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Abstract The script is dedicated to look at the existence, uniqueness with stabil-
ity consequence of asymptotically almost automorphic (AAA) solution for integro
neutral evolution equation on time scales by applying fixed point hypothesis. We
give the time scale adaptation of (AAA) functions. Toward the end, a precedent is
given for the adequacy of the hypothetical outcomes.
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1 Introduction

Generally, one study the continuous and discrete cases differently and there are many
different sets which are very utilizable. Ergo, this an arduous task that we study dif-
ferently for all cases. So for evading this type quandary, Hilger, in 1988, [1] present
time scales hypothesis which cumulates discrete and continuous investigation. This
hypothesis present a robust actualize for applications to populace models, financial
matters and quantummaterial science among others. Thus,managing issues of differ-
ential conditions on time scales turns out to be extremely noteworthy and deliberate
in the examination field of dynamic frameworks. For more subtle elements of this
theme, we allude to the papers [2–4] and the books [5, 6]. These give a glorious
portrayal of time scale hypothesis and its apparatus.

Almost automorphy, which is a natural generalization of almost periodicity
introduced by Bochner [7]. In [8, 9], the literature of almost automorphy and its
applications to differential equations are describe. Recently, the existence of almost
automorphic (AA) type solutions for evolution equations has attracted more and
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more attention. The literature of the concept of asymptotically almost automorphy,
as a natural extension of almost automorphy, was introduced by N’Guérékata [10].
Now a days, these type of functions have made lots of developments and applications
in real life, we refer for more details [11–15].

There are numerousmarvels, for example, in the investigation of oscillatory frame-
works and in the displaying of a few physical issues, where the theory of neutral dif-
ferential equations arises [16]. There are many papers on existence ofAAA solution
for continuous cases. As per our knowledge, there is no paper on time scale where
these type of solution is discussed with neutral functional term in abstract space. The
rationale of the present article is discover the existence and uniqueness with stability
of AAA solution for the neutral integro evolution equation on periodic time scale
T,

[y(r) − g(r, y(κ(r)))]� = A(r)[y(r) − g(r, y(κ(r)))] + P(r, y(r))

+
r∫

−∞
k(r,σ(s))h(r, y(s))�s,

(1.1)

r ∈ T. A(r) : D(A(r)) ⊂ Y → Y is a family of linear operators, where Y is Banach
space. |k(r, s)| ≤ ce�λ(r, s), c and λ are positive constant and κ : T → T satisfy-
ing κ(r) ≤ r for all r ∈ T. The functions P : T × Y → Y, g, h : T × Y → Y are
defined later with specified conditions in next section.

Whatever is left of this article as follows. In Sect. 2, we give basic definitions,
results and lemmas. In Sect. 3, using Banach contraction principle, existence and
uniqueness ofAAA solution of system (1.1) is discussed. In Sect. 4, some conditions
for stability are obtained . In last Sect. 5 a numerical example is shown for potency
of hypothetical outcomes.

2 Preliminaries

In this segment, some essential hypothesis and facts for time scales is given which
is required for further work.

A time scale, T, is a non empty closed subset of real line. The backward and for-
ward operator is define by ρ(ζ) = sup{s ∈ T : s < ζ} andσ(ζ) = inf{s ∈ T : s > ζ}
respectively. A point ζ is a left dense point and left scattered point when ρ(ζ) = ζ
and ρ(ζ) < ζ respectively with ζ > inf T. Also, ζ is right scattered point and
right dense when σ(ζ) > ζ and σ(ζ) = ζ respectively with ζ < supT. A function
μ : T → [0,∞) is given by μ(ζ) = σ(ζ) − ζ, ∀ζ ∈ T, is known as the graininess
operator. We will mean the interval [c, d]T = {ζ ∈ T : c ≤ ζ ≤ d}.
Definition 2.1 If� : T → R is a function and at left dense points, its left-side limits
exist and continuous at right dense points ofT then it is known as rd-continuous. The
collection of all rd-continuous functions � : T → R will be mean by Crd(T, R).
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Definition 2.2 Reference [5] A function q : T → R is said to be regressive (positive
regressive) if 1 + μ(ζ)q(ζ) 	= 0(> 0), ∀ ζ ∈ T. The collection of regressive (positive
regressive) functions is represented by R(R+).

Definition 2.3 Reference [5] Let� : T → R and ζ ∈ T.�-derivative,��(ζ) is the
number if exist, such that given any ε > 0, ∃ a neighbourhood U of ζ such that

∣∣[�(σ(ζ)) − �(s)] − ��(ζ)[σ(ζ) − s]∣∣ ≤ ε|σ(ζ) − s|, ∀ s ∈ U.

Let � is rd-continuous; if ��∗ (ζ) = �(ζ), the delta integral is defined by,

s∫

r

�(ζ)�ζ = �∗(s) − �∗(r), s, r ∈ T.

Definition 2.4 The exp function on T is defined as

eq(τ , ζ) = exp

⎛
⎜⎝

τ∫

ζ

ξμ(t)(q(t))�t

⎞
⎟⎠ , τ , ζ ∈ T, q ∈ R.

For b > 0,

ξb(Z) = 1

b
log(1 + Zb).

For b = 0, ξ0(Z) = Z .

Definition 2.5 Reference [6] Let q, p ∈ R, define

�q = −q

1 + μq
, q ⊕ p = q + p + μqp, q � p = q ⊕ (�p).

Lemma 2.6 Reference [6] Let us suppose that p, q ∈ R, then

1. e0(ζ, r) = 1, ep(ζ, ζ) = 1;
2. ep(σ(ζ), r) = (1 + μ(ζ)p)ep(ζ, r);
3. ep(ζ, r) = 1/ep(r, ζ) = e�p(r, ζ);
4. ep(ζ, r)ep(r, s) = ep(ζ, s);
5. ep(ζ, r)eq(ζ, r) = ep⊕q(ζ, r);
6. (1/ep(ζ, r))� = −p(ζ)/ep(σ(ζ), r).

Lemma 2.7 Reference [6] Let q ∈ R and b, c, d ∈ T, then

c∫

b

q(ζ)eq(d,σ(ζ))�ζ = eq(d, b) − eq(d, c).
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Lemma 2.8 Reference [17] For 0 < λ, e�λ(ζ, η) ≤ 1, ∀η, ζ ∈ T, where η ≤ ζ.

Definition 2.9 Reference [17] T is called periodic time scale, if

� := {w ∈ R : ζ ± w ∈ T,∀ζ ∈ T} 	= {0}.

The notations in this section follow as: Y is Banach space with sup norm ‖y‖∞ =
supr∈T ‖y(r)‖. C(T,Y ) contains the collection of continuous functions from T to
Y . C0(T,Y ) is proper subset of C(T,Y ) containing functions g : T → Y which
vanish at infinity i.e., lim|r |→∞ ‖g(r)‖ = 0 and C0(T × Y,Y ) denotes the collection
of functions g : T × Y → Y such that lim|r |→∞ ‖g(r, y)‖ = 0 uniformly for y in any
compact subset of Y.

Definition 2.10 A function g(r) ∈ C(T,Y ) is called almost automorphic (AA) if
for every sequence (τ ′

n) ⊂ �, we can extract a subsequence (τn) such that

g∗(r) := lim
n→∞ g(r + τn),

and
lim
n→∞ g∗(r − τn) = g(r),

for each r ∈ T. We note that the convergence is pointwise. Then, the function g∗
not necessarily continuous, but measurable. Moreover, we note if we consider that
convergence is uniform on T instead of pointwise convergence, we get that the
function g is almost periodic.

We set AA(T,Y ) for the collection of all almost automophic functions from T

into Y .

Example 2.11 Let G : T → X be a function defined by

G(r) = sin

(
1

2 + sin(r) + sin(
√
2r)

)
.

It is AA. However, it not almost periodic because this function is not uniformly
continuous on T.

Definition 2.12 A continuous function g : T × Y → Y is called AA if g(r, y) is
AA in r ∈ T uniformly ∀y in any bounded subset of Y.

AA(T × Y,Y ) is the collection of all such functions.

Definition 2.13 A continuous function g : T → Y is said to beAAA if g(r) can be
decomposed into two parts like that g(r) = g1(r) + g2(r),where g1(r) ∈ AA(T,Y )

and g2(r) ∈ C0(T,Y ).

AAA(T,Y ) is the collection of all such functions.
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Definition 2.14 A continuous function g : T × Y → Y is said to be AAA in r
uniformly for y in any compact subset of Y if g(r, y) can be decomposed into two
parts like that g(r, y) = g1(r, y) + g2(r, y), where g1 ∈ AA(T × Y,Y ) and g2(r) ∈
C0(T × Y,Y ).

We set AAA(T × Y,Y ) is the collection of all such functions.

Example 2.15 Let χ : T → Y be a function such that

χ(r) = sin

(
1

2 + sin(r) + sin(
√
2r)

)
+ e−|r |.

This function is AAA as first part belongs to AA(T,Y ) and second part belongs to
C0(T,Y ).

Example 2.16 Let ℘ : T × Y → Y be a function such that

℘(r) = sin

(
1

2 + sin(r) + sin(
√
2r)

)
cos y + 1

1 + r2
sin y.

This function isAAA in r ∈ T for each y ∈ Y because first part belongs toAA(T ×
Y,Y ) and second part belongs to C0(T × Y,Y ).

Lemma 2.17 If g1, g2, g ∈ AAA(T,Y ), then:

• g1 + g2 ∈ AAA(T,Y );
• λg ∈ AAA(T,Y ), for any scalar λ;
• Ifα ∈ R is a constant then, gα ∈ AAA(T,Y ),where gα : T → Y defineas gα(·) =

g(· + α);
• The range Rg = {g(r) : r ∈ T} is relatively compact of Y, thus g is bounded with
respect to norm.

Definition 2.18 A function g(r, s) is said to be bi-AA if for every sequence τ ′
n ⊂ �,

there is a subsequence τn and a function g∗(r, s) such that the translation of g converge
to g∗, that is ‖g(r + τn, s + τn) − g∗(r, s)‖ → 0 as n → ∞ and ‖g∗(r − τn, s −
τn) − g(r, s)‖ → 0 as n → ∞, ∀ r, s ∈ T.

We set biAA(T × T,Y ) is the collection of all such functions.

Remark 2.19 Exponential function on time scale is bi AA function.

Lemma 2.20 The decomposition of AAA function g = g1 + g2, where g1 ∈ AA
(T,Y ) and g2 ∈ C0(T,Y ) is unique i.e., g = g1 ⊕ g2.

Proof From the definition, we can easily observe g1(T) ⊂ g(T). Assume that g =
g1 + g2 and g = h1 + h2 then 0 = (g1 − h1) + (g2 − h2) ∈ AAA(T,Y ), where
(g1 − h1) ∈ AA(T,Y ) and (g2 − h2) ∈ C0(T,Y ). In view of above result g1 − h1 =
0. Consequently, g2 − h2 = 0, i.e., g1 = h1 and g2 = h2.
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Lemma 2.21 The space AAA(T,Y ) is a Banach space with sup norm

‖g‖∞ = sup
r∈T

‖g(r)‖.

Proof Consider {gn}n∈N is a Cauchy sequence in AAA(T,Y ). We can express
uniquely gn = fn + hn, where fn is a sequence inAA(T,Y ) and hn is in C0(T,Y ).

From Lemma 2.20, we see ‖ fn − fm‖∞ ≤ ‖gn − gm‖∞. We deduce from here that
{ fn}n∈N is Cauchy sequence in AA(T,Y ). So, hn = gn − fn is Cauchy sequence
in C0(T,Y ). We conclude that fn → f ∈ AA(T,Y ) and hn → h ∈ C0(T,Y ) and
finally gn → f + h ∈ AAA(T,Y ).

Lemma 2.22 Let g : T × Y → Y, (r, y) → g(r, y) ∈ AAA(T × Y,Y ) in r ∈ T,

for each y ∈ Y and assume that g satisfies Lipschitz condition i.e.,

‖g(r, y) − g(r, y∗)‖ ≤ L‖y − y∗‖,

for all y, y∗ ∈ Y and for every r ∈ T, where L > 0 is constant. Then G : T → Y
given by G(·) = g(·, y(·)) is AAA provided y : T → Y is AAA .

Proof Since g, y ∈ AAA, then we can decompose as

g = g1 + g2, y = y1 + y2,

where g1 ∈ AA(T × Y,Y ), g2 ∈ C0(T × Y,Y ), y1 ∈ AA(T,Y ), y2 ∈ C0(T,Y ).

We can write

g(r, y(r)) = g1(r, y1(r)) + g(r, y(r)) − g(r, y1(r)) + g2(r, y1(r))

By Lemma 3.3 in [18] g1(r, y1(r)) ∈ AA(T,Y ). Noticing that ‖g(r, y(r)) −
g(r, y1(r))‖ ≤ L‖y2(r)‖ → 0 as |r | → ∞. Hence g(r, y(r)) − g(r, y1(r)) ∈ C0

(T,Y ). Now, since {y1(r), r ∈ T} is compact set of Y , g2(r, y1(r)) ∈ C0(T,Y ).

In conclusion, g(r, y(r)) ∈ AAA(T,Y ).

Definition 2.23 Acontinuous function y : T → Y is calledAAA solution of system
(1.1) on T if y(r) is and satisfies AAA

y(r) = S(r, a)[y(a) − g(a, y(κ(a)))] + g(r, y(κ(r))) +
r∫

a

S(r, σ(s))P(s, y(s))�s

+
r∫

a

S(r, σ(s))

s∫

−∞
k(s, σ(ζ))h(ζ, y(ζ))�ζ�s, ∀ r ≥ a ∈ T.

(2.1)
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3 Main Result

To prove main result of this manuscript, we assume the following assumptions which
are further mandatory:
A1. The system

y�(r) = A(r)y(r), s ≤ r, r, s ∈ T,

has an evolution family of operators {S(r, s) : s ≤ s, s, r ∈ T}. S(r, s) is asymptot-
ically stable i.e., ∃ constants R0,ω > 0 satisfying

‖S(r, s)‖ ≤ R0e�ω(r, s)

for all r, s ∈ T with r ≥ s.
A2. For any sequence {τ ′

n}n∈N ⊂ �, we can find a subsequence {τn}∞n=1 such that for
any ε > 0, ∃N ∈ N,

||S(r + τn, s + τn) − S(r, s)|| ≤ εe�ω(r,s) and ||S(r − τn, s − τn) − S(r, s)|| ≤ εe�ω(r,s),

∀n > N , ∀r, s ∈ T, r ≥ s.
A3. g ∈ AAA(T × Y,Y ) and there exist constant Lg > 0 such that

‖g(r, y) − g(r, x)‖ ≤ Lg‖y − x‖, r ∈ T, x, y ∈ Y.

A4. h ∈ AAA(T × Y,Y ) and there exist a constant Lh > 0 such that

‖h(r, y) − h(r, x)‖ ≤ Lh‖y − x‖, r ∈ T, x, y ∈ Y.

A5. P ∈ AAA(T × Y,Y ) and there exist a constant LP > 0 such that

‖P(r, y) − P(r, x)‖ ≤ LP‖y − x‖, r ∈ T, x, y ∈ Y.

Lemma 3.1 Suppose ξ ∈ AAA(T,Y ) holds, �(η) : T → Y defined by

�(η) =
η∫

−∞
k(η,σ(ζ))ξ(ζ)�ζ, η ∈ T,

is AAA(T,Y ).

Proof Since ξ ∈ AAA(T,Y ). So, we can decompose it as ξ(η) = ξ1(η) + ξ2(η),
where ξ1(η) ∈ AA(T,Y ) and ξ2(η) ∈ C0(T,Y ). Now,

�(η) = �1(η) + �2(η),
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where �1(η) = ∫ η

−∞ k(η,σ(ζ))ξ1(ζ)�ζ and �2(η) = ∫ η

−∞ k(η,σ(ζ))ξ2(ζ)�ζ. To
proof complete, we have to prove�1(η) ∈ AA(T,Y ),�2(η) ∈ C0(T,Y ).Since ξ1 ∈
AA(T,Y ), there exists ξ∗

1 and a subsequence {τn} ⊂ � for each sequence {τ ′
n} such

that

lim
n→∞ ‖ξ1(η + τn) − ξ∗

1(η)‖ = 0 and lim
n→∞ ‖ξ∗

1(η − τn) − ξ1(η)‖ = 0. (3.1)

Now, corresponding to ξ∗
1 , let us define �∗

1(η) = ∫ η

−∞ k(η,σ(s))ξ∗
1(s)ds. Now, we

compute

‖�1(η + τn) − �∗
1(η)‖ =

∥∥∥
η+τn∫

−∞
k(η + τn,σ(ζ))ξ1(ζ)�ζ −

η∫

−∞
k(η,σ(ζ))ξ∗

1 (ζ)�ζ
∥∥∥

=
∥∥∥

η∫

−∞
k(η + τn,σ(ζ) + τn)ξ1(ζ + τn)�ζ −

η∫

−∞
k(η,σ(ζ))ξ∗

1 (ζ)�ζ
∥∥∥

≤ c

η∫

−∞

∥∥∥e�λ(η + τn,σ(ζ) + τn) − e�λ(η,σ(ζ))

∥∥∥∥∥ξ1(ζ + τn)
∥∥�ζ

+ c

η∫

−∞
e�λ(η,σ(ζ))

∥∥ξ1(ζ + τn) − ξ∗
1 (ζ)

∥∥�ζ

≤ c‖ξ1‖∞

η∫

−∞

∥∥∥e�λ(η + τn,σ(ζ) + τn) − e�λ(η,σ(ζ))

∥∥∥

+ c(1 + μ̄λ)

λ
sup
η∈T

∥∥ξ1(η + τn) − ξ∗
1 (η)

∥∥,

where μ̄ = supη∈T μ(η). From Remark 2.19 and Eq. 3.1, we have limn→∞ ‖�1(η +
τn) − �∗

1(η)‖ = 0. Using the similar arguments, we get limn→∞ ‖�∗
1(η − τn) −

�1(η)‖ = 0. Hence �1(η) ∈ AA(T,Y ).

Now, since ξ2(η) ∈ C0(T,Y ) then ∀ε > 0, ∃ a constant R > 0 such that

‖ξ2(η)‖ < ε, |η| > R. (3.2)

which yields that

‖�2(η)‖ =
∥∥∥

R∫

−∞
k(η,σ(ζ))ξ2(ζ)�ζ +

η∫

R

k(η,σ(ζ))ξ2(ζ)�ζ
∥∥∥

≤ c‖ξ2‖∞

R∫

−∞
e�λ(η,σ(ζ))�ζ + εc

η∫

R

e�λ(η,σ(ζ))�ζ
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≤ c‖ξ2‖∞
(1 + μ̄λ)

λ
eλ(R, |η|) + εc

(1 + μ̄λ)

λ
[1 − e�λ(η, R)]

≤ c‖ξ2‖∞
(1 + μ̄λ)

λ
eλ(R−|η|) + εc

(1 + μ̄λ)

λ
lim|η|→∞ ‖�2(η)‖ = 0.

Therefore, �2(η) ∈ C0(T,Y ). ��
Lemma 3.2 Let P ∈ AAA(T,Y ) and suppose (A1)–(A2) is satisfied. IfP : T →
Y is defined by

P(r) =
r∫

−∞
S(r,σ(s))P(s)�s, r ∈ T,

then P(·) ∈ AAA(T,Y ).

Proof Since P ∈ AAA(T,Y ). So, we can decompose it as P(r) = P1(r) + P2(r),
where P1(r) ∈ AA(T,Y ) and P2(r) ∈ C0(T,Y ). Now,

P(r) = P1(r) + P2(r)

where P1(r) = ∫ r
−∞ S(r,σ(s))P1(s)�s and P2(r) = ∫ r

−∞ S(r,σ(s))P2(s)�ζ. To
proof complete, we have to prove P1(r) ∈ AA(T,Y ), P2(r) ∈ C0(T,Y ). Since
P1 ∈ AA(T,Y ) there exists P∗

1 and a subsequence {τn} ⊂ � for each sequence {τ ′
n}

such that

lim
n→∞ ‖P1(r + τn) − P∗

1 (r)‖ = 0 and lim
n→∞ ‖P∗

1 (r − τn) − P1(r)‖ = 0 (3.3)

Now, corresponding to P∗
1 , let us defineP∗

1(r) = ∫ r
−∞ S(r,σ(s))P∗

1 (s)ds. Now, we
compute

‖P1(r + τn) − P∗
1(r)‖ =

∥∥∥
r+τn∫

−∞
S(r + τn,σ(s))P1(s)�s −

r∫

−∞
S(r,σ(s))P∗

1 (s)�s
∥∥∥

=
∥∥∥

r∫

−∞
S(r + τn,σ(s) + τn)P1(s + τn)�s −

r∫

−∞
S(r,σ(s))P∗

1 (s)�s
∥∥∥

≤
r∫

−∞

∥∥∥S(r + τn,σ(s) + τn) − S(r,σ(s))
∥∥∥∥∥P1(s + τn)

∥∥�s

+
r∫

−∞
‖S(r,σ(s))‖∥∥P1(s + τn) − P∗

1 (s)
∥∥�s

≤ ‖P1‖∞
ε(1 + μ̄ω)

ω
+ R0(1 + μ̄ω)

ω
sup
r∈T

∥∥P1(r + τn) − P∗
1 (r)

∥∥.
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From Eq. 3.3, we have limn→∞ ‖P1(r + τn) − P∗
1(r)‖ = 0. Using the similar argu-

ments, we get limn→∞ ‖P∗
1(r − τn) − P1(r)‖ = 0. Hence P1(r) ∈ AA(T,Y ).

Now, analogously to the previous lemma proof we can easily find lim|r |→∞
‖P2(r)‖ = 0. Hence P2(·) ∈ C0(T,Y ). ��

Now we are prepare for our main result which gives the uniqueAAA solution of
system (1.1).

Theorem 3.3 Let us assumptions (A1)–(A5) hold, the system (1.1) has a unique
AAA solution y : T → Y provided

(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
< 1. (3.4)

Proof Firstly, let us define a nonlinear operator

(Gy)(r) = g(r, y(κ(r))) +
r∫

−∞
S(r,σ(s))P(s, y(s))�s

+
r∫

−∞
S(r,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s.

From the assumptions,Lemmas 2.17, 2.22, 3.1 and3.2,we conclude that the operator
G is from AAA(T, Y ) into AAA(T,Y ) which is Banach space from Lemma 2.21.
To prove the remaining part, suppose y, x ∈ AAA(T,Y ), then

‖(Gy)(r) − (Gx)(r)‖

≤ ‖g(r, y(κ(r))) − g(r, x(κ(r))‖ +
∥∥∥

r∫

−∞
S(r,σ(s))[P(s, y(s)) − P(s, x(s))]�s

∥∥∥

+
∥∥∥

r∫

−∞
S(r,σ(s))

s∫

−∞
k(s,σ(ζ))[h(ζ, y(ζ)) − h(ζ, x(ζ))]�ζ�s

∥∥∥

≤ Lg‖y(κ(r)) − x(κ(r))‖ + K0LP
r∫

−∞
e�ω(r,σ(s))‖y(s) − x(s)‖�s

+ R0cLh

r∫

−∞
e�ω(r,σ(s))

s∫

−∞
e�λ(s,σ(ζ))‖y(ζ) − x(ζ)‖�ζ�s

≤
(
Lg + K0LP (1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
sup
r∈T

‖y(r) − x(r)‖

where μ̄ = supr∈T μ(r).

‖(Gy) − (Gx)‖∞ = M‖y − x‖∞,
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where M =
(
Lg + K0LP (1+μ̄ω)

ω
+ K0cLh(1+μ̄λ)(1+μ̄ω)

λω

)
. According to condition (3.4),

M < 1 which implies G is a contraction mapping. Therefore using the Banach con-
traction theorem, we get a unique fixed point y(r) inAAA(T,Y ) such that Gy = y
that is

y(r) = g(r, y(κ(r))) +
r∫

−∞
S(r,σ(s))P(s, y(s))�s

+
r∫

−∞
S(r,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s

for all r ∈ T. If we let a ∈ T, then

y(a) = g(a, y(κ(a))) +
a∫

−∞
S(a,σ(s))P(s, y(s))�s

+
a∫

−∞
S(a,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s

using evolution operator property S(r, t)S(t, s) = S(r, s), s ≤ t ≤ r.

S(r, a)y(a) = S(r, a)g(a, y(κ(a))) +
a∫

−∞
S(r,σ(s))P(s, y(s))�s

+
a∫

−∞
S(r,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s

S(r, a)[y(a) − g(a, y(κ(a)))] = y(r) − g(r, y(κ(r))) −
r∫

a

S(r,σ(s))P(s, y(s))�s

−
r∫

a

S(r,σ(s))

s∫

−∞
k(s,σ(ζ))h(ζ, y(ζ))�ζ�s.

From last equality, we find that system (1.1) has a unique AAA solution, given by
(2.1). ��
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4 Stability Result

Definition 4.1 A solution y is called stable, if for any arbitrary 0 < ε, there exists
0 < δ such that

‖y(r) − y(r)‖ < ε, ∀r ≥ a, r, a ∈ T

whenever ‖y(a) − y(a)‖ < δ, where y is the solution of System (1.1) with initial
condition y(a) ∈ Y .

Theorem 4.2 If the conditions of Theorem 3.3 satisfies, system (1.1) has a unique
stable AAA mild solution.

Proof By Theorem 3.3, we get that problem (1.1) has a unique AAA mild solution
whose integral form is given by,

y(r) = S(r, a)[y(a) − g(a, y(κ(a)))] + g(r, y(κ(r))) +
t∫

a

S(r, σ(s))P(s, y(s))�s

+
t∫

a

S(r, σ(s))

s∫

−∞
k(s, σ(ζ))h(ζ, y(ζ))�ζ�s,

for ∀r > a ∈ T. Now, let us suppose that y(r) is AAA solution of the system (1.1)
and y(r) is another solution of the system (1.1).

‖y(r) − y(r)‖
≤ ∥∥S(r, a)[y(a) − y(a)]∥∥ + ∥∥S(r, a)[g(a, y(κ(a))) − g(a, y(κ(a))]∥∥

+
∥∥∥

r∫

a

S(r,σ(s))[P(s, y(s)) − P(s, y(s))]�s
∥∥∥ + ∥∥g(r, y(κ(r))) − g(r, y(κ(r))

∥∥

+
∥∥∥

r∫

a

S(r,σ(s))

s∫

−∞
k(s,σ(ζ))[h(ζ, y(ζ)) − h(ζ, y(ζ))]�ζ�s

∥∥∥

≤ R0(1 + Lg)e�ω(r, a)‖y(a) − y(a)‖ + Lg‖y(κ(r)) − y(κ(r))‖

+
(
K0LP + K0cLh(1 + μ̄λ)

λ

) r∫

a

e�ω(r,σ(s)) sup
s∈T

‖y(s) − y(s)‖�s

≤ R0(1 + Lg)‖y(a) − y(a)‖+(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
sup
r∈T

‖y(r) − y(r)‖
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‖y − y‖∞ − M‖y − y‖∞ ≤ R0(1 + Lg)‖y(a) − y(a)‖

‖y − y‖∞ ≤ R0(1 + Lg)‖y(a) − y(a)‖
1 − M

where R0(1+Lg)

1−M > 0, choose a δ > 0 such that δ < ε(1−M)

R0(1+Lg)
, then

‖y − y‖ < ε.

From Definition 4.1, the system (1.1) is stable. ��

5 Example

Here, we give an example on different different time scale which shows the fruitful-
ness of results obtained in previous sections.

Consider the PDE on general periodic time scales T,

∂

�1r
U (r, y)

= ∂2

�2x2
U (r, y) + ∂

�1r

[ 1

250
sin

( 1

1 + sin r + sin
√
2r

)
sinU (r, y) + 1

250
e−|r | cosU (r, y)

]

+ 1

250
cos

( 1

1 + sin r + cos
√
2r

)
cosU (r, y) + 1

250

1

1 + r2
sinU (r, y)

+
r∫

−∞
e− 1

4
(r,σ(s))

[
cos

√
2s sinU (s, y) + 1

1 + s2 + s4
cosU (s, y)

]
�s, y ∈ [0,π]T

(5.1)

U (r, 0) = U (r,π) = 0, r ∈ T,

Let ϑ(r) = U (r, ·), we consider the operator A by

Aϑ = ∂2

�2y2
ϑ, ϑ ∈ D(A) = {H1

0[0,π]T ∩ H
2
0[0,π]T}.

As the similar argument of Sect. 3.1 in [19] and in [20], any one can simply find that
the evolution system {S(r, s) : r ≥ s} satisfies ||S(r, s)|| ≤ e� 1

2
(r, s), r ≥ s, with

R0 = 1 and ω = 1
2 . On based of above things, system (5.1) can be converted in form

as (1.1) and satisfied all assumptions with Lg, Lh, LP = 1
125 , c = 1, λ = 1

4 . Now,
it remains to check one condition for different different time scales.
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Case1: If T = R, then μ̄ = 0, hence

(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
= 0.104 < 1.

Case2: If T = Z, then μ̄ = 1, hence

(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
= 0.176 < 1.

Case3: If T = 2Z, then μ̄ = 2, hence

(
Lg + K0LP(1 + μ̄ω)

ω
+ K0cLh(1 + μ̄λ)(1 + μ̄ω)

λω

)
= 0.264 < 1.

In all of cases, we find that all conditions of Theorems 3.3 and 4.2 satisfy, sowe derive
that problem (5.1) has a unique stableAAA solution.
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