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Abstract Model calibration is a necessary step to create reliable energy models
in building retrofit. Bayesian computation in model calibration has attracted more
attention because it can make full use of prior knowledge on building parameters.
However, the likelihood function is hard to be computed in Bayesian computation
due to the complexity of building energy simulation models. Approximate Bayesian
computation (ABC) is a likelihood-free method to infer unknown parameters in
complicated computational models by approximating the likelihood function with
simulation. The ABC method is inherently computationally intensive since a large
number of simulation runs are required to find reliable inferred values. This paper pro-
poses a method for combining the ABC technique and the machine-learning method
to compute unknown parameters in parameter estimation of building energy mod-
els. The results show that this method can provide reliable estimations of unknown
parameters when calibrating building energy models.
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1 Introduction

Building energy simulation is the application of physics-based building computer
programs to model and predict building energy consumption [1]. Building energy
simulation was originally used primarily in the design phase of the building, and
now building energy simulations have been applied to all phases of the building
life cycle. When performing building energy simulation in existing building retrofit,
there is high uncertainty in a number of building variables [2]. This may lead to a
large discrepancy between the result of the building energy modeling and the actual
building energy consumption.

Building energy model calibration has become a necessary step for building
retrofits to effectively evaluate energy savings. Input parameters in a simulation
model are tuned to minimize discrepancies between prediction and observed data
for building calibration of energy models. Coakley et al. classified building model
calibration into two broad categories: manual and automated methods [3]. The main
difference between manual and automated calibration is that the specific analytical
computation to assist in the calibration process. The manual method mainly depends
on the skill and experience by the modeler to adjust the building energy model [4]. In
contrast, the automated method employs mathematical and statistical techniques to
adjust building energy model. The manual calibration method is a time-consuming
process to run simulation engines and calculate the discrepancy between simulation
outputs and observed data. Then, input parameters are changed to minimize the error
to meet the calibration standard. Manual calibration approaches would introduce the
modeler biases into calibrationmodel and not account for uncertainty of input param-
eters [4]. These shortcomings limit the application of manual approaches in building
energy model calibration. Bayesian calibration, one of the automated approaches,
can solve these problems by making full use of prior knowledge on uncertainty of
input parameters [3]. The Bayesian calibration approach has been used in building
energy analysis for calibration of unknown parameters, retrofit analysis, and calibra-
tion of sensor errors [5]. However, there are two issues with Bayesian calibration.
First, the likelihood function is hard to compute in Bayesian computation due to the
complexity of building energy simulation models. Second, the Bayesian calibration
method is computationally intensive since a large number of simulation runs are
required to find reliable inferred values.

Therefore, this paper presents a novel method that combines the approximate
Bayesian computation (ABC) techniquewithmachine-learning to compute unknown
parameters in parameter estimation of building energy models. The contributions of
this research are two-fold. One is to apply theABCmethod in buildingmodel calibra-
tion to solve the difficulty of computing the likelihood function in Bayesian analysis.
The other is to combine machine-learning algorithms with the ABC technique to sig-
nificantly reduce computational cost of running engineering-based energy models of
buildings when applying the ABC in building energy model calibration. Moreover,
this study evaluates the suitability of posteriors correction to further improve the
accuracy of ABC results in model calibration of building energy.
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2 Methodology

2.1 Building Energy Model

Figure 1 shows the rectangular three-story office building studied in this paper. The
total floor area is 4500m2 with the window-wall ratio of 0.5. The building is assumed
to be located in Tianjin, China. The weather data is readily available from the Ener-
gyPlus weather file database (CSWD) [6]. Table 1 shows the main features of the
office building. Table 2 shows the unknown input parameter and their possible ranges.
The unknown input parameter range was set based on the energy standards of public
buildings in China [7]. Specifically, the chosen parameters are equipment power den-
sity, occupancy density, infiltration rate, and exterior wall U-value. These parameters
have a great influence on building energy consumption, but it is difficult to measure
these parameters. Each parameter is set to a uniform distribution with the same prob-
ability in their ranges. The thermal properties of the building envelope are based
on the energy standards of public buildings in China. Detailed hourly schedules for
internal heat gains (occupants, lighting, and equipment) are also derived from this
China energy efficiency standard. A fan-coil system is used to provide heating, cool-
ing, and ventilation for this building. In this building, the gas energy consumption
is mainly used by the boiler to provide heating for the building. Therefore, the gas
data form five months (January, February, March, November, and December) and all
twelve months electricity data were used for calibration.

The EnergyPlus V9.0, developed by the US Department of Energy, is used as
a simulation engine to compute building energy consumption in this paper. The
advantage of EnergyPlus program is that its input data files (IDF files) are ASCII
file. This is convenient whenmodifying the IDF files through the computer language,
such as R, MATLAB. For the ABC method, it is necessary to run many building
energy models, which requires automation and programming to create thousands of
energy models automatically.

Fig. 1 An office building
used in building
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Table 1 Main features of the office building

Component Parameters Value Unit

Envelope Floor area 4500 m2

Floor level 3 –

Window-wall ratio 0.5 –

Thermal zone Core zone with four
perimeter zones on each
floor

–

Roof U-value 0.25 W/m2 K

Window U-value 2.2 W/m2 K

Exterior wall U-vale See Table 2 W/m2 K

SHGC (solar heat gain
coefficient)

0.4 –

Infiltration rate(Air change
per hours)

See Table 2 ACH

Internal heat gains Lighting power density 9 W/m2 K

Equipment power density See Table 2 W/m2 K

Occupancy See Table 2 m2/person

Hourly schedules for
set-point for heating and
cooling, occupants, lights,
and equipment

Design standard for energy
efficiency of public
buildings [8]

–

HVAC systems Fan-coil system with boiler and chiller –

Table 2 Unknown input
parameter and ranges

Parameters Range Unit

Exterior wall U-value 0.3–0.5 W/m2 K

Infiltration rate 0.3–0.6 ACH

Equipment power density 10–15 W/m2

Occupancy density 6–10 W/m2

2.2 Machine-Learning Models

In this paper, the EnergyPlus V9.0 is used to compute building energy consumption.
However, the use of these physical models to calculate energy consumption is a
time-consuming process, especially when there a great number of physical models
are explored. In order to solve this problem, there has been increasing interest in
applyingmachine-learningmethod to construct statistical energymodels (also named
as meta-models). The machine-learning method utilizes input parameters and energy
simulation output to create meta-models that can reduce computation time.

The following five machine-learning methods are used to create meta-models:
linear model (LM), support vector machine (SVM), multivariate adaptive regression
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splines (MARS), bagging multivariate adaptive regression splines (BMARS), and
random forests (RF). The R caret package, developed by Max Kuhn, is used to
develop these five meta-models [8]. These machine-learning methods are described
briefly below.More complete description and theoretical frameworks can be found in
[8]. In brief, the LM method uses linear regression to create a linear model between
input and output and is the simplest model in these methods. SVM regression is
a non-parametric technique because it relies on kernel functions. The MARS is
also a non-parametric regression technique and can be seen as an extension of linear
models that considers non-linear and interaction terms. The baggingmethod employs
bootstrap aggregation, a general approach to combine a number of models and obtain
the averaged predictions for these models. In this analysis, the bagging method is
used together with a MARS regression, named as BMARS. The RF is an ensemble
learning method for regression that operates by constructing a multitude of decision
trees at training time and outputting the mean prediction of the individual trees.

Latin hypercube sampling (LHS) is used in this study to obtain a matrix with
1000 input combinations by sampling the unknown parameter ranges in Table 2
[9]. The R statistical software is used to create 1000 models automatically by using
the parameters from the LHS method. The root-mean-square error (RMSE) and the
coefficient of determination (R2) are used as performance measures to choose the
meta-models that can achieve thebalancebetweenmodel accuracy and computational
cost. The meta-model with the best performance measures is applied to the ABC
technique. The NMBE (normalized mean bias error) and CV(RMSE) (coefficient of
variation of the root-mean-square error) indicators are used to measure the accuracy
of model calibration as per recommendations of ASHRAE Guideline 14-2014 [10].

2.3 Approximate Bayesian Calibration

Bayesian analysis is a statistical method that utilizes the Bayes’ algorithm in Eq. (1)
to obtain a posterior distribution for the unknown parameter (θ ) given the observed
data (y) [11]. In this algorithm, p(θ) is the prior distribution assumed for unknown
parameters; p(y|θ) is a likelihood function; p(y) is the marginal likelihood; p(θ |y)
is the posterior distribution of calibration parameters.

p(θ |y) = p(y|θ) · p(θ)

p(y)
∝p(y|θ) · p(θ) (1)

However, the likelihood function is hard to compute in Bayesian computation due
to the complexity of building energy simulation models. Here, we address the issue
by using ABC that is well-suited to the complex problems for which the likelihood is
either sophisticated or computationally hard to obtain [12]. ABC is a likelihood-free
method, widely used for demographic inference in population genetics. In ABC, a set
of input variables (θ i) is sampled from the prior distribution. The input combinations
are used to run computer models (such as EnergyPlus models in this case) to obtain
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the output (yi). The tolerance error is taken as a value δ. If the discrepancy between
target and observed (y) output is less than the tolerance, the input variables are
retained. Otherwise, the input variables are discarded. The received variables are
considered to have been sampled from the posterior distribution [13]. For this basic
ABC algorithm, the accepted variables form the approximate posterior distribution
defined by Eq. (2). Compared to the Bayesian algorithm, the likelihood function is
replaced by p(y|θ) ≈ p(||y − yi || ≤ δ|θ). This ABC method is called a rejection
algorithm.

p(θ |y)∝p(||y − yi || ≤ δ|θ) · p(θ) (2)

To reduce the computational cost of ABC, two post-simulation approaches (local-
linear ridge regression and neural networks) are used for correcting the imperfect
match between observed and accepted outputs. The ridge regression assumes a lin-
ear function for the purpose of alleviating multicollinearity, while the NN (neural
networks) considers a more flexible non-linear correction to reduce the variance of
posterior estimations. More comprehensive descriptions and theoretical fundamen-
tals for these methods can be found in Blum and François [14]. The R abc package
is used to apply three ABC methods in this study [15].

3 Results and Discussion

3.1 Performance of Machine-Learning Models

Figure 2 presents the RMSE and R2 of the 12 months electricity consumptions and
5 months gas consumption meta-models from internal cross validation. The five-
month heating data is selected since most of heating energy occurs in these five
months. E01 denotes the electricity use in January and the same description is applied
for the electricity in other 11months. G01 denotes the gas use in January and the same
description is applied for the gas use in other four months. Among the five machine-
learning methods, the meta-model generated by BMARS is the most accurate model
in terms of both RMSE andR2. The secondmost accurate model is theMARSmodel.
Table 3 compares the computational time for creating thesemachine-learningmodels.
The BMARS is the most time-consuming model. In order to maintain a balance
between computational cost and model accuracy, the MARS meta-model is chosen
for the model calibration with the ABC method.
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Fig. 2 RMSE and R2 of the meta-models from cross validation

Table 3 Computational time of constructing five meta-models

Meta-models LM RF MARS BMARS SVM

Computation times (second) 17 673 349 5228 460

3.2 Calibration Results from Approximate Bayesian
Calibration

The posterior distributions of four unknown parameters are presented in Fig. 3. The
dotted black lines are the prior uniform distributions, and the black vertical lines
indicate the true values of the target building. The solid lines with three different

Fig. 3 Posterior distributions for four unknown input parameters from three ABC methods
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Table 4 CV(RMSE) and NMBE from three ABC methods

Method Electricity Gas

CVRMSE [%] NMBE [%] CVRMSE [%] NMBE [%]

Rejection 1.256 0.378 2.366 1.183

Ridge 1.813 0.547 2.596 1.298

NN(neural network) 0.901 0.272 0.950 0.475

colors (red, green, and blue) represent the posterior distributions from three ABC
methods. If the posterior distribution of unknown parameters is closer to the cor-
responding vertical lines, the results of approximate Bayesian calibration are more
accurate. The calibrated results from the neural networks method perform the best
among these three methods. Neural networks can obviously shrink the range of the
unknown parameters better than other two methods. Although infiltration rate and
exterior wall U-value were not as important as the other two parameters, neural net-
works and local-linear ridge regression still can obtain an accurate estimation. The
posterior distribution from the rejection method was closer to the prior distribution.

3.3 Evaluation of Accuracy of Model Calibration

ASHRAE Guideline 14-2014 states that the NMBE is less than 5% and the
CV(RMSE) is less than 15% formonthly data for a calibrated building energymodel.
CV(RMSE) can be considered to represent the percent error between the simulation
and measured data. NMBE indicates a bias percentage for undershooting (NMBE
> 0) or overshooting (NMBE < 0) the actual data during the period of evaluation.
Table 4 shows the CV(RMSE) and NMBE of three ABCmethods. From Table 4, the
CV(RMSES) andNMBEvalues aremuch smaller than the requirements ofASHRAE
Guideline 14-2014. Hence, the calibration process of using the ABC method in this
research can obtain an accurate parameter estimation.

4 Conclusion

This paper implements a method of combining the ABC technique and the machine-
learning method to compute unknown parameters in building energy models. The
results show that the ABC method can be used for building energy model calibra-
tion and these methods can solve the likelihood function problem of using Bayesian
calibration. The meta-model of MARS employed in this research provides a good
balance between the computational cost and the accuracy of both parameter esti-
mation and energy prediction. From the distributions of unknown parameters, the
neural networks can obtain better accurate posterior distribution estimation among
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three ABC methods. The accuracy of model calibration from three ABC methods
can meet the criterion of ASHRAE Guideline 14-2014.
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