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Abstract In this work we apply an algorithm for the q-homotopy analysis transform
method (q-HATM) to solve the Cubic Isothermal Auto-catalytic Chemical System
(CIACS). This technique is a combination of the Laplace decomposition method
and the homotopy analysis scheme. This method gives the solution in the form of
a rapidly convergent series with h-curves are employed to determine the intervals
of convergent. Averaged residual errors are used to determine the optimal values of
h. We show the behavior of the solutions graphically. The q-HATM solutions are
compared with Numerical results by Mathematica and with finite difference method
and excellent agreement is found.
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1 Introduction

Merkin et al. in [26] investigated the reaction-diffusion traveling waves that occur in
isothermal auto-catalysis chemical system. The researchers proposed that the reac-
tions takeplace in two regions.These regions are separated andparallel. Thequadratic
auto-catalysis represents the reaction in region I and is presented by

A + B → 2B(rate k1ab), (1.1)

with the step of the linear decay

B → C(rate k2b), (1.2)

where a and b are indicating the concentrations of reactant A and auto-catalyst
B, the ki (i = 1, 2) are the rate constants and C is some inert product of reaction.
The reaction in region I I was the quadratic auto-catalytic step (1.1) only. The two
regions were considered to be coupled through a linear diffusive interchange of the
auto-catalytic species B. In this study we assume a similar kind of system as I, but
having cubic auto-catalysis

A + 2B → 3B(rate k3ab
2) (1.3)

together with a linear decay step

B → C(rate k4b). (1.4)

This gives to the system of equations below.
The subsequent nonlinear problem on ς > 0 and τ > 0 for the dimensionless

concentrations (α1,β1) in region I and (α2,β2) in region I I of species A and B is
considered

∂α1

∂τ
= ∂2α1

∂ς2
− α1β

2
1 , (1.5)

∂β1

∂τ
= ∂2β1

∂ς2
+ α1β

2
1 − kβ1 + γ(β2 − β1), (1.6)

∂α2

∂τ
= ∂2α2

∂ς2
− α2β

2
2 , (1.7)

∂β2

∂τ
= ∂2β2

∂ς2
+ α2β

2
2 + γ(β1 − β2), (1.8)
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with the boundary conditions

αi (0, τ ) = αi (L , τ ) = 1, βi (0, τ ) = βi (L , τ ) = 0. (1.9)

The dimensionless constants k and γ indicates the strength of the auto-catalyst
decay and the coupling between the two regions respectively.

The system of Eqs. (1.5)–(1.8) also studied by [30] for space-fractional derivative.
The fractional extension of CIACS is similarly useful and gives very interesting
consequences, in this regards one can refer the work on fractional calculus [5, 18,
34, 37, 40]. Themain idea of thiswork is to apply the q-HATM[19] on theCIACSand
study the effectiveness and accuracy of this method. The q-HATM is a combination
of q-HAM [19] and Laplace transform. Also we modified the work [31, 32] to q-
HATM [19]. The convergence of q-HAM and applications of this method on models
are studied in details [7, 14–17, 27].

The present article is organized as follows. The second section describes the basic
idea of the standard q-HATM. The third section is devoted to the application of q-
HATM to CIACS. The forth section is devoted to the numerical results. In the last
section, we summarize the results in the conclusion.

2 Basic Ideas of the q-HATM

Definition 2.1 If Dr
τ is linear differential operator of order r , then the Laplace trans-

form for the fractional derivative Dr
τ f (τ ) is given as

L(Dr
τ f (τ )) = sr F(s) −

r−1∑

k=0

f (k)(0+)sr−k−1, τ > 0, (2.1)

F(s) =
∫ ∞

0
f (τ )e−sτdτ .

In order to illustrate the basic concepts and the treatment of this method we let
N [α(ς, τ )] = g(ς, τ ), whereN represents the nonlinear partial differential operator
in general. The Linear operator can be divided into two parts. The first part represents
the linear operator of the highest order and indicates by L . The second part represents
the reminder parts of the linear operator and indicates by R. So, it can be illustrated
as

Lα(ς, τ ) + Rα(ς, τ ) + Nα(ς, τ ) = g(ς, τ ), (2.2)
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where Nα(ς, τ ) denotes the nonlinear terms. Now, if we let L = Dr
τ and apply the

Laplace transform to Eq. (2.2) we obtain

L[Dr
τα(ς, τ )] + L[Rα(ς, τ )] + L[Nα(ς, τ )] = L[g(ς, τ )]. (2.3)

Making use of (2.1) we then have

L[α(ς, τ )] − 1

s

r−1∑

i=0

α(i)(ς, 0)s−i−1 + 1

s
L[Rα(ς, τ ) + Nα(ς, τ ) − g(ς, τ )] = 0.

(2.4)

We express a nonlinear operator as

N [φ(ς, τ , q)] = L[φ(ς, τ ; q)] − 1

s

r−1∑

i=0

φ(i)(ς, 0)s−i−1

+ 1

s
L[R(φ(ς, τ ; q)) + Nφ((ς, τ ; q)) − g(ς, τ ))],

(2.5)

In the above expression q ∈ [0, 1/n] is denoting an embedding parameter and
φ(ς, τ ; q) is a real function of ς , τ and q. By modifying the well known concept
of homotopy methods Liao [20–23] constructed the deformation equation of zero
order written as

(1 − nq)L[φ(ς, τ ; q) − α0(ς, τ )] = qhH(ς, τ )N [φ(ς, τ ; q)], (2.6)

Here h �= 0 is an auxiliary parameter, H(ς, τ ) �= 0 is an auxiliary function, α0(ς, τ )

is an initial approximation for α(ς, τ ) and φ(ς, τ ; q) is an unknown function. It is
obvious that, when q = 0 and q = 1/n, we have

φ(ς, τ ; 0) = α0(ς, τ ), φ(ς, τ ; 1) = α(ς, τ ), (2.7)

respectively. Therefore, as q increases from 0 to 1/n, then there is a variation in solu-
tionφ(ς, τ ; q) from the initial approximationα0(ς, τ ) to the solutionα(ς, τ ).Writing
φ(ς, τ ; q) in series form by using Taylor theorem about q we get the following result

φ(ς, τ ; q) = α0(ς, τ ) +
∞∑

m=1

αm(ς, τ )qm, (2.8)
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where

αm(ς, τ ) = 1

m!
∂mφ(ς, τ ; q)

∂qm
|q=0 . (2.9)

If various parameters, operators and the initial approximation are properly selected,
the series (2.8) converges at q = 1

n and we get

α(ς, τ ) = α0(ς, τ ) +
∞∑

m=1

ςm(ς, τ )

(
1

n

)m

. (2.10)

Let us now define the vectors

�αm(ς, τ ) = {α0(ς, τ ),α1(ς, τ ),α2(ς, τ ), . . . ,αm(ς, τ )} . (2.11)

Now we differentiate the Eq. (2.6) m times with respect to q, then set q = 0 and
finally divide them by m!, and we get

L[αm(ς, τ ) − Xmαm−1(ς, τ )] = hH(ς, τ )Rm(�αm−1(ς, τ )). (2.12)

Here

Rm(�αm−1) = 1

(m − 1)!
∂m−1(N [φ(ς, τ ; q)])

∂qm−1
|q=0 (2.13)

and

Xm =
{
0 if m ≤ 1,
n if m > 1.

On finding the inverse of Laplace transform of (2.12) we get a power series solution
α(ς, τ ) = ∑∞

m=0 αm(ς, τ )( 1n )
m of the original Eq. (2.2).

To determine the interval of convergence of the q-HATM solutions, we use the
h-curves. We can obtain the h-curves by plotting the derivative of the q-HATM
solutions with respect to τ against h and then setting τ = 0. Finally, the horizontal
line in the h curve which parallels the ς axis gives the interval of convergence [21].
However, this procedure cannot determine the optimal value of h. Hence, we use the
procedure which has been discussed by [3, 10, 24, 31, 32, 39]. Let

�(h) =
∫

�

(N (αn(ς, τ )))2 d�, (2.14)

which denotes the exact square residual error for Eq. (2.2) integrated over the whole
physical region. As �(h) → 0, the rate of convergence of the q-HATM solution
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increases. To obtain the optimal values of the convergence control parameter h, we
minimize �(h) associated with the nonlinear algebraic equation

d�(h)

dh
= 0. (2.15)

2.1 Convergence Analysis

To establish the convergence of the solution, we first need to give some conditions
needed to prove the convergence of the series (2.10). These have been given by
Odibat [29] and Elbeleze et al. [8] and Huseen and El-Tawil [14] via the following
theorem:

Theorem 2.1.1 Let the solution componentsα0,α1,α2, . . . be expressed as given in
(2.12). The series solution

∑∞
m=0 αm( 1n )

m written in (2.10) converges if ∃ 0 < r < n
s.t. ||αm+1|| ≤ ( rn )||αm || for all m ≥ m0, for some m0 ∈ N.

Moreover, the estimated error is given by

||α −
k∑

m=0

αm(
1

n
)m || ≤ 1

1 − ( rn )
(
r

n
)k+1||α0||. (2.16)

3 q-HATM solution of CIACS

In this portion, we apply the q-HATM on CIACS. We take the initial conditions to
satisfy the boundary conditions, namely

αi (ς, 0) = 1 −
∞∑

n=1

ani cos(0.5(L − 2ς)λ) sin(λL/2), (i = 1, 2), (3.1)

βi (ς, 0) =
∞∑

n=1

bni cos(0.5(L − 2ς)λ) sin(λL/2), (i = 1, 2), (3.2)

where λ = nπ
L . As we know that HAM is based on a particular type of continuous

mapping
αi (ς, τ ) → φi (ς, τ ; q), βi (ς, τ ) → ψi (ς, τ ; q)

such that, as the embedding parameter q increases from 0 to 1/n, φi (ς, τ ; q),
ψi (ς, τ ; q) and i = 1, 2 varies from the initial iteration to the exact solution.
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We now present the nonlinear operators

Ni (φi (ς, τ ; q)) = Li (φi (ς, τ ; q)) − 1

s
αi (ς, 0)

+ 1

s
Li

(
−φi,ςς (ς, τ ; q) + φi (ς, τ ; q)ψ2

i (ς, τ ; q)
)

,

Mi (ψi (ς, τ ; q)) = Li (ψi (ς, τ ; q)) − 1

s
βi (ς, 0)

+ 1

s
Li

(−ψi,ςς (ς, τ ; q) + (−2(i − 1)k + ik)ψi (ς, τ ; q)

+ (−1)iγ(ψ1(ς, τ ; q) − ψ2(ς, τ ; q)) − φi (ς, τ ; q)ψ2
i (ς, τ ; q)

)
.

Now, we develop a set of equations, using the embedding parameter q

(1 − nq)Li (φi (ς, τ ; q) − αi0(ς, τ )) = qhH(ς, τ )Ni (φi (ς, τ ; q)),

(1 − nq)Li (ψi (ς, τ ; q) − βi0(ς, τ )) = qhH(ς, τ )Mi (ψi (ς, τ ; q)),

with the initial conditions

φi (ς, 0; q) = αi0(ς, 0), ψi (ς, 0; q) = βi0(ς, 0), (i = 1, 2)

where h �= 0 and H(ς, τ ) �= 0 are the auxiliary parameter and the auxiliary function,
respectively. We expand φi (ς, τ ; q) and ψi (ς, τ ; q) in series form by employing the
Taylor theorem with respect to q, and get

φi (ς, τ ; q) = αi0(ς, τ ) +
∞∑

m=1

αim(ς, τ )qm, (3.3)

ψi (ς, τ ; q) = βi0(ς, τ ) +
∞∑

m=1

βim(ς, τ )qm, (3.4)

where

αim(ς, τ ) = 1

m!
∂mφi (ς, τ ; q)

∂qm
|q=0,

βim(ς, τ ) = 1

m!
∂mψi (ς, τ ; q)

∂qm
|q=0.

If we let q = 1
n into (3.3)–(3.4), the series become

αi (ς, τ ) = αi0(ς, τ ) +
∞∑

m=1

αim(ς, τ )

(
1

n

)m

,
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βi (ς, τ ) = βi0(ς, τ ) +
∞∑

m=1

βim(ς, τ )

(
1

n

)m

.

Now,weconstruct themth-order deformation equation from (2.12)–(2.13) as follows:

Li (αim(ς, τ ) − Xmαi(m−1)(ς, τ )) = hH(ς, τ )R1((�αi(m−1), �βi(m−1))),

Li (βim(ς, τ ) − Xmβi(m−1)(ς, τ )) = hH(ς, τ )R2((�αi(m−1), �βi(m−1))),

with initial conditions αim(ς, 0) = 0, βim(ς, 0) = 0,m > 1 where

R1((�αi(m−1), �βi(m−1))) = Li
(
αi(m−1)(ς, τ )

) − 1

s
αi (ς, 0)(1 − Xm

n
)

+ 1

s
Li

(−αi(m−1),ςς(ς, t) + αi(m−1)(ς, τ )β2
i(m−1)(ς, τ )

)
,

R2((�αi(m−1), �βi(m−1))) = Li(m−1)
(
βi(m−1)(ς, τ )

) − 1

s
βi (ς, 0)

(
1 − Xm

n

)

+ 1

s
Li

(−βi(m−1),ςς (ς, τ ) + (−2(i − 1)k + ik)βi(m−1)(ς, τ )

+ (−1)iγ(β1(m−1)(ς, τ ) − β2(m−1)(ς, τ ))

− αi(m−1)(ς, τ )β2
i(m−1)(ς, τ ; q)

)
.

If we takeLi =Laplace transform (i = 1, 2) then the right inverse ofLi = inverse
Laplace transform will be L−1

i

αim = Xmαi(m−1) + hL−1
i R1((�αi(m−1), �βi(m−1))), (3.5)

βim =Xmβi(m−1) + hL−1
i R2((�αi(m−1), �βi(m−1))). (3.6)

4 Numerical Results

In this part, we compute the first approximations. We show the behavior of the
solution graphically and investigate the intervals of convergence by the h-curves.
Also, we will compute the average residual error. Finally, we will check the accuracy
of the q-HATM solutions by comparing with another numerical method using the
command NDSolve by Mathematica. We take the initial approximation

αi0(ς, τ ) = αi0(ς, 0), βi0(ς, τ ) = βi0(ς, 0). (4.1)

For m = 1, we obtain the first approximation as following:
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αi1 = hL−1
i

(
Li (αi0(ς, τ )) − 1

s
αi (ς, 0)(1 − Xm

n
) (4.2)

+1

s
Li

(−αi0,ςς(ς, τ ) + αi0(ς, τ )β2
i0(ς, τ )

))
, (4.3)

βi1 = hL−1
i

(
Li (βi0(ς, τ )) − 1

s
βi (ς, 0)(1 − Xm

n
) (4.4)

+ 1

s
Li

(−βi0,ςς(ς, τ ) + (−2(i − 1)k + ik)βi0(ς, τ ) (4.5)

+ (−1)iγ(β10(ς, τ ) − β20(ς, τ )) − αi0(ς, τ )β2
i0(ς, τ ; q)

))
. (4.6)

And by the similar procedure we can evaluate the rest of the approximation.

First we show the q-HATM solutions for CIACS for different values of τ . In
Fig. 1 the q-HATM solutions are displayed against ς for n = 5, k = 0.1, γ = 0.2,
L = 100, an1 = 0.08, an2 = 0.07, bn1 = 0.0054, bn2 = 0.0055 with τ = 0.5, 15, 50.
From this figure we find that the oscillation produced by the reaction in the system of
finite size. And also, we find that, beside the boundaries, the q-HATM solutions are
more significant compared the q-HATM solutions far away from the boundaries. The
amplitude of the oscillation decays with increasing the distance from the boundaries.
These behaviors agree with [4, 6, 9]. It is clear that the symmetric pattern for CIACS
with respect to ς = L/2. The two dominant modes generated from the boundaries
are travelling towards the center. Thus permanent travelling waves solution exists in
systems of finite size with periodic initial conditions and these behaviors agree with
[25]. For more details for the effects of other parameters on the behaviors of CIACS
see [26, 33].

4.1 h-Curves

To observe the intervals of convergence of the q-HATM solutions, we draw the h-
curves of 5 terms of q-HATM solutions in Figs. 2, 3 and 4 for n = 1, 5 and n = 20
respectively. In Fig. 2a, we drawα1τ (ς, 0),α2τ (ς, 0) and in Fig. 2bwe draw β1τ (ς, 0),
β2τ (ς, 0) against h respectively at k = 0.01, γ = 0.4, L = 100, ς = 20, an1 = 0.001,
an2 = 0.002, bn1 = 0.001, bn2 = 0.002. From these figures, we note that the straight
line that parallels the h-axis provides the valid region of the convergence [21].
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Fig. 1 The q-HATM solutions are displayed against ς for n = 5, k = 0.01, γ = 0.4, L = 100,
an1 = 0.08, an2 = 0.07, bn1 = 0.0054, bn2 = 0.0055. Solid line: τ = 0.5, Dash line: τ = 15, and
Dot line: τ = 50

2.0 1.5 1.0 0.5 0.0
0

5. 10 6

0.00001

0.000015

h
2.0 1.5 1.0 0.5 0.0

0.00015

0.00010

0.00005

0.00000

h

(a) (b)

Fig. 2 The h-curve of the 5-terms of q-HATM solutions at n = 1, k = 0.1, γ = 0.2, L = 100,
ς = 20, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. Solid line = α1τ (ς, 0),β1τ (ς, 0),
Dash line = α2τ (ς, 0),β2τ (ς, 0)

4.2 Average Residual Errors

We notice, however, that h-curve does not give the best value of the parameter h.
So, we evaluate the optimal values of the convergence-control parameters by the
minimum of the averaged residual errors [1–3, 11, 13, 24, 31, 32, 35, 36, 38, 39]

Eαi (h) = 1

NM

N∑

s=0

M∑

j=0

[
N

(
m∑

k=0

αik

(
100s

N
,
30 j

M

))]2

, (4.7)



A Reliable Analytical Algorithm … 253

10 8 6 4 2 0
0

5. 10 6

0.00001

0.000015

h
10 8 6 4 2 0

0.00015

0.00010
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h
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Fig. 3 The h-curve of the 5-terms of q-HATM solutions at n = 5, k = 0.1, γ = 0.2, L = 100,
ς = 20, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. Solid line = α1τ (ς, 0),β1τ (ς, 0),
Dash line = α2τ (ς, 0),β2τ (ς, 0)
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0.00001
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Fig. 4 The h-curve of the 5-terms of q-HATM solutions at n = 20, k = 0.1, γ = 0.2, L = 100,
ς = 20, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. Solid line = β1τ (ς, 0),α1τ (ς, 0),
Dash line = α2τ (ς, 0),β2τ (ς, 0)

Eβi (h) = 1

NM

N∑

s=0

M∑

j=0

[
M

(
m∑

k=0

βik

(
100s

N
,
30 j

M

))]2

, (4.8)

corresponding to a nonlinear algebraic equations

dEαi (h)

dh
= 0, (4.9)

dEβi (h)

dh
= 0. (4.10)

We show Eαi (h) and Eβi (h) in Figs. 5, 6, 7 and 8 and in Table1 for different values
of n. Figures3–8 and Table2 show that the Eαi (h) and Eβi (h) for 5 terms q-HATM
solutions. We set into (4.9)–(4.10) N = 100 and M = 30 with k = 0.1, γ = 0.2,
L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002.We use the command
Find Minimum and Minimize of Mathematica and the plotting of residual error
against h to get the optimal values h.
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Fig. 5 The averaged residual errors at the 5-terms of the q-HATM solutions for α1(ς, τ ) with
0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k = 0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001,
bn2 = 0.002. a n = 1, b n = 5, c n = 20
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Fig. 6 The averaged residual errors at the 5-terms of the q-HATM solutions for β1(ς, τ ) with
0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k = 0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001,
bn2 = 0.002. a n = 1, b n = 5, c n = 20
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Fig. 7 The averaged residual errors at the 5-terms of the q-HATM solutions for α2(ς, τ ) with
0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k = 0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001,
bn2 = 0.002. a n = 1, b n = 5, c n = 20
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Fig. 8 The averaged residual errors at the 5-terms of the q-HATM solutions for β2(ς, τ ) with
0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k = 0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001,
bn2 = 0.002. a n = 1, b n = 5, c n = 20
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Table 1 Optimal values of h for q-HATM solutions of αi (ς, τ ) at 0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k =
0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002

n Optimal value of hα1 Minimum of Eα1 (h) Optimal value of hα2 Minimum of Eα2 (h)

1 −0.404028 3.59782 × 10−13 −0.520508 2.3569 × 10−13

5 −2.02603 3.59593 × 10−13 −2.63657 3.02373 × 10−13

20 −8.10413 3.59593 × 10−13 −10.3873 2.55769 × 10−13

Table 2 Optimal values of h for q-HATM solutions of βi (ς, τ ) at 0 ≤ ς ≤ 100, 0 ≤ τ ≤ 30, k =
0.1, γ = 0.2, L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002

n Optimal value of hβ1 Minimum of Eβ1 (h) Optimal value of hβ2 Minimum of Eβ2 (h)

1 −0.137431 7.02541 × 10−10 −0.223388 3.67024 × 10−10

5 −1.18981 3.67977 × 10−10 −1.38421 1.95288 × 10−10

20 −5.34697 2.76228 × 10−10 −5.50912 1.94929 × 10−10

Fig. 9 The comparison of the 5-terms of the q-HATM solutions with numerical method in Math-
ematica for n = 5, hα1 = −0.30, hβ1 = −0.18, hα2 = −0.30, hβ2 = −0.21, k = 0.1, γ = 0.2,
L = 100, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002

4.3 Comparison Analysis

Now, we compare 5-terms of q-HATM solutions obtained with a numerical method
using the commands with Mathematica 9 for solving CIACS numerically. We
draw the 5-terms of HATM solutions in Fig. 9. Figure9 shows the comparison of
q-HATM solutions with numerical method for n = 5, k = 0.1, γ = 0.2, L = 100,
an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. We observed from this figure
that the QHATM solutions have a good agreement with the results by Mathematica.
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We also compare our results also with finite differences method. We descre-
tise with time step: �τ = T

Nτ
and in space with grid spacing �ς = L

Nς
, and let

τ j = j�τ , where 0 ≤ j ≤ Nτ and ςn = n�ς, 0 ≤ n ≤ Nς . We put α j
1,n = α1(ς, τ ),

β
j
1,n = β1(ς, τ ), α

j
2,n = α2(ς, τ ) and α

j
2,n = α2(ς, τ ). Then the finite differences

approximations for (1.5)–(1.8) are given by

α
j+1
1,n = (1 − 2r)α j

1,n + r(α j
1,n+1 + α

j
1,n−1) − �τ (α

j
1,n(β

j
1,n)

2), (4.11)

β
j+1
1,n = (1 − 2r)β j

1,n + r(β j
1,n+1 + β

j
1,n−1)

+ �τ
(
−kβ j

1,n + γ(β
j
2,n − β

j
1,n) − (α

j
1,n(β

j
1,n)

2)
)

,
(4.12)

α
j+1
2,n = (1 − 2r)α j

2,n + r(α j
2,n+1 + α

j
2,n−1) − �τ (α

j
2,n(β

j
2,n)

2), (4.13)

β
j+1
1,n = (1 − 2r)β j

1,n + r(β j
1,n+1 + β

j
1,n−1) − β

j
1,n)

+ γ(β
j
1,n − β

j
2,n) − �τ (α

j
1,n(β

j
1,n)

2),
(4.14)

where r = �τ
(�ς)2

. We mention that here we use the central difference scheme for the
space derivatives of second order and the forward difference scheme for the time
derivative of order one [28]. The initial and boundary conditions become
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Fig. 10 The absolute error between the 6-terms of the q-HATM solutions with numerical solutions
by (4.11)–(4.14) scheme for a α1, b β1, c α2, and d β2 with h = −1.95, k = 0.1, γ = 0.2, L =
1, T = 1, �ς = 1

50 , �τ = 1
9000 , an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. Solid line

(n = 1), Dashed line (n = 5)
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α0
i,n = αi (ς(n)) = αi,n,β

0
i,n = βi (ς(n)) = βi,n, i = 1, 2, n = 0, 1, 2, . . . , Nς ,

α
j
i,0 = 1 = α

j
i,N ,β

j
i,0 = 0 = β

j
i,N , i = 1, 2, j = 1, 2, . . . , Nτ .

Stable solutions with the (4.11)–(4.14) scheme are only obtained if r < 1
2 . See,

e.g., [12, 28] for a proof that this condition gives the stability limit for the (4.11)–
(4.14) scheme. In Fig. 10, the absolute error between the q-HATM solutions and the
numerical solutions by the (4.11)–(4.14) scheme are plotted. Also, in this figure we
show that the effect of the factor 1

n on the accelerate of the convergence. It is clear
when n is increasing, the absolute error is decreasing.

5 Conclusion

In this paper, the q-HATMwas employed to analytically compute approximate solu-
tions of CIACS. By comparing q-HATM solutions with results by Mathimatica, the
averaged residual error the residual error and finite difference method were found an
excellent agreement. Also the effected on the accelerating of the convergence by the
factor 1

n is shown. Mathematica was used for the computations of this article.
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