On the New Fractional Operator )
and Application to Nonlinear Bloch oo
System

J. F. Gémez-Aguilar, Behzad Ghanbari and Ebenezer Bonyah

Abstract In this chapter, we analyze the nonlinear Bloch system with a new frac-
tional operator without singular kernel proposed by Michele Caputo and Mauro
Fabrizio. The commensurate and non-commensurate order nonlinear Bloch system
is considered. Special solutions using a numerical scheme based in Lagrange inter-
polations were obtained. We studied the uniqueness and existence of the solutions
employing the fixed point theorem. Novel chaotic attractors with total order less than
3 are obtained.

Keywords Fractional calculus + Bloch system - Exponential-decay law -
Lagrange interpolation

1 Introduction

The nonlinear Bloch system is a system consisting of three nonlinear ODEs which can
be used to model time-dependent nuclear magnetization. These equations are efficient
tool to describe the Nuclear Magnetic Resonance (NMR). The dynamic balance
between externally applied magnetic fields and also internal sample relaxation times
[1]is explained by the Bloch system. Taking advantage of fractional-order differential
equations, we model this relaxation as a multiexponential process.
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Fractional order systems are suitable for describing the memory properties of
several materials, because it has a stronger memory function. It is well known that,
fractional-order derivatives have made great progress in mathematical modeling of
the dynamics of complex systems, multi-scale phenomena and viscoelastic mate-
rials [2-11]. The fractional derivative with power-law singular kernel imposes an
artifical singularity to mathematical models and the memory effects cannot describe
accurately. Due to this inconvenience, a new fractional derivative considering the
exponential function as non-singular kernel was proposed by Caputo and Fabrizio
[12]. This new operator allows to describe more efficiently the memory effect and do
not impose artificial singularities as in the old Liouville-Caputo derivative. Several
problems in chemical reactions, luminescence, heat transfer, geophysics, physical
optics, radioactivity, thermoelectricity, vibrations and electromagnetism are naturally
governed by the exponential decay law. These natural phenomena can be studied con-
sidered the exponential kernel suggested by Caputo and Fabrizio. Furthermore, this
new operator has supplementary properties, it can portray substance heterogeneities
and configurations with different scales, which noticeably cannot be managed with
the other representations [13—15]. Losada and Nieto in [16] studied the further
properties.

Atangana and Baleanu generalized the exponential function and proposed the
Mittag-Leffler law as kernel of differentiation [17] arising the Atangana-Baleanu
fractional derivative. The fractional-order derivatives with non-singular kernel allows
to describe two different waiting times distribution, which is an ideal waiting time
distribution as such is observed in nuclear magnetization. The crossover behavior
of both operators is due to their capacity of not obeying the classical index-law
imposed in fractional calculus. This apparent limitation allows to permits describe
more appropriate real world problems [18-21]. In [22], several examples of non-
commutative and non-associative problems were presented. The authors justify why
the fractional derivatives with non-singular kernel are needed to describe real-world
problems. The authors conclude that the commutativity or index-law and semi-group
principle are irrelevant in fractional calculus, ending the controversy generated for
the use of these fractional-order derivatives.

In recent years, the generalized nonlinear Bloch equation with fractional-order
derivatives has attracted great interest of many researchers and scholars in litera-
ture [23-30]. A predictor-corrector approach to solve the multi-term time-fractional
Bloch equations has been developed in [31]. Also, for some other variants of the
equation including Bloch equations with Riemann-Liouville fractional derivative
[32-35] or the delay-dependent fractional Bloch equations [36-38].

In this chapter, we apply the new fractional operator with exponential-decay law to
the nonlinear Bloch model. We studied the uniqueness and existence of the solutions
employing the fixed point theorem. The manuscript is organized as follows. The
paper is structured as follows. In Sect. 2, we recall the fractional operators of type
Liouville-Caputo sense. In Sect. 3, we formulate the fractional order nonlinear Bloch
model, and then the existence and uniqueness of the coupled solutions is proved. We
consider numerical simulations in Sect. 4. Finally, we summarize and conclude in
Sect. 5.
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2 Fractional Operators

Based in the exponential-decay law, the Caputo-Fabrizio fractional operator without
singular kernel in Liouville-Caputo sense (CFC) is given by [12]

M
£y = 1 / @[~ L0, n-1<y=n,
d[” -y
ey
where M (y) is a normalization function such that M (0) = M (1) = 1.
The Caputo-Fabrizio fractional integral is defined below [16]
2(1—y)
6 I f(1) = ——— () + ———— /f(s)ds. t>0.
0 My)2—y) M(y )(2
where, )
My)=—, 0O<y<l (2)
2-y

Losada and Nieto [16] analyzed more properties of this newly presented fractional
operator.
3 Bloch System with Non-singular Kernel

The nonlinear Bloch system [36] in Caputo-Fabrizio-Caputo sense is given by

1
SEEDY x(1) = ¢y (1) 4 0z(t) (x(1) sin(p) — y (1) cos(p)) — 0]
1
SFEDPy (1) = —¢x (1) — z(t) + 0z(1) (¥(2) sin(p) + x(t) cos(p)) — 57O 3)

. 1
SEEDP (1) = y(1) — 0sin(@) (x (1) + y(1)?) — FEm =D,
with initial conditions

x(1) = x(0), y(@) = y(0), 2(t) = z(0). 4)

System (3) can be made more realistic as the nuclear magnetization as a function
of time should not follow the same fractional order dynamics. For this reason, we
introducing three different orders of the fractional-differential operators y; € (0, 1]
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fori = 1, 2, 3. The system (3) is called commensurate when y; = y, = y3 = y, oth-
erwise is called non-commensurate (for this case, the total order of the system is then
changed from 3 to the sum of each particular order).

Existence of the coupled solutions.

We investigate the numerical results predicted by the fractional model given by the
system (3). Firstly start to investigate the existence and uniqueness of the solutions.

By using the fixed-point theorem, we define the existence of the solution. First,
transform system (3) into an integral equation as follows

CF n . 1
x() —x(0) =" I [Cy(t) + 0z(t)(x(2) sin(p) — y(t) cos(p)) — \p—zx(t)],

1
YO = O =57 1P| = £x(0) — 20) + 0z (y(0) sine) +x(0) cosp) ~ -v(0)

1
20 = 20 =57 1 [y(0) = esin(@)(x (1 + y(0)?) - 3 G0~ D]

On using the definition (2), we get

£ =0+ Ty 4 0z (0 sinG) — (1) cos(9) — o-x(0)]
T Mone -1 TE TR,
t
S ey + 0x9) (0 sin) — y(s) cos(e)) — g-x(s)]ds
M@=y ) 2 ’
(6)
0=+ 20T ) = 20+ 0200 sinte) + (1) cost) — gy
R VTS Yo RS S estLin sy MR
t
ﬁ O/ [ 6360 = 2060+ 02(5)(3(5) sn) +x(5) coste) — -y(0) s
(7
2(1 - )’3) . 2 2 1
2(t) = 20 + ————=———1y(t) — 0sin(@)(x(1)* + y()*) — —(z(t) = 1)
o Sy 1V e YT, }
t
2y3

1
: 5 5
+ MoDC2 =) J [y(s) —osin(@)(x(s)” + y(s)?) — E(Z(S) - 1)](1&

®)

Now, we consider the following kernels

1
Gi(r, x(1)) = Cy(t) + 0z(1) (x(1) sin(g) — y (1) cos(p)) — @x(t),



On the New Fractional Operator and Application to Nonlinear Bloch System 141

1
Ga(t, y(1)) = —¢x(t) — z(t) + 0z(®) (y(?) sin(p) + x (1) cos(p)) — Ey(t), )

1
Gi(t,z(1)) = y(t) — osin() (x(1)* + y(1)*) — \y—l(z(t) - 1.

Now, we prove that the kernels G, G, and G3 satisfy the Lipschitz condition.
To achieve we first prove this condition for each kernel proposed. We start with the
kernel 1. Let x and X be two functions, using the Cauchy’s inequality, then we assess
the following

1
1610, ¥() = Gita, XDl = [[ey(0) + 02w (1) sinty) — y(1) costy) — (v
(10)

Similarly for the second and third cases, we have

1G22, (1) = Gate, YO)| < || = 6x(0) = 20) + 02()) (v (1) sin(p)

1
+ x (1) cos(p)) — lp—zy(t)

’

1
1G3(1.20) = G3(0. ZDI = [|y0) = 2sin@) @ + y0)) = Go0) = 1)
an

’

consider the following recursive formula, we have

Xy (t) = MGMLXM—U) + L/Gl(&x(n—l))d&
My)Q2—y1) My)@2—y) )
2(1 — ) 2y> j
n = ——————G2(t, Y1) + ———— | Ga2(s, Yyu-1))ds,
YO = Gm@ - M e — J 2(5: Yap)ds
2(1 — y3) 2y3 j
= ———""—G3(t, 2;—1) + —————— | G3(s, z(—1))ds. 12
R TR R TP ATC R A Y

Applying the norm and the triangular inequality, we get
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lam O] = [1xm) @) = X1 O]
2(1 —
WQJ/))/)”GI(Z Xu—1)(1)) — G1(t, X2y (D))

+ —M(yl)z(y;_ = Of (G165 X)) = Gi 5. X (51 s,

1166 D11 = 1Y) () = Y1y (D]

2(1 — )
vy 16 s Y(n— -G ,Y,17
S M@ =y 162V 1) = Golt, Yapy
2y,

M(yg)(Z yz)H / [G2(s’y<n—1>(s))—Gz(s, Y(n—z)(S))] ds

ey O =z (@) — Zu—1y(@®)]]
2(1 —
WHGsU Zu—1 (@) — G3(t, Zp—y ()]

S TeosY mz (y;_ - | 0/ (G365, 201 (5)) = G35, Z (50 ][ s,

(13)
where,

Xy =D an®): Yy ) =D ba®):  zw®) =Y cu(®).  (14)

m=0 m=0 m=0

Since the kernels satisfies the Lipschitz condition, we have

20 =y)

llae 1T =1l () = Xap Ol = 370507

At||xp-1)(#) — X(n—2) (D]
2y

+ mAzof [X—1) () = X(n—2)(5)|Ids,

20 —y)

b = n — Y- = 21N
166y O =11y (1) = Yoy DI = M) 2 — )

Asl|yu—1y () = Y—y (D]
2y,

T one - -1y (8) = Y ds,
M(y2)(2 = y2) 40/”y( ) ($) = Y2y (s)|lds
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2(1 —y3)

Zu-n(@® = mASHZ(n H(®) — Zu—y @)l

e O =1zm @) —

2y;

+— n— Zn- d
M(y3)(2 — y3) /”Z( D) = Zu-2)(5)|lds.

(15)
Considering system (13) bounded, we have proven that the kernels satisfy Lips-

chitz condition, therefore following the results obtained in (13) using the recursive
technique, we get the following relation

20 —y) " 2n "
e @1l = IOl + {{ oS5 s i)+ {5 s )

||b<n>(r>||s||y<0>||+{{% R P et
2(1 —y3) AS}" { 2y3

— LRy b ST
M(y3)(2 — y3) M(y3)2 — y3) 6t}} (16)

llew 1 =< 11201 +{{

Therefore, Eq. (16) exists and is continuous. Nonetheless, to show that the above
functions are a system of solutions of Eq. (3), we assume

X() =xep@) — Eiy(@); y@) = yuy(t) — B2y (®);  2(t) = 2oy (@) — B3y (1),

(17)
where 8, B2 and E3(,) are reminder terms of series solution. Thus
21—y
x(t) — Xpnt) = ———G1(t,x — Eyo) (1))
DT Men@-n ! o
+—/G (s, x — By (s))ds,
M@=/ : 1o
y() =Y (@) = MGz(f Yy — Bam (1)
M()2 - y2)
t
w22 [ Gy, y — Ba())ds
M@=y ) 7 I
2(1 —y3)
2(t) — Zoy(t) = —————G3(t, 2 — B3 (1))
VIO TG IS o
29, t (18)

Aoz | G362 Bxw)ds.
+M(V3)(2—y3)0 3(s,2 3 (5))dss
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Applying the norm on both sides and using the Lipschitz condition, we get

t

[r0 = 252Gk~ x0) — P [ Gy x|
M=) M@= )
) 20— ) 27 .
SN @+ | 370 S s At i Al B O

20 —»)

H ”‘M(n)(z ¥2)

Ga(t, y(1)) — y(0) — Gas, y()ds||

eyl
M) 2 —y) /

2(1 —y) 29
A Aat M1 B (1],
M2 —y) " M2 — 1) 4f}|| 2 (D]

= 1Z2m @I + |

Gs(s, z(s))ds‘ ‘

2(1 —y3) ; /
- —— " G, —20) - ———
Hz( ) 3(t, z(2)) — z(0) M2 =) J

M(y3)2 — y3)

2(1 — 2
(I =y3) A V3

< E3my I + HM(J/3)(2 —y3) > M(y3)2 — y3)

At} l1Bsm Il (19)

On taking the limit n — oo of Eq. (19), we get

x(t) = &Gl(t x(1) +x(0) + . Gi(s, x(s))ds,
M2 —y) MG1)Q2—y) )
vy = 2071 oy 40+ / Ga(s. y(s))ds.
M2 —y2) M2 —y2) )
2(1 —
(1) = =) G3(t, z(t)) +z(0) + Gi(s, z(s))ds.

V3
M(y3)2 — y3) M) (2 — y3) o/

(20)
Uniqueness of the solutions.

We assume that we can find another solutions for Eq. (3); say x(¢), y(¢) and z(#);
then
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_ 20— .
X0 =X = s PG x@) = Gia X )
2y

+ L
My)Q2—y1) )

t

[Gl(s, x(s)) — G, (s, X(s))]ds

240 ~y2)
YO =Y (0 = oS Gl v(0) — 6ot Y )
2y2

M —m J

1

(G5, 3(5) = Gats, Y () Jds

_ 21— .
€)= 20 = g S5 G20) = Gste, 20|
: e

2
& [Ga(s. 260 = Gats. Z(s) |s.

M- J

Apply the norm both sides of Eq. (21), we have

21—y
[lx(t) = X(@O)|| < m“

1

[HGI(S’ x(8)) = Gis, X(s))H]ds

G, x@) = Gie. x0)]|]

29
Mo ) J

2(1 —
ly@) —Y(®Il < M 2)(2

t

[HGZ“’ () = Gas, Y(s))H]ds

2|60 30» = Gate. vy ]

2y
TMme—m J

20l = 3o ||6s 20 = G2, 20 ]

t (22)
H ‘G3(s’ 2(8)) — Gsls, Z(S))H]ds

llz(r) —

2y3
A ESS) J

considering the Lipschitz condition, having the fact in mind that the solutions are
bounded, we get

2(1 —y1) A1$1+{ 2y,

||x(t)—X(f)||_m M2 —y1)

AzSzf] ,
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2(1 - y») 2
_y —A MO 2 — )
ly@) =Y (@)l < M) — ) 38+ {M(yz)(Z - 72)

A4§4l}n,
2(1 = y3)

2
Zo) < —— V) vs
M) 2 —y3)

(@) = M2 — )

Asts + adet] @3

this is true for any n.

The system given by Eq. (3) has a unique solution if the below condition holds.

2(1 = y1) 2y
[ S £ Ly N N /4 B | 0. 24
(= Sona ™8~ sgma ) = 9
If the condition (24) holds, then
2(1 = p) 2y,
- X l—— A - A 0, 25
O = XOIN(1 = 370557 s M = s o Akt ) 0. (29)

implies that ||x(#) — X (¢)|| = 0. Then we get, x(¢) = X (¢).
Employing the same way, we have

x(=X@); yO=Y@); z20)=Z@). (26)
Therefore, we verified the uniqueness of coupled-solutions.

Now we propose a numerical solution of the nonlinear Bloch system consider-
ing the fractional derivative of Caputo-Fabrizio in Liouville-Caputo sense using the
numerical scheme proposed by Atangana and Toufik in [39].

First we consider the following fractional differential equation with fading mem-
ory
§FCey(0) = f(t, y(1)), 7)

using the fundamental theorem of fractional calculus we obtain the solution of the
above equation [39]

_ l—« 3ah l—« ah
Yn+l = Yn + (m + W) f(tm yn) - (M(Ol) + 2M(Ol)> f(tnflv ynfl)
(28)

Again, we apply the numerical scheme (28) to have a numerical solution to Eq.
(3) in Caputo-Fabrizio-Caputo sense
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N — l—« 3ah ,
Xpp1(t) = X, + <M(O{) + ZM(Ot)) S1as Xns Yy 20)

M(O[) 2M(Ol) 1n=1>Xn—15 Yn—1>Zn—-1)>»

l—« 3ah
Yntl = Yn + + f2(tn7 Xns Yn» Zn)

M(a)  2M(a) .
l -« ah
- <M(05) + 2M(Ot)) fz(t”_l’ Xn—1s Yn—1s Zn—1),
l—a  3ah
Zn+1 = Zn + <m + m) fa(tn, Xus Yu» Zn)
l -« ah
— <M(a) + ZM(()[)) f3(tn—1, Xn—1> Yn—1>Zu—1),

where,

1
Ji@, x(@), y(0), 2(0)) := £y(1) + 0z(1) (x(1) sin(p) — y(t) cos(p)) — EX(I)’

1
St x(), y(0), 2(0) := =Lx (1) — 2(1) + 02() (Y (1) sin() + x(1) c0s(9)) — -y (1),
(30)

1
Ht,x (@), y(1), z() := y(t) — o sin() (x(1)* + y(t)*) — E(Z(’) — 1.

In the next section, we consider Eq. (29) for obtain several numerical solutions
considering different values of the fractional order y arbitrarily chosen.

4 Numerical Simulations

Numerical solutions of the system (3) have been depicted in Fig. 1a—f and Fig. 2a—f for
the commensurate and non-commensurate order system, respectively. The param-
eter values used in the simulations are ¢ = 1.26, ¢ = 10, ¢ = 0.7764, ¥; = 0.5,
W, = 0.25 and the initial conditions are x(¢) = 0.1, y(¢) = 0.1 and z(¢) = 0.1. The
step size used in evaluating the approximate solution was # = 0.0001.
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Fig. 1 Numerical simulation for the commensurate nonlinear Bloch system with non-singular
kernel. In a—d projections of chaos for y = 0.95. In e—f chaotic phase trajectory x(¢) — y(t), for
y = 0.92 and y = 0.87, respectively

Numerical solutions of the system (3) have been depicted in Fig. 3a—f and Fig. 4a—f
for the commensurate and non-commensurate order system, respectively. The param-
eter values used in the simulations are ¢ = —1.26, o =35, ¢ = 0.173, ¥ =5,
W, = 2.5 and the initial conditions are x(¢) = 0.1, y(t) = 0.1 and z(¢) = 0.1. The
step size used in evaluating the approximate solution was 2 = 0.0001.
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(a) (b).

0.2

0.1

0

(e) 0.

0.2

Fig. 2 Numerical simulation for the non-commensurate nonlinear Bloch system with non-singular
kernel. In a—d projections of chaos for y; = 1, y» = 0.95 and y3 = 1. In e—f chaotic phase trajectory
x() —y(t),fory; =094, =1land y3 = l and y; = 1, y» = 1 and y3 = 0.92, respectively
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y(t)

(C) 04 (d) 0.4
03 03
02 02
< o4 < o4
™ =
0 0
0.1 -0.1
-02 -02
04 04 04
(e) o2 () oss
0.15
0.1
01
0.05 005
= o =
< =
-0.05 0
-0.1
-0.05
-0.15
-02 -0.1
92 -015 -01 -005 0 005 01 015 02 025 0.1 ~0.05 0 005 0.1 015

z(t) x(t)

Fig.3 Numerical simulation for the commensurate nonlinear Bloch system with with non-singular
kernel. In a—d projections of chaos for y = 0.95. In e—f chaotic phase trajectory x(¢) — y(t), for
y = 0.92 and y = 0.87, respectively
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(@ (b) o2

y(t)

-0.
-02 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

(c) o2

2 (t)

0 0
-02 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 -025 -02 -015 -0.1 -0.05 0 0.05 0.1 0.15 02
z(t) y(t)

(e) 02

-0.2
Z02 015 -04 -005 0 005 01 015 02 025 015 01 005 0 005 01 015 02
z(1) x(t)

Fig. 4 Numerical simulation for the non-commensurate nonlinear Bloch system with with non-
singular kernel. In a—d projections of chaos for y; =1, y» = 0.95 and y3 = 1. In e—f chaotic
phase trajectory x(¢) — y(¢),fory; =094, = landy3 =landy; = 1, » = 1 and y3 = 0.92,
respectively
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5 Conclusions

In this chapter, we used the new definition of fractional operator with an exponential
kernel proposed by Caputo and Fabrizio. This new operator can describe material
heterogeneities and structures with different scales, which cannot be handling with
the classical theories. To further apply this operator, we have modified the nonlinear
Bloch equation with feedback. We prove the existence and uniqueness of the coupled-
solutions. The numerical results for nonlinear Bloch with non-singular kernel shows
that with decreases the order of time-fractional operator (y — 0), several irregular
attractors are formed and the model exhibit transient chaos. The characteristics of
the alternative model, in contrast with the classical model, memory properties, the
nuclear magnetization or other independent quantities are considered.
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