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Abstract In this paper, we have presented iterative Laplace transform scheme to
examine fractional Navier–Stokes equations in cylindrical coordinates with initial
conditions. The arbitrary ordered derivatives are described in terms of Caputo. By
utilizingonly the initial conditions, the analytical expressions are derived in the closed
form. The results achieved with the aid of the proposed technique are graphically
presented.
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1 Introduction

The fractional calculus has become a strong mechanism for finding the solutions of
many problems pertaining to control engineering, physics, signal processing, math-
ematical biology, viscoelasticity, electromagnetism, and mathematical physics and
other areas of sciences as well as technology. Several methods can be found in the
literature to derive the solution of fractional order differential equation such as ADM
[12], HAM [14], HPM [5], Homotopy perturbation transform method (HPTM) [9,
10, 19] and fractional Laplace Adomian decomposition method (FLADM) [7], LPM
[20], LHAM [21] and so on. The above mentioned techniques provide immediate
and easily seen symbolic terms of numerical approximate solutions as well as of
analytical solutions to both linear and nonlinear fractional differential equations.

In 2006, Daftardar-Gejji and Jafari introduced the iterative technique for examin-
ing numerically to non-linear functional equations [4, 6, 7]. Since then the iterative
approach is being used to find the solution of several non-linear differential equations

R. K. Bairwa (B)
Department of Mathematics, University of Rajasthan, Jaipur 302004, Rajasthan, India
e-mail: dr.rajendra.maths@gmail.com

J. Singh
Department of Mathematics, JECRC University, Jaipur 303905, Rajasthan, India
e-mail: jagdevsinghrathore@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
J. Singh et al. (eds.), Mathematical Modelling, Applied Analysis
and Computation, Springer Proceedings in Mathematics & Statistics 272,
https://doi.org/10.1007/978-981-13-9608-3_12

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9608-3_12&domain=pdf
mailto:dr.rajendra.maths@gmail.com
mailto:jagdevsinghrathore@gmail.com
https://doi.org/10.1007/978-981-13-9608-3_12


180 R. K. Bairwa and J. Singh

of arbitrary order [1] and viewing fractional BVP [3]. Recently, Jafari et al. has made
elegant use of Laplace transform in this iterative method and it became a popular
method known as iterative Laplace transformmethod (ILTM) [8] to examine a system
of partial differential equations of fractional order, Fokker–Plank equation [18] as
well. In recent, time-fractional Schrödinger equations [15], fractional heat and wave-
like equation [16] and fractional Telegraph equations [17] are solved successfully by
the use of ILTM.

In the present study, we consider the time-fractional Navier–Stokes equation hav-
ing initial condition in cylindrical coordinate and are expressed in operator form
as

Dα
t u(r, t) = P + v

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
, u(r, o) = f (r), 0 < α ≤ 1 (1.1)

where Dα
t u(r, t) indicates the Caputo fractional derivative of order α , P = − ∂p

ρ∂z , u
indicates the velocity, ρ is the pressure, v is the kinematics viscosity, t is the time
and α is a parameter representing the order of the time–fractional derivatives. In
particular for α = 1, the fractional Navier–Stokes Eq. (1.1) reduces to the standard
Navier–Stokes equation.

The main object of this paper, we shall extend the application of Iterative Laplace
transform algorithm to derive the solution of the time-fractional Navier–Stokes equa-
tions.

2 Some Basic Definitions

In this portion, we list certain basic definitions of fractional calculus along with
elegant properties of Laplace transform.

Definition 1 The Caputo derivative of arbitrary order [2] of function u(r, t) is pre-
sented as

Dα
t u(r, t) = 1

�(m − α)

t∫
0

(t − η)m−α−1u(m)(r, η)dη, m − 1 < α ≤ m,m ∈ N ,

= Jm−α
t Dmu(r, t). (2.1)

Here Dm ≡ dm

dtm and Jα
t indicates the Riemann-Liouville integral operator of

fractional order α > 0, presented as [11]

Jα
t u(r, t) = 1

�(α)

t∫
0

(t − η)α−1u(r, η)dη, η > 0, (m − 1 < α ≤ m),m ∈ N .

(2.2)
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Definition 2 The Laplace transform of f (t) , t > 0 is expressed as [11, 13]

L[ f (t)] = F(t) =
∞∫
0

e−st f (t)dt. (2.3)

Definition 3 The Laplace transform of Dα
t u(r, t) is presented in following manner

[11, 13]

L[Dα
t u (r, t)] = L[u(r, t)] −

m−1∑
k=o

uk(r, 0) sα−k−1, m − 1 < α ≤ m,m ∈ N , (2.4)

3 Basic Idea of ILTM

To explain the basic idea of iterative Laplace transform approach [8], we take the
subsequent fractional non-linear partial differential equation having the prescribed
initial conditions can be expressed in the form of an operator as

Dα
t u(r, t) + R u(r, t) + N u(r, t) = g(r, t), m − 1 < α ≤ m, m ∈ N , (3.1)

u(k)(r, 0) = hk(r), k = 0, 1, 2, . . . ,m − 1, (3.2)

where Dα
t u(r, t) is the Caputo derivative of arbitrary order α, m − 1 < α ≤ m,

presented by Eq. (2.1), R is a linear operator and may contain rest of fractional
derivatives of order less than α, N indicates a non-linear operator which may contain
other derivatives of fractional order less than α and g(r, t) is a known analytic
function.

Applying the Laplace transform on Eq. (3.1), we have

L [Dα
t u(r, t)] + L [R u (r, t) + Nu(r, t)] = L[g(r, t)]. (3.3)

Making use of the differentiation property of the Laplace transform, we find

L [u(r, t)] = 1

sα

m−1∑
k=0

sα−1−kuk(r, 0) + 1

sα
L [g(r, t)] − 1

sα
L [R u(r, t) + N u(r, t)].

(3.4)

On taking inverse Laplace transform on Eq. (3.4), we have
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u(r, t) = L−1

[
1

sα

(
m−1∑
k=0

sα−1−kuk(r, 0) + L[g(r, t)]
)]

− L−1

[
1

sα
L[Ru(r, t) + Nu(r, t)]

]
. (3.5)

Now, applying the iterative method,

u(r, t) =
∞∑
i=0

ui (r, t). (3.6)

As R is a linear operator, so we have

R

( ∞∑
i=0

ui (r, t)

)
=

∞∑
i=0

R[ui (r, t)], (3.7)

whereas the non-linear operator N is splitted as

N

( ∞∑
i=0

ui (r, t)

)
= N [u0(r, t)]

+
∞∑
i=1

{
N

(
i∑

k=0

uk(r, t)

)
− N

(
i−1∑
k=0

uk(r, t)

)}
. (3.8)

Putting the results given by Eqs. from (3.6) to (3.8) in the Eq. (3.5), we obtain

∞∑
i=0

ui (r, t) = L−1

[
1

sα

(
m−1∑
k=0

sα−1−kuk(r, 0) + L [g(r, t)]
)]

− L−1

[
1

sα
L

[ ∞∑
i=0

R[ui (r, t)] + N [u0(r, t)]

+
∞∑
i=1

{
N

(
i∑

k=0

uk(r, t)

)
− N

(
i−1∑
k=0

uk(r, t)

)}]]
. (3.9)

We have defined the recurrence formulae as

u0(r, t) = L−1

[
1

sα

(
m−1∑
k=0

sα−1−kuk(r, 0) + L (g(r, t))

)]
(3.10)

u1(r, t) = −L−1

[
1

sα
L [R (u0(r, t)) + N (u0(r, t))]

]
, (3.11)
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um+1(r, t) = − L−1

[
1

sα
L

[
R (um(r, t)) −

{
N

(
m∑

k=0

uk(r, t)

)

− N

(
m−1∑
k=0

uk(r, t)

)}]]
,m ≥ 1 (3.12)

Therefore the m-term approximate solution of Eqs. (3.1) and (3.2) in series form
is given by

u(r, t) ∼= u0(r, t) + u1(r, t) + u2(r, t)+, . . . ,+um(r, t), m = 1, 2, . . . . (3.13)

4 Solutions of the Time-Fractional Navier–Stokes
Equations

In this part, we have made an attempt to solve the time-fractional Navier–Stokes
equations by the application of iterative Laplace transform scheme.

Example 1 Consider the subsequent Navier–Stokes equation involving time–frac-
tional derivative written by

Dα
t u = P + ∂2u

∂r2
+ 1

r

∂u

∂r
, 0 < α ≤ 1, (4.1)

Surrounding the initial condition

u(r, t) = 1 − r2 (4.2)

Taking the Laplace transform of the Eq. (4.1), and making use of the result given
by (4.2), we get,

L [u(r, t)] = 1

s

(
1 − r2

) + P

sα+1
+ 1

sα
L

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
. (4.4)

Applying inverse Laplace transform to the Eq. (4.4), we arrive at the subsequent
result

u(r, t) = (1 − r2) + P
tα

�(α + 1)
+ L−1

[
1

sα
L

(
∂2u

∂r2
+ 1

r

∂u

∂r

)]
. (4.5)

Now, making use of the iterative method, substituting the results of the Eqs. from
(3.6) to (3.8) in the Eq. (4.5) and making use of the results given by the Eqs. (3.10)
to (3.12), we determine the components of the ILTM solution as follows
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u0(r, t) = (1 − r2) + P
tα

�(α + 1)
, (4.6)

u1(r, t) = L−1

[
1

sα
L

[
∂2u0
∂r2

+ 1

r

∂u0
∂r

]]

= − 4tα

�(α + 1)
, (4.7)

un+1(r, t) = L−1

[
1

sα
L

(
∂2un
∂r2

+ 1

r

∂un
∂r

)]
= 0. ∀ n ≥ 1. (4.8)

The other components may be obtained accordingly.
Thus, the closed form solution in the series form is can be obtained as

u(r, t) = u0(r, t) + u1(r, t) + u2(r, t) + u3(r, t)+, . . . ,

= (
1 − r2

) + (P − 4)
tα

�(α + 1)
. (4.9)

Special Cases

(i) The result in (4.9) was derived by Momani and Odibat [12] with the aid of the
different scheme that is ADM.

(ii) The result in (4.9) deduced by Ragab et al. [14] by the application of HAM.
(iii) A result in (4.9) has an analogy with the result of Ganji et al. [5] has been

obtained by using HPM.
(iv) For α = 1 , the result in (4.9) reduces to the following simple form

u(r, t) = (
1 − r2

) + (P − 4)t. (4.10)

This result was obtained earlier by Kumar et al. [10] by using the method of
HPTM.

Example 2 Next, consider the subsequent Navier–Stokes equation concerning to
time–fractional derivative given by

Dα
t u = ∂2u

∂r2
+ 1

r

∂u

∂r
, 0 < α ≤ 1, (4.11)

with the initial condition

u(r, 0) = r , (4.12)

Taking the Laplace transform of the Eq. (4.11), and making use of the result given
by (4.12), we have,
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L [u(r, t)] = r

s
+ 1

sα
L

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
. (4.14)

Applying inverse Laplace transform to the Eq. (4.14), we get

u(r, t) = r + L−1

[
1

sα
L

(
∂2u

∂r2
+ 1

r

∂u

∂r

)]
. (4.15)

Now, making use of the iterative method, substituting the results of the Eqs. from
(3.6) to (3.8) in the Eq. (4.15) and making use of the results given by the Eqs. (3.10)
to (3.12), we determine the components of the ILTM solution as follows

u0(r, t) = r , (4.16)

u1(r, t) = L−1

[
1

sα
L

(
∂2u0
∂r2

+ 1

r

∂u0
∂r

)]

= 1

r

tα

�(α + 1)
, (4.17)

u2(r, t) = L−1

[
1

sα
L

(
∂2u1
∂r2

+ 1

r

∂u1
∂r

)]

= 1

r3
t2α

�(2α + 1)
, (4.18)

u3(r, t) = L−1

[
1

sα
L

(
∂2u2
∂r2

+ 1

r

∂u2
∂r

)]

= 9

r5
t3α

�(3α + 1)
, (4.19)

and

un(r, t) = L−1

[
1

sα
L

(
∂2un−1

∂r2
+ 1

r

∂un−1

∂r

)]

= 12 × 32 · · · (2n − 1)2

r2n−1

tnα

�(nα + 1)
, (4.20)

and so on. The other components may be obtained accordingly.
Thus, the closed form solution in the series form is can be obtained as

u(r, t) = u0(r, t) + u1(r, t) + u2(r, t) + u3(r, t)+, . . . ,

= r +
∞∑
n=1

12 × 32 · · · (2n − 1)2

r2n−1

tnα

�(nα + 1)
. (4.21)
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Special Cases

(i) The result in (4.21)was obtained byRagab et al. [14] using the differentmethod
known as HAM.

(ii) The result in (4.21) was given by Ganji et al. [5] using the different technique
known as HPM technique.

(iii) The result in (4.21) deduced by Momani and Odibat [12] by the application of
ADM.

(iv) For α = 1 , the result in (4.21) reduces to the following simple form

u(r, t) = r +
∞∑
n=1

12 × 32 · · · (2n − 1)2

r2n−1

tn

n! . (4.22)

This result was obtained earlier by Kumar et al. [10] by using the method of
HTPM.

5 Numerical Results and Discussions

In this part, we present some numerical results for Navier–Stokes equation con-
cerning to time–fractional derivative. Figures 1 and 2 present the ILTM solution of
Navier–Stokes equation concerning to time–fractional derivative for α = 1 and 2
respectively. Figure 3 presents the ILTM solution of Navier–Stokes equation con-
cerning to time–fractional derivative with respect to r for distinct values of α.

Fig. 1 The surface of
solution u(r, t), when
α = 1 , P = 1 for Eq. (4.9)
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Fig. 2 The surface of solution u(r, t), when α = 0.5 , P = 1 for Eq. (4.9)

Fig. 3 The nature of the solution u(r, t) w.r.t. r, when P = 1 for diverse values of α for Eq. (4.9)



188 R. K. Bairwa and J. Singh

References

1. Bhalekar, S., Daftardar-Gejji, V.: Solving evolution equations using a new iterative method.
Numer. Methods Part. Differ. Equ. 26(4), 906–916 (2010)

2. Caputo, M.: Elasticita e Dissipazione. Zani-Chelli, Bologna (1969)
3. Daftardar-Gejji, V., Bhalekar, S.: Solving fractional boundary value problems with Dirichlet

boundary conditions using a new iterative method. Comp. Math. Appli. 59(5), 1801–1809
(2010)

4. Daftardar-Gejji, V., Jafari, H.: An iterative method for solving non-linear functional equations.
J. Math. Anal. Appli. 316(2), 753–763 (2006)

5. Ganji, Z.Z., Ganji, D.D., Ganji, A., Rostamian, M.: Analytical solution of time-fractional
Navier–Stokes equation in polar coordinate by homotopy perturbation method. Numer. Meth-
ods Part. Differ. Equ. 26(4), 117–124 (2010)

6. Jafari, H.: Iterativemethods for solving system of fractional differential equations. Ph.D. thesis,
Pune University (2006)

7. Jafari, H., Khalique, C.M., Nazari, M.: Application of the Laplace decomposition method for
solving linear and nonlinear fractional diffusion-wave equations. Appl. Math. Lett. 24(11),
1799–1805 (2011)

8. Jafari, H., Nazari, M., Baleanu, D., Khalique, C. M.: A new approach for solving a system of
fractional partial differential equations. Comp. Math. Appli. 66(5), 838–843 (2013)

9. Khan, Y.,Wu, Q.: Homotopy perturbation transformmethod for nonlinear equations usingHe’s
polynomials. Comp. Math. Appli. 61(8), 1963–1967 (2011)

10. Kumar, D., Singh, J., Kumar, S.: A fractional model of Navier–Stokes equation arising in
unsteady flow of a viscous fluid. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 14–19 (2015)

11. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential
equations. Wiley, New York, USA (1993)

12. Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by
Adomian decomposition method. Appl. Math. Comput. 177, 488–494 (2006)

13. Podlubny, I.: Fractional differential equations, vol. 198. Academic Press, New York, USA
(1999)

14. Ragab, A.A., Hemida, K.M.,Mohamed,M.S., Abd El Salam,M.A.: Solution of time-fractional
Navier–Stokes equation by using homotopy analysis method. Gen. Math. Notes 13(2), 13–21
(2012)

15. Sharma, S.C., Bairwa, R.K.: Closed form solution of the time-fractional Schrödinger equation
via Laplace transform. Int. J. Math. Appli., 3(4-D), 53–62 (2015)

16. Sharma, S.C., Bairwa, R.K.: Iterative Laplace transformmethod for solving fractional heat and
wave-like equation. Res. J. Math. Stat. Sci. 3(2), 4–9 (2015)

17. Sharma, S.C., Bairwa, R.K.: A reliable treatment of Iterative Laplace transform method for
fractional Telegraph equations. Annal. Pure & Appl. Math. 9(1), 81–89 (2014)

18. Yan, L.: Numerical solutions of fractional Fokker–Planck equations using iterative Laplace
transform method. Abst. Appl. Anal. Art. ID 465160 (2013)

19. Yavuz, M., Ozdemir, N.: Numerical inverse Laplace homotopy technique for fractional heat
equations. Therm. Sci. 22(1), 185–194 (2018)

20. Yavuz, M., Ozdemir, N., Baskonus, H.M.: Solutions of partial differential equations using the
fractional operator involving Mittag-Leffler kernel. Eur. Phys. J. Plus 133(6), 215 (2018)

21. Yavuz, M., Ozdemir, N.: European vanilla option pricing model of fractional order without
singular kernel. Fractal Fract. 2(1), 3 (2018)


	Analytical Approach to Fractional Navier–Stokes Equations by Iterative Laplace Transform Method
	1 Introduction
	2 Some Basic Definitions
	3 Basic Idea of ILTM
	4 Solutions of the Time-Fractional Navier–Stokes Equations
	5 Numerical Results and Discussions
	References




