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Abstract A fatal and infectious called Dengue found in the tropical zone of the
world is a mosquito-borne and caused by four viruses namely Den 1-Den 4. The
transmission is achieved from one person to another via a bite of female adult Aedes
mosquitoes. The dynamic of spread does not really follow the Markovian process
therefore does have memory effect, thus can well be described by using nonlo-
cal differential operators with non-singular and non-local kernel as these operators
have a crossover from exponential decay law to power law as waiting time distri-
bution. In this chapter, we reverted the classical model to fractional model by using
the concept of recently established fractional differential operators known as the
Caputo-Fabrizio derivative. To include into mathematical system the memory and
the crossover effects. The new model was subjected to analysis of existence and
uniqueness of the system solution to insure the well poseness of the modified sys-
tem. Due to the complexity of the new system, a newly introduced numerical scheme
was used to solve the system and some numerical simulations where performed to
see the effect of the Mittag-Leffler law that brings the crossover effect.

Keywords Caputo-Fabrizio derivative · Dengue model · Fractional differential
equations · Existence and uniqueness · Fixed point theorem

1 Introduction

Dengue disease is a common arboviral disease in tropical regions of the world. It is
transferral to humans by the bite of Aedes mosquitoes. There are four types of virus
which is denoted by one, two, three, and four. The bites of the Aedes mosquitoes

S. Jain (B)
Faculty of Applied Science, Department of Mathematics, Madhav Institue
of Technology and Sciences, Gwalior 474005, Madhya Pradesh, India
e-mail: sonajainmaths@gmail.com

A. Atangana
Faculty for Natural and Agricultural Sciences, Institute for Groundwater Studies,
University of the Free State, Bloemfontein 9300, South Africa
e-mail: atanganaa@ufs.ac.za

© Springer Nature Singapore Pte Ltd. 2019
J. Singh et al. (eds.), Mathematical Modelling, Applied Analysis
and Computation, Springer Proceedings in Mathematics & Statistics 272,
https://doi.org/10.1007/978-981-13-9608-3_13

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9608-3_13&domain=pdf
mailto:sonajainmaths@gmail.com
mailto:atanganaa@ufs.ac.za
https://doi.org/10.1007/978-981-13-9608-3_13


190 S. Jain and A. Atangana

is the reason of the viruses that transferral to humans. If a person infected once in
the life by these one of the four serotypes of viruses will never get infected by that
serotype again but loses immunity to other three stereotypes of the viruses [8]. There
are lots of Bio-mathematical models have been proposed to recognize the transferral
dynamics of these type of infectious diseases. In recent years, modeling has become a
valuable tool in the analysis of dengue disease transferral dynamics and to determine
the factors that influence the spread of disease to support control measures. Many
researchers have proposed [5–8, 13, 14, 16, 18] epidemic model [10] to study the
transferral dynamics of dengue disease.

There is no specific medicine to cure dengue disease. Awareness programs can
be helpful in reducing the prevalence of the disease. Different Bio-mathematical
models have been proposed to study the impact of awareness in controlling dengue
and these type diseases. Prevention of mosquitoes bites is one of the ways to prevent
dengue disease. The mosquitoes bite humans during day and night when lights are
on. So, to get rid of mosquitoes bite, people can use mosquito repellents and nets.
If infected hosts feel they have symptoms of the disease and approach the doctor
in time for the supportive treatment, they can recover fast. This type of awareness
can help controlling the disease. Another way of controlling dengue is destroying
larval breeding sites of mosquitoes and killing them. Spray of insecticides may be
applied to control larvae or adult mosquitoes which can transmit dengue viruses. This
type of biological model have two properties as we observed Markovian and Non-
Markovian. In dengue spread model does not really follow the Markovian process
therefore does have memory effect, thus can well be described using the concept
of nonlocal differential operators with non local and non singular kernel as these
operators have a crossover from exponential decay law to power law as waiting time
distribution.

Fc is applied in various directions ofBio-mathematics, physics, signal-processing,
fluid-mechanics, visco-elasticity, finance, electro-chemistry and inmanymore. In the
branch of fc, we study fractional integral and fractional derivative as an important
aspects. Recently, many researcher and scientists have studied various type of issues
in this special branch [1–3, 9]. The Caputo-Fabrizo derivative brought new weapons
into applied mathematics to model complex real-world problems more accurately.
Caputo-Fabrizio derivative is give the result of non-Markovian process. In the RL
derivative the kernal inside it is gives the result for power law but Caputo-Fabrizio
shows the result for exponential decay.

The main objective of this chapter is to discuss fractional Caputo-Fabrizio deriva-
tive for the mathematical system to finding the crossover effects and memory effect
Also by using fixed point theorem we are finding the details of the uniqueness and
exactness and of the solution. The development of this article is as follows. In Sect. 2,
we discuss the Caputo-Fabrizio and AB derivative. In Sect. 3, the mathematical por-
tion of fractional dengue spread model and also by applying CF derivative we find
the approximate solution. In Sect. 4, by using fixed point theorem, we proved the
uniqueness and existence of system of solutions in Sect. 6, Numerical Solution are
discuss and in the last Sect. 7 we presented concluding remarks.
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2 Preliminaries

Some definitions and properties of the fractional derivative are presented here.

Definition 2.1 Let f be a function not necessarily differentiable, and κ be a real
number such that 0 < κ ≤ 1, then the Riemann-Liouville derivative with κ order
with power law is given as [15]

RL Dκ
t [ f (t)] = 1

�(1 − κ)

d

dt

t∫

0

(t − y)−κ f (y)dy. (2.1)

Definition 2.2 Let f ∈ H 1(a, b), b > a, κ ∈ [0, 1] then the new Caputo derivative
of fractional order is given by:

Dκ
t ( f (t)) = M(κ)

(1 − κ)

t∫

a

f
′
(x) exp

[
−κ

t − x

1 − κ

]
dx . (2.2)

where M(κ) is a normalization function such that M(0) = M(1) = 1 [4]. But, if the
function does not belong to H1(a, b) then, the derivative can be reformulated as

Dκ
t (f (t)) = M(κ)

(1 − κ)

t∫

a

( f (t) − f (x)) exp

[
−κ

t − x

1 − κ

]
dx . (2.3)

Remark 2.1 The authors remarked that, if σ = 1−κ
κ

∈ [0,∞), κ = 1
1+κ

∈ [0, 1],
then Eq. (2.1) assumes the form

Dκ
t ( f (t)) = N (σ )

(σ )

t∫

a

f
′
(x) exp

[
− t − x

σ

]
dx, N (0) = N (∞) = 1 (2.4)

In Addition,

lim
σ→0

1

σ
exp

[
− t − x

σ

]
= δ(x − t) (2.5)

Now after the introduction of a new derivative, the associate anti-derivative becomes
important, the associated integral of the new Caputo derivative with fractional order
was proposed by Losada and Nieto [11].

Definition 2.3 [11] Let 0 < κ < 1. The fractional integral of order κ of a function
f is defined by
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I tκ( f (t)) = 2(1 − κ)

(2 − κ)M(κ)
f (t) + 2κ

(2 − κ)M(κ)

t∫

0

f (s)ds, t ≥ 0. (2.6)

Remark 2.2 Note that, according to abovedefinition, the fractional integral ofCaputo
type of function of order 0 < κ < 1 is an average between function f and its integral
of order one. This therefore imposes

2(1 − κ)

(2 − κ)M(κ)
f (t) + 2κ

(2 − κ)M(κ)
= 1 (2.7)

The above expression yields an explicit formula for

M(κ) = 2

2 − κ
, 0 ≤ κ ≤ 1 (2.8)

Because of the above, Losada and Nieto proposed that the new Caputo derivative of
order 0 < κ < 1 can be reformulated as

Dκ
t ( f (t)) = 1

1 − κ

t∫

a

f
′
(x) exp

[
−κ

t − x

1 − κ

]
dx . (2.9)

3 Model Description

In the given model, total host human population, Nh . We divided this human pop-
ulation into four parts: Rh(recovered), Ih(infectious), Eh(exposed), Sh(susceptible)
and total vector (mosquito) population, also we divide Nv into three parts: Iv (infec-
tious), Ev (exposed), Sv (susceptible). We assume that the fraction u1 of susceptible
hosts use mosquito repellents to avoid mosquitoes bite. So, the fraction (1 − u1) of
susceptible hosts interact with infectious mosquitoes. The fraction u2 of infectious
hosts seek for the timely supportive treatment and recover fast by the rate rh(r > 1).
The fraction r1u2 (r1 is the proportionality constant) of infectious hosts use mosquito
repellents to avoid mosquitoes bite. u3 is a control variable that represents the erad-
ication effort of insecticide spraying. That follows that morality rate of mosquito
population increases at a rate r2u3 (r2 is the proportionality constant) and also it is
assume that recruitment rate of this is reduced by a factor of 1 − u3.

In this section, we describes the geometry of dengue disease together with control
measures. The system of differential equations which shows the present SEIR-SEI
vector host model is given in [13].
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dSh
dt

= μh Nh − (1 − u1)
bβh

Nh
Sh Iν − μh Sh

dEh

dt
= (1 − u1)

bβh

Nh
Sh Iν − (νh + μh)Eh

d Ih
dt

= νh Eh − [ru2γ h + (1 − u2)γ h + μh]Ih
d Rh

dt
= [ru2γh + (1 − u2)γh]Ih − μh Rh

dSv

dt
= (1 − u3)πν − (1 − r1u2)

bβhν

Nh
Sν Ih − (r2u3 + μhν)Sν

dEν

dt
= (1 − r1u2)

bβhν

Nh
Sν Ih − (r2u3 + νν + μhν)Eν

d Iν
dt

= ννEν − (r2u3 + μν)Iν

(3.1)

The parameters of the model are given in the following table.

Symbols Description
μh Death rate of host population
νh Host’s incubation rate
γh Recovery rate of host population
βh Transmission probability from vector to host
πν Vector population recruitment rate
μν Vector population death rate
νν Vector’s incubation rate
βν Host to vector the transmission probability
b Rate (biting) of vector

Total host population, Nh = Rh + Ih + Eh + Sh , total vector population, Nν =
Iν + Eν + Sν .

dNh

dt
= 0 and

dNν

dt
= (1 − u3)πν − (r2u3 + μν)Nν .

So, Nh remains constant and Nν approaches the equilibrium (1 − u3)πν(r2u3 +
μνν) as t → ∞. Introducing the proportions

sν = Sν

(1 − u3)πν/(r2u3 + μν)
, sh = Sh

Nh
, eh = Eh

Nh
, ih = Ih

Nh
, rh = Rh

Nh
,

eν = Eν

(1 − u3)πνν/(r2u3 + μνν)
, iν = Iν

(1 − u3)πν/(r2u3 + μνν)

Since sν = 1 − eν − iν and rh = 1 − sh − eh − ih the system of Eq. (3.1) is the
equivalent written by five dimensional non-linear system of ODEs:
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dsh
dt

= μh(1 − sh) − αshiν

deh
dt

= αshiν − βeh

dih
dt

= νheh − γ ih

deν

dt
= δsν ih − (ε + νν)eν

diν
dt

= ννeν − εiν

(3.2)

Here,

α = bβhπν(1 − u1)(1 − u3)

Nh(r2u3 + μν)
, β = νh + μh, γ = ru2γh + (1 − u2)γh + μh,

δ = (1 − r1u2)bβν, ε = r2u3 + μν.

Due to Markovian process, this system is exponentially stable with no memory.
Thus, to include the memory effect into this bio-mathematical model, we intro-
duced Caputo-Fabrizio arbitrarily ordered derivative to moderate this system by non
Markovian process as given by

CF
0 Dκ

t sh = μh(1 − sh) − αshiν
CF
0 Dκ

t eh = αshiν − βeh
CF
0 Dκ

t ih = νheh − γ ih
CF
0 Dκ

t eν = δsν ih − (ε + νν)eν

CF
0 Dκ

t iν = ννeν − εiν

(3.3)

These come with the initial conditions

iν(0) = δ5, eν(0) = δ4, ih(0) = δ3, eh(0) = δ2, sh(0) = δ1. (3.4)

4 Uniqueness and Existence of a System of Solutions
of Dengue Models with Non-Markovian Properties

In this section investigate numerical result of fractionalmodel based onCFderivative.
We discuss the uniqueness and existence of the solutions by fixed point theorem.
For this we apply the fractional integral operator due to Nieto and Losada [11] on
Eq. (3.3), to examine the existence of the system of solutions. We obtain
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sh(t) − sh(0) = CF
0 I κ

t {μh(1 − sh) − αshiν}
eh(t) − eh(0) = CF

0 I κ
t {αshiν − βeh}

ih(t) − ih(0) = CF
0 I κ

t {νheh − γ ih}
eν(t) − eν(0) = CF

0 I κ
t {δsν ih − (ε + νν)eν}

iν(t) − iν(0) = CF
0 I κ

t {ννeν − εiν}

(4.1)

By using the equation discussed by Nieto and Losada [11], we have

iν(t) − iν(0) = 2κ

(2 − κ)M(κ)

t∫

0

{νν(y)eν(y) − εiν(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{νν(t)eν(t) − εiν(t)}

eν(t) − eν(0) = 2κ

(2 − κ)M(κ)

t∫

0

{δsν(y)ih(y) − (ε + νν(y))eν(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{δsν(t)ih(t) − (ε + νν(t))eν(t)}

ih(t) − ih(0) = + 2κ

(2 − κ)M(κ)

t∫

0

{νh(y)eh(y) − γ ih(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{νh(t)eh(t) − γ ih(t)}

eh(t) − eh(0) = 2κ

(2 − κ)M(κ)

t∫

0

{αsh(y)iν(y) − βeh(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{αsh(t)iν(t) − βeh(t)}

sh(t) − sh(0) = 2κ

(2 − κ)M(κ)

t∫

0

{μh(1 − sh(y)) − αsh(y)iν(y)} dy

+ 2(1 − κ)

(2 − κ)M(κ)
{μh(1 − sh(t)) − αsh(t)iν(t)}

(4.2)

So we can write for clarity

Z1(t, sh) = μh(1 − sh(t)) − αsh(t)iν(t),

Z2(t, eh) = μh(1 − sh(y)) − αsh(y)iν(y)

Z3(t, ih) = νh(t)eh(t) − γ ih(t)



196 S. Jain and A. Atangana

Z4(t, eν) = δsν(t)ih(t) − (ε + νν(t))eν(t)

Z5(t, iν) = νν(t)eν(t) − εiν(t) (4.3)

Theorem 4.1 If the following inequality holds then The kernels Z1, Z2, Z3, Z4 and
Z5 satisfy the Lipschitz condition and contraction.

0 < a1 + βb1 ≤ 1.

Proof Starting with the kernel Z1. Let two function is sh1 and sh2 then we get the
following:

‖Z1(t, sh) − Z1(t, sh1)‖ = ‖ − μh
{
sh(t) − sh1(t)

} − α
{
sh(t) − sh1(t)

}
iν(t)‖.

(4.4)
Now using the triangular inequality (4.4), we have

‖Z1(t, sh) − Z1(t, sh1)‖ ≤ ‖α {
sh(t) − sh1(t)

}
iν(t)‖ + ‖μh

{
sh(t) − sh1(t)

} ‖
≤ ‖sh(t) − sh1(t)‖ {a1 + b1‖iν(t)‖}
≤ {a1 + b1β} ‖sh(t) − sh1(t)‖ ≤ γ1‖sh(t) − sh1(t)‖

(4.5)
Taking γ1 = a1 + βb1 here the β = iν(t) are bounded functions, then we have

‖Z5(t, iν) − Z1(t, iν1)‖ = γ5‖iν(t) − iν1(t)‖ (4.6)

Hence, the Lipschitz condition is satisfied for Z1, and if additionally 0 < (a1 +
βb1 ≤ 1), this condition is satisfy then it gives us a contraction for Z1.
Similarly all the cases II, II, III and IV satisfy the Lipschitz condition as follows:

‖Z4(t, eν) − Z1(t, eν1)‖ = γ4‖eν(t) − eν1(t)‖,
‖Z3(t, ih) − Z1(t, ih1)‖ = γ3‖ih(t) − ih1(t)‖,
‖Z2(t, eh) − Z1(t, eh1)‖ = γ2‖eh(t) − eh1(t)‖,
‖Z1(t, sh) − Z1(t, sh1)‖ = γ1‖sh(t) − sh1(t)‖.

(4.7)

when we consider the kernels, the Eq. (4.2) becomes

iν(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z5(y, iν)) dy + iν(0) + 2(1 − κ)

(2 − κ)M(κ)
Z5(t, iν)

eν(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z4(y, eν)) dy + eν(0) + 2(1 − κ)

(2 − κ)M(κ)
Z4(t, eν),
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ih(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z3(y, ih)) dy + ih(0) + 2(1 − κ)

(2 − κ)M(κ)
Z3(t, ih),

eh(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z2(y, eh)) dy + eh(0) + 2(1 − κ)

(2 − κ)M(κ)
Z2(t, eh),

sh(t) = 2κ

(2 − κ)M(κ)

t∫

0

(Z1(y, sh)) dy + sh(0) + 2(1 − κ)

(2 − κ)M(κ)
Z1(t, sh). (4.8)

Now, presenting the following recursive formula:

iνn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z5(y, iνn−1)

)
dy + 2(1 − κ)

(2 − κ)M(κ)
Z5(t, iνn−1)

eνn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z4(y, eνn−1)

)
dy,+ 2(1 − κ)

(2 − κ)M(κ)
Z4(t, eνn−1)

ihn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z3(y, ihn−1)

)
dy + 2(1 − κ)

(2 − κ)M(κ)
Z3(t, ihn−1),

ehn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z2(y, ehn−1)

)
dy + 2(1 − κ)

(2 − κ)M(κ)
Z2(t, ehn−1),

shn (t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z1(y, shn−1)

)
dy + 2(1 − κ)

(2 − κ)M(κ)
Z1(t, shn−1),

(4.9)

and the initial conditions are gives as below:

iν0(t) = iν(0), eν0(t) = eν(0), ih0(t) = ih(0), eh0(t) = eh(0), sh0(t) = sh(0).
(4.10)

Now, difference between the successive terms are presented as follow:

ςn(t) = iνn (t) − iνn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z5(y, iνn−1) − Z5(y, iνn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z5(t, iνn−1) − Z5(t, iνn−2)

)

χn(t) = eνn (t) − eνn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z4(y, eνn−1) − Z4(y, eνn−2)

)
dy
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+ 2(1 − κ)

(2 − κ)M(κ)

(
Z4(t, eνn−1) − Z4(t, eνn−2)

)
,

ξn(t) = ihn (t) − ihn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z3(y, ihn−1) − Z3(y, ihn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z3(t, ihn−1) − Z3(t, ihn−2)

)
,

ψn(t) = ehn (t) − ehn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z2(y, ehn−1) − Z2(y, ehn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z2(t, ehn−1) − Z2(t, ehn−2)

)

φn(t) = shn (t) − shn−1(t) = 2κ

(2 − κ)M(κ)

t∫

0

(
Z1(y, shn−1) − Z1(y, shn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z1(t, shn−1) − Z1(t, shn−2)

)
(4.11)

Noticing that

shn (t) =
n∑

i=0

φi (t),

ehn (t) =
n∑

i=0

ψi (t),

ihn (t) =
n∑

i=0

ξi (t),

eνn (t) =
n∑

i=0

χi (t),

iνn (t) =
n∑

i=0

ςn(t).

(4.12)

Step by step we get

‖φn(t)‖ = ‖shn (t) − shn−1(t)‖

=
∥∥∥∥∥∥

2κ

(2 − κ)M(κ)

t∫

0

(
Z1(y, shn−1) − Z1(y, shn−2)

)
dy

+ 2(1 − κ)

(2 − κ)M(κ)

(
Z1(t, shn−1) − Z1(t, shn−2)

)∥∥∥∥ (4.13)
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Employing the triangular inequality, Eq. (4.13) reduces to

‖shn (t) − shn−1(t)‖ ≤ 2κ

(2 − κ)M(κ)

∥∥∥∥∥∥
t∫

0

(
Z1(y, shn−1) − Z1(y, shn−2)

)
dy

∥∥∥∥∥∥
+ 2(1 − κ)

(2 − κ)M(κ)

∥∥(
Z1(t, shn−1) − Z1(t, shn−2)

)∥∥ .

(4.14)

The Lipschitz condition is satisfy with the kernel, we have

‖shn (t) − shn−1(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ1

t∫

0

∥∥shn−1 − shn−2dy
∥∥

+ 2(1 − κ)

(2 − κ)M(κ)
γ1

∥∥shn−1 − shn−2

∥∥ ,

(4.15)

then we get

‖φn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ1

t∫

0

‖φn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ1 ‖φn−1(t)‖ .

(4.16)
Similarly, the following results are obtained by us:

‖ςn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ5

t∫

0

‖ςn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ5 ‖ςn−1(t)‖ ,

‖χn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ4

t∫

0

‖χn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ4 ‖χn−1(t)‖ ,

‖ξn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ3

t∫

0

‖ξn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ3 ‖ξn−1(t)‖ ,

‖ψn(t)‖ ≤ 2κ

(2 − κ)M(κ)
γ2

t∫

0

‖ψn−1(y)‖ dy + 2(1 − κ)

(2 − κ)M(κ)
γ2 ‖ψn−1(t)‖ .

(4.17)
Now we are presenting the subsequent theorem by consideration of the above
results, 	

Theorem 4.2 The fractional dengue Models (3.3) with Non-Markovian Properties
has a system of solutions under the conditions that we can find t0 such that
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2κ

(2 − κ)M(κ)
γ1t0 + 2(1 − κ)

(2 − κ)M(κ)
γ1 ≤ 1

Proof Here first we considered that the functions iν(t), eν(t), ih(t), eh(t), sh(t) are
bounded and Also, we prove that Lipschitz condition is satisfy with the kernels and
hence on consideration of the results of Eqs. (4.16) and (4.17) and by employing the
recursive method, we derive the relation as follows:

‖φn(t)‖ ≤ ‖sh(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ1

)
+

(
2κ

(2 − κ)M(κ)
γ1t

)]n

,

‖ψn(t)‖ ≤ ‖eh(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ2

)
+

(
2κ

(2 − κ)M(κ)
γ2t

)]n

,

‖ξn(t)‖ ≤ ‖ih(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ3

)
+

(
2κ

(2 − κ)M(κ)
γ3t

)]n

,

‖χn(t)‖ ≤ ‖eν(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ4

)
+

(
2κ

(2 − κ)M(κ)
γ4t

)]n

,

‖ςn(t)‖ ≤ ‖iν(0)‖
[(

2(1 − κ)

(2 − κ)M(κ)
γ5

)
+

(
2κ

(2 − κ)M(κ)
γ5t

)]n

.

(4.18)

Therefore, the system of functions (4.12) is smooth and exists. However, to show
that the above functions are the system of solutions of the given system of Eq. (3.3),
we assume that

iν(t) − iν(0) = iν(t) − Fνn (t)

eν(t) − eν(0) = eνn (t) − Eνn (t),

ih(t) − ih(0) = ihn (t) − Dhn (t),

eh(t) − eh(0) = ehn (t) − Chn (t),

sh(t) − sh(0) = shn (t) − Bhn (t).

(4.19)

So, we have

∥∥Bhn (t)
∥∥ =

∥∥∥∥ 2(1 − κ)

(2 − κ)M(κ)

(
Z(t, sh) − Z(t, shn−1)

)

+ 2κ

(2 − κ)M(κ)

t∫

0

(
Z(y, sh) − Z(y, shn−1)

)
dy

∥∥∥∥∥∥
≤ 2(1 − κ)

(2 − κ)M(κ)

∥∥(
Z(t, sh) − Z(t, shn−1)

)∥∥

+ 2κ

(2 − κ)M(κ)

t∫

0

∥∥(
Z(y, sh) − Z(y, shn−1)

)∥∥ dy

≤ 2(1 − κ)

(2 − κ)M(κ)
γ1

∥∥sh − shn−1

∥∥
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+ 2κ

(2 − κ)M(κ)

t∫

0

γ1
∥∥sh − shn−1

∥∥ t. (4.20)

On using this process recursively, it yields

∥∥Bhn (t)
∥∥ ≤

(
2(1 − κ)

(2 − κ)M(κ)
+ 2κ

(2 − κ)M(κ)
t

)n+1

γ n+1
1 α. (4.21)

On taking the limit on Eq. (4.21) as n → ∞, we get

∥∥Bhn (t)
∥∥ → 0.

Similarly, we get∥∥Fνn (t) → 0
∥∥, ∥∥Eνn (t) → 0

∥∥, ∥∥Dhn (t) → 0
∥∥ , and

∥∥Chn (t)
∥∥ → 0.

Hence existence is verified. 	

Now, On proving the uniqueness of a system of solutions of Eq. (3.3)
Let there exist another system of solutions of (3.3) sh1(t), eh1(t), ih1(t), eν1(t) and
iν1(t) then

sh(t) − sh1(t) = 2(1 − κ)

(2 − κ)M(κ)

(
Z1(t, sh) − Z1(t, sh1)

)

+ 2κ

(2 − κ)M(κ)

t∫

0

(
Z1(y, sh) − Z1(y, sh1)

)
dy.

(4.22)

On Eq. (4.22), if we applying norm then we get,

∥∥sh(t) − sh1(t)
∥∥ ≤ 2(1 − κ)

(2 − κ)M(κ)

∥∥(
Z1(t, sh) − Z1(t, sh1)

)∥∥

+ 2κ

(2 − κ)M(κ)

t∫

0

∥∥(
Z1(y, sh) − Z1(y, sh1)

)∥∥ dy.
(4.23)

From employing the Lipschitz conditions of the kernel, we have

∥∥sh(t) − sh1(t)
∥∥ ≤ 2(1 − κ)

(2 − κ)M(κ)
γ1

∥∥sh − sh1
∥∥ + 2κ

(2 − κ)M(κ)
γ1t

∥∥(
sh − sh1

)∥∥ .

(4.24)
It gives

∥∥sh(t) − sh1(t)
∥∥

(
1 − 2(1 − κ)

(2 − κ)M(κ)
γ1 − 2κ

(2 − κ)M(κ)
γ1t

)
≤ 0. (4.25)
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Theorem 4.3 The systemofEq. (3.3)has aunique systemof solutions if the following
condition holds:

∥∥sh(t) − sh1(t)
∥∥

(
1 − 2(1 − κ)

(2 − κ)M(κ)
γ1 − 2κ

(2 − κ)M(κ)
γ1t

)
≥ 0. (4.26)

Proof If the condition holds (4.26), then

∥∥sh(t) − sh1(t)
∥∥

(
1 − 2(1 − κ)

(2 − κ)M(κ)
γ1 − 2κ

(2 − κ)M(κ)
γ1t

)
≤ 0, (4.27)

then we have ∥∥sh(t) − sh1(t)
∥∥ = 0.

Then we get
sh(t) = sh1(t) (4.28)

Similarly, we have
iν(t) = iν1(t),

eν(t) = eν1(t),

ih(t) = ih1(t),

eh1(t) = eh1(t).

(4.29)

Therefore, this verified the uniqueness of the system of solutions of Eq. (3.3). 	


5 Numerical Solution

In this section, we construct a numerical scheme for fractional model based on the
CF derivative. On applying this scheme we first consider the following non-linear
fractional ODE: {

CF
0 Dκ

t u(t) = f (t, u(t))

u(0) = u0
(5.1)

On applying the fundamental theorem of fc The above eq can be converted to a
fractional integral equation:

u(t) − u(0) = 2(1 − κ)

(2 − κ)M(κ)
f (t, u(t)) + 2κ

(2 − κ)M(κ)

t∫

0

f (τ, u(τ ))dτ, (5.2)

At a given point tn+1, n = 0, 1, 2, . . . we reformulated the above equation as
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u(tn+1) − u(t0) = 2(1 − κ)

(2 − κ)M(κ)
[ f (tn+1) − f (tn)] + 2κ

(2 − κ)M(κ)

tn+1∫

tn

f (τ, u(τ ))dτ

(5.3)

The second step is approximation of our numerical scheme of the function
f (t, u(t)). Thus we approximate f (t, u(t)) by using the well-known Lagrange inter-
polation polynomial to obtain following result for the interval [tn, tn+1],

P(τ )(≈ f (τ, u(τ ))) =
{

(τ − tn−1)

(tn − tn−1)

}
f (tn, un) +

{
(τ − tn)

(tn−1 − tn)

}
f (tn−1, un−1)

(5.4)

P(τ )(≈ f (τ, u(τ ))) =
{

(τ − tn−1)

(tn − tn−1)

}
fn +

{
(τ − tn)

(tn−1 − tn)

}
fn−1 (5.5)

The above approximation can included in Eq. (5.3) to produce

u(tn+1) − u(t0) = 2(1 − κ)

(2 − κ)M(κ)
[ f (tn+1) − f (tn)]

+ 2κ

(2 − κ)M(κ)

tn+1∫

tn

[{
(τ − tn−1)

(tn − tn−1)

}
fn +

{
(τ − tn)

(tn−1 − tn)

}
fn−1

]
dτ

(5.6)
thus, after some simplifications and integrating, the following equation is obtained:

un+1 − un = 2(1 − κ)

(2 − κ)M(κ)
[ fn+1 − fn] + 2κ

(2 − κ)M(κ)
h

[
3

2
fn − 1

2
fn−1

]
(5.7)

Now forfinding the numerical solution of fractionalmodel basedon theCFderivative.
For the Eq. (3.3) we get the solution

shn+1 − shn = 2(1 − κ)

(2 − κ)M(κ)

[
μh(1 − shn+1 ) − αshn+1 iνn+1 − μh(1 − shn ) + αshn iνn

]

+ 2κh

(2 − κ)M(κ)

[
3

2
[μh(1 − shn ) − αshn iνn ] − 1

2
[μh(1 − shn−1 ) − αshn−1 iνn−1 ]

]

ehn+1 − ehn = 2(1 − κ)

(2 − κ)M(κ)

[
αshn+1 iνn+1 − βehn+1 − αshn iνn + βehn

]

+ 2κh

(2 − κ)M(κ)

[
3

2

[
αshn iνn − βehn

] − 1

2

[
αshn−1 iνn−1 − βehn−1

]]

ihn+1 − ihn = 2(1 − κ)

(2 − κ)M(κ)

[
νhn+1ehn+1 − γ ihn+1 − νhn ehn + γ ihn

]

+ 2κh

(2 − κ)M(κ)

[
3

2

[
νhn ehn − γ ihn

] − 1

2
[νhn−1ehn−1 − γ ihn−1

]

eνn+1 − eνn = 2(1 − κ)

(2 − κ)M(κ)

[
δsνn+1 ihn+1 − (ε + ννn+1 )eνn+1 − δsνn ihn + (ε + ννn )eνn

]
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+ 2κh

(2 − κ)M(κ)

[
3

2

[
δsνn ihn − (ε + ννn )eνn

] − 1

2

[
δsνn−1 ihn−1 − (ε + ννn−1 )eνn−1

]]

iνn+1 − iνn = 2(1 − κ)

(2 − κ)M(κ)

[
ννn+1eνn+1 − εiνn+1 − ννn eνn + εiνn

]

+ 2κh

(2 − κ)M(κ)

[
3

2

[
ννn eνn − εiνn

] − 1

2

[
ννn−1eνn−1 − εiνn−1

]]
(5.8)

6 Numerical Simulation

In this part, By using the proposed numerical scheme of themodel for different values
of fractional order we present the numerical simulation. The numerical simulations
are shown in Figs. 1, 2, 3, 4 and 5. Figure 1 is considered κ to be 1, Fig. 2 is considered
κ to be 0.75, Fig. 3 is considered κ to be 0.55, in Fig. 4 is considered κ to be 0.35
and finally Fig. 5 is considered κ to be 0.15.

To achieve our numerical simulation the following initial conditions and param-
eters were used [17].

Nh = 5,071,126, πν = 2,500,000, νh = 0.1667, μh = 0.0045, μν = 0.02941,
γh = 0.328833, bβh = 0.75, bβν = 0.375, νν = 0.1428.

Fig. 1 For κ = 1
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Fig. 2 For κ = 0.75

Fig. 3 For κ = 0.55
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Fig. 4 For κ = 0.35

Fig. 5 For κ = 0.15
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7 Conclusion

Although the dynamics spread of Dengue fever has in the attention of many
researchers in the same field of applied mathematics in biology, it is worth not-
ing that, still there is no attention has been given to modeling the spread with a
differential operator having non-Markovian properties but the associated evolution
equation having Markovian properties. If we consider the recent development in
fractional differentiation and integration, a derivative with non-local kernel and non-
singular was suggested by Caputo and Fabrizio and posses several properties that one
observed in many problems occurring in biological modeling. We these properties,
we devoted our paper to the discussion and analysis underpinning the dynamical
spread of Dengue in given population. We provided a motivation to underpin why
this operator is used for this model, then, we presented a detailed analysis of unique-
ness and existence and the exact solution using the fixed-point theorem in Banach
space. With the aim of improving the accuracy of numerical scheme, a new method
was suggested by Toufit and Atangana [19] and was found to be highly accurate and
very easier to implement. We used this numerical scheme to solve the new model
with fading memory induces by the exponential kernel and presented numerical
simulation.
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