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Abstract Lymphocytes play significant defensive role to keep the body healthy.
However, there is substantial evidence that adrenal hormones such as epinephrine,
norepinephrine, and cortisol generated by psychological stress suppress the activi-
ties of the immune system or alter the activation and mobilization several immune
cells particularly lymphocytes during infections. Glucocorticoid receptors expressed
by the immune cells makes binding those hormones possible. This work formulates
a mathematical model to examine the impact of adrenal hormones on the immune
system with respect to time evolution and spatial distribution cells in response to
hormones concentration. The steady state of the model is studied and found to be
uniformly and asymptotically stable subject to the secretion and decay rates of hor-
mones. The numerical experiments using the free diffusion equations further investi-
gates the dynamic behaviour of the “bound” lymphocytes secretion rate of the adrenal
hormones induced by psychological stress.
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1 Introduction

The adrenal hormones are known to influence the activities of immune system in
human and other animals. People exposed to life threatening issues are prone to
chronic and persistent stress. For instance, a person diagnosed with any terminal
disease such as HIV infection or cancer faces social and emotional challenges. Psy-
chological stress that comes with the diagnosis of such illnesses often requires as
much attention as the infection [1]. Lymphocytes are specialized white blood cells
whose function is to identify and destroy invading antigens [2, 3].

The lymphocytes are vital components of the immune system alongside with
macrophages, antigen receptors and antigen-presenting cells [4, 5]. Psychological
stress is an unpleasant state of emotional and physiological arousal that people expe-
rience in situations that they perceive as dangerous or threatening to their well-being
[6]. Psychological stress gets inside the body through the brain by the influence of the
impulses via the nerve fibres that descend from the brain into the bone marrow and
thymus, spleen and lymph nodes that connect with lymphoid tissues. These fibres
release adrenal hormones such as epinephrine, norepinephrine, and cortisol that bind
on the receptors on lymphocytes thereby changing the functionality immune system
[7]. When psychological stress is excessive, prolonged and chronic, it breaks down
the body’s defense mechanism and leaves the body vulnerable to infections [8].

In light of the above, we propose a deterministic mathematical model to study the
temporal-spatial dynamics of lymphocytes and Adrenal Hormones interaction via
numerical experimentation inspired by [9, 10]. The secretions of adrenal hormones
during chronic and persistent stress cases are separately examined. The rest of the
paper is organized thus. In the second section, the mathematical model is proposed
which is followed by tabular description of each equation. In the same section, the
stability of the diffusion free system is investigated; equilibrium point obtained and
studied. In addition, some estimates of the full diffusion model are also examined in
appropriate Sobolev spaces. In section three, the diffusion free model is solved using
classical Runge-Kutta method while the full diffusion model is solved by explicit
forward in time, central in space (FTCS) method with appropriate stability condition
of the scheme and the corresponding results are presented alongside. The last section
is concluding remarks.

2 Formulation and Analysis of the Model Equations

2.1 Model Formulation

In these model equations, the diffusions of the respective component are modelled
using Laplace operator. The zero flux boundary conditions are imposed on the system
to study the phenomenon in bounded two dimensional domain�. u1(x, t) represents
the density of normal lymphocytes at time t; u2(x, t) : The concentration of adrenal
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Table 1 Biological meaning of the system

Equation Terms description

Eq. (1) D1�u1: diffusion term for normal cells δ: source term for normal cells

βu3: proportion of bound cells that
revert to normal

−α1u1u2: Proportion of normal cells
upon which adrenal hormone bound

−μ1u1: proportion of dead normal cells

Eq. (2) D2�u2: diffusion term for adrenal
hormones

α2u2: natural secretion of adrenal
hormones

−μ2u2: decay term for adrenal
hormones

ε(x, t): secretion of adrenal hormones
by psychological stress

Eq. (3) D3�u3: diffusion term for bound cells

−(β + μ3)u3: sum of proportions of
dead bound cells and those that revert to
normal

α1u1u2: proportions cells bound by
natural and stress induced secretions

hormones at time t; u3(x, t): The density of bound lymphocytes at time t.

∂u1
∂t

= D1�u1 + δ + βu3 − α1u1u2 − μ1u1 (1)

∂u2
∂t

= D2�u2 + α2u2 − μ2u2 + ε(x, t) (2)

∂u3
∂t

= D3�u3 + α1u1u2 − (β + μ3)u3 (3)

u1(., 0) = u01, u2(., 0) = u02, u3(., 0) = u03, inΩ

∂u1
∂n

= ∂u2
∂n

= ∂u3
∂n

= 0 on ∂�

where α1, α2, β, μ1, μ2, μ3 > 0,D1,D2,D3 ≥ 0, ε(x, t) → 0 as t → ∞.

We described system, Eqs. (1)–(3) term by term in Table 1 and parameter values
given in Table 2.

2.2 Model Analysis

Here, the steady state solutions of the ODE system is obtain and the system linearize
around the equilibrium point. The eigenvalues of the associated matrix of the lin-
earized system determines stability as in [14]. In the case of the PDE, we obtained
L2 and L∞ estimates.
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Table 2 Parameter values

Symbol Description Values

α1 Binding rate of adrenal hormones on lymphocytes 0.002/day

α2 Natural secretion rate of adrenal hormones 0.04/day [11]

δ Source term form lymphocytes 3.63E02cells [12]

β Rate bound lymphocytes revert to normal 0.001/day

μ1 Death rate of normal lymphocytes 0.06/day [12]

μ2 The adrenal hormone decay rate 0.1/day [11]

μ3 Death rate of bound lymphocytes 0.06/day

ε(x, t) Secretion of adrenal hormones induced by psychological
stress

D1 Diffusion coefficient of lymphocytes 0.0045 mm2/day [13]

D2 Diffusion coefficient of adrenal hormones 0.0052 mm2/day

D3 Diffusion coefficient of bound lymphocytes 0.0045 mm2/day [13]

Theorem 1 Forμ2 > α2 and
ε∗

μ2−α2
≥ μ1

α1
, the system,Eqs. (1)–(3) admits a spatially

homogeneous steady state ℘
(
u∗
1, u

∗
2, u

∗
3

)
.

Proof Assume that diffusion of the component decrease slowly to a negligible value,
then at equilibrium state, set ∂u1

∂t = ∂u2
∂t = ∂u3

∂t = 0, we have

0 = δ + βu3 − α1u1u2 − μ1u1, (4)

0 = α2u2 − μ2u2 + ε∗, (5)

0 = α1u1u2 − (β + μ3)u3, (6)

Solving Eqs. (4)–(6) simultaneously, we obtain positive equilibrium values

u∗
1 = δ(β + μ3)

(β + μ3)
(
α1u∗

2 − μ1
) + βα1u

∗
2

, (7)

u∗
2 = ε∗

μ2 − α2
, (8)

u∗
3 = δα1u∗

2

(β + μ3)
(
α1u∗

2 − μ1
) + βα1u∗

2

. (9)

provided μ2 > α2 and ε∗
μ2−α2

≥ μ1

α1
, hence the proof.

Theorem 2 Let u′ = Ju be a linearized system of Eqs. (11)–(13). Suppose that the
Jacobian matrix J is a constant matrix, with eigenvalues λ1, λ2, λ3 and Re(λi) < 0
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for all i = 1, 2, 3, then the spatially homogeneous steady state ℘
(
u∗
1, u

∗
2, u

∗
3

)
of Eqs.

(1)–(3) is uniformly and asymptotically stable.

Proof Now, let the kinetic parts of Eqs. (1)–(3) be expressed as below:

ϕ1 = δ + βu3 − α1u1u2 − μ1u1, ϕ2 = α1u2 − μ2u2 + ε(x, t),

ϕ3 = α1u1u2 − (β + μ3)u3.

Then, the Jacobian matrix evaluated at (u∗
1, u

∗
2, u

∗
3) is given by

J (u∗
1, u

∗
2, u

∗
3) =

⎛

⎝
−α1u2 − μ1 −α1u1 β

0 α1 − μ2 0
α1u2 α1u1 −(β + μ3)

⎞

⎠.

Now, we solve for the eigenvalues from the characteristics equation as follows:

∣∣J (u∗
1, u

∗
2, u

∗
3) − λI

∣∣ =
∣
∣∣∣∣∣

−α1u∗
2 − μ1 − λ −α1u∗

1 β

0 α1 − μ2 − λ 0
α1u∗

2 α1u∗
1 −(β + μ3) − λ

∣
∣∣∣∣∣
= 0,

(10)

where λ is the eigenvalues while I is the 3 × 3 identity matrix. This leads to the
characteristic equation

(α1 − μ2 − λ)
(
λ2 − (A1 + A2)λ + A1A2 + A3

) = 0, (11)

where A1 = −α1u∗
2 − μ1,A2 = −(β + μ3), A3 = −βα1u∗

2.

Solving (11), we obtained the following eigenvalues

λ1 = α1 − μ2, λ2 = (A1 + A2) −
√

(A1 + A2)
2 − 4(A1A2 + A3)

2
,

λ3 = (A1 + A2) +
√

(A1 + A2)
2 − 4(A1A2 + A3)

2
(12)

It remains to check whether the real parts of Eq. (12) are negative. Clearly, λ1 and
λ2 are both negative but λ3 < 0 if and only if

(A1 + A2) >

√
(A1 + A2)

2 − 4(A1A2 + A3). (13)

This suffices to show that (A1A2 + A3) > 0

A1A2 + A3 = α1(β + μ3)u
∗
2 + μ1(β + μ3) − βα1u

∗
2 (14)

Since u∗
2 > 0 and β,μ3 are positive constants, therefore
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A1A2 + A3 > βα1u
∗
2 − βα1u

∗
2 + μ1(β + μ3) = μ1(β + μ3) > 0,⇒ λ3 < 0.

(15)

Since all the eigenvalues Eq. (12) are negative, the system is uniformly and asymp-
totically stable around the equilibrium point (u∗

1, u
∗
2, u

∗
3) and this completes the proof.

Now, we define the time dependent Sobolev spaces to enable us obtain the esti-
mates.

Definition 3 [15]: let X be a generic nonempty set and 1 ≤ p < ∞

C([0,T ];X ) := {u|u : [0,T ] → X continuous }, (16)

Lp(0,T ;X ) :=

⎧
⎨

⎩
u|umeasurable,

T∫

0

‖u(t)‖pdt < ∞
⎫
⎬

⎭
. (17)

For an integer m > 0 and real p with 1 ≤ p < ∞ and X = � ⊂ R
2, we define

the Sobolev space

Wm,p(�) = {
u ∈ Lp(�)|Dαu ∈ Lp(�)∀|α| ≤ m

}
(18)

equipped with the following norms

uWm,p(�) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∑

|α|≤m

∫

�

|Dαu|pdx
)1/p

1 ≤ p < ∞,

∑

|α|≤m
ess sup

�

|Dαu| p = ∞,

(19)

|u|Wm,p(�) :=

⎛

⎝
∑

|α|=m

∫

�

|Dαu|pdx
⎞

⎠

1/p

1 ≤ p < ∞. (20)

Now, for p = 2, a Hilbert space is defined Wm,2(�) = Hm(�) with the inner
product

(u, v)m,� =
∑

|α|≤m

(Dαu,Dαv)0,�. (21)

H 1
0 (�) = {

u ∈ H 1|u = 0 on ∂�
}
with dual H−1(Ω).

Theorem 4 Let u01, u
0
2, u

0
3 ∈ L2(�) and (x, t) ∈ L2

(
0,T ;L2(�)

)
, then u1, u2, u3 ∈

L2
(
0,T ;H 1

0 (�)
)
with ∂u1

∂t , ∂u2
∂t , ∂u3

∂t ∈ L2
(
0,T ;H−1

0 (�)
)
, furthermore the estimates
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⎛

⎜
⎝

‖u1(t)‖L2(H 1
0 )

‖u2(t)‖L2(H 1
0 )

‖u3(t)‖L2(H 1
0 )

⎞

⎟
⎠ and

⎛

⎝
‖u1(t)‖L∞(L2)

‖u2(t)‖L∞(L2)

‖u3(t)‖L∞(L2)

⎞

⎠

are bounded by the data.

Proof Multiplying Eq. (1) by u1 and integrating over the domain, we have

∫

�

∂u1
∂t

u1 = D1

∫

�

�u1u1 +
∫

�

δu1 + β

∫

�

u3u1 − α1

∫

�

u1u2u1 − μ1

∫

�

u1u1 (22)

Using the Young’s inequality, integrating the first term on the right hand side by
parts, applying the boundary condition and dropping the negative terms, we have

1

2

∂

∂t

∫

�

u21 + D1

∫

�

∇u1.∇u1 ≤ 1

2

∫

�

δu21 + β

2

∫

�

(
u23 + u21

)
, (23)

1

2

∂

∂t
‖u1(t)‖2L2 + D1‖u1(t)‖2H 1

0
≤ δ + β

2
‖u1(t)‖2L2 + β

2
‖u3(t)‖2L2 (24)

In the same manner for Eqs. (2) and (3), we have

1

2

∂

∂t
‖u2(t)‖2L2 + D2‖u2(t)‖2H 1

0
≤ α2

2
‖u2(t)‖2L2 + ‖ε(., t)‖L2‖u2(t)‖L2 (25)

1

2

∂

∂t
‖u3(t)‖2L2 + D3‖u3(t)‖2H 1

0
≤ α1

2

(‖u1(t)‖2L2 + ‖u2(t)‖2L2 + ‖u3(t)‖2L2
)

(26)

Writing Eqs. (24)–(26) in vector form, we realize

1

2

∂

∂t

⎛

⎝
‖u1(t)‖2L2
‖u2(t)‖2L2
‖u3(t)‖2L2

⎞

⎠ +
⎛

⎜
⎝

‖u1(t)‖2H 1
0

‖u2(t)‖2H 1
0

‖u3(t)‖2H 1
0

⎞

⎟
⎠ ≤ M

⎛

⎝
‖u1(t)‖2L2
‖u2(t)‖2L2
‖u3(t)‖2L2

⎞

⎠ +
⎛

⎝
0

‖ε(., t)‖L2‖u2(t)‖L2
0

⎞

⎠

(27)

M = max

(
δ + α1 + β

2
,
α1 + α2

2
,
α1 + β

2

)
= δ + α1 + β

2
.

Now integrating in time and using of Cauchy-Schwarz inequality leads to

1

2

⎛

⎝
‖u1(T )‖2L2
‖u2(T )‖2L2
‖u3(T )‖2L2

⎞

⎠ − 1

2

⎛

⎜
⎝

∥∥u01
∥∥2
L2∥∥u02

∥∥2
L2∥∥u03

∥∥2
L2

⎞

⎟
⎠ +

⎛

⎜⎜
⎝

‖u1(t)‖2L2(H 1
0 )

‖u2(t)‖2L2(H 1
0 )

‖u3(t)‖2L2(H 1
0 )

⎞

⎟⎟
⎠
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≤ M

⎛

⎜⎜
⎝

‖u1(t)‖2L2(L2)
‖u2(t)‖2L2(L2)
‖u3(t)‖2L2(L2)

⎞

⎟⎟
⎠ +

⎛

⎜
⎝

0
‖ε(., t)‖L2(L2)‖u2(t)‖L2(L2)

0

⎞

⎟
⎠ (28)

Using Poincare’s inequality on the right hand side of Eq. (28) and that

⎛

⎜
⎝

‖u1(t)‖L2(H 1
0 )

‖u2(t)‖L2(H 1
0 )

‖u3(t)‖L2(H 1
0 )

⎞

⎟
⎠ ≤ C

⎧
⎪⎨

⎪⎩

⎛

⎝
0

‖ε‖L2(L2)
0

⎞

⎠ +
⎛

⎜
⎝

∥∥u01
∥∥2
L2∥∥u02

∥∥2
L2∥

∥u03
∥
∥2
L2

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
< ∞ (29)

⎛

⎜
⎝

‖u1(t)‖L∞(L2)
‖u2(t)‖L∞(L2)
‖u3(t)‖L∞(L2)

⎞

⎟
⎠ ≤ C

⎧
⎪⎨

⎪⎩

⎛

⎝
0

‖ε‖L2(L2)
0

⎞

⎠ +
⎛

⎜
⎝

∥
∥u01

∥
∥2
L2∥∥u02

∥∥2
L2∥∥u03

∥∥2
L2

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
< ∞ (30)

3 Numerical Solution

3.1 Diffusion Model

Assuming the diffusions of respective interacting components decrease to zero; we
solve the resulting system of ordinary differential equations using classical Runge-
Kutta method:

du1
dt

= δ + βu3 − α1u1u2 − μ1u1 (31)

du2
dt

= α2u2 − μ2u2 + ε(t) (32)

du3
dt

= α1u1u2 − (β + μ3)u3 (33)

u1(0) = u01, u2(0) = u02, u3(0) = u03,

Now, let u = (u1, u2, u3) and tn+1 = tn + h, n = 0, 1, 2 . . ., the fourth order
Runge-Kutta [16]

un+1 = un + 1

6
(k1 + 2k2 + 2k3 + k4)

k1 = f (tn, un)
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k2 = f

(
tn + h

2
, un + h

2
k1

)

k3 = f

(
tn + h

2
, un + h

2
k2

)

k4 = f (tn + h, un + hk3)

3.1.1 Chronic Stress

Using the initial values u1(0) = 3.6E02, u2(0) = 2.8, u3(0) = 0 and parameter
values in Table 1. In case of chronic stress transient function

ε(t) = t2e−0.15t

We infer from Fig. 1 below that, in the scenario where α2 = 0.04, μ2 = 0.1, in
line the stability condition μ2 > α2, the density of normal lymphocytes (blue line)
struggled initially but eventually recover from stress induced secretion of adrenal
hormones. The second scenario is when μ2 < α2 which is against the stability con-
dition. Here, the escalation of concentration of adrenal hormones leads to exponential
increase of number of bound lymphocytes which spell abnormal immune response
or reaction. This causes activation or inhibition depending on the particular hormone
and lymphocyte involved. This will lead to chronic stress related complications such

Fig. 1 Density of normal lymphocytes u1(x, t) (blue); the concentration of adrenal hormones
u2(x, t) (green) during chronic stress; the density of bound lymphocytes u3(x, t) (red) for α2 = 0.04
and α2 = 0.11
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Fig. 2 Density of normal lymphocytes u1(x, t) (blue); the concentration of adrenal hormones
u2(x, t) (green) during persistent stress; the density of bound lymphocytes u3(x, t) (red) for α2 =
0.04 and α2 = 0.11

as high blood pressure, hypertension and diabetes. However, the second scenario can
be explored to treat hyper immune reaction related diseases.

3.1.2 Persistent Stress

Here, a constant function is usedwith the samevalue as the initial value i.e. ε(t) = 2.8.
This is to emphasize that the fact, the initial concentration of adrenal hormones
persisted for a period of time. The numerical results shown inFig. 2, further illustrated
that, evenwhen the stability conditionμ2 > α2 is satisfiedwithμ2 = 0.1, α2 > 0.04,
the normal lymphocytes cannot recover back to original density. In case of μ2 < α2,
the density of normal lymphocytes crashed. The two cases will lead to stress related
complications.

3.2 Full Diffusion Model

We use an explicit forward in time, central in space (FTCS) method [17] to solve the
system. Let the compact form Eqs. (1)–(3) be given as

∂U

∂t
= D�U + F(U ), (34)

such that the two dimensions discretize form of Eq. (34) reduces to
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Un+1
ij − Un

ij

�t
= D

⎛

⎜⎜⎜⎜
⎝

Un
i+1j − 2Un

ij + Un
i−1j

�x2
+ Un

ij+1 − 2Un
ij + Un

ij−1

�y2
︸ ︷︷ ︸

�̃Un
ij

⎞

⎟⎟⎟⎟
⎠

+ F(Un)

(35)

This scheme has the stability condition [15]

�t ≤ �x2�y2

2D
(
�x2 + �y2

)

un+1
1ij = un1ij + �t

(
D1�̃un1ij + δ + βun3ij − α1u

n
1iju

n
2ij − μ1u

n
1ij

)
(36)

un+1
2ij = un2ij + �t

(
D2�̃un2ij + (α2 − μ2)u

n
2ij + ε(xn, yn, tn)

)
(37)

un+1
3ij = un3ij + �t

(
D3�̃un3ij + α1u

n
1iju

n
2ij − (β + μ3)u

n
3ij

)
(38)

In Theorem 1, this two conditions μ2 > α2 and ε∗
μ2−α2

≥ μ1

α1
must be satisfied for

the positivity of the solution. The parameter values are taken from Table 2 and we
used the initial conditions

u1(x, y, 0) = e−0.7(x+2)2−0.7(y+2)2 , u2(x, y, 0) = 2.8, u3(x, y, 0) = 0 (39)

Note that, from the initial conditions, it is assumed that, in a square domain � =
[−4, 4]2 the initial population of normal lymphocytes is densed at x = −2, y = −2
and the average concentrations adrenal hormone is constant. Also, it is assume that
the secretion of adrenal hormones induced by psychological stress is transient given
by

ε(x, y, t) = cos
(πx

2

)
cos

(πy

2

)
t2e−0.15t (40)

It is observed from Sect. 3.1 that, the system is highly sensitive to the net secretion
rate of the adrenal hormone. Here, a dynamic behaviour is also observed in Figs. 3,
4 and 5 shown at t = 1.25 and t = 2.5 for each component. Particularly, our light
is beamed on the density of bound lymphocytes. It is inferred in Fig. 5 that, bound
lymphocytes are more densed at areas of high concentration of adrenal hormones.
Indeed, this is in consonance with previous results on cortisol association with T cell
activation during HIV infection [9].
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Fig. 3 Density of normal lymphocytes u1(x, t) at t = 1.25 and t = 2.5

Fig. 4 The concentration of adrenal hormones u2(x, t) at t = 1.25 and t = 2.5

Fig. 5 The density of bound lymphocytes u3(x, t) at t = 1.25 and t = 2.5
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4 Conclusion

In this paper, a coupled systemof reaction-diffusion equations to study the interaction
of adrenal hormones induced by psychological stress on the human immune system
has been formulated. The system has only one critical point which is proved to
be uniformly and asymptotically stable (UAS) under certain prescribed constrains
μ2 > α2 and ε∗

μ2−α2
≥ μ1

α1
. Numerical solutions have further shown that, increase

in net secretion rate of stress absorbing hormones has great negative effect on the
human immune cell. Further research can be carried out in connection with other
terminal disease models such as cancer and HIV.
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