
Chapter 4
The Delayed van der Pol Oscillator
and Energy Harvesting

Zakaria Ghouli, Mustapha Hamdi and Mohamed Belhaq

Abstract In the first part of the chapter, we present some results on quasi-periodic
(QP) vibration-based energy harvesting (EH) in a delayed van der Pol oscillator with
modulated delay amplitude. Two examples are considered which include a delayed
van der Pol harvester coupled either to a delayed or undelayed electromagnetic sub-
system. The influence of delay parameters on the performance of the harvester has
been examined. It is shown that a maximum amplitude of the response does not
induce necessarily a maximum output power. In the second part, we investigate QP
vibration-basedEH in the casewhere the van der Pol oscillator is subjected to external
harmonic excitation and coupled to a delayed piezoelectric component. Perturbation
method is applied near a resonance to obtain approximation of the periodic and
QP responses as well as the amplitude of the harvested powers. To guarantee the
robustness of the QP vibration during energy extraction operation, a stability anal-
ysis is performed and the QP stability chart is determined. Results show that in the
presence of time delay in the electrical circuit of the excited van der Pol oscillator,
it is possible to harvest energy from QP vibrations with a good performance over a
broadband of system parameters away from the resonance. Numerical simulations
are conducted to support the analytical predictions.

4.1 Introduction

One of the major goals of using quasi-periodic (QP) vibrations to scavenge energy,
usually made away from the resonance, is to improve the stability range and robust-
ness of the energy harvester device which is not always secured when operating in
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the vicinity of the considered resonance. Indeed, when the harvester is operating
in the linear regime, its best performance is achieved traditionally at the resonance
peak with large-amplitude oscillations. However, such large-amplitude oscillations
are obtained only in a narrow region located around the peak, thus limiting consider-
ably the performance of the harvester device; see for instance [1–4]. In the nonlinear
regime, on the other hand, energy harvesting (EH) capability can be improved by
extending the bandwidth of the harvester over broadband of the excitation frequency.
Amajor inconvenient is that the instability phenomenon induced in the nonlinear fre-
quency response can reduce substantially the system performance when the response
is attracted to the low-amplitude motions or when it suffers jump phenomena, as
shown in [5]. Thus, the idea emerged from such a limitation is to use the possibility
of harvesting energy fromvibrations away from the resonance thereby circumventing
instabilities. Under certain conditions, QP regime with large amplitude when present
away from the resonance may constitute a good candidate.

A simple way to harvest energy in the QP regime away from the resonance is to
consider self-induced vibrations represented by limit-cycle (LC) oscillations. Under
certain conditions (for instance the presence of additional frequency in the system),
the steady-state LC oscillations may lose stability via a secondary Hopf bifurcation
producing QP vibrations. However, it is known that the amplitude of such QP vibra-
tions occurring away from the resonance is smaller compared to that of the periodic
ones; see for instance [6, 7]. In this case the harvester suffers a substantial reduction in
the harvested power indicating that the QP regime should be avoided. For instance,
in energy harvester systems subjected to combined aerodynamic and base excita-
tions, it was observed that beyond the flutter speed, the QP response of the harvester
leads to a substantial drop of the output power [8, 9]. However, in a recent work by
Hamdi and Belhaq [10] it was reported analytically and using numerical simulations
that in the delayed van der Pol oscillator with modulated delay amplitude, large-
amplitude QP vibrations (larger than the periodic ones) performing in broader range
of parameters can take place. This analytical finding has been first exploited by Bel-
haq and Hamdi [11] to demonstrate the possibility to scavenge energy directly from
QP vibrations over a broadband of modulation frequency away from the resonance
with a good performance. Later, Ghouli et al. [12] investigated QP vibration-based
EH in a forced and delayed Duffing harvester device considering an electromagnetic
coupling with time delay [13]. More recently, the problem of QP vibration-based
EH in a Mathieu-van der Pol-Duffing MEMS device using time delay was studied
in [14]. Other variants on the topic have been examined in [15, 16]. The conclu-
sion emerged from these previous works was that for appropriate values of delay
parameters, QP vibration-based EH can be used to extract energy over a broadband
of excitation frequencies away from the resonance with good performance, thereby
circumventing bistability and jump phenomena near the resonance.

The objective of this work is to provide, in a first part, a review on the main results
obtained on theQPvibration-basedEH in a van der Pol harvester and then investigate,
in a second part, EH in a van der Pol oscillator subject to harmonic excitation and
coupled to a delayed piezoelectric mechanism.
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The chapter is organized as follows: In Sect. 4.2 we present a review on the recent
results on QP vibration-based EH in a van der Pol oscillator with time-periodic delay
amplitude coupled either to undelayed electromagnetic component or to delayed
electromagnetic one. Section4.3 investigates QP vibration-based EH in a forced van
der Pol oscillator coupled to a delayed piezoelectric element. Approximations of the
periodic response and the amplitude of the output power near the primary resonance
are given using the multiple scales method. Section4.4 provides approximation of
the QP response and the corresponding harvested power applying the second-step
multiple scales method. The influence of time delay parameters in the electrical
circuit on the EH performance is analyzed. A summary of the results is given in the
concluding section.

4.2 The van der Pol Oscillator and Energy Harvesting

The concept of harvesting energy from QP vibrations is demonstrated in this section
through two examples. Namely, a delayed van der Pol oscillator coupled to undelayed
or delayed electromagnetic component. First, consider a delayed pure van der Pol
oscillator with time-periodic delay amplitude studied by Hamdi and Belhaq [10].
The authors analyzed the influence of the modulated time-delay amplitude on the
response of the following van der Pol oscillator with time delay in the position and
velocity

ẍ + x − ε(α − βx2)ẋ − ελ(t)x(t − τ) − ελ3 ẋ(t − τ) = 0 (4.1)

where ε is a small positive parameter, α, β are damping coefficients, λ(t), λ3 are
delay amplitudes in the position and velocity, respectively, and τ is the time delay.
An overdot denotes differentiation with respect to time t . Equation (4.1) can model
ambient sustained self-excited vibrations under a delayed feedback control. Exam-
ples includes, for instance, controlled vibration produced by high speed rotating
machines or regenerative effects in cutting processes [17–19]. To generate a reso-
nant condition and guarantee the occurrence of QP vibrations, it was assumed that
the delay amplitude in the position λ(t) is time-periodic around a nominal value λ1,
such that

λ(t) = λ1 + λ2 cos ωt (4.2)

where λ2 and ω are the amplitude and the frequency of the modulation. The nominal
value λ1 being the unmodulated delay amplitude. The case of delay parametric
resonance for which the frequency ω of the modulation is near twice the natural
frequency of the oscillator was considered. This resonance imposes the condition
1 = (ω

2 )2 + εσ where σ is the detuning parameter.
The periodic response near this delay parametric resonance is approximated using

the averaging method [20] and the amplitudes of the QP vibrations are obtained
applying the second-step multiple scales method [22].
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Fig. 4.1 a Stability chart of the QP response in the parameter plane (λ1, τ ); ω = 2.1 and λ2 = 0.8,
LC: Limit cycle, TS: trivial solution, b time histories corresponding to different regions [10]

Figure 4.1a provides the stability chart of the QP vibrations in the parameter
plane (λ1, τ ) and Fig. 4.1b shows time histories corresponding to different regions
of Fig. 4.1a. The transitions of solutions are shown by moving between the crosses
1, 2, 3 and 4 in Fig. 4.1a. For instance, between cross 2 and cross 1 the response of
the system undergoes a transition between no oscillation and QP vibration which is
a bifurcation of a trivial stable equilibrium point to a stable QP solution. From cross
2 to 3 Hopf bifurcation takes place leading to periodic response and from cross 3 to 4
the solution bifurcates from periodic to QP oscillation, and from cross 3 to 1 similar
bifurcation occurs via a secondary Hopf bifurcation.
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Fig. 4.2 Variation of periodic and QP responses versus λ1 [10]

In Fig. 4.2 is shown the variation of periodic andQP repones versusλ1 forλ3 = λ1,
λ2 = 0.8 and τ = 1.58. The QP modulation envelope obtained by numerical simu-
lation (circles) are compared to the analytical prediction (solid lines) for validation.
Time series correspond to different regimes are also provided. The main result indi-
cates that the modulation of the delay amplitude in the position gives birth to QP
vibrations with large-amplitude performing away from the resonance in the region
of negative λ1.

Taking advantage of this previous finding, its first application to EH has been
addressed in Belhaq and Hamdi [11]. They have considered a harvester device con-
sisting in a delayed van der Pol oscillator coupled to an electromagnetic coupling in
the form

ẍ + x − ε(α − βx2)ẋ = ελ(t)x(t − τ) + εγ1i (4.3)

di

dt
+ γ2i = −ż (4.4)

where ε is a small positive parameter, α, β are damping coefficients, λ(t) is the
delay amplitude, τ is the time delay and γ1 is the electromagnetic coupling coef-
ficient. The delay amplitude λ(t) is assumed to be modulated harmonically as
λ(t) = λ1 + λ2 cos ωt , where λ1 is the unmodulated delay amplitude and λ2, ω

are, respectively, the amplitude and the frequency of the modulation, while i and
di
dt have been substituted for electric charge coordinate q (i = q̇). The coefficient γ2
is the reciprocal of the time constant of the electrical circuit. It is worthy to point
out that the delay in the mechanical part is not considered as an input power. It
should be considered as inherently present in the harvester system as in milling and
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turning operations [17–19]. The system response was investigated near the delay
parametric resonance assumig the resonance condition 1 = (ω

2 )2 + εσ where σ is a
detuning parameter. Averaging method was used to approximate the amplitude and
the output power of the periodic vibrations and the second-step perturbation method
was applied to approximate the amplitude of the QP vibrations and the correspond-
ing output power of the harvester device. For validation, the analytical prediction
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Fig. 4.3 a Stability chart of QP solutions in the parameter plane (λ1, τ ), b time histories corre-
sponding to different regions; λ2 = 0.2, ω = 2.1 and γ2 = 1.33. UQP: unstable QP, SQP: stable
QP, LC: limit cycle [11]
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(solid lines) are compared to numerical simulation (circles) obtained using dde23
algorithm [21].

In Fig. 4.3a is presented the stability chart of the QP vibrations in the parameter
plane (λ1, τ ). Regions of stable and unstable QP vibrations are indicated, respec-
tively, by UQP (aqua regions) and SQP (grey regions). Within the white region
periodic oscillations indicated by LC occur. Time histories of responses and powers
corresponding to different regions of Fig. 4.3a are shown in Fig. 4.3b. Bifurcation of
solutions are obtained by moving between regions in Fig. 4.3a. For instance, from
cross 2 to 3 Hopf bifurcation occurs giving rise to LC oscillations. The system behav-
ior changes from LC to SQP oscillation with a slight modulation when moving from
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Fig. 4.4 Vibration (a) and power (b) amplitudes versus λ1 for τ = 1.58, ω = 2.1 and γ2 = 1.33;
analytical (solid lines) and numerical (circles) approximations [11]
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Fig. 4.5 a Stability chart of QP solutions in the plane (λ1, τ ), b time histories corresponding to
different regions; λ2 = 0.2, ω = 2.1 and K = γ2 = 1.33. UQP: unstable QP, SQP: stable QP, LC:
limit cycle [13]

cross 3 to 4. It is worthy mentioning that cross 4 has been carefully chosen close
to the bifurcation curve to demonstrate the accuracy of the analytical prediction of
the stability chart. This is illustrated by comparison to time series corresponding to
cross 4 in Fig. 4.3a (see Fig. 4.3b bottom).

Figure 4.4 depicts the variation of vibration and power amplitudes versus λ1. One
can clearly observe from Fig. 4.4a that for negative values of λ1 the amplitude of
the QP modulation is larger comparing to the amplitude of the periodic response.
Accordingly, the corresponding power amplitudes shown in Fig. 4.4b demonstrate
clearly that the performance of the extracted power in the QP region is better than
the performance of the output power in the periodic region.

Another case has been considered by Ghouli et al. [13] for which the time delay is
introduced in bothmechanical and electrical components. In this case, the EH system
consists of a delayed van der Pol oscillator coupled to a delayed electromagnetic
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Fig. 4.6 Vibration (a) and
power (b) amplitudes versus
λ1 for τ = 0.3, λ2 = 0.2,
ω = 2.1 and γ2 = 1.33;
analytical (solid lines) and
numerical (circles)
approximations. Black line
for delayed circuit K = γ2,
grey line for undelayed
circuit K = 0. Solid line for
stable and doted line for
unstable [13]

element. The governing equations are written as

ẍ + x − ε(α − βx2)ẋ = ελ(t)x(t − τ) + εγ1i (4.5)

di

dt
+ γ2i = Ki(t − τ) − ż (4.6)

where K is the delay amplitude in the electric circuit and τ is the time delay. The
other parameters are defined as before.

As in the previous case (4.3), (4.4), the response of the system was investigated
near the delay parametric resonance using a similar perturbation analysis.

Figure4.5a presents the stability chart of the QP vibrations in the parameter plane
(λ1, τ ). The dashed lines delimit domains of unstable QP vibrations and the solid
lines determine the domains where the QP vibrations are stable. Similarly, UQP
(aqua regions) means unstable QP while SQP (grey regions) means stable QP. The



98 Z. Ghouli et al.

periodic oscillations exist in thewhite regions and are indicated by LC. Time histories
and the corresponding output power responses are shown in Fig. 4.5b. The transitions
of solutions are obtained by moving between the crosses 1, 2 and 3 in Fig. 4.5a.

Figure4.6 shows the variation of vibration and power amplitudes versus λ1 for
K = 0 (undelayed circuit, grey lines) and K = γ2 (delayed circuit, black lines). It
can be seen that negative values of λ1 decreases the amplitude of the QP modula-
tion (Fig. 4.6a, black envelope), but on the contrary, increases the harvested power
(Fig. 4.6b, black envelope). In other words, in the delayed van der Pol harvester
in which the delay is also introduced in the electrical circuit the maximum output
power extracted from QP vibration does not necessarily correspond to the maximum
amplitude of QP oscillations.

4.3 The Excited van der Pol Oscillator and Energy
Harvesting

In this part we study QP vibration-based EH in an excited van der Pol oscillator
coupled to a delayed piezoelectric device. The main purpose here is to examine the
influence of the time delay in the electrical circuit on the energy extracted from QP
vibrations. The corresponding schematic of the harvester is presented in Fig. 4.7 and
the governing equations can be written in the dimensionless form as

ẍ(t) + x(t) − [α − βx(t)2]ẋ(t) − χv(t) = f cos(ωt) (4.7)

v̇(t) + λ[v(t) − v(t − τ)] + κ ẋ(t) = 0 (4.8)

where x(t) is the relative displacement of the rigid mass m, α and β are the mechan-
ical damping coefficients, f , ω are, respectively, the amplitude and the frequency of
the harmonic excitation, v(t) is the voltage across the load resistance, χ is the piezo-
electric coupling term in the mechanical attachment, κ is the piezoelectric coupling
term, λ is the reciprocal of the time constant of the electrical circuit and τ is the time
delay.

The objective is to investigate periodic and QP responses as well as the corre-
sponding output powers of the harvester device (4.7), (4.8). We perform perturba-
tion method near the principal resonance by introducing the resonance condition
1 = ω2 + σ where σ is a detuning parameter. The first-step multiple scales method
is implemented by introducing a bookkeeping parameter ε and scaling parameters
such as (4.7) and (4.8) take the form

ẍ(t) + ω2x(t) = ε[(α − βx(t)2)ẋ(t) + χv(t) + f cos(ωt) − σ x(t)] (4.9)

v̇(t) + λ[v(t) − v(t − τ)] + κ ẋ(t) = 0 (4.10)
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Fig. 4.7 Schematic description of the EH system

A solution to (4.9) and (4.10) can be sought in the form

x(t) = x0(T0, T1) + εx1(T0, T1) + O(ε2) (4.11)

v(t) = v0(T0, T1) + εv1(T0, T1) + O(ε2) (4.12)

where T0 = t and T1 = εt . The time derivatives become d
dt = D0 + εD1 + O(ε2)

and d2

dt2 = D2
0 + ε2D2

1 + 2εD0D1 + O(ε2) where D j
i = ∂ j

∂ j Ti
. Substituting (4.11)

and (4.12) into (4.9) and (4.10) and equating coefficient of like powers of ε, we
obtain up to the second order the following hierarchy of problems:

At the first order:
D2

0x0 + ω2x0 = 0 (4.13)

D0v0 + λ[v0 − v0τ ] + κD0x0 = 0 (4.14)

and at the second order:

D2
0x1 + ω2x1 = −2D0D1x0 + (α − βx20 )D0x0 − σ x0 + χv0 + f cos(ωt) (4.15)

D0v1 + λ[v1 − v1τ ] = −D1v0 − κD0x1 − κD1x0 (4.16)

Up to the first order the solution is given by

x0(T0, T1) = A(T1)e
iωT0 + Ā(T1)e

−iωT0 (4.17)

v0(T0, T1) = −κiωA(T1)

λ + iω − λe−iωτ
eiωT0 + κiω Ā(T1)

λ − iω − λeiωτ
e−iωT0 (4.18)
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where A(T1) and Ā(T1) are unknown complex conjugate functions. Substituting
(4.17) and (4.18) into (4.15) and (4.16) and eliminating the secular terms, one obtains

− 2iω(D1A) + iαωA − iβωA2 Ā − σ A − κiωχ A

λ + iω − λe−iωτ
+ f

2
= 0 (4.19)

Expressing A = 1
2ae

iθ where a and θ are the amplitude and the phase, we obtain up
to the first order the modulation equations

⎧
⎪⎪⎨

⎪⎪⎩

da

dt
= S1a + S2a

3 + S3 sin(θ)

a
dθ

dt
= S4a + S3 cos(θ)

(4.20)

where Si (i = 1, ..., 4) are given by

S1 = α

2
− κχ(λ − λ cos(ωτ))

2(λ − λ cos(ωτ))2 + 2(ω + λ sin(ωτ))2

S2 = −β

8
S3 = − f

2ω

S4 = σ

2ω
+ κχ(ω + λ sin(ωτ))

2(λ − λ cos(ωτ))2 + 2(ω + λ sin(ωτ))2

The solution up to the first order given by (4.17) and (4.18) can be expressed as

⎧
⎪⎪⎨

⎪⎪⎩

x0(T0, T1) = a cos(ωt + θ)

v0(T0, T1) = V cos(ωt + θ + arctan
λ − λ cos(ωτ)

ω + λ sin(ωτ)
)

(4.21)

such that the condition ω + λ sin(ωτ) �= 0 must be satisfied. Moreover, the voltage
amplitude V is given by

V = κω
√

(λ − λ cos(ωτ))2 + (ω + λ sin(ωτ))2
a (4.22)

The steady-state response of system (4.20), corresponding to periodic solutions
of (4.9) and (4.10), are determined by setting da

dt = dθ
dt = 0. Eliminating the phase,

we obtain the following algebraic equation in a

S22a
6 + 2S1S2a

4 + (S21 + S24 )a
2 − S23 = 0 (4.23)
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An expression for the average power is obtained by integrating the dimensionless
form of the instantaneous power P(t) = λv(t)2 over a period T . This leads to

Pav = 1

T

∫ T

0
λv2dt (4.24)

where T = 2π
ω
. Then, the average power expressed by Pav = λV 2

2 reads

Pav = 1

2
(

λκ2ω2

(λ − λ cos(ωτ))2 + (ω + λ sin(ωτ))2
)a2 (4.25)

where the amplitude a is obtained from (4.23). Using the maximization procedure,
the maximum power response is given by

Pmax = λκ2ω2a2

(λ − λ cos(ωτ))2 + (ω + λ sin(ωτ))2
(4.26)

Equations (4.23) and (4.26) are used to examine the influence of different system
parameters on the periodic response and on the corresponding maximum output
power of the harvester.

To approximate the QP response of the original system, we apply the second-
step perturbation method [22] on the modulation equations (4.20). To this end, it is
convenient to transform the modulation equations (4.20) from the polar form to the
following Cartesian system using the variable change u = a cos θ and w = −a sin θ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du

dt
= S4w + μ{S1u + S2u(u2 + w2)}

dw

dt
= −S4u − S3 + μ{S1w + S2w(u2 + w2)}

(4.27)

where μ is a new bookkeeping parameter introduced to perform the second-step
multiple scales method. A periodic solution of the slow flow (4.27) corresponding
to the QP response of the original system (4.9), (4.10) can be expressed in the forme

u(t) = u0(T0, T1) + μu1(T0, T1) + O(μ2) (4.28)

w(t) = w0(T0, T1) + μw1(T0, T1) + O(μ2) (4.29)

where T0 = t and T1 = μt . The time derivatives become d
dt = D0 + μD1 + O(μ2)

where D j
i = ∂ j

∂ j Ti
. Substituting (4.28) and (4.29) into (4.27), and equating coefficient

of like powers of μ, we obtain at the first order
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D2
0u0 + S24u0 = −S3S4 (4.30)

S4w0 = D0u0 (4.31)

and at the second order we have

D2
0u1 + S24u1 = −D0D1u0 + S1D0u0 + S2D0u0(u

2
0 + w2

0)

−S4D1w0 + S2u0D0(u
2
0 + w2

0) + S4S1w0 + S4S2w0(u
2
0 + w2

0) (4.32)

S4w1 = D0u1 + D1u0 − S1u0 − S2u0(u
2
0 + w2

0) (4.33)

where S4 is the frequency of the QP modulation. The solution up to the first order is
written as

u0(T0, T1) = R(T1) cos(S4T0 + ψ(T1)) − α2 (4.34)

w0(T0, T1) = −R sin(S4T0 + ψ(T1)) (4.35)

where R and ψ are, respectively, the amplitude and the phase of the QP modulation
and α2 = S3

S4
. Substituting (4.34) and (4.35) into (4.32) and removing secular terms

gives the following slow-modulation equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dR

dt
= (S1 + 2S2α

2
2)R + S2R

3

R
dψ

dt
= 0

(4.36)

The equilibria of this slow-modulation system determine the periodic solutions of
the modulation equations (4.36), corresponding to the QP solutions of the original
system (4.9), (4.10). The nontrivial equilibrium obtained by setting dR

dt = 0 is given
by

R =
√

− S1 + 2S2α2
2

S2
(4.37)

Consequently, the approximate periodic solution of the slow flow (4.27) is given
by

u(t) = Rcos(θ t) − α2 (4.38)

w(t) = −Rsin(θ t) (4.39)

The approximate amplitude a(t) of the QP response reads

a(t) =
√

R2 + α2
2 − 2α2R cos(θ t) (4.40)
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and the QP modulation envelope is delimited by amin and amax given by

amin = min{
√

R2 + α2
2 ± 2α2R} (4.41)

amax = max{
√

R2 + α2
2 ± 2α2R} (4.42)

The explicit expression of the QP response of the original equation (4.9) is then
written as

x(t) = u(t) cos(ωt) + w(t) sin(ωt) (4.43)

On the other hand, the QP solution of the voltage v(t), obtained by inserting (4.43)
into (4.8), can be extracted via a convolution integral with the boundary condition
v(0) = v(T ) where T = 2π

ν
. This leads to

v(t) = −κe(λeλτ −λ)t
∫ t

0
ẋ(t ′)e(λ−λeλτ )t ′dt ′ (4.44)

Consequently, the power, the average and the maximum output powers in the QP
regime are given, respectively, by

PQP(t) = λ(−κe(λeλτ −λ)t
∫ t

0
ẋ(t ′)e(λ−λeλτ )t ′dt ′)2 (4.45)

PavQP = λκ2ν2

2[(λ − λ cos(ωτ))2 + (ν + λ sin(ωτ))2]a
2 (4.46)

PmaxQP = λκ2ν2

[(λ − λ cos(ωτ))2 + (ν + λ sin(ωτ))2]a
2 (4.47)

where ν = S4 is the frequency of the QP modulation and a is now derived from
(4.41) and (4.42).

Figure4.8a, b show the frequency response of periodic and QP solutions and
the corresponding output power amplitudes (Pmax , PmaxQP ) versus the frequency ω,
respectively, in the case of the undelayed electrical circuit of the harvester (τ = 0).
The periodic response is given by (4.23) and the boundaries of the QP modulation
envelope are obtained from (4.41) and (4.42). Similarly, the maximum powers for
periodic and QP vibrations are given, respectively, by (4.26) and (4.47). For vali-
dation, the analytical prediction (solid lines for stable and dashed line for unstable)
are compared to numerical simulation (circles) obtained using Runge Kutta of order
4. The plots in Fig. 4.8b show that in the absence of time delay, periodic vibration-
based EH can be achieved, but in a very narrow region located around the resonance
peak. Instead, QP vibration-based EH can be obtained over a broadband of frequency
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Fig. 4.8 Vibration and
power amplitudes versus ω

for α = 0.1, β = 0.2,
χ = 0.05, λ = 0.05,
κ = 0.5, f = 0.08 and
τ = 0. Analytical prediction
(solid lines for stable and
dashed line for unstable) and
numerical simulation
(circles)
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away from the resonancewith a performance comparable to that provided by periodic
vibrations.

In Fig. 4.9 is shown the influence of time delay in the electrical component on the
EH performance of the system. The curves given by the black lines correspond to
the delayed case (τ = 6.2). For comparison, we plot in grey the case where the delay
is absent (τ = 0). It can be observed that the presence of the delay in the electrical
circuit increases the QP output power over a certain range of the frequency ω located
away from the resonance (Fig. 4.9b). This QP output power can achieve a better
performance comparing to the periodic output power, as illustrated in the vicinity of
ω = 0.8 and ω = 1.2 (Fig. 4.9b).
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Fig. 4.9 Vibration and
power amplitudes versus ω

for α = 0.1, β = 0.2,
χ = 0.05, λ = 0.05, κ = 0.5
and f = 0.08. Analytical
prediction (solid lines for
stable and dashed line for
unstable) and numerical
simulation (circles). black
lines for delayed electric
circuit (τ = 6.2) and grey
lines for undelayed circuit
(τ = 0, Fig. 4.8)

(a)

(b)

To ensure the stability of the QP vibrations during energy extraction operation,
it is important to determine the stability chart of the response. This can be done
by considering the stability of the nontrivial solution of the slow-slow flow (4.36)
obtained by calculating the eigenvalues of the corresponding Jacobian matrix J. The
curves delimiting the regions of existence of the QP oscillations and their domains of
stability are given by the conditions (Tr(J) = −2S1 − 4S2α2

2 < 0 and Det (J) = 0).
Figure4.10a shows this stability chart in the parameter plane ( f, ω) for τ = 6.2

indicating the grey regions where stable QP (SQP) solutions take place and the white
region corresponding to stable periodic (SP) solutions. In Fig. 4.10b are shown time
histories and the corresponding output power responses related to crosses labelled
1, 2, 3 in Fig. 4.10a. From cross 1 to cross 2 or 3 the response bifurcates from SP to
SQP oscillations via secondary Hopf bifurcation producing a slight modulation of
the amplitude response and a significant performance of the output power at cross 3.
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Fig. 4.10 a Stability chart in the plane ( f, ω), b time and power histories corresponding to different
regions picked from (a). SP: stable periodic, SQP: stableQP;α = 0.1,β = 0.2,χ = 0.05,λ = 0.05,
α = 0.1, κ = 0.5, and τ = 6.2

Finally, we show in Fig. 4.11 the variation of vibration and maximum power
amplitudes χ versus the piezoelectric coupling coefficient χ . It can be seen that
a good performance of QP vibration-based EH can be achieved in certain range
of negative χ located slightly at the right of the periodic region near χ = −0.5
(Fig. 4.11b).
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Fig. 4.11 Vibration and
power amplitudes versus χ

for α = 0.1, β = 0.2,
ω = 0.8, λ = 0.05, α = 0.1,
κ = 0.5 and f = 0.08.
Analytical prediction (solid
lines for stable and dashed
line for unstable) and
numerical simulation
(circles). black lines for
delayed circuit (τ = 6.2) and
grey lines for undelayed
circuit (τ = 0)

4.4 Conclusions

Wehave provided in a first part of the chapter recent results in QP vibration-based EH
for some variants of delayed van der Pol harvesters for which the delay amplitude is
modulated with certain amplitude and frequency around a nominal value. These vari-
ants include the delayed van der Pol harvester coupled either to delayed or undelayed
electromagnetic subsystem. The influence of delay parameters on the performance
of the harvester has been examined. In particular, it was shown that when the delay is
introduced in both the mechanical oscillator and the electrical circuit the maximum
output power extracted from QP vibrations does not necessarily correspond to the
maximum amplitude of QP oscillations.

In a second part of the chapter we have investigated QP vibration-based EH in
the case where the van der Pol oscillator is subjected to external harmonic excitation
and coupled to a delayed piezoelectric component. The second-step multiple scales
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method was applied near the primary resonance to obtain approximation of the QP
responses as well as the amplitude of the harvested power. Results showed that in
the presence of time delay in the electrical circuit of the harvester, it is possible
to harvest energy from the induced QP vibrations with a good performance over a
broadband of system parameters away from the resonance. Such a performance is
comparable to the one provided by the periodic vibrations, except that the energy
extracted from periodic vibrations can be achieved only in a narrow region located
around the resonance peak,while energy extracted fromQPvibrations can be attained
over a broadband of frequency away from the resonance. To guarantee the robust-
ness of the QP vibration during energy extraction operation, a stability analysis was
performed and the QP stability chart was determined. Numerical simulations have
been conducted to confirm the analytical predictions. This study provides an inter-
esting alternative to harvest energy in nonlinear harvesters away from the resonance,
as instabilities and jump phenomena present often difficulty in maintaining energy
harvesting operations in a stable and robust regime near the resonance.

References

1. N.G. Stephen,On energy harvesting fromambient vibration. J. SoundVib. 293, 409–425 (2006)
2. G.A. Lesieutre, G.K. Ottman, H.F. Hofmann, Damping as a result of piezoelectric energy

harvesting. J. Sound Vib. 269, 991–1001 (2004)
3. H.A. Sodano, D.J. Inman, G. Park, Generation and storage of electricity from power harvesting

devices. J. Intell. Mater. Syst. 16, 67–75 (2005)
4. H.A. Sodano, D.J. Inman, G. Park, Comparison of piezoelectric energy harvesting devices for

recharging batteries. J. Intell. Mater. Syst. 16, 799–807 (2005)
5. D.D. Quinn, A.L. Triplett, A.F. Vakakis, L.A. Bergman, Energy harvesting from impulsive

loads using intestinal essential nonlinearities. J. Vib. Acoust. 133, 011004 (2011)
6. A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Modeling and analysis of piezoaeroelastic energy

harvesters. Nonlinear Dyn. 67, 925–939 (2011)
7. A. Abdelkefi, A.H. Nayfeh,M.R. Hajj, Design of piezoaeroelastic energy harvesters. Nonlinear

Dyn. 68, 519–530 (2012)
8. B.P.Mann,N.D. Sims, Energy harvesting from the nonlinear oscillations ofmagnetic levitation.

J. Sound Vib. 319, 515–530 (2009)
9. A. Bibo, M.F. Daqaq, Energy harvesting under combined aerodynamic and base excitations.

J. Sound Vib. 332, 5086–5102 (2013)
10. M. Hamdi, M. Belhaq, Quasi-periodic vibrations in a delayed van der Pol oscillator with time-

periodic delay amplitude. J. Vib. Control (2015). https://doi.org/10.1177/1077546315597821
11. M. Belhaq, M. Hamdi, Energy harversting from quasi-periodic vibrations. Nonlinear Dyn. 86,

2193–2205 (2016)
12. Z. Ghouli, M. Hamdi, F. Lakrad, M. Belhaq, Quasiperiodic energy harvesting in a forced and

delayed Duffing harvester device. J. Sound Vib. 407, 271–285 (2017)
13. Z. Ghouli, M. Hamdi, M. Belhaq, Energy harvesting from quasi-periodic vibrations using

electromagnetic coupling with delay. Nonlinear Dyn. 89, 1625–1636 (2017)
14. M. Belhaq, Z. Ghouli, M. Hamdi, Energy harvesting in a Mathieu-van der Pol-Duffing MEMS

device using time delay. Nonlinear Dyn. 94, 2537–2546 (2018)
15. Z. Ghouli, M. Hamdi, M. Belhaq, Improving energy harvesting in excited Duffing harvester

device using a delayed piezoelectric coupling, inMATECWeb of Conferences, vol. 241 (2018),
pp. 01010

https://doi.org/10.1177/1077546315597821


4 The Delayed van der Pol Oscillator and Energy Harvesting 109

16. I. Kirrou, A. Bichri, M. Belhaq, Energy harvesting in a delayed Rayleigh harvester device, in
MATEC Web of Conferences, vol. 241 (2018), pp. 01026

17. G. Stepan, T. Kalmr-Nagy, Nonlinear regenerative machine tool vibrations, in Proceedings of
the 1997 ASME Design Engineering Technical Conferences, 16th ASME Biennial Conference
on Mechanical Vibration and Noise (Sacramento, 1997), DETC97/VIB-4021 (1997), pp. 1–11

18. T. Kalmr-Nagy, G. Stepan, F.C.Moon, Subcritical Hopf bifurcation in the delay equationmodel
for machine tool vibrations. Nonlinear Dyn. 26, 121–142 (2001)

19. R.Rusinek,A.Weremczuk, J.Warminski, Regenerativemodel of cutting processwith nonlinear
Duffing oscillator. Mech. Mech. Eng. 15, 129–143 (2011)

20. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1979)
21. L.E. Shampine, S. Thompson, Solving delay differential equations with dde23 (2000). http://

www.radford.edu/~thompson/webddes/tutorial.pdf
22. M. Belhaq, M. Houssni, Quasi-periodic oscillations, chaos and suppression of chaos in a

nonlinear oscillator driven by parametric and external excitations. Nonlinear Dyn. 18, 1–24
(1999)

http://www.radford.edu/~thompson/webddes/tutorial.pdf
http://www.radford.edu/~thompson/webddes/tutorial.pdf

	4 The Delayed van der Pol Oscillator and Energy Harvesting
	4.1 Introduction
	4.2 The van der Pol Oscillator and Energy Harvesting
	4.3 The Excited van der Pol Oscillator and Energy Harvesting
	4.4 Conclusions
	References




