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Abstract An efficient collocation method is proposed for the numerical solution
of second and fourth order two-point boundary value problems (B.V.P.) based on
uniform Haar wavelet. We have converted higher order differential equations into a
system of differential equations of lower order and then solve it by uniform Haar
wavelet, which reduces the time and complexity of the system. The technique intro-
duced here is easy to apply. The performance of the present method yield more accu-
rate results on increasing the resolution level. To demonstrate the robustness and
accuracy of the Haar wavelet collocation method, five problems have been solved
and compared with the existing methods present in the literature [1–6].
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1 Introduction

Wavelet Analysis is a new development in the field of Mathematics. Wavelets were
introduced in seismology to provide a time localisation to seismic analysis. Wavelet
theory involves representing square integrable functions in terms of simple wavelet
functions at different scale and positions. The fundamental idea of wavelet is trans-
lation and scaling according to the need [7–10]. The best property of wavelet is
compact support, which is boom for the numerical solution of differential equa-
tions. Meanwhile in numerical analysis, wavelet methods have become an important
tool for solution of differential and integral equations that has been discussed in
many research papers with different approaches such as Galerkin method, finite
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element method, finite difference method, filter-bank method, adaptive method etc.
[7, 8, 11–15]. One of the best and easiest wavelet in wavelet theory is Haar wavelet.
Gaussian and Legendre wavelet is also applied in treatment of Numerical solu-
tions of differential equations but lots of numerical difficulties appeared on using
these wavelets. The detection of singularities, local high frequencies, irregular struc-
tures and transient phenomena exhibited by analyzed function is possible on using
wavelets. Use of orthogonal functions to construct the solution of differential equa-
tions was initially established in 1995 by Chen and Hsiao [14]. During the last two
decades different types of functions have been applied to find the approximate solu-
tion of differential equations. But Haar wavelet gives the desirable results for such
types of problems due to its simplicity, orthogonality and compact support.

2 Multiresolution Analysis and Haar Wavelet

Definition: Amultiresolution analysis consists of a sequence {Vj : j ∈ Z} of embed-
ded closed subspace of L2(R) that satisfy the following properties:

1. Increasing: Vj ⊂ Vj+1 : j ∈ Z
2. Density:

⋃
j∈Z Vj = L2(R)

3. Separation:
⋂

j∈Z Vj = {0}
4. Scaling: f (t) ∈ Vj if and only if f (2t) ∈ Vj+1

5. Orthonormal basis: ∃ a scaling function φ ∈ V0 such that {φ0,k(t) = φ(t − k) :
k ∈ Z} is an orthonormal basis for V0.

HaarWavelet: Haar functionwas discovered long before thewavelet was introduced
by Hungarian Mathematician Alfred Haar in 1909. Haar is the simplest orthonormal
wavelet with compact support [16].
The Haar wavelet family for t ∈ [0, 1] is defined as follows:

hu(t) =

⎧
⎪⎨

⎪⎩

1, ξ1(u) ≤ t < ξ2(u)

−1, ξ2(u) ≤ t < ξ3(u)

0, otherwise

(2.1)

where u indicates the wavelet number and

ξ1(u) = k
m , ξ2(u) = k+0.5

m , ξ3(u) = k+1
m

m = 2 j , j = 0, 1, 2..., J, and integer k = 0, 1...,m − 1.

Also J indicates the level of resolution and k represents the translation parameter.
Index u is calculated as u = m + k + 1 which is true for u ≥ 2.
For u = 1 the Haar wavelet is given by

h1(t) =
{
1, 0 ≤ t < 1

0, otherwise
(2.2)
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Because of constant and piecewise nature of Haar wavelet, derivative vanishes. Due
to lack of differentiability authors move towards integration approach instead of
differentiation [14].
The integration of Haar wavelet has been obtained from [13] and given as follows:

I1hu(t) =

⎧
⎪⎨

⎪⎩

t − ξ1(u), ξ1(u) ≤ t < ξ2(u)

ξ3(u) − t, ξ2(u) ≤ t < ξ3(u)

0, otherwise

(2.3)

The double integration of Haar wavelet can be given as follows:

I2hu(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (t − ξ1(u))2, ξ1(u) ≤ t < ξ2(u)
1

4m2 − 1
2 (ξ3(u) − t)2, ξ2(u) ≤ t < ξ3(u)

1
4m2 , ξ3(u) ≤ t < 1

0, otherwise

(2.4)

Proceeding in similar manner the nth integration of Haar wavelet can be written as:

Inhu(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i f t < ξ1(u)
1
n! [t − ξ1(u)]n, ξ1(u) ≤ t < ξ2(u)
1
n! [(t − ξ1(u))n − 2(t − ξ2(u))n], ξ2(u) ≤ t < ξ3(u)
1
n! [(t − ξ1(u))n − 2(t − ξ2(u))n + (t − ξ3(u))n], ξ3(u) ≤ t

(2.5)

Now consider, any square integrable function f (t) ∈ L2[0, 1], can be approximated
by the dialation and translation of Haar wavelet [12, 13]

f (t) =
N∑

u=1

auhu(t) (2.6)

The Haar wavelet coefficients au are calculated as

au =< y(t), hu(t) >=
1∫

0

y(t) · hu(t)dt. (2.7)

The collocation points are given as

X (u) = 2u − 1

m
, u = 1, 2, ...,m. (2.8)
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The matrix of Haar wavelet with respect to the collocation points is given as

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The matrix of integral and double integral of Haar wavelet with respect to the
collocation points are given as:

I1H = 1

16

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 3 5 7 9 11 13 15
1 3 5 7 7 5 3 1
1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, I2H = 1

512

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 9 25 49 81 121 169 225
1 9 25 49 79 103 119 127
1 9 23 31 32 32 32 32
0 0 0 0 1 9 23 31
1 7 8 8 8 8 8 8
0 0 1 7 8 8 8 8
0 0 0 0 1 7 8 8
0 0 0 0 0 0 1 7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3 Methods of Solution

3.1 Method for Solving Second Order Differential Equations

Consider a second order differential equation

y′′ = φ(t, y, y′) (3.1)

with boundary conditions

y(0) = α, y(1) = β. (3.2)

Let us suppose that

y′(t) = z(t) ⇒ y′′(t) = z′(t) (3.3)

y′(t) =
N∑

u=1

auhu(t) (3.4)
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z′(t) =
N∑

u=1

buhu(t). (3.5)

Now integrating Eqs. (3.4) and (3.5) with respect to t from 0 to t we get

y(t) =
N∑

u=1

au I1hu(t) + y(0) (3.6)

and

z(t) =
N∑

u=1

bu I1hu(t) + z(0). (3.7)

Substituting the values from Eqs. (3.3–3.7) in (3.1), we get the following system of
equations

N∑

u=1

buhu(t) = φ(t,
N∑

u=1

au I1hu(t) + y(0),
N∑

u=1

bu I1hu(t) + z(0)) (3.8)

Solving the above system of equation and find out the unknown Haar wavelet coef-
ficient au and bu with the help of Eq. (3.3) and then put in Eq. (3.6) to get the
approximate solution of the differential equation.

3.2 Method for Solving Fourth Order Differential Equations

Consider the fourth order ordinary linear differential equation of the form.

y′′′′ = φ(t, y, y′, y′′, y′′′) (3.9)

with boundary conditions

y(0) = a, y(1) = b, y′′(0) = c, y′′(1) = d.

Let us suppose that

y′′(t) = z(t), (3.10)

y′′′(t) = z′(t), (3.11)

y′′′′(t) = z′′(t). (3.12)

and y′′(t) =
N∑

u=1

auhu(t). (3.13)
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On integrating Eq. (3.13) from 0 to t with respect to t we get

y′(t) =
N∑

u=1

au Pu,1(t) + y′(0) (3.14)

Again integrating Eq. (3.14) from 0 to t , with respect to t we get

y(t) =
N∑

u=1

au Pu,2(t) + t y′(0) + y(0) (3.15)

Also we assume that

z′′ =
N∑

u=1

buhu(t) (3.16)

On integrating Eq. (3.16) from 0 to t we get,

z′(t) =
N∑

u=1

bu Pu,1(t) + z′(0) (3.17)

Again integrating Eq. (3.17) from 0 to t we get

z(t) =
N∑

u=1

bu Pu,2(t) + t z′(0) + z(0) (3.18)

We can find the values of y′(0), y′′(0), y′′′(0) and y′′′′(0) from the boundary con-
ditions. Now put Eqs. (3.10–3.18) in (3.9), we get the following system of equation

N∑

u=1

buhu(t) = φ(t,
N∑

u=1

au Pu,2(t) + t.y′(0) + y(0),
N∑

u=1

au Pu,1(t) + y′(0),

N∑

u=1

bu Pu,2(t) + t.z′(0) + z(0),
N∑

u=1

bu Pu,1(t) + z′(0))

(3.19)

Find the value of the vector au and then put these values in the Eq. (3.15) to get the
Haar approximate solution of the required differential equation.
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4 Numerical Examples

In this section we have tested five problems to demonstrate the accuracy and effec-
tiveness of proposed method.

Problem 1 Consider the second order differential equations [1]

y′′ = 100y, (4.1)

with boundary conditions

y(0) = y(1) = 1. (4.2)

Exact solution of the problem is

y = cos h(10t − 5)

cos h5
(4.3)

Obtained maximum absolute errors for different resolutions are given in Table 1 and
graph for J = 4 is given in Fig. 1.

Problem 2 Consider Dirichlet problem given in [4]:

− y′′ = (
537

10
π)2 sin(

537

10
π t) + (

23

10
π)2 sin(

23

10
π t), (4.4)

with boundary conditions

y(0) = 0, y(1) = 0, t ∈ [0, 1]. (4.5)

Exact solution is

y = (
537

10
π) sin(

537

10
π t) + (

23

10
π) sin(

23

10
π t) . (4.6)

Table 1 Maximum absolute error for Problem 1

Level of resolution J Our method [1]

3 1.6719e−04 1.2800e−03

4 2.2854e−05 3.0700e−04

5 2.9131e−06 –

10 8.4470e−11 –
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Fig. 1 Exact and Haar solution of Problem 1 for J = 4

Table 2 Maximum absolute error for Problem 2

Level of resolution J = 6 7 8 9

Our method 9.5472e−04 1.2490e−04 1.5790e−05 1.9750e−06

[4] 1.2100e−02 1.3260e−02 1.0820e−04 7.3580e−06

Obtained maximum absolute errors for different resolutions are given in Table 2 and
graph for J = 6 is given in Fig. 2.

Problem 3 Consider Dirichlet problem given in [4]:

− y′′ + y = [1 + (
537

10
π)2] sin(537

10
π t) + [1 + (

23

10
π)2] sin(23

10
π t), (4.7)

with boundary conditions

y(0) = 0, y(1) = 0. t ∈ [0, 1] (4.8)

Exact solution is

y = (
537

10
π) sin(

537

10
π t) + (

23

10
π) sin(

23

10
π t) . (4.9)

Obtained maximum absolute errors for different resolutions are given in Table 3 and
graph is given in Fig. 3.
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Fig. 2 Exact and Haar solution of Problem 2

Table 3 Maximum absolute error for Problem 3

Level of resolution J = 6 7 8 9

Our method 9.4584e−04 1.2457e−04 1.5741e−05 1.9690e−06

[4] 1.2100e−2 1.3260e−3 1.0820e−4 7.3590e−6

Fig. 3 Exact and Haar solution of Problem 3 for J = 9
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Problem 4 Let us assume the fourth order B.V.P. given in [3]

y′′′′ + t y = −(t3 + 7t + 8)et , t ∈ [0, 1] (4.10)

with boundary conditions

y(0) = y(1) = 0, (4.11)

y′′(t) = 1 when t = 0, (4.12)

y′′(t) = −4e. when t = 1 (4.13)

Exact solution of the problem is

y(t) = t (1 − t)et . (4.14)

Obtained maximum absolute errors for different resolutions are given in Table 4 and
graph is given in Fig. 4.

Table 4 Maximum absolute errors for Problem 4

Level of resolution J Our method [3]

2 5.2806e−04 4.5900e−04

3 9.4372e−05 1.9000e−4

4 1.6728e−05 5.2300e−05

5 2.9591e−06 –

6 5.2319e−07 –

Fig. 4 Exact and Haar solution of Problem 4 for J = 4
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Problem 5 Let us assume the fourth order B.V.P. given in [3]

y′′′′ − y = −4(2t cos t + 3 sin t), t ∈ [0, 1] (4.15)

with boundary conditions

y(0) = y(1) = 0, y′′(t) = 0, when t = 0, y′′(1) = 4 cos 1 + 2 sin 1.

(4.16)

Exact solution of the problem is

y(t) = (t2 − 1) sin t. (4.17)

Obtained maximum absolute errors for different resolutions are given in Table 5 and
graph is given in Fig. 5.

Table 5 Maximum absolute errors for Problem 5

Level of resolution J Our method [3]

2 5.6800e−04 6.6600e−04

3 9.7369e−05 1.6500e−04

4 1.4350e−05 4.1200e−05

5 1.5638e−06 –

Fig. 5 Exact and Haar solution of Problem 5 for J = 4
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5 Conclusion

We have converted second order differential equation into system of first order and
fourth order differential equations into system of second order of differential equa-
tion, which is easy to solve to get the approximations of higher order two point
boundary value problems. Haar wavelet collocation method has been applied on sec-
ond and fourth order two point B.V.P.We have compared our results with the existing
method given in [1, 3–6] which shows that our results are better.
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