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Abstract Efficient deployment of the sensor nodes takes an important role in proper
coverage and connectivity of the wireless sensor networks (WSNs). The key issues
that need to be taken care during deployment are the number of deployed sensors,
coverage of the target/region, and connectivity among the sensor nodes. As the sensor
nodes are prone to various kinds of failure, it is essential for k-coverage of the targets
andm-connectivity among the sensor nodes. Here, k-coverage of the targets indicates
that all the targets are covered by at least k number of sensor nodes so that failure of
k − 1 sensor nodes can also ensure coverage of the targets. Similarly,m-connectivity
of the sensor nodes indicates all the sensor nodes are connected with other m − 1
sensor nodes. Note that the k-coverage and m-connectivity problem for WSNs is
nondeterministic polynomial (NP)-hard in nature. In this chapter, nature-inspired
algorithms are studied and designed to solve the problem. Particle swarm optimiza-
tion (PSO), differential evolution (DE), genetic algorithms (GA), and gravitational
search algorithm (GSA) are studied and designed for the problem. The chromosome,
vector, particle, and agent are efficiently represented. An efficient derivation of fit-
ness functions is provided with the conflicting objectives. An extensive simulation
is also conducted.

Keywords Nature-inspired algorithms · k-coverage · m-connectivity · Wireless
sensor networks

S. Harizan · P. Kuila (B)
Department of Computer Science & Engineering, National Institute of Technology Sikkim,
South Sikkim 737139, India
e-mail: pratyay_kuila@yahoo.com

S. Harizan
e-mail: subashharizan@gmail.com

© Springer Nature Singapore Pte Ltd. 2020
S. K. Das et al. (eds.), Design Frameworks for Wireless Networks,
Lecture Notes in Networks and Systems 82,
https://doi.org/10.1007/978-981-13-9574-1_12

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9574-1_12&domain=pdf
mailto:pratyay_kuila@yahoo.com
mailto:subashharizan@gmail.com
https://doi.org/10.1007/978-981-13-9574-1_12


282 S. Harizan and P. Kuila

1 Introduction

Wireless sensor networks (WSNs) draw a great attention of the researchers for their
various potential applications. A sensor node performsmultiple functions as sensing,
communication, and data processing. Sensor nodes can collaborate among them to
monitor or sense the area of interest (AoI), collect the sensory data, process the data,
and transmit to the base station (BS) directly or through multi-hop [1–4]. As the
sensor nodes are equipped with limited energy source, it is very essential and chal-
lenging to conserve the limited energy [5–9]. Moreover, sensor nodes can sense and
communicate within the limited sensing and communication range. A region/target
is said to be covered if it falls within the sensing range. Similarly, two sensor nodes
can communicate with each other if they are within the communication range of
each other. Therefore, it is also very essential to provide an efficient coverage and
connectivity [10–16] to monitor the region/target and to transmit the sensed data to
the base station.

Deployment of sensor nodes has vital role for ensuring an efficient coverage and
connectivity in the network. There are mainly two types of deployment scheme in
WSN: preplanned [14] and ad hoc [14] deployment. In preplanned scheme, sensor
nodes are deployed in planned manner in an accessible area and thereby the network
has better management with saving in cost and energy. In ad hoc scheme, sensor
nodes are deployed randomly in the harsh environment where human interference is
not possible. Ad hoc deployment does not guarantee the coverage and connectivity.
Thus, this scheme requires large number of sensor nodes for proposed function of
the network.

Sensor nodes are prone to failure due to hardware failure, energy depletion, natural
calamities, etc. As a result, network becomes functionless. Therefore, for better
performance of the network k-coverage and m-connectivity are desirable. However,
cost for the k-coverage and m-connectivity should also be optimized by deploying
the minimum number of sensor nodes. Therefore, deployment of minimum number
of sensor nodes for desire coverage and connectivity is an NP-hard [14, 16–18]
problem. In limited time, it is not feasible or computationally very expensive to find
the optimal solutions for the NP-hard problem.

In this chapter, we studied the target coverage with connectivity problem as in
[14]. As an example, a network scenario with 7 target points (t1, t2, t3, …, t7) and
14 potential positions (ρ1, ρ2, ρ3, …, ρ14) is shown in Fig. 1. Here, among the 14
potential positions, 9 positions are selected to place the sensor nodes. We can also
observe that all the target points are covered by at least three sensor nodes and each
sensor node is connected with at least other two neighbor sensor nodes. Therefore,
we can say that scenario of the network as shown in Fig. 1 in chapter “Ambient
Intelligence for Patient-Centric Healthcare Delivery: Technologies, Framework and
Applications” is three coverage of the target and two connectivity of the sensor nodes,
i.e., 3-coverage and 2-connectivity.

Nowadays, nature-inspired algorithms (NIAs) are drawing a great attention of
the researchers as these algorithms are found to be very efficient to find the optimal

https://doi.org/10.1007/978-981-13-9574-1_10
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Fig. 1 A simple network
scenario with 3-coverage and
2-connectivity [14]
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solutions for the real-life complex problems. NIAs are classified into evolutionary
algorithms (EAs) and swarm intelligence algorithms (SIAs). These algorithms are
extensively used to solve many optimization problems of WSNs [19–29].

1.1 Author’s Contribution

In this chapter, we have studied the k-covered and m-connectivity problem as in
[14]. Various nature-inspired approaches like genetic algorithm (GA), particle swarm
optimization (PSO), differential evolution (DE), and gravitational search algorithm
(GSA) are also studied and employed for the above mentioned problem. Our contri-
butions are summarized as follows:

• A linear programming (LP) is formulated for the aforesaid problem.
• Efficient representation of chromosome, particle, vector, and agent for GA, PSO,
DE, and GSA, respectively. Moreover, they are generated such a way that validity
of them cannot be disturbed after the operations of EAs (e.g., crossover, mutation,
velocity and potion updation, etc.).

• Derivation of efficient fitness function is given. Here, three conflicting objectives
are considered.

• An extensive simulation is conducted and comparisons are shown for the algo-
rithms.
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1.2 Organization of the Chapter

Rest of the chapter is organized as follows. Section 2 provides a brief overview
of nature-inspired algorithms. Network model, problem formulation, terminologies,
and derivation of fitness function are defined in Sect. 3. GA-, PSO-, DE-, and GSA-
based approaches are discussed in Sects. 4–7, respectively. Experimental results are
shown in Sect. 8 and the chapter is concluded in Sect. 9.

2 Nature-Inspired Algorithms

Nature-inspired algorithms (NIAs) are inspired by the processes, perceived from
nature to solve the various optimization problems. These algorithms have drawn
enormous attention of the researchers to solve various optimization problems in the
field of engineering, biomedical, finance, etc. NIAs find the optimal solution for
real-life problem which is classified as NP-hard. It is a population-based algorithm
which is classified into evolutionary algorithms (EAs) and swarm-intelligence-based
algorithms (SIAs). EAs aremotivated by the theory of CharlesDarwin called survival
of the fittest. The individual in the population survives and reproduces offspring only
if they can fit themselves in the given environment. Whereas SIAs are inspired by
the collective behavior of swarms like bird flocking, fish schooling, ant colony, bee
colony, etc. An overview of some popular nature-inspired approaches is as follows.

2.1 Genetic Algorithm

Genetic algorithm (GA) [30–34] is a population-based meta-heuristic optimization
algorithm. A population of size Np is created by randomly generating the chromo-
somes. Each chromosome represents the complete solution to the problem. Chromo-
somes in the population are updated by applying the genetic operations (selection,
crossover, and mutation) to explore the search space to find the near-optimal solu-
tion. In the selection phase, a set of chromosomes are selected from the population.
Selection operation is followed by the crossover operation. In crossover operation,
two-parent chromosomes exchange their information to produce two child offspring
chromosomes. Finally, a gene value is randomly selected and mutated. Mutation is
also applied with some modification according to the application characteristic. This
process repeats iteratively till the desired or satisfactory chromosome is obtained or
maximum number of iterations.
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2.2 Particle Swarm Optimization

Particle swarm optimization (PSO) [1, 35, 36] is a stochastic optimization method
that is motivated by the social behavior of bird flocking or fish schooling. It can be
observed that birds, fishes, etc. always travel in a group without colliding with each
other. To avoid the collision, each member uses the group information and adjusts its
position and velocity to follow the group. This approach reduces the efforts of each
individual to find the food, shelter, etc. Initially, a swarm (say size Np) of particles
is created randomly where an individual particle represents a complete solution to a
multidimensional optimization problem. All particles in the population have equal
dimension (say D) and also initiated with random velocities in search space. In the
dth dimension of the hyperspace, a particle Pi, 1 ≤ i ≤ Np with position β i,d , 1 ≤ d
≤ D can be represented as follows:

Pi = [
βi,1, βi,2, βi,3,...,βi,d

]
(1)

The quality of the particles is evaluated by the derived fitness function. In order
to search the near-optimal solution, the velocities and positions of the particles are
updated in each iteration. The velocity of the particles is updated by twobest particles,
i.e., personal best (Pbesti) and global best (Gbest). Pbesti be the best particle that
has been observed so far for Pi. Gbest be the best particle among the swarm. The
velocity and position of the particles are updated as follows:

vi,d (t) = w × vi,d (t − 1) + c1 × r1 × (
Pbesti,d − βi,d (t − 1)

) + c2 × r2

× (
Gbesti,d − βi,d (t − 1)

)
(2)

βi,d (t) = βi,d (t − 1) + vi,d (t) (3)

where w represents the inertial weight, c1 and c2 are positive constant values called
acceleration coefficient, and r1 and r2 are two independently generated random num-
ber in the range [0, 1]. The update process will continue till the acceptable solution
is achieved or the maximum number of iterations are reached.

2.3 Differential Evolution

Differential evolution (DE) [37–39] is one of themost powerful stochastic real param-
eter based evolutionary algorithms. DE is widely used to solve many optimization
problems. Initially, a population (size say Np) is created by randomly generating the
set of vectors of dimension, say D. Each individual vector represents the complete
solution to the problem. The quality of the vectors is evaluated by the derived fit-
ness function. After the initialization of the population, the quality of the vectors is
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enhanced by the mutation, crossover, and selection operation. In each iteration, the
vectors are updated. The final solution is obtained by evaluating the solutions till the
maximum iteration is reached.

DE with different variants can be represented in general form as DE/β/γ /δ. DE
denotes the differential evolution, β specifies the vector to be muted (which can be
selected as randomly or best vector from population), γ specifies the number of vec-
tors that are considered for mutation operation of β, and δ denotes crossover scheme
(binomial or exponential). In the mutation operation, each candidate vector called
target vector and other three vectors are randomly chosen. Thereafter, a new vector
called donor vector is generated using mutation. Mutation operation is followed by
crossover operation. In crossover operation, target vector and donor vector exchange
their information to generate a child vector called trail vector. Finally, fitness func-
tion is used in selection operation to select the best vector among the trial vector
and target vector for the next generation. Algorithm iterates continuously to generate
the new vectors till the termination criteria are obtained or acceptable vector for the
problem is achieved.

2.4 Gravitational Search Algorithm

Gravitational search algorithm (GSA) [40] is a population-based stochastic opti-
mization technique. This algorithm is inspired from the law of gravitation and law of
motion. In GSA, each solution is represented by agent that represents the complete
solution for a multidimensional optimization problem. The agents are initialized
with position, velocity, acceleration, and mass. According to the law of gravitation,
objects in the universe attract each other by a gravitational force. During this move-
ment, object having lower mass moves toward the object with higher mass. The
objects with lower mass have higher acceleration whereas objects with higher mass
have slower acceleration. The agents with lighter mass will get attracted toward the
agent with heaviest mass. Performance of the agent is dignified by its mass. An agent
with heavier mass is considered as the optimal solution to the problem. An ith agent
from the population of size Np is denoted as follows:

λi = {
λ1
i , λ

2
i , λ

3
i , . . . , λ

d
i

}
, ∀i, 1 ≤ i ≤ Np (4)

where λd
i represents the position value of ith agent in the dth dimension. At iteration

t, the gravitational force acting on agent λi from agent λj in the dth dimension is
defined as follows:

Fd
ij = G(t) × Mpi(t) × Maj(t)

Rij(t) + ε
×

{
λd
i (t) − λd

j (t)
}

(5)

where G(t) is the gravitational constant at iteration t, ε is the small constant, passive
gravitationalmass of agentλi and active gravitationalmass of agentλj are represented
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byMpi(t) andMaj(t), respectively, and Rij(t) denotes the Euclidean distance between
two agents λi and λj at iteration t. The value of gravitational constantG(t) with initial
value G0 is calculated as follows:

G(t) = G0 × (−βt)/etmax (6)

where tmax denotes themaximumnumber of iteration and value of control parameter
is represented by β. The total force applied by all agents on the agent λi in the dth is
calculated by the following formula:

Fd
i =

Np∑

j=1,j �=i

randj × Fd
ij ,where randj ∈ [0, 1] (7)

The relation among mass (M), acceleration (a), and force is given by the law of
motion. Therefore, the acceleration of λi in dth dimension is given as follows:

adi = Fd
i (t)/Mii(t) (8)

where Mii denotes the inertial mass of an agent λi. The velocity and position of λi

are updated by using the following equations:

vd
i (t + 1) = randi × vd

i (t) + adi (t) (9)

λd
i (t + 1) = λd

i (t) + vd
i (t + 1) (10)

where randi ε [0, 1]. The gravitational and inertial masses of an agent are assumed
to be equal in GSA, i.e.,Mai = Mpi = Mii = Mi.

In a population, Np agents are evaluated by the fitness function. In iteration t,
among all agents, best(t) and worst(t) are the best and worst agents for the maxi-
mization problem denoted as

best(t) = maxj∈[1,...Np]fitj(t) (11)

worst(t) = minj∈[1,...Np]fitj(t) (12)

The mass of every agent is calculated by the fitness value obtained from Eqs. (11)
and (12). The massM i of an agent λi is determined as follows:

mi = fiti(t) − worst(t)

best(t) − worst(t)
(13)

Mi = mi(t)
∑Np

j=1 mi(t)
(14)
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The exploitationmust fade in and explorationmust fade out to avoid from trapping
in local optimum as the laps of iterations continue. Therefore, only K agents with
best fitness value, i.e.,Kbest will apply force to others.Kbest value linearly decreases
to one as it is a function of time. Thus, Eq. (7) could be revised as follows:

Fd
i =

∑

j∈Kbest,j �=i

randj × Fd
ij ,where randj ∈ [0, 1] (15)

However, the subsequent changes in the position and velocity occur with the
process of repeatedly updating the acceleration of the agent. This process of updating
continues till the optimal solution is obtained or maximum iteration is reached.

3 Network Model and Problem Formulation

3.1 Network Model

Based on our problem, we have assumed a 2D WSN with few target points, a base
station, and few predefined potential positions. Target points need to bemonitored by
placing the sensor nodes on the given potential positions. AssumedWSN is supposed
to have the following properties [41–46]:

• All the target points and deployed sensor nodes are stationary.
• Target is said to be covered if it falls within the sensing range of sensor nodes.
• Two nodes are connected if they are within communication range of each other.
• A sensor node can sense more than one target point.
• All the sensor nodes have same sensing and communication range.

3.2 Terminologies

Before formulation of problem, first, we define some terminologies used in this
chapter.

• P = {ρ1, ρ1, ρ1, …, ρN} denotes the N number of predefined potential positions.
• S = {s1, s2, s3, …, sZ} denotes the set of Z number of deployed sensor nodes on
selected potential positions.

• T = {t1, t2, t3, …, tM} denotes the M number of target points.
• Rsen and Rcom denote the sensing and communication range of the sensor nodes,
respectively.

• D(si, tj) represents the Euclidean distance between si and tj.
• SCcov(ti) denotes the set of sensor nodes that cover ti, i.e.,
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SCcov(ti) = {
sj|D

(
si, tj

) ≤ Rsen, ∀j, 1 ≤ j ≤ Z
}

(16)

• TCcov(si) denotes the set of target points which are covered by si, i.e.,

TCcov(si) = {
tj|D

(
si, tj

) ≤ Rsen, ∀j, 1 ≤ j ≤ M
}

(17)

• Ccon(si) denotes the set of sensor nodes that are within the communication range
of si toward BS, i.e.,

Ccon(si) = {sj|D
(
si, sj

) ≤ Rcom,&D
(
si, sj

)

≥ D
(
sj,BS

)
,∀j, 1 ≤ j ≤ Z} (18)

• COV cost(ti) denotes the coverage cost of ti.
• CONcost(si) denotes the connection cost of si.
• k and m are the desired coverage and connectivity (k and m are some predefined
value).

• BS denotes base station.

3.3 Problem Definition

Given a WSN with N predefined potential positions and M target points, we have
to place the sensor nodes on selected potential positions, considering the following
objectives:

• Selection ofminimumnumber of potential positions for placement of sensor nodes.
• Placed sensor nodes must ensure the k-coverage of the targets.
• Placed sensor nodes must be m-connected among themselves.

Before formulation of linear programming (LP) of the given problem, we define
the following Boolean variables:

λi =
{
1, If a sensor node is placed at ρi

0, Otherwise
(19)

βij =
{
1, If sj provides coverage to ti
0, Otherwise

(20)

∂ij =
{
1, If si is within Rcom of sj
0, Otherwise

(21)

δi =
{
1, If ρi is within Rcom of BS
0, Otherwise

(22)

Now, the LP of the given problem is defined as follows:
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Minimize
N∑

i=1

λi (23)

Subject to:

Z∑

j=1

βij × λj ≥ k, where i = 1 toM (24)

⎛

⎝
Z∑

j=1

∂ij × λj + δi

⎞

⎠ ≥ m, where i = 1 to Z (25)

(
λj, βij, ∂ij, δi

) ∈ {0, 1} (26)

Constraint 24 ensures the k-coverage of each target point and m-connectivity
among the deployed sensor nodes is ensured by the constraint 25. Restriction on the
decision variables is given by constraint 26.

3.4 Derivation of Fitness Function

In this chapter, we have studied four nature-inspired algorithms. The algorithms
are initialized with population which consists of member of solutions (i.e., chromo-
somes/vectors/particles/agents). The solutions are evaluated on the basis of fitness
function. The following objectives are considered as in [14].

Objective 1 (Deployment of minimum number of sensor nodes): Let us assume that
out of given N potential positions, Z numbers of potential positions are selected by
particular solution to place the sensor nodes. The first objective is as follows:

Objective 1:Minimize O1 = Z/N (27)

Objective 2 (Maximization of k-coverage): The second objective is to maximize the
k-coverage of all the target (M) points in the network which can be stated as follows:

Objective 2:Maximize O2 =
∑M

i=1 COVcost(ti)

(M × k)
(28)

where coverage cost (COVcost(ti)) of ti, is defined as follows:

COVcost(ti) =
{
k, If |SCcov(ti)| ≥ k
SCcov(ti), Otherwise

(29)
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Objective 3 (Maximization of m-connectivity): Deployed sensor nodes on the
selected potential positions must bem-connected and toward BS. The third objective
can be stated as follows:

Objective 3:Maximize O3 =
∑Z

i=1 CONcost(si)

(Z × m)
(30)

where connection cost (CONcost(si)) of si is given as

CONcost(ti) =
{
m, If |Ccon(si)| ≥ m
Ccon(si), Otherwise

(31)

The above objectives are conflicting in nature. Weight sum approach (WSA) [47]
is found to be very efficient to form a single fitness function taking multiple multi-
objective functions. Thus, WSA scheme is used as follows:

F = w1 × (1 − O1) + w2 × O2 + w3 × O3 (32)

i.e., F =w1 × (1 − (Z/N )) + w2 ×
∑M

i=1 COVcost(ti)

(M × k)

+ w3 ×
∑Z

i=1 CONcost(si)

(Z × m)
(33)

where w2 + w2 + w3 = 1 and 0 ≤ wi ≤ 1, ∀i, i = 1 to 3. The final objective is to
maximize the fitness value, i.e.,

Objective = Maximize F (34)

Based on this fitness value as defined in Eq. 33, the solutions are evaluated.
Solution with higher fitness value is considered as the better solution.

4 GA-Based Approach

4.1 Chromosome Encoding

The chromosomes are encoded as in [14]. Here, the chromosome as a string of zeros
and ones is taken. The number of potential positions in the network is taken as the
length of the chromosomes. If the value of ith gene is 1 then it implies that the ρ i is
selected for the placement of sensor nodes. Otherwise, no sensor nodes are placed
at ρ i.
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Fig. 2 Chromosome
representation

ρ1 ρ2 ρ3        ρ4 ρ5      ρ6        ρ7 ρ8 ρ9

1 0 1 1 00 1 0 1

Illustration: Let us consider a WSN with nine potential positions. Therefore, length
of the chromosome is nine as in Fig. 2. It can be observed that gene value at position
5 is 1 which represents that the sensor node is placed at position ρ5. Similarly, sensor
nodes are also placed at ρ1, ρ3, ρ7, and ρ9. Whereas no sensor nodes are placed at
ρ2, ρ4, ρ6, and ρ8 as the gene value at positions 2, 4, 6, and 8 is 0.

4.2 Initialization of Population

The initial population is randomly generated set of the chromosomes.

4.3 Fitness Function

Chromosomes are evaluated on the basis of the fitness function as defined in Sect. 2.4,
Eq. 31.

4.4 Selection, Crossover, and Mutation Operation

In selection phase, two valid chromosomes called parents are selected from the
population which can undergo crossover operation to produce new offspring. There
aremany selectionmethods likeRoulette-wheel selection, rank selection, tournament
selection, etc. Here, Roulette-wheel selection method is used.

Crossover operation is performed on two selected chromosomes. This operation
is regulated by the crossover probability. Evolution of the search speed is reformed
by varying this crossover probability. There are different types of crossover like one-
point crossover, two-point crossover, uniform crossover, etc. Crossover points are
chosen randomly in the chromosome beyond that the parent chromosomes exchange
their information to produce new child chromosomes. Here, two-point crossover
operation is used.

The crossover operation is followed by the mutation operation. In mutation oper-
ation, a randomly selected gene value within a chromosome is altered to produce a
new specieswith arbitrary locus in the fitness landscape. Like crossover, performance
of mutation operation is also regulated by the mutation probability. Mutation proba-
bility is usually lower than crossover probability. Mutation produces a chromosome
which cannot converge in the local optimum.
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5 PSO-Based Approach

5.1 Particle Representation

It is very essential to represent the particles in such a way that an individual particle
must represent the complete solution to the problem. The dimensions of the particle
are taken same as the number of potential positions (i.e., N) in the network. A
swarm is a set of randomly generated NP number of particles. The ith particle of the
population may be represented by a vector Pi as follows:

Pi = [
βi,1, βi,2, βi,3, . . . , βi,N

]

where each component is given as β i,d , 0 ≤ i ≤ Np, 1 ≤ d ≤ N. Here, β i,j represents
the jth component of the ith particle. Each component of the particles is initialized
by randomly generated uniformly distributed number rand(0, 1), 0 < rand(0, 1) ≤ 1.
Here, if the component value (say jth component) of the particle is greater than the
defined threshold value (Th) then the corresponding potential position (jth) is being
placed with a sensor node. Otherwise, sensor node is not placed at the potential
position.

Illustration: Let us consider aWSNwith nine potential positions. Therefore, dimen-
sion of the particle is same as the number of potential positions, i.e., nine. Figure 3
shows the particle representation of the correspondingWSN. Now, random numbers
are generated for each component of the particle.We can also define a threshold value
Th (say 0.54) which is compared with each component value. If the generated ith
component value is greater than the Th value then the corresponding ith position is
selected to place the sensor node. From Fig. 3, it can be observed that the component
value at positions 1, 2, 3, 5, 7, and 9 has value greater than the defined Th. Therefore,
the potential positions ρ1, ρ2, ρ3, ρ5, ρ7, and ρ9 are chosen for placement of sensor
nodes. However, no sensor nodes are placed at potential positions ρ4, ρ6, and ρ8 as
the component value at that 4, 6, and 8 is less than Th, i.e., 0.54.

5.2 Fitness Function

Here, same fitness function is used as discussed in Sect. 3.4, Eq. 31.

ρ1 ρ2               ρ3              ρ4              ρ5            ρ6                ρ7             ρ8 ρ9

0.67 0.79 0.89 0.33 0.59 0.21 0.88 0.41 0.58

Fig. 3 Particle representation
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5.3 Velocity and Position Update

In each iteration, the velocity and position of the particles are updated using Eqs. 2
and 3, respectively. Similarly, Pbest and Gbest are also updated accordingly.

6 DE-Based Approach

6.1 Vector Representation

The vectors are encoded same as the particles in PSO.

6.2 Fitness Function

The fitness function is used same as in GA and PSO.

6.3 Mutation

For the crossover and mutation operation, the DE/best/1/bin scheme is used. In
differential mutation operation (say at tth generation for ith vector), a donor vector
(� donor

i,t ) is created for eachmember vector (target vector) (� tar
i,t ) in the population. The

best vector (� best
i,t ) and other two distinct vectors (� x,t and � y,t) are randomly chosen

from the population such that i �= x �= y �= best. After that, difference of distinct
vectors is multiplied with scaling factor F and added to best vector to generate a
donor vector. The mutation operation can be defined as follows:

vdonor
i,t = vbest

i,t + F
(
vx,t − vy,t

)
(35)

6.4 Crossover

Crossover operation is performed to generate a new vector called trail vector � trial
i,t .

Here, binomial crossover operation is performed in between donor vector and target
vector. We choose a predefined crossover rate (say CR) and operation for crossover
can be defined as follows:
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vtrial
i,t =

{
vdonor
i,t , if (rand [0, 1] ≤ CR)

vtar
i,t , Otherwise

(36)

Each component of the trail vector is generated as follows. For each component,
we choose a random value between 0 and 1. Say for ith component of a trail vector
a chosen random value is less than or equal to CR than ith component of trail vector
is same as the ith component of the donor vector. Otherwise, ith component of trail
vector is same as the ith component of target vector.

6.5 Selection

Survival among the trail vector and target vector which acts as a target vector � tar
i,t+1

in the next generation (t + 1) is decided by the selection operation. Derived fitness
function as defined in Eq. 31 is used to evaluate both the vectors. If the fitness of the
trail vector is found to be better than target vector then it will replace the target vector
for the next generation. Otherwise, target vector will be part of next generation. The
selection operation is defined as follows:

vtar
i,t+1 =

{
vtrial
i,t , if

(
f
(
vtrial
i,t

) ≥ f
(
vtar
i,t

))

vtar
i,t , Otherwise

(37)

where f (� trial
i,t ) and f (� tar

i,t ) represent the fitness of the trail vector and target vector
for the generation t.

7 GSA-Based Approach

7.1 Agent Representation

Agents are represented in the same way as the particle.

7.2 Update Velocity, Mass, Position, and Force

The velocity, mass, position, and force of the agents are updated by Eqs. 9, 14, 10,
and 15, respectively.
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7.3 Fitness Function

Fitness function is used same as in GA, PSO, and DE.

8 Experimental Results

We have performed extensive simulation of the algorithms using MATLAB and
C programming. We have considered the scenario for random deployment where
potential positions are randomly taken in the network area of 300 × 300 m2. BS is
located at the position (300, 150) as shown in Fig. 4. The target points are denoted
by the black triangle, potential positions are denoted by red circle, and selected
potential points are denoted by blue circle. The used simulation parameters for PSO,
DE, GA, and GSA are given in Table 1. It should be noted that it is very hard to
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Fig. 4 Selection of potential positions by a GA, b PSO, c DE, and d GSA
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Table 1 Simulation parameters

PSO DE GA GSA

c1 1.4962 CR 0.7 Mutation rate 3% G0 3

c2 1.4962 F 0.5 β 1

w 0.7968

vmax 0.5

vmin −0.5

precisely and accurately finalize the weight values. Therefore, we have tested for
various combinations of the weight values and found a better result for w1 = 0.3, w2

= 0.3, and w3 = 0.4. Therefore, we have taken the same.
We first execute the algorithms for k = 1 and m = 1 with randomly placed 50

target points and 150 potential positions. We have taken the sensing and communica-
tion range as 40 meters and 70 meters, respectively. The selected potential positions
for the algorithms are shown in Fig. 4a–d. It can be seen that the PSO, DE, GA, and
GSA select 36, 41, 27, and 33 potential positions, respectively. The objective 1 of
the derived fitness function forces to select minimum number of sensor nodes. Other
two fitness functions ensure coverage and connectivity.

We have also executed the simulation by varying the value of k from 1 to 3 and
m from 1 to 3. The number of selected potential positions by the algorithms with
varying the number of target points is shown in Fig. 5a–c. From Fig. 5a–c, it can also
be observed that as the number of target points increases corresponding potential
positions also increases for different values of k and m.

9 Conclusion

In this chapter, we have presented four nature-inspired algorithms, namely,
GA-, PSO-, DE-, and GSA-based approach for the deployment of sensor nodes.
The objectives for the deployment of sensor nodes are as selection of minimum
number of potential positions for the placement of sensor nodes such that all the tar-
get points are k-covered along with m-connectivity among the placed sensor nodes.
Linear programming is also formulated. Efficient representations of chromosome,
particle, vector, and agents are illustrated for GA, PSO, DE, and GSA, respectively.
To evaluate the solutions, derivation of an efficient fitness function is given by consid-
ering all the objectives. An extensive simulation is conducted for all the algorithms
by varying the number of k and m, and target points. As all the algorithms are exe-
cuted with the same derived fitness function, it is very hard to conclude and compare
the performance among them. While, for a particular scenario, GA is proving better
performance, for some other scenario, GSA may provide better.

In large industries, the scheme can be used to monitor some critical points like
gas leakage, fire zone, etc. As the problem is multi-objective in nature, some suitable
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Fig. 5 Selection of potential positions by varying the number of target points for a k = 1, m − 1,
b k = 2, m − 2, and c k = 3, m − 3

multi-objective evolutionary algorithm (MOEA) may be employed for the same.
Mobility of the sensor nodes is not considered. The works may be extended by
considering the mobility of the sensor nodes. Moreover, energy consumption of the
sensor nodes is also not considered.
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