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Abstract The present manuscript is dedicated to the study of existence and sta-
bility of integro differential equation with periodic boundary condition and non-
instantaneous impulses on time scales. Banach contraction theorem and non-linear
functional analysis have been used to established these results. Moreover, to outline
the utilization of these outcomes an example is given.
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1 Introduction

There are many physical models which are subject to sudden changes in its states,
such rapid changes are known as impulsive response. In the current hypothesis, there
are two types of impulsive system, one is instantaneous and another one is known
as non-instantaneous impulsive system. In the instantaneous impulsive system, the
duration of these abrupt changes is very little correlation to the duration of the whole
process, for example pulses, stuns and cataclysmic events [7, 16], while in the non-
instantaneous impulses, the duration of these changes continues over a finite time
interval. For the initial studies related with the existence, uniqueness, and control-
lability of non-instantaneous impulsive systems of integer and fractional order, we
refer to [10, 15, 18, 21] and the references cited therein. Further, stability analy-
sis of dynamical systems becomes an important research area and various form of
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stabilities have been developed including Lyapunov stability,Mittag-Leffler function
and exponential for dynamical equations. Moreover, an interesting type of stability
was introduced by Ulam andHyers is known as Ulam-Hyers stability which is highly
useful in numerical analysis and optimization for dynamical equations. The Ulam-
Hyper’s stability for many dynamical equations of integer and fractional order has
been studied in lots of articles [4, 5, 25, 26].

In 1988, Hilger presented the time scales calculus. The investigation of analytics
on time scales incorporates the continuous and discrete analysis, therefore the inves-
tigation of dynamical system on time scales has picked up an awesome consideration
and numerous scientists have discovered the uses of time scales in heat transfer sys-
tem [19], population dynamics [28] and economics [11, 12]. For more details about
time scales one can refer the book [8, 9] and papers [2, 3, 17]. Further over the most
recent couple of years, many authors talked about the existence, uniqueness and sta-
bility of dynamical system on time scales [1, 6, 13, 14, 20, 22–24, 27]. Particularly,
Geng [13], presented the concepts of lower and upper solutions for a PBVP on time
scales.

According as far as anyone is concerned, there is no manuscript which examined
the existence, uniqueness and stability investigation of integro differential equa-
tions with non-instantaneous impulses on time scales. Spurred by the above actual-
ities, we take the differential equations with periodic boundary condition and non-
instantaneous impulses on time scale of the form:

v�(θ) = C

⎛
⎜⎝θ, v(θ),

θ∫

0

h(θ, τ , v(τ ))�τ

⎞
⎟⎠ , θ ∈ ∪l

k=0(λk , θk+1]T,

v(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, θ ∈ (θk , λk ]T, k = 1, 2, . . . , l, q ∈ (0, 1)

(1.1)

v(0) = v(T )

where T is a time scale with θk,λk ∈ T are right dense points with 0 = λ0 = θ0 <

θ1 < λ1 < θ2 < · · · λl < θl+1 = T , v(θ−
k ) = limh→0+ v(θk − h), v(θ+

k ) = limh→0+

v(θk + h), represent the left and right limits of v(θ) at θ = θk . The functions
gk(θ, v(θ−

k )) ∈ C(I, R) represent non-instantaneous impulses during the intervals
(θk,λk]T, k = 1, 2, . . . , l, so impulses at θk have some duration, namely on inter-
vals (θk,λk]T. C : I = [0, T ]T × R → R and h : Q × R → R are given functions,
where Q = {(θ, τ ) ∈ I × I : 0 ≤ τ ≤ θ ≤ T }.

Throughout the manuscript, we impose

M(v(θ)) =
θ∫

0

h(θ, τ , v(τ ))�τ .
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The structure of the manuscript is as: In second section, we give preliminaries,
fundamental definitions, useful lemmas and some important results. In the subsequent
sections, themain results of themanuscript are discussed. Finally, an example is given
to outline the utilization of these outcomes.

2 Preliminaries

Below, we give basic notations, fundamental definitions and useful lemmas. Let
(X, ‖.‖) be a Banach space.C(I, R) be the set of all continuous functions. In order to
define the solution of the Eq. (1.1), we define the space PC(I, R) of piecewise con-
tinuous functions defined as PC(I, R) = {v : I → R : v ∈ C(θk, θk+1]T, R), k =
0, 1, . . . , l and there exists v(θ−

k ) and v(θ+
k ), k = 1, 2, . . . , l with v(θ−

k ) = v(θk)}. It
can be seen easily that PC(I, R) is a Banach space with the TZ-norm

‖v‖� = sup
θ∈[a,b]

‖v(θ)‖
e�(θ, a)

, for some � ∈ R+.

A closed non-empty subset of real number is called time scales T. A time scale
interval is defined as [i,m]T = {θ ∈ T : i ≤ θ ≤ m}, accordingly, we define (i,m)T,

[i,m)T and soon.Nowonwards,weused a time scale interval [i,m] insteadof [i,m]T.
Also, now onward if maxT exists, thenwe takeT

k = T\{maxT}, otherwiseT
k = T.

The forward jump operator σ : T
k → T is defined by σ(θ) := inf{r ∈ T : r > θ}

with the substitution inf{φ} = supT and the graininess function μ : T
k → [0,∞) is

define as μ(θ) := σ(θ) − θ,∀θ ∈ T
k .

Definition 2.1 Let z : T → R and θ ∈ T
k . The delta derivative z�(θ) is the number

(when it exists) such that given any ε > 0, there is a neighbourhoodU of θ such that

|[z(σ(θ)) − z(τ )] − z�(θ)[σ(θ) − τ ]| ≤ ε|σ(θ) − τ |, ∀ τ ∈ U.

Definition 2.2 Function Z is said to be antiderivative of z : T → R provided
Z�(θ) = z(θ) for each θ ∈ T

k , then the delta integral is defined by

θ∫

θ0

z(ζ)�ζ = Z(θ) − Z(θ0).

A function z : T → R is called rd-continuous on T, if z has finite left-sided limits at
points θ ∈ T with sup{r ∈ T : r < θ} = θ and z is continuous at points θ ∈ T with
σ(θ) = θ. The collection of all rd-continuous functions z : T → R will be denoted
by Crd(T, R).

Definition 2.3 A function p : T → R is said to be regressive (positive regressive)
if 1 + μ(θ)p(θ) 	= 0(> 0), ∀θ ∈ T and the set of all regressive (positive regressive)
functions are denoted by R(R+).
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Definition 2.4 The generalized exponential function is defined as

ep(θ, r) = exp

⎛
⎝

θ∫

r

ξμ(ζ)(p(ζ))�ζ

⎞
⎠ , θ, r ∈ T, p ∈ R,

where ξμ(β)(p(β)) is given by

ξμ(β)(κ) =
⎧⎨
⎩

1

μ(β)
Log(1 + μ(β)κ), if μ(β) 	= 0.

κ, if μ(β) = 0.

Lemma 2.5 ([17]) Let θ1, θ2 ∈ T, such that θ1 ≤ θ2 and z : R → R be a non-
decreasing continuous function. Then,

θ2∫

θ1

z(ζ)�ζ ≤
θ2∫

θ1

z(ζ)dζ. (2.1)

Lemma 2.6 Let g : I → R be a right dense continuous function. Then, for any
k = 1, 2, . . . , l, the solution of the following problem

v�(θ) = g(θ), θ ∈ ∪l
k=0(λk, θk+1],

v(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, θ ∈ (θk,λk], k = 1, 2, . . . , l,

v(0) = v(T ),

is given by the following integral equation

v(θ) = 1

�(q)

λl∫

θl

(λl − ζ)q−1gl (ζ, v(θ−
l ))�ζ +

T∫

λl

g(ζ)�ζ +
θ∫

0

g(ζ)�ζ, ∀ θ ∈ [0, θ1],

v(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, ∀ θ ∈ (θk ,λk ], k = 1, 2, . . . , l,

v(θ) = 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, v(θ−
k ))�ζ +

θ∫

λk

g(ζ)�ζ, ∀ θ ∈ (λk , θk+1], k = 1, 2, . . . , l.

(H1): The non-linear function C : J1 × R × R → R, J1 = ∪l
k=0[λk, θk+1] is con-

tinuous and ∃ positive constants LC1 , LC2 such that
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|C(θ, v1, v2) − C(θ, w1, w2)| ≤ LC1 |v1 − w1| + LC2 |v2 − w2|,
∀ θ ∈ I, v j , w j ∈ R, j = 1, 2.

Also, ∃ positive constants CC, MC and NC such that

|C(θ, v, w)| ≤ CC + MC|v| + NC|w|, ∀ θ ∈ I, v, w ∈ R.

(H2): h : Q × R → R is continuous and ∃ positive constant Lh such that

|h(θ, τ , v) − h(θ, τ , w)| ≤ Lh |v − w|, ∀ θ, τ ∈ Q, v, w ∈ R.

Also, ∃ positive constants Ch, Mh such that

|h(θ, τ , v)| ≤ Ch + Mh |v|, ∀ θ, τ ∈ Q, v ∈ R.

(H3): The functions gk : Ik × R → R, Ik = [θk,λk], k = 1, 2, . . . , l are contin-
uous and ∃ a positive constant Lg such that

|gk(θ, v) − gk(θ, w)| ≤ Lg|v − w|, ∀ v,w ∈ R, θ ∈ Ik, k = 1, 2, . . . , l.

Also, ∃ a positive constant Mg such that |gk(θ, v)| ≤ Mg, ∀ θ ∈ Ik and v ∈ R.

(H4): max1≤k≤l

(
e�(T,λk)

(
MC
�

+ NCMh

�2

))
< 1.

3 Existence and Uniqueness

Theorem 3.1 Let the assumptions (H1)–(H4) are holds, then Eq. (1.1) has a unique
solution provided,

e�(T,λl)

(
LC1

�
+ LC2Lh

�2

)
< 1.

Proof Consider a subset D ⊆ PC(I, R) such that

D = {v ∈ PC(I, R) : ‖v‖� ≤ β},

where

β = max
1≤k≤l

⎛
⎜⎜⎝

MgT q

�(q + 1)
+ CC(T + θ1) + NCCh(T 2 + θ21)

1 − (1 + e�(T,λk))

(
MC
�

+ NCMh

�2

)

⎞
⎟⎟⎠ .
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Now, define an operator � : D → D given by

(�v)(θ) =
θ∫

0

C(ζ, v(ζ),M(v(ζ)))�ζ + 1

�(q)

λl∫

θl

(λl − ζ)q−1gl(ζ, v(θ−
l ))�ζ

+
T∫

λl

C(ζ, v(ζ),M(v(ζ)))�ζ, ∀ θ ∈ [0, θ1],

(�v)(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, ∀ θ ∈ (θk,λk], k = 1, 2, . . . , l,

(�v)(θ) = 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, v(θ−
k ))�ζ +

θ∫

λk

C(ζ, v(ζ),M(v(ζ)))�ζ,

∀ θ ∈ (λk, θk+1], k = 1, 2, . . . , l.

The proof of this theorem are divided into two steps.
Step 1: To use the Banach contraction theorem, we have to show that � : D → D.
For this, we are taking three cases as follows:
Case 1: For θ ∈ (λk, θk+1], k = 1, 2, . . . , l and v ∈ D, we have:

|(�v)(θ)| ≤ 1

�(q)

λk∫

θk

(λk − ζ)q−1|gk(ζ, v(θ−
k ))|�ζ +

θ∫

λk

|C(ζ, v(ζ),M(v(ζ)))|�ζ

≤ Mg

�(q)

λk∫

θk

(λk − ζ)q−1�ζ +
θ∫

λk

(CC + MC |v(ζ)| + NC |M(v(ζ))|)�ζ

≤ Mg(λk − θk)
q

�(q + 1)
+ (CC + NCChθk+1)(θk+1 − λk)

+
(
MCβ + NCMhβ

�

) θ∫

λk

e�(ζ, λk)�ζ

≤ MgT q

�(q + 1)
+ (CC + NCChT )T + MCβe�(θ, λk)

�
+ NCMhβe�(θ, λk)

�2 .

Hence,

‖�v‖� ≤ MgT q

�(q + 1)
+ (CC + NCChT )T + MCβ

�
+ NCMhβ

�2
. (3.1)
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Case 2: For θ ∈ [0, θ1] and v ∈ D, we have:

|(�v)(θ)| ≤
θ∫

0

|C(ζ, v(ζ),M(v(ζ)))|�ζ + 1

�(q)

λl∫

θl

(λl − ζ)q−1|gl(ζ, v(θ−
l ))|�ζ

+
T∫

λl

|C(ζ, v(ζ),M(v(ζ)))|�ζ

≤ Mg(λl − θl)
q

�(q + 1)
+ CC(T − λl) + MCβ

T∫

λl

e�(ζ,λl)�ζ + NCChT (T − λl)

+ NCMhβ

�

T∫

λl

e�(ζ,λl)�ζ + CCθ1 + NCChθ
2
1

+
(
MCβ + NCMhβ

�

) θ∫

0

e�(ζ, 0)�ζ

≤ MgT q

�(q + 1)
+ CC(T + θ1) + MCβe�(T,λl)

�
+ NCCh(T

2 + θ21)

+ NCMhβe�(T,λl)

�2 + MCβe�(θ, 0)

�
+ NCMhβe�(θ, 0)

�2 .

Hence,

‖�v‖� ≤ MgT q

�(q + 1)
+ CC(T + θ1) + MCβe�(T,λl)

�
+ NCCh(T

2 + θ21)

+ NCMhβe�(T,λl)

�2
+ MCβ

�
+ NCMhβ

�2
. (3.2)

Case 3: For θ ∈ (θk,λk], k = 1, 2, . . . , l and v ∈ D, we can easily get:

‖�v‖� = MgT q

�(q + 1)
. (3.3)

After summarizing the above inequalities (3.1)–(3.3), we get:

‖�v‖� ≤ β.

Therefore, � : D → D.
Step 2: In this step, we will show that the operator � is a contracting operator. Here
also, we are taking three cases as follows:
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Case 1: For any v,w ∈ D, θ ∈ (λk, θk+1], k = 1, 2, . . . , l, we have:

|(�v)(θ) − (�w)(θ)| ≤ 1

�(q)

λk∫

θk

(λk − ζ)q−1|gk(ζ, v(θ−
k )) − gk(ζ, w(θ−

k ))|�ζ

+
θ∫

λk

|C(ζ, v(ζ),M(v(ζ))) − C(ζ, v(ζ),M(w(ζ)))|�ζ

≤ Lg
�(q)

λk∫

θk

(λk − ζ)q−1|v(θ−
k ) − w(θ−

k )|e�(θ−
k , θk)

e�(θ−
k , θk)

�ζ

+ LC1

θ∫

λk

|v(ζ) − w(ζ)|e�(ζ,λk)

e�(ζ,λk)
�ζ

+ LC2

θ∫

λk

|M(v(ζ)) − M(w(ζ))|�ζ

≤ ‖v − w‖�Lge�(θ−
k , θk)(λk − θk)

q

�(q + 1)

+ LC1‖v − w‖�

θ∫

λk

e�(ζ,λk)�ζ

+ LC2 Lh‖v − w‖�

�

θ∫

λk

e�(ζ,λk)�ζ

≤ Lge�(θ−
k , θk)(λk − θk)

q‖v − w‖�

�(q + 1)
+ LC1e�(θ,λk)‖v − w‖�

�

+ LC2 Lhe�(θ,λk)‖v − w‖�

�2 .

Thus, we have:

‖�v − �w‖� ≤
[
Lge�(θ−

k , θk)T q

�(q + 1)
+ LC1

�
+ LC2Lh

�2

]
‖v − w‖�. (3.4)
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Case 2: For any v,w ∈ D, θ ∈ [0, θ1], we have:

|(�v)(θ) − (�w)(θ)| ≤
θ∫

0

|C(ζ, v(ζ),M(v(ζ))) − C(ζ, w(ζ),M(w(ζ)))|�ζ

+ 1

�(q)

λl∫

θl

(λl − ζ)q−1|gl(ζ, v(θ−
l )) − gl(ζ, w(θ−

l ))|�ζ

+
T∫

λl

|C(ζ, v(ζ),M(v(ζ))) − C(ζ, w(ζ),M(w(ζ)))|�ζ

≤ Lg

�(q)

λl∫

θl

(λl − ζ)q−1|v(θ−
l ) − w(θ−

l )|e�(θ−
l , θl)

e�(θ−
l , θl)

�ζ

+ LC1

T∫

λl

|v(ζ) − w(ζ)|e�(ζ, λl)

e�(ζ, λl)
�ζ

+ LC2

T∫

λl

|M(v(ζ)) − M(w(ζ))|�ζ

+ LC1

θ∫

0

|v(ζ) − w(ζ)|e�(ζ, 0)

e�(ζ, 0)
�ζ

+ LC2

θ∫

0

|M(v(ζ)) − M(w(ζ))|�ζ

≤ Lge�(θ−
l , θl)(λl − θl)

q‖v − w‖�

�(q + 1)
+ LC1‖v − w‖�

T∫

λl

e�(ζ, λl)�ζ

+ LC2 Lh‖v − w‖�

�

T∫

λl

e�(ζ, λl)�ζ + LC1‖v − w‖�

θ∫

0

e�(ζ, 0)�ζ

+ LC2 Lh‖v − w‖�

�

θ∫

0

e�(ζ, 0)�ζ

≤ LC2 Lhe�(T, λl)‖v − w‖�

�2 + Lge�(θ−
l , θl)(λl − θl)

q‖v − w‖�

�(q + 1)

+ ‖v − w‖�LC1e�(T, λl)

�
+ LC1e�(θ, 0)‖v − w‖�

�

+ LC2 Lhe�(θ, 0)‖v − w‖�

�2 .
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Therefore,

‖�v − �w‖� ≤
[
Lge�(θ−

l , θl)T q

�(q + 1)
+ (1 + e�(T,λl))

(
LC1
�

+ LC2Lh

�2

)]
‖v − w‖�.

(3.5)

Case 3: Similarly, for θ ∈ (θk,λk], k = 1, 2, . . . , l, we get:

|(�v)(θ) − (�w)(θ)| ≤ Lge�(θ−
k , θk)T q

�(q + 1)
‖v − w‖�.

Therefore,

‖�v − �w‖� ≤ LgT q

e�(θk, θ
−
k )�(q + 1)

‖v − w‖�. (3.6)

After summarizing the inequalities (3.4)–(3.6), we get:

‖�v − �w‖� ≤ L�‖v − w‖�,

where

L� = max
1≤k≤l

[
LgT qe�(θ−

k , θk)

�(q + 1)
+ (1 + e�(T,λl))

(
LC1

�
+ LC2Lh

�2

)]
.

Hence, for sufficiently large �, � is a strict contraction mapping. Therefore, � has
a unique fixed point and that fixed point is the solution of the taken Eq. (1.1). �


Let us consider a special casewhen C
(
θ, v(θ),

∫ θ

0 h(θ, τ , v(τ ))�τ
)

= P(θ, v) +
∫ θ

0 h(θ, τ , v(τ ))�τ then (1.1) becomes:

v�(θ) = P(θ, v) +
θ∫

0

h(θ, τ , v(τ ))�τ , θ ∈ ∪l
k=0(λk, θk+1],

v(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ, θ ∈ (θk,λk], k = 1, 2, . . . , l,

(3.7)

v(0) = v(T ).

(H5): P : J1 × R → R is a non-linear continuous function and ∃ a positive con-
stant LP such that
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|P(θ, v) − P(θ, w)| ≤ LP |v − w|, ∀ θ ∈ I, v, w ∈ R.

Also, ∃ positive constants CP and MP such that

|P(θ, v)| ≤ CP + MP |v|, ∀ θ ∈ I, v ∈ R.

(H6): max1≤k≤l

(
e�(T,λk)

(
MP
�

+ Mh

�2

))
< 1.

Corollary 3.2 If the assumptions (H2)–(H3) and (H5)–(H6) are holds, then the
Eq. (3.7) has a unique solution, provided

e�(T,λl)

(
LP
�

+ Lh

�2

)
< 1.

4 Hyer-Ulam’s Stability

For ε > 0,ψ ≥ 0, and nondecreasing ϕ ∈ PC(I, R
+), consider the below inequali-

ties
⎧⎪⎨
⎪⎩

|w�(θ) − C(θ, w(θ),M(w(θ)))| ≤ ε, θ ∈ ∪l
k=0(λk, θk+1].∣∣∣∣w(θ) − 1

�(q)

θ∫
θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ

∣∣∣∣ ≤ ε, θ ∈ (θk, λk], k = 1, 2, . . . , l.

(4.1)

⎧⎪⎨
⎪⎩

|w�(θ) − C(θ, w(θ),M(w(θ))| ≤ εϕ(θ), θ ∈ ∪l
k=0(λk, θk+1].∣∣∣∣w(θ) − 1

�(q)

θ∫
θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ

∣∣∣∣ ≤ εψ, θ ∈ (θk, λk], k = 1, 2, . . . , l.

(4.2)

Definition 4.1 ([25]) Equation (1.1) is called Hyer’s-Ulam stable if there exists a
positive constant H(LC1 ,LC2 ,Lh ,Lg) such that for ε > 0 and for each solution w of
inequality (4.1), there exist a unique solution v of Eq. (1.1) satisfies the following
inequality

|w(θ) − v(θ)| ≤ H(LC1 ,LC2 ,Lh ,Lg)ε, ∀ θ ∈ I.

Definition 4.2 ([25]) Equation (1.1) is said to be generalized Hyer’s-Ulam stable if
there existsH(LC1 ,LC2 ,Lh ,Lg) ∈ C(R+, R

+),H(LC1 ,LC2 ,Lh ,Lg)(0) = 0 such that for each
solution w of inequalities (4.1), there exists a unique solution v of Eq. (1.1) satisfies
the following inequality
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|w(θ) − v(θ)| ≤ H(LC1 ,LC2 ,Lh ,Lg)(ε), ∀ θ ∈ I.

Remark 4.3 Definition (4.1) =⇒ Definition (4.2).

Definition 4.4 ([25]) Equation (1.1) is said to be Hyers-Ulam-Rassias stable w.r.t
(ϕ,ψ), if there exists H(LC1 ,LC2 ,Lh ,Lg,ϕ) such that for ε > 0 and for each solution w

of inequality (4.2), there exist a unique solution v of Eq. (1.1) satisfies the following
inequality

|w(θ) − v(θ)| ≤ H(LC1 ,LC2 ,Lh ,Lg,ϕ)ε(ϕ(θ),ψ), ∀ θ ∈ I.

Remark 4.5 A function w ∈ PC(I, R) is a solution of inequality (4.1) if and only
if there is G ∈ PC(I, R) and a sequence Gk, k = 1, 2, . . . , l, such that

(a) |G(θ)| ≤ ε,∀ θ ∈ ∪l
k=0(λk, θk+1] and |Gk | ≤ ε, ∀ θ ∈ (θk,λk], k = 1, 2, . . . , l.

(b) w�(θ) = C(θ, w(θ),M(w(θ))) + G(θ), θ ∈ (λk, θk+1], k = 0, 1, . . . , l.

(c) w(θ) = 1

�(q)

∫ θ
θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ + Gk, θ ∈ (θk, λk], k = 1, 2, . . . , l.

Now, by the above Remark 4.5, we have:

⎧⎪⎨
⎪⎩

w�(θ) = C(θ, w(θ),M(w(θ))) + G(θ), θ ∈ (λk, θk+1], k = 0, 1, . . . , l,

w(θ) = 1

�(q)

θ∫
θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ + Gk , θ ∈ (θk ,λk], k = 1, 2, . . . , l.

From Lemma 2.6, one can find that the solution w with w(0) = w(T ) of the above
equation is given by

w(θ) =
θ∫

0

(C(ζ, w(ζ),M(w(ζ))) + G(ζ))�ζ + 1

�(q)

λl∫

θl

(λl − ζ)q−1gl(ζ, w(θ−
l ))�ζ + Gl

+
T∫

λl

(C(ζ, w(ζ),M(w(ζ))) + G(ζ))�ζ, ∀ θ ∈ [0, θ1],

w(θ) = 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ + Gk , ∀ θ ∈ (θk , λk ], k = 1, 2, . . . , l,

w(θ) = 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, w(θ−
k ))�ζ + Gk +

θ∫

λk

(C(ζ, w(ζ),M(w(ζ))) + G(ζ))�ζ,

∀ θ ∈ (λk , θk+1], k = 1, 2, . . . , l.

Therefore, for θ ∈ (λk, θk+1], k = 1, 2, . . . , l, we have:
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∣∣∣∣w(θ) − 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, w(θ−
k ))�ζ −

θ∫

λk

C(ζ, w(ζ),M(w(ζ)))�ζ

∣∣∣∣

≤ |Gk | +
θ∫

λk

|G(ζ)|�ζ ≤ ε(1 + T ).

Also, for θ ∈ [0, θ1], we have:
∣∣∣∣w(θ) − 1

�(q)

λl∫

θl

(λl − ζ)q−1gl(ζ, w(θ−
l ))�ζ −

T∫

λl

C(ζ, w(ζ),M(w(ζ)))�ζ

−
θ∫

0

C(ζ, w(ζ),M(w(ζ)))�ζ

∣∣∣∣ ≤ |Gl | +
T∫

λl

|G(ζ)|�ζ +
θ∫

0

|G(ζ)|�ζ

≤ ε(1 + 2T ).

Similarly, for θ ∈ (θk,λk], k = 1, 2, . . . , l, we have:

∣∣∣∣w(θ) − 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, w(θ−
k ))�ζ

∣∣∣∣ ≤ ε.

We have similar remark for the inequality (4.2).

Theorem 4.6 If the assumptions of Theorem 3.1 are holds, then the Eq. (1.1) is
Hyer-Ulam stable.

Proof Let w ∈ PC(I, R) be the solution of inequality (4.1) and v ∈ PC(I, R) be
a unique solution of the Eq. (1.1). Therefore, for θ ∈ (λk, θk+1], k = 1, 2, . . . , l, we
have:

|w(θ) − v(θ)| ≤
∣∣∣∣w(θ) −

θ∫

λk

C(ζ, v(ζ),M(v(ζ)))�ζ

∣∣∣∣ − 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, v(θ−
k ))�ζ

≤
∣∣∣∣w(θ) − 1

�(q)

λk∫

θk

(λk − ζ)q−1gk(ζ, w(θ−
k ))�ζ

−
θ∫

λk

C(ζ, w(ζ),M(w(ζ)))�ζ

∣∣∣∣

+
∣∣∣∣

1

�(q)

λk∫

θk

(λk − ζ)q−1(gk(ζ, w(θ−
k )) − gk(ζ, v(θ−

k )))�ζ

∣∣∣∣
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+
∣∣∣∣

θ∫

λk

(C(ζ, w(ζ),M(w(ζ))) − C(ζ, w(ζ),M(v(ζ))))�ζ

∣∣∣∣

≤ ε(1 + T ) + Lg

�(q)

λk∫

θk

(λk − ζ)q−1|w(θ−
k ) − v(θ−

k )|�ζ

+ LC1

θ∫

λk

|w(ζ) − v(ζ)|�ζ + LC2

θ∫

λk

|M(w(ζ)) − M(v(ζ))|�ζ

≤ ε(1 + T ) + Lge�(θ−
k , θk)(λk − θk)

q‖v − w‖�

�(q + 1)

+ LC1e�(θ, λk)‖v − w‖�

�
+ LC2 Lhe�(θ, λk)‖v − w‖�

�2 .

Hence,

‖w − v‖� ≤ ε(1 + T ) +
[
Lge�(θ−

k , θk)T q

�(q + 1)
+ LC1

�
+ LC2Lh

�2

]
‖v − w‖�. (4.3)

Also, for θ ∈ [0, θ1], we have:

|w(θ) − v(θ)| ≤
∣∣∣∣w(θ) −

θ∫

0

C(ζ, v(ζ),M(v(ζ)))�ζ

∣∣∣∣

− 1

�(q)

λl∫

θl

(λl − ζ)q−1gl(ζ, v(θ−
l ))�ζ −

T∫

λl

C(ζ, v(ζ),M(v(ζ)))�ζ

≤ ε(1 + 2T ) + Lg

�(q)

λl∫

θl

(λl − ζ)q−1|v(θ−
l ) − w(θ−

l )|�ζ

+ LC1

T∫

λl

|v(ζ) − w(ζ)|�ζ + LC2

T∫

λl

|M(v(ζ)) − M(w(ζ))|�ζ

+ LC1

θ∫

0

|v(ζ) − w(ζ)|�ζ + LC2

θ∫

0

|M(v(ζ)) − M(w(ζ))|�ζ

≤ ε(1 + 2T ) + Lge�(θ−
l , θl )(λl − θl)

q‖v − w‖�

�(q + 1)
+ LC1e�(T,λl )‖v − w‖�

�

+ LC2 Lhe�(T,λl )‖v − w‖�

�2 + LC1e�(θ, 0)‖v − w‖�

�

+ LC2 Lhe�(θ, 0)‖v − w‖�

�2 .
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Thus,

‖w − v‖� ≤ ε(1 + 2T ) +
[
Lge�(θ−

l , θl)T q

�(q + 1)
+ (1 + e�(T, λl))

(
LC1

�
+ LC2 Lh

�2

)]
‖v − w‖�.

(4.4)

Similarly, for θ ∈ (θk,λk], k = 1, 2, . . . , l, we can easily find that

|w(θ) − v(θ)| ≤
∣∣∣∣w(θ) − 1

�(q)

θ∫

θk

(θ − ζ)q−1gk(ζ, v(θ−
k ))�ζ

∣∣∣∣

≤ ε + Lg(λk − θk)
qe�(θ−

k , θk)‖w − v‖�

�(q + 1)
.

Therefore,

‖w − v‖� ≤ ε + LgT q

e�(θk, θ
−
k )�(q + 1)

‖v − w‖�. (4.5)

After summarizing the above inequalities (4.3)–(4.5), we get:

‖w − v‖� ≤ ε(1 + 2T ) +
[
Lge�(θ−

l , θl)T q

�(q + 1)
+ (1 + e�(T,λl))

(
LC1

�
+ LC2Lh

�2

)]

× ‖v − w‖�, ∀ θ ∈ I.

Hence,

‖w − v‖� ≤ H(LC1 ,LC2 ,Lh ,Lg)ε, θ ∈ I,

where H(LC1 ,LC2 ,Lh ,Lg) = 1 + 2T

1 − L�

> 0. Thus, the Eq. (1.1) is Ulam-Hyer’s stable.

Moreover, if we putH(LC1 ,LC2 ,Lh ,Lg)(ε) = H(LC1 ,LC2 ,Lh ,Lg)ε,H(LC1 ,LC2 ,Lh ,Lg)(0) = 0,
then the Eq. (1.1) is generalized Ulam-Hyer’s stable. �

(H7): There exists a δϕ > 0 such that

∫ θ

0 ϕ(ζ)�ζ ≤ δϕϕ(θ), ∀ θ ∈ I .

The following theorem is the consequence of the Theorem 4.6.

Theorem 4.7 If the conditions of Theorem 3.1 and (H7) are holds, then the Eq. (1.1)
is Hyer’s-Ulam-Rassias stable.
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5 Example

Consider the following equation with impulses on T, (0, 3/5, 4/5, 1 ∈ T)

v�(θ) = 5 + |v(θ)|
20eθ+3(1 + |v(θ)|) + 1

10

θ∫

0

θτ 2 sin(v(τ ))

eτ+5
�τ , θ ∈ I ′ = [0, 1]T \ (θ1,λ1]T,

v(θ) = 1

�(q)

θ∫

θ1

(θ − ζ)q−1(1 + ζ2 sin(v(θ−
1 )))

15
�ζ, θ ∈ (θ1,λ1]T, (5.1)

v(0) = v(1).

Set,

C(θ, v, w) = 5 + |v(θ)|
20eθ+3(1 + |v(θ)|) + 1

10
w, θ ∈ I ′, v, w ∈ R,

h(θ, τ , v) = θτ 2 sin(v(τ ))

eτ+5
, ∀ θ, τ ∈ I ′, v ∈ R,

and

g1(θ, v) = 1 + θ2 sin(v(θ−
1 ))

15
, θ ∈ (θ1,λ1], v ∈ R.

Then, ∀ θ, τ ∈ I = [0, 1], v, w, x, y ∈ R, we have:

| f (θ, v, w) − f (θ, x, y)| ≤ 1

20e3
|v − x | + 1

10
|w − y|,

| f (θ, v, w)| ≤ 5 + |v|
20e3

+ 1

10
|w|,

|g1(θ, v) − g1(θ, w)| ≤ 1

15
|v − w|, |h(θ, τ , v)| ≤ 1

e5
+ 1

e5
|v|,

|h(θ, τ , v) − h(θ, τ , w)| ≤ 1

e5
|v − w|.

Hence, the assumptions (H1)–(H4) are holds with LC1 = 1

20e3
, LC2 = 1

10
, CC =

5

20e3
, MC = 1

20e3
, NC = 1

10
, Lh = 1

e5
, Ch = 1

e5
, Mh = 1

e5
, Lg = 1

15
, Mg =

2

15
. Also, for l = 1, θ1 = 3/5, λ1 = 4/5, T = 1, � = 10, the condition

e�(T,λ1)

(
LC1

�
+ LC2Lh

�2

)
= 0.0039 (<1)
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holds. Thus, from Theorems 3.1 and 4.6, Eq. (5.1) has a Ulam Hyer’s stable solution
which is unique.

6 Conclusion

In thismanuscript,we have successfully established the existence of a unique solution
for the system (1.1) by using theBanach contraction theoremandnonlinear functional
analysis. Also, we established the Ulam-Hyer’s stability of the taken problem (1.1).
To illustrate the application of obtained results, we have given an example.
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