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Abstract This paper deal with the complex the dynamic of cnoidal waves via the
negative-order breaking soliton model with (2+1)-dimensional. This model is arisen
in the (2+1)-dimensional interaction of theRiemannwave propagated between y-axis
andx-axis. The Improvedbernoulli sub-equation functionmethod is used in obtaining
some complex and dark solutions with hyperbolic function structure. We present the
interesting contour surfaces alongwith 2D and 3D graphics of the obtained analytical
solutions in this study, plotted by using several computational programmes such as
Matlap, Mathematica and so on. We finally present a comprehensive conclusion.
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1 Introduction

Today, the works carried on the solutions of mathematical models are of an out-
standing area among scientists because solitons provides more information into the
relevant from nonlinear sciences to engineering applications [1–54]. The first soli-
ton model proposed by Korteweg and de Vries was KdV equation in 1895. After-
wards, Zabusky and Kruskal have presented an important paper on the interaction
of “solitons” in a collisionless plasma in 1965 [26]. More recently, many scientific
and engineering applications including vital real world problems on solitons have
been presented to the literature. Bogoyavlenskii has presented some important mod-
els, which are entirely integrable solitons and N-solitons [27]. He has derived the
connection with the Kadomtsev–Petviashvili equation with the help of the Painlevé
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method. One of the most important properties of integrable models is that these
models produce many soliton solutions. Therefore, many experts have focused on
the investigations of solitons arising in real world problems. Moreover, they have
changed general structures of models for getting more and clear understanding of
the models. This plays a major role in solitary waves theory and soliton theory. In
this sense,Wazwaz has investigated the negative-order breaking soliton equations by
using simplified Hirota’s method [28]. Fei and Cao have observed explicit soliton-
cnoidalwave interaction solutions for the (2+1)-dimensional negative-order breaking
soliton equation (NOBSE) [29] defined as

ut − vx = 0, uy + vxxx − 4uvx − 2uxv = 0. (1.1)

This model was used to symbolize the (2+1)-dimensional interaction of the Rie-
mann wave propagated along the y-axis with a long wave propagated along the
x-axis [28–32]. Fei et al. [29] have derived the explicit soliton-cnoidal wave interac-
tion solutions to the Eq. (1.1) by using an analytic method. The paper is organized as
follows. In Sect. 2, we present the Improved bernoulli sub-equation function method
(IBSEFM) in a comprehensive manner. Section3 is devoted to obtain new complex
travellingwave soliton solutions to theNOBSE. A conclusion and discussion is given
in the last section.

2 General Properties of IBSEFM

The general properties of IBSEFM are given as follows:
Step 1. It can be considered that the following nonlinear model in two variables and
a dependent variable v;

P(u, ux , uy, ut , . . .) = 0. (2.1)

and take the wave transformation;

u(x, y, t) = U (η), η = μ(x + αy − kt). (2.2)

where μ,α, k are constants and can be determined later. By substituting Eq. (2.2),
Eq. (2.1) converts a nonlinear ordinary differential equation (NODE) as following;

N (U,U ′,U ′′,U ′′′, . . .) = 0. (2.3)

Step 2. Considering trial equation of solution in Eq. (2.3), it can be written as fol-
lowing;

U (η) =
∑n

i=0 ai F
i (η)

∑m
j=0 bi F

j (η)
= a0 + a1F(η) + a2F2(η) + · · · + anFn(η)

b0 + b1F(η) + b2F2(η) + · · · + bmFm(η)
. (2.4)



On the Dark and Bright Solitons to the Negative-Order … 231

According to the Bernoulli theory, we can consider the general form of Bernoulli
differential equation for F ′ as following;

F ′ = wF + λFM , w �= 0,λ �= 0, M ∈ R − {0, 1, 2}. (2.5)

where F = F(η) is Bernoulli differential polynomial. Substituting above relations
in Eq. (2.3), it yields us an equation of polynomial �(F) of F as following;

�(F) = ρs F
s + · · · + ρ1F + ρ0 = 0. (2.6)

According to the balance principle, we can determine the relationship between n,
m and M .
Step 3. The coefficients of �(F) all be zero will yield us an algebraic system of
equations;

ρi = 0, i = 0, . . . , s. (2.7)

Solving this system,wewill specify thevalues ofa0, a1, . . . , an andb0, b1, . . . , bn .
Step 4. When we solve nonlinear Bernoulli differential equation Eq. (2.6), we obtain
the following two situations according to b and d,

F(η) =
[−λ

w
+ E

ew(M−1)η

] 1
1−M

, w �= λ. (2.8)

F(η) =
[
(E − 1) + (E + 1)tanh(w(1 − M)

η
2 )

1 − tanh(w(1 − M)
η
2 )

]

, w = λ, E ∈ R. (2.9)

Using a complete discrimination system for polynomial of F, we solve this system
with the help of computer programming and classify the exact solutions to Eq. (2.3).

3 Application of the IBSEFM

In this section, IBSEFM has been successfully considered to the NOBSE to obtain
more and novel complex solutions.

Example Taking the travelling wave transformation as

u(x, y, t) = U (ξ), ξ = kx + wy − ct, v(x, y, t) = V (ξ), ξ = kx + wy − ct,
(3.1)

which k, w, c are real constants and non-zero in Eq. (1.1), we get the following
nonlinear ordinary differential equation;

wU ′ − ck2U ′′′ + 6cUU ′ = 0. (3.2)
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with
V = −c

k
U. (3.3)

Integrating once and getting to the zero of integration constants, Eq. (3.2) can be
rewritten as

wU − ck2U ′′ + 3cU 2 = 0. (3.4)

With the help of balance principle forU ′′ andU 2, relationship between M,m and
n can be obtained as follows;

2M + m = n + 2. (3.5)

Case 1: Choosing M = 3, n = 5 and m = 1, we can find and its derivatives from
Eq. (3.5) as follows:

U = a0 + a1F + a2F2 + a3F3 + a4F4 + a5F5

b0 + b1F
= ϒ

�
, (3.6)

U ′ = ϒ ′� − ϒ� ′

�2
, (3.7)

U ′′ = . . . , (3.8)

where F ′ = pF + dF3, a5 �= 0, b1 �= 0, p �= 0, d �= 0. Substituting Eq. (3.6) with
Eq. (3.8) into Eq. (3.4), a system of algebraic equations including various power of
F can be found. Solving the system by using different computer programming such
as Mathematica, Maple, and Matlap gives the complex structures;

Case-1a: For p �= d the following coefficients;

a0 = −wb0
3c

, a1 = −wb1
3c

, a2 = i
√
2
√

w
√
a4

√
b0√

c
, a3 = i

√
2
√

w
√
a4b1√

b0
√
c

, a5 = b1a4
b0

,

p = i
√
2d

√
w

√
b0√

a4
√
c

, k =
√
a4

2
√
2d

√
b0

,

(3.9)
we have the following new complex travelling wave solution

u1 = −w

3c
+4wa4(i

√
2
√
c
√
a4 + 2e

i
√

w√
2
√
c
√
a4

(
√
2x

√
a4+4d(ct−wy)

√
b0)E

√
b0

√
w)−2

+ 1

c
2w − i

√
cE

√
b0√

w
√
a4

√
2
e

i
√

w√
2
√
c
√
a4

(
√
2x

√
a4+4d(ct−wy)

√
b0)

,

(3.10)

v1 = −2c
√
2d

√
b0√

a4
u1. (3.11)
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Fig. 1 The periodic wave surfaces of Eq. (3.10) forw = 0.9, c = 0.2, a4 = 0.3, b0 = 0.5, d = 0.6,
E = 0.1, y = 3, −4 < x < 4, −4 < t < 4

Fig. 2 The contour graphs of Eq. (3.10) for w = 0.9, c = 0.2, a4 = 0.3, b0 = 0.5, d = 0.6, E =
0.1, y = 3, −120 < x < 120, −120 < t < 120

For better understanding of wave propagation meaning of via Eq. (3.10), and also,
for suitable values of parameters, 2D and 3D figures along with contour graphs may
be observed in Figs. 1, 2, 3 and 4.

Case-1b: When

a0 = −wb0
3c

, a1 = −wb1
3c

, a2 = 4idk
√

w
√
b0√

c
, a3 = 4dki

√
wb1√
c

,

a4 = 8d2k2b0, a5 = 8d2k2b1, p = i
√

w

2k
√
c
,

(3.12)

we have the following new complex bright soliton solution to the Eq. (1.1)
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Fig. 3 The periodic wave surfaces of Eq. (3.10) forw = 0.9, c = 0.2, a4 = 0.3, b0 = 0.5, d = 0.6,
E = 0.1, y = 3, t = 0.85, −4 < x < 4

Fig. 4 The combination of contour graphs of both side of Eq. (3.10) forw = 0.9, c = 0.2, a4 = 0.3,
b0 = 0.5, d = 0.6, E = 0.1, y = 3, −120 < x < 120, −120 < t < 120

u2 =
8d2k2sech2(−i

√
w

k
√
c

f (x, y, t))

(E + E

√

1 − sech2(−i
√

w

k
√
c

f (x, y, t)) + 2idk
√
c√

w
sech(

−i
√

w

k
√
c

f (x, y, t)))2

+
4idk

√
wsech(

−i
√

w

k
√
c

f (x, y, t))

(E
√
c +

√

1 − sech2(−i
√

w

k
√
c

f (x, y, t))E
√
c + 2icdk√

w
sech(

−i
√

w

k
√
c

f (x, y, t)))

− w

3c
,

v2 = −c

k
u2

(3.13)
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Fig. 5 The 3D graphs of Eq. (3.13) for w = 0.9, c = 0.2, d = 0.3, k = 0.5, E = 0.1, y = 3,
−6 < x < 6, −6 < t < 6

Fig. 6 The contour graphs of Eq. (3.13) for w = 0.9, c = 0.2, d = 0.3, k = 0.5, E = 0.1, y = 3,
−120 < x < 120, −120 < t < 120

in which f (x, y, t) = kx + wy − ct .With a view to the deeper investigation of com-
plex travelling wave structure of Eq. (3.13) along with suitable values of parameters,
2D and 3D figures along with contour graphs may be seen in Figs. 5, 6, 7 and 8.

Case-1c: Once we consider as

b0 =−3ca0
w

, a1 = −wb1
3c

, a2 = −3ca0a3
wb1

, a4 = 3c2a0a23
2w2b21

,

a5 = −ca23
2wb1

, p = i
√

w

2k
√
c
, d = −i

√
ca3

4k
√

wb1
,

(3.14)

we have the following new complex dark soliton solution to the Eq. (1.1);
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Fig. 7 The periodic wave surfaces of Eq. (3.13) for w = 0.9, c = 0.2, d = 0.3, k = 0.5, E = 0.1,
y = 3, t = 0.85, −6 < x < 6

Fig. 8 The combination of contour graphs of both side of Eq. (3.13) forw = 0.9, c = 0.2, d = 0.3,
k = 0.5, E = 0.1, y = 3, −120 < x < 120, −120 < t < 120

u3 = a3
√−1 + tanh(−i f (x, y, t))

c
2wa3

√−1 + tanh(−i f (x, y, t)) + Eb1
√−1 − tanh(−i f (x, y, t))

−
ca23(−1 + tanh(

−i
√

w

k
√
c

(kx + wy − ct)))

2w( ca32w

√−1 + tanh(−i f (x, y, t)) + Eb1
√−1 − tanh(−i f (x, y, t)))2

− w

3c
,

v3 = −c

k
u3,

(3.15)



On the Dark and Bright Solitons to the Negative-Order … 237

Fig. 9 The 3Dgraphs ofEq. (3.15) forw = 0.9, c = 0.2,a3 = 0.3, k = −0.5, b1 = −0.6, E = 0.1,
y = 3, −6 < x < 6, −6 < t < 6

Fig. 10 The contour graphs of Eq. (3.15) for w = 0.9, c = 0.2, a3 = 0.3, k = −0.5, b1 = −0.6,
E = 0.1, y = 3, −120 < x < 120, −120 < t < 120

inwhich f (x, y, t) =
√

w

k
√
c
(kx + wy − ct). For suitable values of parameters, 2D and

3D figures along with contour graphs of Eq. (3.15) may be observed in Figs. 9, 10,
11, 12 and 13.
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Fig. 11 The periodic wave surfaces of Eq. (3.15) for w = 0.9, c = 0.2, a3 = 0.3, k = −0.5, b1 =
−0.6, E = 0.1, y = 3, t = 0.85, −6 < x < 6

Fig. 12 The combination of contour graphs of both side of Eq. (3.15) for w = 0.9, c = 0.2, a3 =
0.3, k = −0.5, b1 = −0.6, E = 0.1, y = 3, −120 < x < 120, −120 < t < 120

4 Conclusion

In this manuscript, the complex dark and bright soliton solutions to the Eq. (1.1)
have been obtained by using IBSEFM. It has been observed that all solutions found
in this paper have been satisfied the Eq. (1.1) considered. With the suitable val-
ues for parameters, based on the physical meanings and properties of model taken,
and also, for better understanding of the physical meanings of the dark and bright
soliton solutions, the three- and two-dimensional graphs and contour simulations
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Fig. 13 Periodic wave surfaces of combination of real and imaginary part of Eq. (3.15) forw = 0.9,
c = 0.2, a3 = 0.3, k = −0.5, b1 = −0.6, E = 0.1, y = 3, −120 < x < 120, −120 < t < 120

have been plotted with the help of several computer programs. The solitons of wave
propagations can be observed from 3D Figs. 1, 5 and 9 along with 2D Figs. 3, 7
and 11. Moreover, high points of the mixed dark and bright soliton solutions, being
Eqs. (3.10), (3.13) and (3.15), can be seen from contour surfaces of Figs. 2, 6 and
10, as an alternative and new perspective to the 3D graph. Combinations of contour
graphs of real and imaginary parts of mixed dark and bright soliton solutions can be
also viewed from Figs. 4, 8 and 12. Furthermore, more reality surfaces of solitons
can be observed from Fig. 13 being combination of 2D graphs of real and imaginary
parts of mixed dark and bright soliton solutions of Eq. (3.15). After all simulations, it
can be understood that complex mixed dark and bright soliton solutions have shown
the expected physical properties. Comparing some paper existing in literature [29],
it can bee viewed that solutions of Eqs. (3.10), (3.13) and (3.15) are entirely new
complex mixed dark and bright soliton solutions to the Eq. (1.1). To the best of our
knowledge, the application of IBSEFM to the negative-order breaking soliton model
with (2+1)-dimensional has been not submitted in advance.
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