An Integral Relation Associated )
with a General Class of Polynomials L
and the Aleph Function

Monika Jain and Sapna Tyagi

Abstract A new finite integral involving two general class of polynomials with the
Aleph function has been obtained in the present paper. This integral is supposed to
be one of the most universal integral evaluated until now and act as a key component
from which we can obtain as its different special cases, integrals relating a large
number of simpler special functions and polynomials. Some useful unique cases of
the main outcome have also been discussed in the paper.
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1 Introduction

The Aleph-function is a new generalization of the well-known H-function [1] and
the I-function [2, 3].
The Aleph-function is defined and represented as follows [4, 5].
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for all z # 0, where w = +/—1 and
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(1.2)

The path of integration L = Ljys, T € R extends from ¥ — ico to 7" +
ico. The poles of I'(b; + B;&), j = 1, M. which do not coincide to the poles of
rad—a —Aé),j= 1, N are taken as simple poles. The parameters p;, q; are non-
negative integers 0 < N < P;, 1 <M < Qy, 13 >0 fori = 1, r. The parameters

A;, Bj, Aji, B;i > 0 and a;, b;, aj;, bji € C. The productin (1.2) is interpreted as unity.
The existence conditions for the described integral (1.1) are given beneath:
T R
6, > 0, larg(z)| < 565,6 =1, (1.3)
0, > 0, Jarg(z)| < %ez and Re{z,) + 1 < 0, (1.4)
where
N M P, Q
QZZZAJ'—}—ZB]'—T@ Z Ajg—i- Z ng (15)
j=1 j=1 j=N+1 j=M+1
Q Py 1 e
Zb Zaj + 7 Z bjg — Z aje + = (PZ QZ) =1r (1.6)
j=1 j=M+1 J=N+1

Note 1 The simplification of the sum in the denominator of (1.2) in terms of a
polynomial in &, the factor of this polynomial can be uttered by a fraction of Euler’s
Gamma function leading to H-function, see [6], p. 325.

Note 2 It might be seen that there is no recorded name given to (1.1), compared to
[5]. The Mellin transform of this function is coefficient of z¢ in the integrand of

(1.1).
Note 3 Taking v; = 1,i= 1, ..., r, in (1.1), the R-function lessens to the notable
I-function [3].

Note 4 Puttingr=1and 1y = 1, = ... = 13 = 1, then R-function reduces to the
known H-function [7].

Following definition of general class of polynomials is required which was intro-
duced by Srivastava [8, Eq. (1)].

[n/m]
Silxl= ) %Amkx& n=012... (1.7)
k=0 ’

Here the coefficients A, x(n,k > 0) are subjective real or complex constants,
whereas M, is an arbitrarily chosen positive integer.
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On suitably specializing the coefficients A, y occurring in (1.7), the general class
polynomials S{'[x] can be reduced to the known traditional orthogonal polynomi-
als and the generalized hypergeometric polynomials as its particular cases. These
incorporate, among others, the Hermite polynomials, the Jacobi polynomials, the
Laguerre polynomials, the Bessel polynomials, the Gould-Hopper polynomials and
a couple of others.

2 Main Result

b
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where s >0, t > 0, Re (u + s bj/B;) > 0, Re (v + t b;/B;) > 0,
j=1,... M, N, N\, and ' are positive integers. Ay, , and A,, , (01, ki, 102, ko
> () are arbitrary constants, real or complex.

Proof To establish (2.1), expressing the R-function by (1.2) and general class of
polynomials by (1.7), then the order of summations and integration are interchanged
(which is justified due to the absolute convergence of the integral in the process),
we calculate the integral with the help of a result ([7], p. 287 (3.119)), and get the
desired outcome.
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3 Special Cases

(A) Taking SIZ1 [y] = y"?H, [7] in the result obtained in (2.1) to the case of
Hermite polynomials ([9], Eq. (5.5.4), p. 106 and [3], p. 158)

in which case m; =2, A, x, = (—l)k‘ and also letting my =2, A, x, = (—l)kz,
we have
b
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applicable under the conditions as available from (2.1).

(B) For the Jacobi polynomials ([9], Eq. (4.3.2), p. 68 and [3], p. 158), our result
(2.1) yields the following result by setting

S}l[x] = Pga/’ﬁ/)(l — 2x) in which case

nl+k1>(oﬂ+5/+n1+1)kl

= 1’ A[1 =
mi 1.k ( (OL/+ l)k]

nj

and also taking
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’

n, + k2> (@ +B"+n2+1)

mp = 1, Aﬂz,kz = < (OL” n l)k

np

we obtain
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valid under the conditions as obtainable from (2.1).

(C) For the Laguerre polynomials ([9], Eq. (5.1.6), p. 10 and [3], p. 158), we have
the following interesting consequence of our result (2.1), by setting

s'ix] = L) (x) in which case

n +o 1
m=1 Ayn=(" —_—
n; (o + 1)kl

and also taking
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n +a// 1
my = 15 Anz,kz = //—s
ny (@” + 1)y,

we get
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suitable under the conditions as required sufficiently for (2.1).

(D) Lettingn, — 0in (2.1), we have
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3.4

valid under the conditions as essential for (2.1).

(E) Taking t; — 1 in (2.1), the I-function given by Saxena [2, 3] is obtained from
Aleph function and the main integral (2.1) converts in the following form:
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valid under the conditions as required sufficiently for (2.1).

(F) If wetake r; — 1 and r = 1 in (2.1), the Aleph function reduces to Fox’s
H-function [1] and the main integral takes the following form:
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valid under the conditions as required sufficiently for (2.1).

The significance of outcomes lies in its various generalizations. In perspective of

the generality of the function and polynomials of very broad nature involved in the
results, our results encompass several particular cases of interest scattered hitherto
in the literature.
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