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Abstract. In this study, the optimum injection molding process parameter of
warehouse plastic pallets is identified. Compressive strength and part weight are
the selected quality characteristic. Barrel temperature, injection speed and
holding pressure are the selected process parameter. Taguchi optimization
method and desirability function is used to identify the most effective process
parameter on the compressive strength and part weight. Based on the conducted
experiment, 241 °C of barrel temperature, 72 mm/s of injection speed and
11 MPa of holding pressure, optimise the compressive strength to 5242 kg and
part weight to 11.6 kg. The optimised process parameters are studied with an
actual experiment and the percentage error of optimised process parameter are
identified which is 4.6% for compressive strength and 0.2% for part weight.
Moreover, a quantitative relationship between the process parameter and the
selected quality response is established using regression analysis. The percent-
age error of the prediction model for compressive strength is 10% and for part
weight is 0.3%. Thus, the prediction model used in this study is effective and
practical. This research is beneficial for all the plastic moulding industry which
produce plastic pallets. The results can save cost on material consumption and
also ensure high product quality.

Keywords: Injection moulding � Optimisation � Taguchi �
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1 Introduction

Warehousing is an important part of any manufacturing industry as it is a link between
producers and consumers. Plastic pallet is used by the manufacturing industry to keep
its products in the warehouse for easy forklift handling. In the disposable of the
warehouse, the use of plastic pallets material has grown rapidly for several years due to
its performance, durability, and quality compared to wooden pallets. These plastic
pallets are produced by a manufacturing company using injection moulding machines.
Injection molding is known as an effective process for the mass production of plastic
parts with complicated forms.

Determining optimal process parameter settings critically influences productivity,
quality, and cost of production in the plastic injection molding (PIM) industry. Pre-
viously, production engineers used either trial-and-error method or Taguchi’s
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parameter design method to determine optimal process parameter settings for PIM.
However, these methods are unsuitable in present PIM because of the increasing
complexity of product design and the requirement of multi-response quality charac-
teristics. Stability control of production is an important aspect of injection molding.
However, challenges continue to exist with respect to improving product quality sta-
bility to achieve a faster forming speed and higher automation for injection molding
because the injection process is usually disturbed by several inevitable variations. The
difficulty in overcoming the fore-mentioned inevitable disturbances and achieving
dynamic control of product quality is related to establishing a quantitative relationship
between product quality and process variables.

In this research, the multi-response optimisation problem of injection molding of
plastic pallets is studied systematically to produce a high-quality part with lower cost.
Changes in processing conditions can lead to improvements or degradation of accu-
racy, shape, surface finish, and fracture resistance and many other part properties and
characteristics. The primary use of process models is to predict these effects. So, a
quality prediction model based on the process parameter is established to monitor
product weight variation online.

2 Literature Review

First of all, most researchers did not conduct any confirmation test on the optimised
process parameter. A confirmation test is to identify the gap between the optimised
parameter and the actual experimental results. This is to confirm whether the optimi-
sation method that has been used in any research is valid or not. Sajjan et al., Harshal
et al., Osarenmwinda et al., Sreedharan et al., Gurjeet, Pradhan et al., Rish et al. and
Rathi [1–8], their optimised process parameters are not tested in the real experiment to
validify their conducted studies. The gap or error between optimised parameter and the
actual parameter is not studied in some of the previous researches. So, there is no
evidence on the accuracy of the optimisation.

Furthermore, the research conducted by Altan [4] need a lot of computational work
and it may cause an industry higher cost to own software like Matlab, Autocad and so
on. Matlab was used to write a backpropagation type of algorithm which is used to train
the prediction neural network. Other than that, 500,000 cycles need to be done in order
to build this prediction neural network. This may cause severe cost on production,
productivity and also higher leap time for the testing. Another study by Huizhuo et al.
[9], used Mouldflow analysis to identify the influential process parameter before the
experiment. The software is also used to analyse the quality index of the injection
moulded parts. The Mouldflow Insight software (MPI) is very expensive and not a cost-
effective method to optimise the process parameter for injection mouldings. Then,
Researcher like Yizong et al. [10] used CADMOLD to do melt simulation for his
studies. It is used to simulate the PS melt flow inside the mould cavity by lines
propagate through the 3D model indicating the flow path of the PS melt. However, this
method is quite costly and need to invest in the software to do such analysis. A small
medium enterprise is not capable to buy or invest on the CADMOULD to conduct such
studies and it is practically hard for the injection moulding industry to optimise the
process parameter.
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Finally, researchers also ignored the productivity of the injection moulding process
in order to optimise the process parameter for better quality. Faruk et al. [11] studies
involve time variable like cooling time and from the optimisation, it is identified that
cooling time of the 40 s give the minimum flow shrinkage for the product. The optimal
cooling time for minimum shrinkage is slightly higher which is the 40 s. This can
directly influence the product cycle time and can lead to less production output. The
study by Anand and Kumar [12] obtain optimal tensile strength with a process parameter
of 220 °C for processing temperature, 130 Mpa for injection pressure, 20 s for the
cooling time and 70 mm/sec of injection speed. Although the cooling time of 20 s can
give higher tensile strength for PP material, it also can increase the cycle time of the
whole process whereas can affect productivity. Rathi [8] believed that higher part weight
is the better quality. Although it is technically correct, this will increase the cost due to
the higher CPVC material consumption by the injection moulding machine in order to
prevent shorts-shorts. Furthermore, this assumption of weight corresponds to short
shorts possibilities cannot be applied for bigger products like a car bumper, containers or
plastic pallets. Even a small tiny hole in the product cannot be seen in the part weight
differences and this will lead to a wrong analysis on the short-shorts possibilities.

3 Methodology

Figure 1 below shows the research flowchart for the process parameter optimisation.
This research consists of three main stages of process parameter optimisation. The
stages are Phase 1: selecting key variable and quality response, Phase 2: optimising
process parameter, and Phase 3: establishing a quantitative relationship. Before opti-
mising the process parameter, the variables that need to be considered must be known

PHASE 

•QUALITY RESPONSE 
•TAGUCHI GEOMETRY 
•PROCESS PARAMETER 

PHASE 

•ORTHOGONAL ARRAY 
•TAGUCHI EXPERIMENTAL 
•S/N 
•COMPOSITE 

PHASE 
•LINEAREGRESSION 

Fig. 1. Flow chart of optimisation
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in order to have a successful parameter optimisation. The first phase is about deter-
mining all the component values required in design regarding the first objectives. The
2nd phase is to optimise the identified parameters and the 3rd is to establish a quan-
titative relationship between the process and quality.

3.1 Phase 1: Selecting Key Variable and Quality Response

The first phase is about selecting a suitable process parameter which can directly
influence the selected products quality. So, the first step in phase 1 is to select the
quality of the product which we want to study and optimise. The quality of a product
can be categorized into three properties: (a) dimensional properties (for e.g., weight,
length, and thickness), (b) surface properties represented by the appearance of surface
defects (for e.g., sink marks and jetting), and (c) mechanical or optical properties (for
e.g., tensile and impact strength). Proper studies on previous researches have been done
before selecting the important quality characteristics. Based on the studies conducted
by Yang and Gao [13], the performance of a manufacturing process and its quality
control are monitored through product weight because the quality is inversely pro-
portional to variability and this is reflected in the product weight variation while
product weight is closely related to other quality properties. Zhou et al. [14] also
supported and considered part weight as an important quality characteristic in their
studies. Optimisation of the weight of the plastic pallets is usually done by the oper-
ators in the plastic injection molding industry for material savings. Even though they
can reduce the part weight as low as possible satisfying dimensional properties and
surface properties but still they failed to satisfy the mechanical properties. This is due to
the correlation between the part weight and the part compressive strength. A very low
part weight can result in a low compressive strength which causes the plastic pallets to
only cater a small amount of weight. Therefore, the compressive strength of the plastic
pallets is also considered in this study for the part weight optimization. Once the quality
characteristics are selected, their corresponding process parameters are found thru
several previous research works. A brief explanation is given in Sect. 4, Subsect. 4.1
for the selected process parameters. After the parameter is selected, the preliminary test
had to be done to identify the maximum, minimum and average value of the parameter
to construct the Taguchi experiment table.

3.2 Phase 2: Optimising Process Parameter

In this phase, the design of the experiment is selected based on the orthogonal array
table and the selected Taguchi design is used to run the experiment. After the exper-
iment, each product weight is measured and tested for compression strength. Later, this
data is used to perform S/N analysis for parameter optimisation. Finally, the composite
desirability function is integrated with the Taguchi method for multi-response process
parameter optimisation.
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3.3 Phase 3: Establishing a Quantitative Relationship

In this phase, regression analysis is used to establish a quantitate relationship between
the process parameter and the selected quality characteristics. Regression analysis
mathematically describes the relationship between a set of independent variables and a
dependent variable. There are numerous types of regression models that can be used.
This choice often depends on the kind of data that we have for the dependent variable
and the type of model that provides the best fit.

4 Results and Discussions

4.1 Selected Key Process Parameter

The initial melt temperature is affected by barrel heating and shear heat due to screw
rotation. Barrel temperature is one of the frequently adjusted parameters in the plastic
industry in order to get better quality results. Since this process parameter has a direct
influence on the product quality, it has been selected for this research study. Adjust-
ments in the melt specific volume can be achieved through the holding stage in which
the main function involves compensating for the instability of the melt properties Zhou
et al. [13]. Despite changes in the melt specific volume during the injection stage, it is
still possible to control the holding stage to compensate for the melt specific volume.
So, the holding pressure has been selected as another process parameter to study its
influence on the compressive strength. Latest studies on compressive strength con-
ducted by Ginghtong et al. [14], they have selected three parameters like melt tem-
perature, injection speed and holding pressure. Their studies show that the contribution
of the injection speed to the quality characteristic is the highest compared to the other
selected parameter. So, the injection speed has been selected in this study to be opti-
mise for better quality output. Table 1 below shows the selected process parameter for
this study.

Table 1. Selected process parameter

Process
parameter

Reason Source

Barrel
temperature

Influence on melt specific volume Zhou, Zhang, Mao, and Huamin
[13]

Holding
pressure

Influence on melt specific volume Zhou, Zhang, Mao, and Huamin
[13]

Injection
speed

Higher significance effects on
compressive strength

Ginghtong, Nakpathomkun, and
Pechyen [14]
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4.2 Process Parameter Optimisation

A consistent experimental operation was applied to ensure similar conditions for the
production of each test series. Prior to re-commencing production, a waiting time of
15 min was required to allow the barrel temperature to reach the setting number and
become homogenous. Furthermore, a condition of thermodynamic equilibrium was
indispensable for the reproducibility of the experiments. Thus, a total of 10 products
were produced for each barrel temperature, and only the last 3 products were used for
the measurement. Table 2 below shows the result of product weight and compressive
strength after the testing.

The test results were evaluated in terms of signal/noise (S/N) ratio. The S/N was
calculated by larger is better for compressive strength and smaller is better for part
weight. This is to determine the effect of injection parameters on selected quality
characteristics. The calculated signal to noise ratio for both quality responses is listed as
in Table 3 below.

From the signal to noise analysis the most significant parameter that affects the
compressive strength and part weight is identified. It can be seen from Figs. 2 and 3
that the most important parameter for maximum compressive strength and minimum
part weight is Barrel temperature followed by holding pressure. Injection speeds show
the least effects on both selected quality characteristics. The figures also show that the
most suitable value of each process parameter. The optimal injection moulding con-
ditions for the maximum compressive strength were 260 °C barrel temperature,
11 MPa holding pressure, and 80 mm/s injection pressure. The optimal injection
moulding conditions for the minimum part weight were 260 °C barrel temperature,
22 MPa holding pressure, and 80 mm/s injection pressure. However, Taguchi and
signal to noise ratio alone cannot optimise multi responses. It has to be integrated with
desirability functions in order to optimise both compressive and part weight quality.

The calculated signal to noise ratio of both compressive strength and part weight is
converted into the dimensionless function using the desirability method. This is to

Table 2. Experiment result

Test Barrel
temperature
(°C)

Injection speed
(mm/s)

Holding
pressure (MPa)

Compressive
strength (kg)

Part
weight
(kg)

1 240 72 11 5160.2 11.78
2 240 80 22 6376.7 11.78
3 240 88 33 6091.1 11.78
4 250 72 11 4407.8 11.70
5 250 80 22 4900 11.72
6 250 88 33 4454.9 11.62
7 260 72 11 5626.7 11.62
8 260 80 22 4716.1 11.63
9 260 88 33 4810.4 11.65
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integrate both responses into a dimensionless function called composite desirability.
From this composite desirability, the most desirable value is considered as the optimal
value. Table 4 below shows the individual desirability for each response and also the
composite desirability.

The optimal values of the parameters are determined to maximise overall desir-
ability (D), by applying a reduced gradient algorithm with multiple starting points.
Figures 4 and 5 below shows the optimal parameter setting for individual responses.
After investigating each response variable as an objective function individually, all
response variables are optimised using the desirability function approach, while two
response variables are considered as objective functions simultaneously.

Table 3. S/N ratio for both responses

Test Barrel
temperature
(°C)

Charging
speed
(mm/s)

Holding
pressure
(MPa)

Compressive
strength (kg)

S/N
ratio

Part
weight
(kg)

S/N
ratio

1 240 72 11 5160.2 77.7169 11.78 −21.33
2 240 80 22 6376.7 76.0919 11.78 −21.36
3 240 88 33 6091.1 75.9343 11.78 −21.44
4 250 72 11 4407.8 75.793 11.70 −21.36
5 250 80 22 4900 75.9176 11.72 −21.39
6 250 88 33 4454.9 72.9768 11.62 −21.38
7 260 72 11 5626.7 75.0051 11.62 −21.39
8 260 80 22 4716.1 73.4728 11.63 −21.39
9 260 88 33 4810.4 73.6438 11.65 −21.36

Fig. 2. Signal to noise ratio plot for compression strength
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Fig. 3. Signal to noise ratio plot for part weight

Table 4. Desirability of both responses.

Compressive
strength (kg)

Part
weight
(kg)

Compression
individual
desirability

Part weight
individual
desirability

Composite
desirability

5160.2 11.79 0.190058 0.390147 0.272306
6376.7 11.82 0.137427 0.597395 0.286528
6091.1 11.8 0.084795 0.804643 0.261209
4407.8 11.725 0.47076 0.374216 0.419722
4900 11.75 0.418129 0.581464 0.493079
4454.9 11.63 0.681287 0.208032 0.37647
5626.7 11.645 0.751462 0.358285 0.518881
4716.1 11.655 1 0 0
4810.4 11.67 0.961988 0.192101 0.429883

Fig. 4. Compressive strength as the response for individual optimization
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In Fig. 6, all the response variables are optimised simultaneously. Comparing the
results obtained from the Taguchi design of experiment, the individual desirability
function approach, and the composite desirability function approach, it can be seen that
although optimising each response variable individually will provide a better result for
each response variable but still the optimal parameter values will be different when
each response variable is optimised individually. For example, considering the com-
pressive strength variable as a response, the optimal values of factors barrel tempera-
ture, injection speed, and Holding pressure are obtained as 260, 72 and 11 respectively.
However, when part weight is considered as a response variable, the optimal values are
different. Considering the entire response variable as objective functions simultane-
ously in the composite desirability function method generates one general value for all
the parameters of the algorithms, which leads to an optimal value of all the response
variables. The summary of the results obtained from the composite desirability function
approach is presented in Table 5.

Fig. 5. Part weight as the response for individual optimisation

Fig. 6. Composite desirability function approach (multi responses optimisation)
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The best set of process parameter is 241 °C of barrel temperature 72 mm/s injection
speed and 11 MPa of holding pressure. This parameter will optimise the part quality to
5242 kg of compressive strength and can result in the part weight of 11.6 kg. Once the
optimal combination of process parameters and their level was obtained, the final step
is to verify the estimated result. A confirmation test is performed to validate the results
of Taguchi optimisation and provide evidence that interaction effects between factors
are low. In practice, it is very hard to state with confidence how close the experiment
number must come to the predicted values for the agreement to be considered good.
Hence, it can only be applied to the present set of parameters. The confirmation
injection test was set up with the optimal combination using the same material and
injection machine. A plastic pallet was moulded and compressive strength test is
performed. The average compressive strength and part weight were calculated. The
value of average compressive strength and part weight obtained from the confirmation
experiment was then compared with the estimated value as shown in Table 6.

All experimental values are within a 20% difference from predicted results. As error
values must be smaller than 20% for reliable statistical analyses, error values below
20% were accepted in the literature Kuram et al. [15]. The predicted results had very
close values with the experimental results, thus the optimisation approach used in this
study is effective and practical.

4.3 Quantitative Relationship Between Process Parameter and Quality

Regression analysis was a statistical tool for the investigation of relationships between
variables. R-Square is correlation coefficient and should be between 0.8 and 1 in
multiple linear regression analyses, Ozcelik [15]. The purpose of R-Square value is the
prediction of future outcomes on the basis of other related data. It provides a measure of
how well results are appropriate to be predicted by the model. A linear model between

Table 5. Results of multi-response optimisation

Responses Factors Predicted
responses

Desirability
valueBarrel

temperature
Injection
speed

Holding
pressure

Compressive
strength

241 °C 72 mm/s 11 MPa 5242 kg 0.57773

Part weight 11.67 kg

Table 6. Confirmation test of optimised parameter

Responses Optimisation prediction Actual result Error

Compressive strength 5242 kg 5500 kg 4.6%
Part weight 11.67 kg 11.7 kg 0.2%
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injection moulding parameters and quality characteristics were created. The model is
shown in Eqs. 1 and 2.

Compressive strength ¼ �23028 þ 86:2Barrel temperature þ 123:6 injection speed
� 42:6 holding pressure

ð1Þ

Weight ¼9:827 þ 0:00733Barrel temperature þ 0:00125 injection speed

� 0:00182 holding pressure
ð2Þ

The relationship between process parameters and the ensuing product quality is
expressed in a mathematical equation using regression equation with an R(square) of
84% for compressive strength and R(square) of 82% for part weight. This means that,
all the factors of the process explain 84% of the differences in the compressive strength
and explain 82% of the differences on the part weight. The model result was best
explained by values of the regression coefficient, R-square, close to 1.

5 Conclusion and Future Works

In this study, the optimal injection moulding process parameter of warehouse plastic
pallets are identified. Compressive strength and part weight are selected as quality
characteristics. Barrel temperature, injection speed, and holding pressure is selected as
the process parameter based on previous researches. After that, the value of each
process parameter is determined by running pre-testing. The selected process param-
eters are used to conduct an experiment based on Taguchi experimental design. The
compressive strength and part weight for each experiment were identified. Those
results are used to optimise the process parameter using Taguchi and desirability
functions.

For Taguchi optimisation, S/N ratio is calculated for both responses and the optimal
process parameter are identified. The optimal injection moulding conditions for the
maximum compressive strength were 260 °C barrel temperature, 11 MPa holding
pressure, and 80 mm/s injection pressure. The optimal injection moulding conditions
for the minimum part weight were 260 °C barrel temperature, 22 MPa holding pres-
sure, and 80 mm/s injection pressure. The calculated signal to noise ratio of both
compressive strength and part weight is converted into the dimensionless function
using the desirability method. The best set of process parameter that is optimised using
desirability functions is 241 °C of barrel temperature 72 mm/s injection speed and
11 MPa of holding pressure which optimise the part quality to 5242 kg of compressive
strength and 11.6 kg of part weight. The percentage error of optimised process
parameter for compressive strength is 4.6% and for part weight is 0.2%. The response
variable of the optimised process parameter had very close values with the experi-
mental results, thus the optimisation approach used in this study is effective and
practical.

262 V. Panneerselvam and F. M. Turan



Moreover, a quantitative relationship between the process parameter and the
selected quality response is established using regression analysis. The constructed
regression model can be validated using the R-square. The relationship between pro-
cess parameters and the ensuing product quality is expressed in a mathematical
equation using regression equation with an R-square of 84% for compressive strength
and R-square of 82% for part weight. This means that all the factors of process explain
84% of the differences in the compressive strength and explain 82% of the differences
on the part weight. The percentage error of the prediction model for compressive
strength is 10% and for part weight is 0.3%. For reliable statistical analyses, error
values must be smaller than 20%. Since comparisons were done according to average
experimental values and the errors are within the acceptable range. Thus, the prediction
model used in this study is effective and practical.

By optimisation, the product weight is reduced about 0.2 kg with optimum com-
pressive strength. The pallet production for 1 day is about 1200 pieces, with 0.2 kg of
material saving for each pallet, we can save around 240 kg of polypropylene per day
and 7200 kg of material per month. The price range of 1 kg of recycled polypropylene
in Malaysia is around Rm 2.70–Rm 2.90. Taking the minimum price, we can save
around Rm 20,880 per month and RM 250,560 annually, ensuring better product
quality.

Future developments of this work may be the extension of the DoE plan to other
uninvestigated parameters, like packing time or injection pressure, and the mechanical
characterization of the polymer through Charpy and Hopkinson bar tests. Moreover, in-
cavity sensors information or barrel heater can be investigated. The relationship
between the melt properties inside the barrel before the injection and the product
quality can be studied. An online process parameter monitoring and adjustment can be
achieved using the quantitative relationship between the Melt flow in the barrel and the
product quality.

Acknowledgments. The author would like to give special thanks to Research & Innovation.
Department, Universiti Malaysia Pahang, Malaysia for funding this research project
(RDU180322).

References

1. Altan, M.: Reducing shrinkage in injection mouldings via the Taguchi, ANOVA and neural
network methods. Mater. Des. 31(1), 599–604 (2010)

2. Lal, S.K., Vasudevan, H.: Optimisation of injection moulding process parameters in the
moulding of low density polyethylene (LDPE). Int. J. Eng. Res. Dev. 7(5), 35–39 (2013)

3. Kale, H.P., Hambire, D.U.V.: Optimisation of injection molding process parameter for
reducing shrinkage by using high density polyethylene (HDPE) material. Int. J. Sci. Res. 4
(5), 722–725 (2013)

4. Osarenmwinda, J.O., Olodu, D.D.: Optimisation of injection moulding process parameters in
the moulding of high density polyethylene (HDPE). J. Appl. Sci. Environ. Manag. 22(2),
203–206 (2018)

5. Sreedharan, J., Jeevanantham, A.K.: Analysis of shrinkages in ABS injection molding parts
for automobile applications. Mater. Today Proc. 5(5), 1274412749 (2018)

Multi Response Optimisation of Injection Moulding 263



6. Singh, G., Pradhan, M.K., Verma, A.: Effect of injection moulding process parameter on
tensile strength using Taguchi method. World Acad. Sci. Eng. Technol., Int. J. Ind. Manuf.
Eng. 9(10) (2015)

7. Pareek, R., Bhamniya, J.: Optimization of injection moulding process using Taguchi and
ANOVA. J. Sci. Eng. Res. 4(1) (2013)

8. Rathi, M.M., Salunke, M.M.D.: Analysis of injection moulding process parameters. Int.
J. Eng. Res. Technol. 1(8), 1–5 (2012)

9. Shi, H., Xie, S., Wang, X.: A warpage optimization method for injection molding using
artificial neural network with parametric sampling evaluation strategy. Int. J. Adv. Manuf.
Technol. 65(1–4), 343–353 (2013)

10. Yizong, T., Ariff, Z.M., Khalil, A.M.: Influence of processing parameters on injection
molded polystyrene using Taguchi method as design of experiment. Procedia Eng. 184, 350–
359 (2017)

11. Kc, B., Faruk, O., Agnelli, J.A.M., Leao, A.L., Tjong, J., Sain, M.: Sisalglass fiber hybrid
biocomposite: optimization of injection molding parameters using Taguchi method for
reducing shrinkage. Compos. Part A Appl. Sci. Manuf. 83, 152–159 (2016)

12. Fei, N.C., Mehat, N.M., Kamaruddin, S.: Practical applications of Taguchi method for
optimization of processing parameters for plastic injection moulding: a retrospective review.
ISRN Ind. Eng. (2013)

13. Zhou, X., Zhang, Y., Mao, T., Zhou, H.: Monitoring and dynamic control of quality stability
for injection molding process. J. Mater. Process. Technol. 249, 358–366 (2017)

14. Ginghtong, T., Nakpathomkun, N., Pechyen, C.: Effect of injection parameters on
mechanical and physical properties of super ultra-thin wall propylene packaging by Taguchi
method. Results Phys. 9, 987–995 (2018)

15. Kuram, E., Tasci, E., Altan, A.I., Medar, M.M., Yilmaz, F., Ozcelik, B.: Investigating the
effects of recycling number and injection parameters on the mechanical properties of glass-
fibre reinforced nylon 6 using Taguchi method. Mater. Des. 49, 139–150 (2013)

264 V. Panneerselvam and F. M. Turan


	Multi Response Optimisation of Injection Moulding Process Parameter Using Taguchi and Desirability Function
	Abstract
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Phase 1: Selecting Key Variable and Quality Response
	3.2 Phase 2: Optimising Process Parameter
	3.3 Phase 3: Establishing a Quantitative Relationship

	4 Results and Discussions
	4.1 Selected Key Process Parameter
	4.2 Process Parameter Optimisation
	4.3 Quantitative Relationship Between Process Parameter and Quality

	5 Conclusion and Future Works
	Acknowledgments
	References




