasets 54.903 for the
number of electronic components for environmental monitoring, which are relatively
small differences. However, the proposed algorithm for an artificial bee colony has
the slightest difference. We find that the proposed model is the optimal listing policy
for the supply chain of medical services with the highest net profit. As a result
of the simulation, the raw materials for electronic components of an algorithm for
optimizing a swarm of particles are the most efficient method for managing the
stocks of electronic components in the supply chain. The algorithm of an artificial
bee family order organizes a predefined set of lists. The particle swarm optimization
algorithm is usually a problem with an additional list. However, drug orders vary
considerably. In addition, medication must control many elements. An artificial bee
colony algorithm may be a suitable method for characterization.

23.7 Conclusion

The purpose of this work is to analyze the effective method of accounting for control
of warehouses of electronic components in the supply chain of raw materials. We
analyze the supply chain of raw materials and carry out modeling and simulation.
List policy is an important factor in determining the time and quantity of the order.
It is also important to manage optimal supply chain benefits. Therefore, in order to
increase profits, it is necessary to reduce the trade-off between consumption and con-
trol. This letter suggests list strategies using a particle swarm optimization algorithm.
The proposed particle optimization algorithm calculates the optimal order from the
existing stock at the expected standard time. We compare order quantity variables,
economical order quantity for electronic components, order duration, order quan-
tity for removal of electronic components, amount of environmental control, and an
algorithm for an artificial bee colony. The simulation results show the effectiveness
of orders related to the remaining orders and the specified number of orders. The
particle swarm optimization algorithm satisfies both conditions, and the rawmaterial
supply chain for electronic components is a useful way to manage electronic com-
ponent storage policies. The limitations of this study are as follows. It is difficult to
imagine the number of distribution centers for electronic components and electronic
components. In addition, we did not take into account the characteristics of demand.
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Chapter 24
Interpretive Structural Modeling
to Understand Factors Influencing
Buying Behavior of Air Freshener

Deepti Aggrawal, Jagvinder Singh, Anurag Kumar and Adarsh Anand

Abstract In order to gain “loyalty”, a firm has to maintain “quality” that defines
acceptability of its offerings. In the era of globalization, all industries face cutting-
edge competition and it becomes difficult to survive for less qualitative products.
This paper is an attempt to study attributes preferred by air freshener buyers. A
multi-scaling technique, interpretive structural modeling (ISM), has been applied
to understand and find the contextual relationship amongst the various attributes
under study. Furthermore, MICMAC classification has been done to determine the
autonomous, dependent, linkage and independent nature of the factors. Out of 14
attributes, only 5 comes out to be independent which are the deriving attributes for
the rest of attributes. The findings can also help company policymakers with under-
standing the interrelated attributes associated with trustworthiness in the context of
air freshener industry and implement them in effective strategic planning. This study
has been carried out in one of the metropolitan cities of India and results obtained
are significant.
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24.1 Introduction

With the advent of globalization which refers to the Borderless world, a product
or service can be accessed anywhere in the world. In the era of Internet, it becomes
imperative for the company to keep on studying the consumer behavior in continuous
manner. The moment consumer feels dissatisfied, so they start switching from one
company to another company. In order to keep the consumer base intact, organiza-
tions tend to adopt various strategies to attract customers, for example, substitution
approach, guarantee, discounts, etc., and try to hold their buyers with them for a
longer period of time. There is immense accessibility of the items in the market;
in this way, it winds up noticeably troublesome for the organization to distinguish
the critical traits of customers for purchasing a specific item. For example, some
arrangement of attributes like cost and configuration can be essential for a couple of
customers; however, on the other hand, quality and accessibility can be vital for some
different customers. These attributes assume a pivotal part and have a genuine effect
on the basic decision-making of the customers. However, this investigation is mainly
focused on the attributes for purchasing an air freshener in India, while stressing
factors like quality, cost, accessibility and so forth. According to a survey conducted
for this study, “Quality” can be considered as the most vital characteristic for most of
the customers in India [9]. According toW.A. foster, “Quality is never an accident; it
is always the result of high intention, sincere effort, intelligent direction and skillful
execution. It represents the wise choice of many alternatives” [2]. Along these lines,
quality assumes an imperative part in gaining consumer loyalty and it encourages
the buyers to buy and repurchase the items with the goal that the organization can
upgrade their business and make benefits [6].

Air fresheners are consumer products that lie in the category of cosmetics, used in
homes or commercial places that typically emit fragrance. Being a standout amongst
the most crowded nation on the planet, it serves a huge marketplace for the com-
panies which deals in the air freshener industry. Customer needs today are quite
dynamic and challenging due to the presence of high competition in the market. In
case of air freshener, demand of the customers goes beyond from good fragrance to
air purification and pleasant environment through organic, natural and environment-
friendly products. Air freshener industryworks on the strategic reconciliation ofmar-
ket requirements and the operational capabilities of the firm. Therefore, it requires
consistent product developments and innovation to attract consumers through aggres-
sive campaigns and advertisement. Organizations are urging Indian buyers to use air
fresheners in their day-to-day lives to enhance air cleanliness. Indeed, Delhi Metro
prepares the advertisement which has been placed inside the metro coaches “Use
antiperspirant to keep the surroundings hygienic”. Nowadays, it has been turned out
to be basic practice to utilize surrounding smells in different shopping spots to keep
the environment wonderful and it has some good effects on the spending habit and
emotions as well [5, 7, 8]. Various forms of air freshener available in the market
range from sprays, candles, oils and plug-ins. These air care products are available in
a variety of fragrances like lavender, jasmine, rose, sandalwood, lemon, apple, etc.
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Indian air care market is largely divided into three segments: room fresheners,
bathroom fresheners and car fresheners. Due to huge demand of car fresheners in
India, the car freshener market considered to be the most successful market in the
context of air freshener. In India, themarket for room fresheners is growing at a stable
rate, whereas according to “India Air Care Market Outlook, 2022” air freshener
market for cars is expected to see a Compounded Annual Growth Rate (CAGR) of
more than 15% over next 5 years.

Today, the Indian market for air fresheners witnessed the growing importance of
aromatherapy in homes, and consumer preference for having the fragrant environ-
ment. Aromatherapy is getting very popular among Indian consumer because it has
diverse applications, including speed up the healing process, ease depression and
strengthen the immune system. Manufacturers are trying each and every possible
effort to make the consumers aware about the products they use through different
media; however, it still has a long way to go. For the time being, only Indian metro
cities and urban areas are generating most of the revenue for the air freshener indus-
try, but the rural penetration is almost negligible because the type of population
resides in rural India is comparatively rigid in accepting any product belongs to cos-
metic Industry but this can present ample opportunities to the air freshener industry.
Therefore, in this work, our main objective was to identify the contextual relation-
ship among the various attributes related to air freshener industry. A combination of
interpretive structural modeling (ISM) and MICMAC analysis has been applied for
the successful execution of this study.

24.2 Research Methodology

ISM is the technique which is used for identification and encapsulating relationship
among the distinct variables. Hence, this methodology gives a clear picture of com-
plex real-life problems so that the managers, researchers, and individuals can take
some relevant actions by interpreting the results given by ISM and MICMAC.

ISMwas first developed byWarfield in 1974 though the applications of ISM have
been used many times in past [15, 16, 17] used ISM in different fields of the supply
chain management. Attri et al. in [3] described the merits and demerits of using
ISMmethodology. The application of ISM technique can be found in various diverse
fields of the supply chain and operations management [4, 14], whereas Mishra et al.
[13] incorporated the ISM technique along with some other MCDM techniques to
identify the deriving factors in the context of international manufacturing network.
Though ISM does not provide any statistical validation of the study, the results are
efficient and easy to interpret for firm managers and experts. Lamba and Singh [12]
applied ISM with other MCDM techniques to identify key enablers in the domain of
supply chain management.

Air care industries are incorporating the notion of “free samples” offer for the pro-
motional purpose so that the companies can get to know how the sample is behaving
and diffusion is taking place into the market. Here, positive word-of-mouth of free
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samples can develop and create artificial demand before the launching of the actual
product into the market. All these efforts put in before launching have positive effect
on the diffusion and adoption of the product in highly competitivemarket [1]. Kannan
et al. [11] discussed the steps contained in the methodology of ISM.

(a) Analyze the problem. Distinguish the different factors which are important to
this particular study. These factors can be found using various MCDM tech-
niques available. In the present study, all the 14 factors as mentioned and
described in Table 24.1 are taken into consideration which is found important
by the survey done in the region of Delhi NCR.

(b) Once the variables are identified, contextual relationship is examined.
(c) Development of structural self-interactionmatrix (SSIM). This matrix performs

pair-wise comparison and gives a relationship among various factors.
(d) Reachability matrix is formed through SSIMmatrix; thereafter, transitivity step

is performed thoroughly. Different levels created through previously obtained
SSIM matrix.

(e) Based on relationship among factors assigned in reachability matrix the digraph
is drawn.

Table 24.1 Important attributes for purchasing an air freshener

S.No Attributes Definition

C1 Pricing Refers to the amount required as payment for something be it
product or service

C2 Packaging Packaging basically a marketing strategy to make product
attractive by the way it looks from outside

C3 Fragrance A pleasant smell out of perfume, flower, etc.

C4 Long lasting Anything which is continuing for a long period of time

C5 Variety Variety means variant of diversity the absence of uniformity

C6 Availability Availability defined as the presence of that particular product and
service in the market

C7 Brand Brand is just an identification mark by any well-known brand or
regular brand

C8 Aromatherapy It is basically a process to insert nature into products or services in
order to market them

C9 Odor control It is defined as unpleasant smell out of anything

C10 Disinfectant Any process to destroy the microbes

C11 Discounts A deduction from the regular cost of something

C12 Advertisements In order to make the product or service, popular advertisement is
done through media allocation problem

C13 Recommendations To give suggestions in the favor of something or someone

C14 Prestige Refers to good reputation earned with the aspect of time and
word-of-mouth
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(f) Various factors have been clustered through MICMAC analysis to validate ISM
findings.

24.3 Case Study

A survey was conducted, and the sample size of 150 respondents was selected of
different age groups and gender. For this, a questionnaire was designed and the study
was done through personalized interviews in the region of Delhi and NCR. It was
ensured that the respondents understand the interrelationships among the attributes,
and thereafter their opinions have been collected. Further, the respondent’s opinions
are considered as the input and found to have the practical validity.

Structural self-interaction matrix (SSIM)
The contextual relationship between the two selected factors, i.e. factors i to factor j
in a pair-wise comparison is directed using the following four symbols:

(a) V denotes how factor i is related to factor j (i.e. “factor i influences factor j”).
(b) A denotes how factor j is related to factor i (i.e. “factor j influences factor i”).
(c) X denotes the relation from both directions (i.e. “both factors i and j influence

each other”).
(d) O denotes factors having no relation in between (i.e. “factors i and j are not

related”).

Based on above-mentioned contextual relationships, further the SSIM matrix is
formed. To avoid any kind of ambiguities, SSIM should be examined by the experts
from industry or academic, and then only final SSIM should be formed; otherwise,
chances of flaws would be high in the SSIM matrix. Refer Fig. 24.1 to understand
the SSIM matrix.

Fig. 24.1 Structural self-interactive matrix (SSIM)
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Step 1: Initial Reachability Matrix: In this step, an initial reachability matrix is
formed through structural self-interaction matrix which was obtained in the previous
step. Here, SSIM is transformed into a binary matrix called an initial reachability
matrix by replacing these four symbols (i.e. V, A, X or O) of SSIM with 1 s or 0 s.
The replacement procedure is given below:

(a) If the entry (i, j) in the SSIM is V, then entry (i, j) in the reachability matrix
gets the value 1 and the entry (j, i) gets the value 0.

(b) If the entry (i, j) in the SSIM is A, then entry (i, j) in the matrix gets the value
0 and the (j, i) entry gets the value 1.

(c) If the entry (i, j) in the SSIM is X, then both the entries (i, j) and (j, i) in the
matrix get the value 1.

(d) If the entry (i, j) in the SSIM is O, then both the entries (i, j) and (j, i) in the
matrix get the value 0.

After following the above-mentioned steps, the initial reachability matrix as pre-
sented in Fig. 24.2 can be obtained. Thereafter, final reachability matrix is obtained
by checking the initial reachability matrix for transitive links.

Step 2: Using these steps, SSIM can be transformed into reachability matrix.

(a) If the entry (i, j) in the SSIM is V, then entry (i, j) in the reachability matrix
gets the value 1 and the entry (j, i) gets the value 0.

(b) If the entry (i, j) in the SSIM is A, then entry (i, j) in the matrix gets the value
0 and the (j, i) entry gets the value 1.

(c) If the entry (i, j) in the SSIM is X, then both the entries (i, j) and (j, i) in the
matrix get the value 1.

(d) If the entry (i, j) in the SSIM is O, then both the entries (i, j) and (j, i) in the
matrix get the value 0.

Fig. 24.2 Initial reachability matrix
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Final reachability matrix
The concept of transitivity becomes important to achieve final reachability matrix.
Transitivity states that if an element A is related to B and somehow B is related to
C, then it can be concluded that A is certainly related to C. Using this approach, a
matrix as represented through Fig. 24.3 can be obtained.

Conical Matrix
Next, to obtain a conical form as shown in Fig. 24.4, factors are clustered at the same
level across the columns and rows of the final reachability matrix. Adding up the
number of ones in the rows provides the driving power. On the similar lines, summing
up the number of ones in the columns provides the dependence of the factors.

Step 3: Level partitions: Based on final reachability matrix, both reachability and
the antecedent sets are obtained for every parameter. Next, the intersection of these
sets is obtained to determine the different levels to which the factor belongs. If both
reachability and the antecedent sets found to be identical, then that specific factor
secures the topmost position in the ISM progression. If topmost level parameter is
obtained, it will be dropped from the list for the next iteration. A similar procedure is
performed again so as to identify the factors for the following level. Following this
procedure, levels for all the parameters are obtained.

In this particular studyof air freshener, reachability set, antecedent set, intersection
set and levels of different parameters considered are shown to be deduced in iterations
(given in the form of Fig. 24.5a–g).

Step 4: Build digraph on the basis of relationship obtained in reachability matrix
after removing transitive links.

Initial digraph which includes transitive links is obtained from the conical form
and again digraph is formed after eliminating the indirect links. However, a digraph
is basically the representation of the elements and their interdependence on each

Fig. 24.3 Final reachability matrix
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Fig. 24.4 Conical matrix

other. ISM model is developed which does not contain any transitive links as shown
in Fig. 24.6.

Step 5: After obtaining the driving power and dependence, MICMAC analysis is
conducted. MICMAC analysis is a graphical representation and validation of ISM
findings and not absolute in nature; it only gives the direction to the results obtained
from ISM up to some extent. It basically divides the graph into four distinct groups
such as autonomous parameter (I), dependent parameters (II), linkage parameters
(III) and independent parameters (IV).

The structure of the MICMAC can be designed using the driving and dependence
power of all the attributes that were calculated while forming the conical form of the
final reachability matrix. In this study, we have considered dependence on x-axis,
whereas deriving power on y-axis and there is no set rule for making MICMAC
analysis.

1. Autonomous parameters: This quadrant contains all those parameters which
exhibit weak deriving power as well as weak dependence.

2. Linkage parameters: This quadrant contains all those parameters which exhibit
strong driving power and strong dependence. Set of attributes which lie in this
quadrant is important as they show high deriving power.

3. Dependent parameters: This quadrant contains all those parameters which
exhibit weak drive power but strong dependence. These sets of attributes are
considered to be less important.
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Fig. 24.5 aLevel partitions (Iteration 1),bLevel partitions (Iteration 2), cLevel partitions (Iteration
3), d Level partitions (Iteration 4), e Level partitions (Iteration 5), f Level partitions (Iteration 6),
g Level partitions (Iteration 7)
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Fig. 24.5 (continued)
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Fig. 24.5 (continued)

4. Independent parameters: This quadrant contains all those parameters which
show strong drive power but weak dependence power which clearly states that
these sets of attributes are the most important.

The classification using MICMAC analysis as done by Anand and Bansal [2] has
been utilized to have the categorization of all the attributes under consideration into
aforesaid four categories. Figure 24.7 shows the result of this analysis.

24.4 Managerial Implications

This particular research work provides significant and relevant insights about the
various factors which are important and company should give emphasis upon in the
context of air freshener industry. The selected set of attributes is taken from various
sources such as literature, expert’s opinion, etc. and not all fourteen (14) attributes
are equally crucial for the growth of the air freshener industry. This research work
provides significant analysis and interrelationships of the driving factors which can
be taken and extended in future research works also.
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Packaging (C2)

Advertisements (C12)

Variety (C5)

Prestige (C14)

Recommendation
(C13)

Price (C1) Availability (C6) Brand (C7) Discount 
(C11)

Fragrance 
(C3)

Lasting (C4) Aromatherapy (C8) Odour (C9) Disinfectant 
(C10)

Fig. 24.6 Digraph of attributes for air freshener

Fig. 24.7 MICMAC analysis
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24.5 Conclusion and Future Research Scope

This research tries to justify the objective of the study which revolves around the
attributes that drive an air freshener industry and to identify the inter-relationship
among those attributes using ISM and MICMAC analysis. This entire analysis if
used properly can generate more revenue and business value for any particular firm.
With the help of these influenced and influential attributes, some important insights
can be gained and used further in order to support decision-making. Therefore, using
ISM and MICMAC analysis for qualitative attributes of an air freshener, it can be
concluded that all the considered attributes of the air freshener are significant but fra-
grance, lasting, aromatherapy, odor, and disinfectant are the attributes which provide
a qualitative advantage and increases acceptability of the product in the market.

Using MICMAC analysis, apart from the attributes C3, C4, C9 and C10, all the
other attributes are clustered under the category of linkage parameters and dependent
parameters. It clearly conveys that the factors considered in the study are detrimental
to the success of the air freshener industry and must be significantly taken into
consideration to grab the competitive advantage.

The analysis conducted provides the key enablers of an air freshener industry by
creating a hierarchical representation of attributes and classifying them under four
relatively diverse clusters based on their dependence as well as driving power. This
study successfully builds the basis by providing the key drivers of an air freshener
industry and this current research can also be further extended by incorporating
various MCDM techniques like AHP, TOPSIS, and Fuzzy AHP to prioritize the
identified factors. Also, this can be integrated with quantitative mathematical models
to optimize the overall cost while considering the qualitative parameters in the form
of weights obtained from these ranking methods. The industries like air freshener
should be continuously studied since the products belonging to this industry are
choice-based products and customers can quickly switchover in case they are not
satisfied. These industries need to focus on these enabling factors to attract new
customers and to ensure the loyalty of existing customers.
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Chapter 25
Decision-Making with Temporal
Association Rule Mining and Clustering
in Supply Chains

Reshu Agarwal

Abstract Timely identification of recently rising patterns is required in business
process. Data miningmethods are most appropriate for the characterization, valuable
examples extraction, and predications which are essential for business support and
decision-making. Some research studies have also expanded the use of this idea in
inventory management. However, not very many research analyzes have considered
the utilization of the data mining approach for supply chain inventory management.
In this chapter, two unique cases for supply chain inventory management dependent
on cross-selling effect are presented. First, the cross-selling effect in different clusters
is characterized as a basis for deciding the significance of items. Second, the cross-
selling in different time periods is considered as a criterion for ranking inventory
items. An example is devised to approve the outcomes. It is illustrated that by using
this modified approach, the ranking of items may get affected resulting in higher
profit.

Keywords Clustering · Temporal association rule mining · Cross-selling effect ·
Data mining · Inventory management · Supply chain management

25.1 Introduction

Supply chain management includes the development of items and services from
providers to wholesalers. It includes the progression of data and items between and
among supply chain stages to amplify profitability [26]. However, it is outstanding
that huge data has been produced and put away on each hub of the entire supply
chain, which is expanding tremendously like a snow slide. Going up against such
monstrous data, it is troublesome for a venture to discover out the guidelines among
providers and clients on the premise of its own business information [27]. There are
occurrences where effectiveness in supply chain can be guaranteed by efficiencies
in inventory. In spite of the fact that inventory is viewed as an obligation to effective
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supply chain management, supply chain managers directors recognize the need for
inventory.

Inventory management is the way toward guaranteeing that an organization
dependably has the items it needs available and that it keeps costs as low as could
reasonably be expected. Inventory control procedures are utilized by the inventory
control association inside the system of one of the fundamental inventory models.
Inventory control systems speak to the operational part of inventory management
and help to understand the targets of inventory management and control. A few pro-
cedures of inventory control are being used and it relies upon the comfort of the firm
to receive any of the strategies. What ought to be focused, in any case, is the need to
cover all items of inventory and all stages, i.e., from the phase of receipt from suppli-
ers to the phase of their utilization. Historically, ABC analysis has been founded on
the foundation of dollar volume [25]. In early ABC analysis, inventorywas organized
in view of its dollar use, which is unit demand multiplied by unit cost. After some
time, overseeing inventory in view of dollar utilization has transformed into a sys-
tem of overseeing inventory in view of a huge number of criteria. There are various
criteria like lead time, criticality, obsolescence, etc. that can be used for characteriza-
tion of inventories [11, 12]. Flores and Whybark [14] proposed a framework-based
methodology. Two criteria can be utilized to make a joint criteria network. However,
the methodology is ordinarily hard to utilize when more criteria must be considered.
A few distinct criteria like decision-making tools have likewise been utilized for the
reason. Cohen and Ernst [11] and Ernst and Cohen [13] have used cluster analysis
to gather similar items. Ramanathan [24] built up an optimization model to explain
the issue. The significant idea of this model is unequivocally like the possibility of
data envelopment analysis (DEA). Themodel first changes overall criteria estimation
into a scalar which is a weighted total of measures under individual criteria. Further,
the loads are scaled by DEA. Finally, the items are arranged according to the scores
made.

However, a linear optimization was needed for each item. The handling time can
be long when the amount of inventory items is tremendous in size of thousands of
items in inventory. Zhou and Fan [33] proposed an expanded form of Ramanathan’s
model by consolidating some adjusting highlights. They utilized two arrangements
of weights that are most positive and slightest great for everything. Ng [22] proposed
a straightforward model for optimization. The model changes overall criteria propor-
tions of an inventory item into a scalar score. With authentic change, this model pro-
cures the scores of inventory items without a linear optimization. Besides, this model
presentation was versatile as it could without quite a bit of a stretch organize addi-
tional information from decision-makers for inventory characterization. Regardless,
Ng model prompts a condition where the score of everything was free of the weights
got from the model. That is, the weights do not have any part to decide significant
score of everything and this may incite a situation where an item is inappropriately
characterized. Ozan and Mustafa [23] proposed a stock gathering structure depen-
dent on the fuzzy AHP to help a reasonable multi-criteria inventory arrangement.
However, the criteria, for instance, cross-selling effect portrayed by Anand et al. [8]
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ought to likewise be viewed as when requesting inventory items. In this section, two
cases are examined for characterization of inventories with cross-selling effect.

Firstly, the cross-selling inside each group can be characterized as a paradigm
for assessing the significance of items. It is proved that a lot of items change their
positions in the ranking list of ABC classification. Also, due to cross-selling effect,
many items moved to A grouping, in spite of the fact that they previously do not
belong to it. Moreover, various items that belong to C grouping have been advanced
into higher grouping in view of their high cross-selling effect. Furthermore, the cross-
selling with time periods into association rules can be described for evaluating the
importance of items. It is proved that different items that for the most part had a
grouping with the B or C group were moved into the A group due to cross-selling
effect. A model has appeared to endorse the results.

25.2 Background

In this section, the topics such as association rules, temporal association rules, clus-
tering, and the classification of inventories were explained.

Association Rules
Association rule mining, a champion among the most basic and all around explored
procedures of data mining, was first exhibited by Agrawal et al. [1]. It means to find
interesting relationships, patterns among transaction databases or data archives.

Example: In an online book shop, there are ceaselessly several experiences after
you buy two or three books, for example, when you have purchased the book
Operating System, a summary of related books, for example, Let us C 50%, Data
Structure 30% will be appearing to you as suggestion for in addition getting. Two
association rules can be found in this example. Themain communicates that when the
book Operating System is obtained, 50% of the time the book Let us C is purchased
together and the second one communicates that when the book Operating System is
acquired, 30%of the time the bookDataStructure is purchased.The found association
rules can be utilized by the executives to expand the viability related to promoting,
advertising, stock, and stock area on the floor.

Temporal Association Rules
Temporal association rules can be more profitable and educational than fundamental
association rules [18, 19]. For instance, as opposed to the fundamental association
rule {Christmas} ⇒ {cake}, mining from the temporal data we can get all the more
understanding guideline that the support of {Christmas} ⇒ {cake} ricochets to 60%
during winter season normally. This fact clearly suggests that retailers can make
increasingly powerful progression system by using temporal association rules.

Clustering
Clustering is the way toward gathering a lot of physical or conceptual items into
classes of similar objects, so that objects inside a similar group must be similar
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to some extent, additionally they ought to be not at all similar to those objects in
different groups [15].

Most clustering applications are utilized as a part of market division. For instance,
in light of the cost, deposit, and draw instances of the customers, a bank can make
a group of customers on the basis of their credits to houses or with various bud-
get designs. For this circumstance, the bank can give a superior administrator, and
moreover guarantee that every one of the credits can be recovered.

Classification of Inventories
Inventory classification can empower an association to control its stock by dimin-
ishing the proportion of stock they have close eventually growing the stock turnover
extent. Both of which influence an organization’s appropriation to arrange more
proficient and lower its general cost. Generally, ABC approach is used to classify
inventory items into three groups. The ABC approach gives a technique for organiz-
ing items that will highly influence general stock expense. It moreover gives a way
to deal with supply supervisors for recognizing items that require differing controls
and oversight. These groupings are as follows:

Class A: These are high-income items that record for 80% of annual sales and 20%
of inventory.
Class B: These items represent 15% of annual sales.
Class C: These items represent 5%of annual sales. These are low-volume sales items.

For many items, however, ABC classification is sometimes not suitable for inventory
control. Therefore, it is important to consider cross-selling effect, when classifying
inventory items. An association-rule-based approach was proposed by Brijs et al.
[9] to solve the problem of product assortment in general stores. They developed a
product assortment model by considering association rules and cross-selling effect.
Further this model was extended to deal with large baskets and categorymanagement
in practice by Brijs et al. [10]. The biggest disadvantage of this model was that it does
not provide relative ranking of selected items. This factor is very important in clas-
sification of inventories. Hence, this model was not used to classify inventory items.
The strength of relationship between items was considered in the model proposed by
Kaku [16]. This model was further extended by Kaku and Xiao [17] considering the
factors of cross-selling effect and ABC classification. However, they did not propose
a method to classify inventory items that are correlated. Further, this drawback was
removed in model proposed by Xiao et al. [31]. They proposed a method to classify
correlated items utilizing the idea of loss profit together with cross-selling effect.
The inventory items are ranked to find the most profitable item sets. Loss rule was
used to arrange items [29, 30]. The loss profit of item/item set is described as the
standard for finding the importance of items, in light of which inventory items are
classified. They elucidated that to pass judgment on the importance of an item (set),
it is not simply by looking advantage it obtains when it is on the rack, yet in addition
the loss profit it might take away when it is truant or stock out. Further, this approach
was extended for requesting arrangement utilizing association rule mining [2–7, 20,
21]. However, a very little research is done considering interrelationships between
items. Hence, how to treat relationship is a test when creating inventory models.
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25.3 Mathematical Model

In this section, how to arrange inventory items which are interrelated is explained by
using the idea of cross-selling effect.

Case 1: The cross-selling within each cluster can be defined as a criterion for
evaluating the importance of item. The large items and small items in the clustering
algorithm are used to minimize the cost [28]. The algorithm as described by Wang
et al. [28] is shown in Fig. 25.1.

Further, Yin et al. [32] prescribe another establishment of expected dollar usage
(EDU) to rank inventory items according to their importance. To figure the EDU of
an item, frequent item set is managed as an interesting item, the dollar usage of which
can be processed like an ordinary item. Now, the ranking will be done by considering
all frequent item sets together with individual items.

Consider an item set X in an inventory transaction database Db with support
sup(X), then

sup(X) = |X(t)|
D

where X(t) = {t in D/t contains X} in transaction t.

/* Allocation phase */

(1) while not end of the file do
(2) read the next transaction;
(3) allocate t to an existing or a new cluster Ci ;
(4) write  <t, Ci>;

/* Refinement phase */

(5) repeat
(6) not_ moved = true;
(7) while not end of the file do
(8) read the next transaction < t, Ci>;
(9) move t to an existing cluster Cj to minimize Cost 

C;
(10) if Ci  ≠ Cjthen
(11) write < t, Cj>;
(12) not_moved=false; 
(13) eliminate any empty cluster;
(14) until not moved; 

Fig. 25.1 Outline of clustering algorithm
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Now, EDU can be found using the following formula:

Cx = sup(X)
∑

i∈X pi

where Cx represents EDU of an item set X, pi is the cost of single item in X, and∑
i∈X pi is the set’s price.
Case 2: The cross-selling within each time period can be defined as a criterion

for evaluating the importance of item. The working of algorithm can be explained in
the following five steps:

Step 1: First, time periods were used to partition database.
Step 2: The frequent item sets are calculated using association rule mining algo-

rithm.
Step 3: Rank items are beginning with biggest esteem, after calculating EDU of all

frequent item sets and of all single items.
Step 4: All frequent item sets are replaced in the ranking list by their contained

items, so that their interior order does not change. Further, check the posi-
tioning rundown from the earliest starting point to the end and pull back the
duplicate items that have shown up for the second time to make every one
of the items one of a kind in the rundown.

Step 5: On the basis of new ranking list, classify items according to ABC classifica-
tion. The new “A” gathering is finished by picking items of the new ranking
list from the most beginning stage as far as possible till the total EDU of
picked items accomplishes 80% of total dollar usage.

25.4 Numerical Example

In this section, the ranking list of inventory items is prepared on the basis of Yin et al.
[32] model parameters. Moreover, EDU has been determined for inventory items in
each cluster which was not considered by Yin et al. [32].

Consider the database set D and the item set, I= {a, b, c, d, e, f, g, h, i}. The trans-
action set TID = {TID1, TID2, TID3, TID4, TID5, TID6} is shown in Table 25.1.

Further, inventory classification is decided by utilizing rules acquired by a priori
algorithm after clustering the data. By applying clustering algorithm on transaction
database of Table 25.1, clusters C1 = {TID1, TID2, TID3, TID4} and C2 = {TID5,
TID6} were got. Then a priori algorithm is applied to the two groups. The item sets
{a, b, c} and {d, g} aremost frequent item sets found in groupC1 andC2, respectively.

Table 25.1 An inventory transaction database

TID TID1 TID2 TID3 TID4 TID5 TID6

ITEMS a, b, c a, b, c, d a, b, c, e a, b, f d, g, h d, g, i
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Let the costs of items be a = $4, b = $5, c = $3, d = $5, e = $1, f = $1, g = $8, h
= $2, and i = $1. By utilizing customary ABC grouping, let the dollar utilization of
items be a = $16, b = $20, c = $9, d = $15, e = $1, f = $1, g = $16, h = $2, i = $1.
At that point rank things in slipping request beginning with the biggest estimation
of dollar utilization; the positioning rundown is (bagdchefi).

Consider cluster C1. Let minimum support = 2. Table 25.2 shows the generation
of all large frequent item sets in cluster C1.

By positioning these individual items and frequent item sets of Table 25.2 in
dropping request beginning with the biggest estimation of EDU, we can get the
accompanying list of item sets as follows:

{ab}, {ac}, {abc}, {bc}, {a}, {b}, {c}

As indicated by the proposed calculation, the ranking list of items is obtained by
replacing the frequent item sets with their components.

{abacabcbcabc}.

At long last, the ranking list is checked from the earliest starting point to the end.
Every rehashed item is pulled back. The ranking list is given below:

{abc}.

Similarly, considering cluster C2, the ranking list obtained is {dg}.
By applying this approach, stock out of item “a” may come about a bigger mis-

fortune than itself on the grounds that the strong cross-selling relationship with other

Table 25.2 The progress of finding frequent item sets in cluster C1

Transaction Id {Items} Length Support EDU Is it frequent?

One large item set

1 {a} 1 4 4 * 4 = 16 Y

2 {b} 1 4 4 * 5 = 20 Y

3 {c} 1 3 3 * 3 = 9 Y

4 {d} 1 1 1 * 2 = 2 N

5 {e} 1 1 1 * 1 = 1 N

6 {f} 1 1 1 * 1 = 1 N

Two large item set

7 {ab} 2 4 4 * (4 + 5) = 36 Y

8 {ac} 2 3 3 * (4 + 3) = 21 Y

9 {bc} 2 3 3 * (5 + 3) = 24 Y

Three large item set

10 {abc} 3 3 3 * (4 + 5+3) = 24 Y
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profitable items. This approach helps stock administrator to perceive high-benefit
items in each group, with the goal that he/she wins benefit and effortlessly oversees
stocks.

Further, Yin et al. [32] do not calculate EDU for inventory items in each time
period. Table 25.3 shows the transaction set TID = {TID1, TID2, TID3, TID4,
TID5, TID6, TID7, TID8, TID9, TID10, TID11, TID12}.The item set I consists of
{P, Q, R, S, T, U} and the cost of items are P = $5, Q = $4, R = $3, S = $2, T
= $3, and U = $1. According to ABC classification, the dollar usages of items are
P = $15, Q = $32, R = $18, S = $14, T = $15, U = $3. After ranking items in
descending order of dollar usages, we get a ranking list as (QRPTSU).

Let us consider the time period from January to March. Let minimum support =
2. Table 25.4 shows the generation of all large frequent item sets in time span January
to March.

The individual items and frequent item sets of Table 25.4 are ranked in descending
order of their EDU, to obtain item sets as follows:

{QR}, {Q}, {QS}, {QT}, {QRT}, {QRS}, {R}, {RT}, {T}, {P}, {S},
{QU}, {RS}, {ST}, {TU}, {U}

According to the proposed algorithm, the ranking list is obtained by replacing the
frequent item sets with their elements as follows:

{QRQQSQTQRTQRSRRTTPSQURSSTTUU}

At last, scanning of ranking list is done from starting to end. All repeated items
are withdrawn. The ranking list is given below:

{QRSTPU}

Similarly, considering time period from February to March, the ranking list
obtained is {QRTSPU}. The ranking list for time span of March only is {QUTRS}.

Results show that, if item S is not in stock, it will result in larger loss than itself
because of its cross-selling effect with other items. Also, it is to be noticed that item
set {QR} is key frequent item set since it has the highest EDU in time period from
January to March. This methodology helps stock manager to perceive high-benefit
items in each time period, with the goal that he/she gains benefit and effectively
oversees stocks.

25.5 Conclusion and Future Scope

Every business has an inventorymanagement systemwhich tracks the physicalmove-
ment of inventory. An appropriate inventory management framework setup will not
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Table 25.4 The progress of finding frequent item sets in time period from January to March

Transaction Id {Items} Length Support EDU Is it frequent?

One large item set

1 {P} 1 3 3 * 5 = 15 Y

2 {Q} 1 8 8 * 4 = 32 Y

3 {R} 1 6 6 * 3 = 18 Y

4 {S} 1 7 7 * 2 = 14 Y

5 {T} 1 5 5 * 3 = 15 Y

6 {U} 1 3 3 * 1 = 3 Y

Two large item set

7 {PQ} 2 1 N

8 {PR} 2 1 N

9 {PS} 2 1 N

10 {PT} 2 0 N

11 {PU} 2 0 N

12 {QR} 2 5 5 * (4 + 3) = 35 Y

13 {QS} 2 4 4 * (4 + 2) = 24 Y

14 {QT} 2 3 3 * (4 + 3) = 21 Y

15 {QU} 2 2 2 * (4 + 1) = 10 Y

16 {RS} 2 2 2 * (3 + 2) = 10 Y

17 {RT} 2 3 3 * (3 + 3) = 18 Y

18 {RU} 2 1 N

19 {ST} 2 2 2 * (2 + 3) = 10 Y

20 {SU} 2 1 N

21 {TU} 2 2 2 * (3 + 1) = 8 Y

Three large item set

22 {QRS} 3 2 2 * (4 + 3+2) = 18 Y

23 {QRT} 3 2 2 * (4 + 3+3) = 20 Y

24 {QRU} 3 0 N

25 {QSU} 3 1 N

26 {QTU} 3 1 N

27 {RST} 3 1 N

28 {RTU} 3 1 N

29 {STU} 3 0 N

Four large item set

30 {QRST} 4 1 N
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just enhance consumer loyalty and maintenance; however, it will likewise be a sig-
nificant advance for your warehouse management and operations. In this chapter,
stock items which are interrelated to each other are grouped by utilizing the idea of
“cross-selling effect”. Further, the inventories are classified considering cross-selling
effect in two ways. First, the cross-selling effect in different clusters is characterized
as a basis for assessing the significance of items. Second, the cross-selling in different
time periods is considered as a criterion for ranking inventory items. Numerous items
that customarily do not belong to A grouping have been shifted into the A group by
the cross-selling effect, and furthermore numerous items that generally belong to C
grouping have been advanced into higher gathering as a result of their high benefits.
A numerical example was presented to illustrate the new approach. Future studies
ought to create anticipating models that incorporate learning of stock strategies in
the frequent item sets in light of the fact that the frequent item set has items that can
be from different classes and can correlate with each other.
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