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Abstract Accurate prediction of heating load can help improve operational effi-
ciency of district heating systems (DHSs). The selection of feature variables is of
great significance to prediction performance. Most existing methods only use the
meteorological data and historical thermal demand data. In this study, correlation
analysis method is employed to analyze predominant variables affecting prediction
accuracy. The correlation of supply/return temperature, outdoor temperature, and
historical load data were examined. The obtained results were used to select min-
imal input variables subset so as to avoid multiple input variables. The extreme
learning machine (ELM) was used to predict the energy consumption of the next 6,
12, and 24 h. The approach was adopted to predict heating load of a DHS in
Changchun, China. Historical heating load data were proved to be the most
essential prediction inputs. The results show that the root-mean-square error pre-
dicted by the ELM model can reach 4.1%.
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1 Introduction

Accurate prediction of the short-term heat load is a prerequisite for efficient and
stable operation of district heating system (DHS). Most existing thermal load
prediction methods considered limited influencing factors, like meteorological and
historical parameters, and the prediction accuracy is unstable [1-6]. These models
usually reflect a smooth linear relationship between load and weather variables,
which is of great nonlinearity and complexity actually [1]. A. Kusiak et al. used
weather forecast data to predict steam load [2]. Nicolas Perez-Mora et al. used
historical heat demand data to predict and manage DHS loads [3]. E. Dotzauer took
weather forecasting and social component modeling into account [4]. H. A. Nielsen
et al. obtained a regression equation between meteorological parameters (i.e.,
outdoor temperature, solar radiation, relative humidity, and wind speed) and
building heat consumption [5]. O. Yetemen et al. found that the monsoon circu-
lation has some influence on the long-term energy consumption prediction [6].

With the continuous development of machine learning theory, nonlinear pre-
diction methods have been successfully applied in the field of load forecasting.
Huang et al. [7] developed extreme learning machine (ELM), which is an evolu-
tionary neural network method with good generalization ability. Sajjadi et al.
established a DHS thermal load prediction model by using ELM method, revealing
the robustness of this method, [8].

This paper studied the correlation of historical heating load, historical secondary
supply/return temperature, and outdoor temperature. The selected input variables
were used to predict heat load for the next 6, 12, and 24 h using ELM method. The
proposed method was applied and analyzed in a DHS in Changchun, China.

2 Data Preprocessing

2.1 Data Outlier Elimination

Test values with coarse errors are called outliers, which are undesirable and should
be removed from the measured data [9]. PauTa criterion is commonly used to judge
the gross error, whose basic idea is that any error beyond triple standard deviation
limit is considered to be gross error rather than random error.

When using the PauTa criterion to judge and eliminate outliers, the average
value X and residual error V; = X; — X of the independent measurement column
X;(i=1, 2,3, ..., n) should be calculated first. The standard deviation S of the
measurement column is calculated. If the residual error V,; of a measured value X,
satisfies V; > 38, it is considered that X, is an outlier needs to be rejected.
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2.2 Correlation Analysis

The selection of the characteristic variables plays a crucial role in the thermal load
prediction model. Through correlation analysis, the relative factors that have a great
influence on load can be taken as the input factors of the prediction model to
improve accuracy. In this study, the correlation coefficient method was used to
analyze the correlation between two variables. » can be calculated by Eq. (1):

L YLK -R-T)
VI (X = KPS (1 - 7
where X and Y represent the two variables. The r is between [—1, 1]. A positive

value of r indicates a positive correlation, vice versa. The greater the absolute value
of r, the stronger the correlation.

(1)

3 Prediction Methods

3.1 Extreme Learning Machine (ELM)

ELM refers to an artificial neural network model that is developed with the
improvements on single-hidden layer feedforward networks (SLFNs) [10], as
shown in Fig. 1.

For M arbitrary samples (x;, t;), in which x=[x;;, x;, ..., X" € R and t; = [1,,,
fiy ..y ] € R™. The number of single-hidden layer nodes is N, the standard
SLFNs model with an activation function g(x) is as follows:
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Fig. 1 Schematic of ELM network
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where a; = [a;1, ap, ..., @y, is the weight vector that connects the ith hidden layer
node; b; is the threshold of ith hidden layer nodes; f; = [, Birs - -» fun] " is the
output weight vector connecting ith hidden layer nodes; a; - x; represents the inner
product of a; and x;.

The ELM model can approach the output value f; of N training samples with zero
error,and we get:

N
Zﬁig,-(ai-xj+b,~):tj,jzl,...,N (3)
i=1

Equation (4) is written in the matrix form as follows:
PH =T (4)

where H is the hidden layer output matrix of the network; the ith column represents
the output vector of the ith hidden layer node associated with the input xy, x,, ...,
Xy, and the jth row represents the implicit layer output vector associated with the
input. The hidden layer matrix day is a deterministic matrix, so training SLFNs is
equivalently converted to a least-squares solution, so that BH= T, which is
expressed as follows:

[;:mﬁinHT(ai,...,a;,b,-,...,b;)ﬁ—TH (5)
Equation (6) can be expressed as follows:
B=H'T (6)

where H™" is the molar generalized inverse matrix of the hidden layer output
matrix.

3.2 Prediction Model Performance Evaluation Criteria

The mean absolute percentage error (MAPE) and root-mean-square error (RMSE)
are used to evaluate the performance of the thermal load prediction model, which
are relative and absolute indicators, respectively. They can be calculated by Eq. (7):

observed,—predicted,
observed, x 100%

n ™)

(observed, — predicted, )

where observed, is actual heat load and predicted, is the predicted heat load.
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4 Results and Discussion

In order to verify the feasibility and effectiveness of the proposed prediction
algorithm, filed test of a DHS station in Changchun City was conducted from
October 21 to December 7, 2018. Outdoor temperature ¢,,, supply temperature f,,
return temperature #,, and heating load g were collected every 10 min, and a total of
6840 data were collected, as shown in Fig. 2. It can be seen that 7, and #, are
relatively stable. 7,, and g fluctuate more severely, which may have a certain impact
on the later prediction accuracy. The measured variables were averaged every 6, 12,
and 24 h, to study different timescale heat load predictions.

4.1 Correlation Analysis

The measured factors were normalized and then calculate the correlation coefficient
with heat consumption according to Eq. (1), and the results are shown in Tables 1,
2, and 3.

As shown in Table 1, when the heat consumption prediction period is 6, 12, and
24 h, the historical heat consumption and the historical secondary return temper-
ature have a strong correlation with the heating load. The correlation coefficient of
historical heat consumption, historical secondary return temperature, and heating
load reached the maximum when the prediction period is 12 h.

When the prediction period is 6h, 12h, 24h, the correlation coefficient between
heating load and outdoor temperature is -0.485, -0.523, -0.561, respectively.
Although the correlation between outdoor temperature and heating load is weak, it
is the key factor in updating the heating load prediction model. Finally, we use
historical heating load, secondary return temperature, and outdoor temperature as
the heating load variables with prediction periods of 6, 12, and 24 h.
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Fig. 2 Measured data
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Table 1 Correlation coefficient of 6-h averaged heat load and measured data

Variable l(ﬁh) (6h) (6h) (6h) l(6h) l(ﬁh) t(éh) t(éh) l(6h) t(6h)
w,i i—1 i—2 i—3 g,i—1 8,i—2 8,i—3 h,i—1 h,i—2 h,i—3
(6h) -0.485 |0.806 |0.804 |0.778 |0.652 |0.643 |0.610 [0.767 |0.736 |0.712

Table 2 Correlation coefficient of 12-h averaged heat load and measured data

i 12h 12h 12h 12h 12h 12h 12h 12h 12h 12h
Vardable |4 g 143 a3 (6 (4 e (a6
(12h) —0.523 |0.923 |0.850 |0.781 |0.687 |0.643 |0.640 |0.812 |0.760 |0.710

Table 3 Correlation coefficient of 24-h averaged heat load and measured data

Variable | ,(24h) (24h) | (24h) | (2ah) | (24h) | (24h) | (24h) | (24h) | (24h) | (24h)
Ly qi_y i2 i3 Lot | fgica | leic3 [ Timt | Ti—2 | i3
7(24h) —0.561 |0.875 |0.759 |0.613 |0.664 |0.640 |0.638 |0.777 |0.687 |0.611

4.2 Prediction Analysis

The data sets are divided into two categories by setting the number of test sets: the
number of training sets = 7:3. As the ELM method is used to predict the heating
load of the periods of 6, 12, and 24 h, the results are shown in Figs. 3, 4, and 5,
respectively. It can be seen that when the predicted period of heating load is 6, 12,
and 24 h, the corresponding MAPE values are 4.1, 6.8, and 9.3%. The corre-
sponding MSE value is 0.941, 1.459, and 2.063. Comparing the prediction results,
it is found that the heating load prediction model has the best degree of agreement
in 6 h, the 12-h result is the second, and the 24-h fitting degree is the worst.
When the predicted period of heating load is 6 h, the trend of the predicted load
curve is similar to the actual load trend. At 1-20 and 35-40 sample points, the
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Fig. 3 Next 6-h heating load prediction results
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Fig. 4 Next 12-h heating load prediction results
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Fig. 5 Next 24-h heating load prediction results

predicted value is closer to the true value. The prediction results show that the ELM
method has effectiveness in the application of short-term heating load prediction
research.

With the extension of prediction time, the accuracy of heating load prediction
decreases gradually. The main reason may be that the collected data samples are
located in the early stage of heating, the heating load fluctuates greatly, and the
collected heating load and other data are insufficient.

5 Conclusions

In this paper, the method of ELM heating load prediction is studied and verified in a
heating network in Changchun. Through the establishment of ELM prediction
model, the following conclusions can be drawn:
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(1) Studying the influence of different characteristic variables on heat load pre-
diction, the MAPE values of predicted future heating loads at 6 and 12 h are 4.1
and 6.8%. It is proved that the optimized feature set model has good prediction
performance.

(2) In this study, the accuracy of the future 24-h heating load prediction is lower
than the heat load forecast for the future 12 and 6 h, and its improvement
measures need to be further researched.
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