
Chapter 3
Nonlinear Characterization of a Bistable
Energy Harvester Dynamical System

Vinicius G. Lopes, João Victor L. L. Peterson and Americo Cunha Jr.

Abstract This chapter explores the nonlinear dynamics of a bistable piezo-magneto-
elastic energy harvester with the objective of determining the influence of exter-
nal force parameters on the system response. Time series, phase space trajectories,
Poincaré maps and bifurcation diagrams are employed in order to reveal system
dynamics complexity and nonlinear effects, such as chaos incidence and hysteresis.

3.1 Introduction

Technological advances of the last decades have brought a wide variety of new
portable electronic devices (smart phones, remote and micro sensors, smart medical
implants, etc) and, at the same time bring great facilities to everyday life, created a
huge demand for autonomous sources of energy. In this context, the energy harvesting
technologies have been seeing as a potential solution in scenarios where conventional
power supplying may not be practical or even available.

Energy harvesting technologies are based on physical-chemical properties of spe-
cial (energy harvesting) materials, which provides electrical potential in response to
an external stimulus, such as light (photoelectric), heat (pyroelectric) or mechanical
vibration (piezoelectric), among others. A popular and comprehensible example of
application may be found in solar energy generation, where the photovoltaic panels,
gathering the minor units called cells which contains the silicon-based photoelectric
material, when exposed to the sunlight incidence, performs its conversion into the
electrical output power.
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The piezoelectric energy harvesting systems have beenwidely discussed on recent
works. An interesting aspect concerns into the shape versatility of such materials
making them suitable for many design applications, as shown by [37], also con-
tributing to diversify its application possibilities—a review on it is addressed in [43].
Among the most promising ones, some examples can be found in different knowl-
edge areas, as in medicine for powering pacemakers [23], the electrical engineering
and telecommunications, for industrial facilities [14] and Internet of Things (IoF)
wireless devices power supplying [19]; in mechanics, as way for power recovering
from friction losses on vehicle suspensions [1] or from skyscrapers oscillations [44]
or even for damping structural vibrations [13, 40].

The first vibration energy harvesting systems proposed were based on linear con-
figurations, as the cantilever beam layout shown on Fig. 3.1. The relative simplicity
of this system motivates new analysis and layouts, for example, as seen in [30].
Although, as shown by Cottone et al. [7] and, in more recent papers [20, 21, 41, 42],
nonlinear configurations, such as the bistable inverse pendulum depicted in Fig. 3.2,
may present better power recovering performances, when compared to the linear
counterparts.

The richness of such devices dynamics, combinedwith the new available improve-
ments in numerical simulation tools and computing resources, have been propelling a
wide variety of analysis considering different devices layouts, as seen in [10, 18, 34,
39] for composite and cantilever vibrating beams, or in [11, 15, 25, 26] for inverse
pendulum layouts and new designs as those discussed in [5, 8, 16, 33, 45].

The external forcing influence over harvesters energetic performance and dynamic
characteristics have also been widely investigated in [4, 29, 31, 35], which consider
mixed harmonic and random noise forcing, and also in [3, 12], that explore the
possibility of energy scavenging in a quasi-periodic regime from a delayed dynamics.
The multidisciplinary character of the theme also motivates the extension of the
discussion to the coupled electrical circuits, as seen on [2, 6, 24, 38].

The same nonlinearities responsible to improve the devices energetic perfor-
mance, on the other hand, contributes to raise the systems dynamics complexity,
even leading to chaotic and unstable responses for some operational configurations.
In [27, 28, 36] the authors demonstrates the presence of hysteresis effects on the
nonlinear dynamical response of a piezo-magneto-elastic energy harvesting system,
that is associated to the co-existence of multiple solutions, for the same operational
conditions depending on the external forcing parameters values. Such phenomena
highlight the importance of a detailed investigation of the nonlinear dynamics of
devices in order to improve the comprehension of its behavior and limitations.

Fig. 3.1 Illustration of a
linear vibration energy
harvester Inert mass
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Fig. 3.2 Illustration of a nonlinear vibration energy harvester

In this sense, this chapter presents an analysis of the dynamics of a nonlinear
bistable piezo-magneto-elastic energy harvesting system, aiming to investigate the
influence of different harmonic forcing parameters on system output voltage. Numer-
ical simulations reveals the effects of the amplitude and frequency excitation con-
ditions on the chaos and regularity incidence on system electrical response. The
bifurcation diagrams analysis allows to clearly identify the hysteresis phenomena
and map those dynamics regions susceptible to chaos incidence. The voltage time
series results sampled from such diagrams deepens the analysis of chaotic dynamics
effects on the electrical output.

The rest of this chapter is organized as follows. The second section presents
the energy harvesting system and its mathematical modeling. Next, in Sects. 3.3
and 3.4, the dynamical system is analyzed by time series and bifurcation diagrams,
respectively. Final remarks close the text in the Sect. 3.5.

3.2 Bistable Energy Harvester

3.2.1 Physical System

The physical system of interest in this work is the piezo-magneto-elastic energy
harvesting device depicted in Fig. 3.3. This electromechanical system consists of
an elastic beam in vertical configuration, made of ferromagnetic material, with the
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Fig. 3.3 Illustration of the
piezo-magneto-elastic
energy harvester
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upper extreme clamped into a rigid base, and the bottom end moves freely. A pair
of magnets is placed at the rigid base lower part. Two piezoelectric laminae are
placed on beam’s highest part, being also connected to a resistive circuit. The rigid
base is periodically excited by an external source, which, together with the magnetic
field generated by magnets, induces large amplitude vibrations in the beam. Once
this movement is perceived by the piezoelectric laminae, the mechanical energy
is converted into electrical power, which is dissipated in the resistor. This energy
harvesting dispositive, proposed byErturk et al. [9], is based on the classicalmagneto-
elastic beam of Moon and Holmes [17, 32].

3.2.2 Mathematical Model

If the piezoelectric laminae and the electric circuit are not coupled to the system,
the dynamic behavior of the beam is well approximated (for a limited frequency
band) by its first mode shape, whose amplitude evolves according to a single degree-
of-freedom Duffing oscillator [22]. However, once the piezoelectric transducer is
attached to the beam, it starts to influence the system dynamic behavior so that
piezoelectric interaction effect must be taken into account [9].

In this sense, [9] shows that the harvesting device dynamics can described by the
following initial value problem

ẍ(t) + 2 ξ ẋ(t) − 1

2
x(t)

(
1 − x2(t)

) − χ v(t) = f cos (Ω t), (3.1)

v̇(t) + λ v(t) + κ ẋ(t) = 0, (3.2)

x(0) = x0, ẋ(0) = ẋ0, v(0) = v0, (3.3)
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where t denotes time; x is the beam tip amplitude of oscillation; v is the voltage in the
resistor; ξ is the damping ratio; f is the amplitude of the external force induced by the
rigid base oscillation; Ω is the external excitation frequency; λ is a reciprocal time
constant; the piezoelectric coupling terms are represented by χ , in the mechanical
equation, and by κ in the electrical one; x0 represents the beam edge initial position;
ẋ0 is the beam edge initial velocity; and v0 denotes the initial voltage over the resistor.
The upper dot is an abbreviation for time derivative. All parameters described above
are dimensionless.

For all the simulations reported below, unless something is said on the contrary,
the following dimensionless parameters are used: ξ = 0.01, κ = 0.5, χ = 0.05,
λ = 0.05, Ω = 0.8. The standard initial conditions is (x0, ẋ0, v0) = (1, 0, 0). Dif-
ferent values of f are used, being indicated below. The dynamic is investigated for
a temporal window defined by the interval 0 ≤ t ≤ 5000.

3.3 Time Series Analysis

3.3.1 Effects of Excitation Amplitude

The voltage time series, analyzed for 0.019 ≤ f ≤ 0.275, with amplitude increments
of 0.032, are shown in Fig. 3.4. The steady state behavior is shown in the red window
and, when pertinent, the transient behavior is depicted in a yellow box.

Figure3.4a show the response of the system for excitation amplitude f = 0.019.
The energy generated with such small excitation amplitude is minimal, and the
response present regular behavior throughout the analyzed range. In Fig. 3.4b, as
the forcing amplitude increases, the response assumes a larger amplitude. With
f = 0.083 the response assumes a chaotic behavior, as can be seen in the yellow and
red boxes. The voltage generated by the system increases. In Fig. 3.4d the dynamic
presents regular steady state response starting from approximately 1000 time units,
whereas it transient response is still chaotic. The amplitude of voltage output rises,
to approximately 1 nondimensional volt, now that the energy input is considerably
higher. The subsequent images Fig. (3.4e, f, g, h and i) present more or less the same
response. All of them have wide amplitude range, between −1 and 1, and regular
response at steady state, with little transient response.

In Fig. 3.5 it is possible to see a comparison between the chaotic attractor for
f = 0.083, and the regular one, for f = 0.115. This figure also show the respective
projections in the planes of displacement versus velocity, displacement versus voltage
and velocity versus voltage, and corresponding Poincaré sections depicted by red
dots. One can notice that a minimum change of the order of 0.032, that corresponds
to 3.2% of the characteristic displacement used in the nondimensionalization, in
the value of excitation amplitude can resolve in a totally different response. For
f = 0.083, the dynamic presents chaotic behavior, trapped in the chaotic strange
attractor, whereas for f = 0.115 the system resolve in a regular attractor. Once for the
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(d) f = 0.115
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(f) f = 0.179
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(i) f = 0.275

Fig. 3.4 Time series of voltage for 0.019 ≤ f ≤ 0.275

chaotic configuration the system response presents non periodic pattern, its Poincaré
section is represented by a large number of red dots not organized according to an
invariant topological structure. The regular behavior has only one frequency, and thus,
its Poincaré section has only one dot. The projections show that the regular attractor
has higher energy output, characterized by its large amplitude in displacement.

A wide overview of the dynamics is best carried out by mapping the various
attractors of the dynamical system. For this purpose the dynamics is integrated, for
an excitation frequency Ω = 0.8 and a total of 1200 different initial conditions,
uniformly spaced in the region −3 ≤ x0 ≤ 3, −3 ≤ ẋ0 ≤ 3 and v0 = 0, and the
attractors corresponding to the steady-state of each case are identified. Projections
of the identified attractors are shown in Fig. 3.6.

The attractors projections for forcing amplitude f = 0.019 are depicted on
Fig. 3.6a. They are four in number, all with single period, being those depicted on
magenta and cyan colors the more energetic orbits. For f = 0.051, which results are
depicted on Fig. 3.6b, similar magenta and cyan basins are observed, as an expres-
sive enlargement of blue and red basins shapes. Three regular orbits, depicted on
brown, golden and green colors appears around those ones, reveling more energetic
orbits which may be associated to the forcing amplitude increase. For f = 0.083,
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Fig. 3.5 Attractors in phase space for f = 0.083 (top) and f = 0.115 (bottom), phase space
trajectories projections and corresponding Poincaré sections

(a) f = 0.019 (b) f = 0.051 (c) f = 0.083

(d) f = 0.115 (e) f = 0.147 (f) f = 0.179

(g) f = 0.211 (h) f = 0.243 (i) f = 0.275

Fig. 3.6 Phase space trajectories projections for 0.019 ≤ f ≤ 0.275 and Ω = 0.8

on Fig. 3.6c, instead, the green orbit remains while the others disappears. A chaotic
dynamics orbit, depicted on gray color, emerges corroborating the results observed
on the phase attractor in Fig. 3.5, for the same model parameters. Similar results
can be observed for f = 0.211, on Fig. 3.6g. For f = 0.147, f = 0.179, f = 0.243
and f = 0.275, which results are depicted, respectively, on Fig. 3.6e, f, h and i, a
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single period orbit is observed, what reveals that, for such configurations, the system
dynamics is regular.

3.3.2 Effects of Excitation Frequency

Now the effects of the excitation frequency over the system dynamics is explored
trough attractors projections, calculated in a similarway as in the previous section, for
f = 0.083, f = 0.115 and 0.1 ≤ Ω ≤ 0.9, and shown in Figs. 3.7 and 3.8, respec-
tively.

The Fig. 3.7a, for Ω = 0.1, reveals two low energy regular attractors with low
amplitude orbits for beam displacement and velocity. Similar results can be observed
for f = 0.115, on Fig. 3.8a, but with a chaotic attractor, on gray color. For Ω =
0.2, on Fig. 3.7b, a clear narrowing of the basins shape is observed, as the chaos
incidence, depicted on gray color, corresponding to larger amplitudes. The analysis
of the attractors reveals a larger velocity range in regular response if compared with
the previous case. Despite of the presence of a green regular attractor, no expressive
changes are observed for f = 0.115 results, on Fig. 3.8b, in comparison with those
for f = 0.083. For Ω = 0.3, on Fig. 3.7c, the red basin prevails over the blue one;

(a) Ω = 0.1 (b) Ω = 0.2 (c) Ω = 0.3

(d) Ω = 0.4 (e) Ω = 0.5 (f) Ω = 0.6

(g) Ω = 0.7 (h) Ω = 0.8 (i) Ω = 0.9

Fig. 3.7 Phase space trajectories projections for 0.1 ≤ Ω ≤ 0.9 and f = 0.083
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(a) Ω = 0.1 (b) Ω = 0.2 (c) Ω = 0.3

(d) Ω = 0.4 (e) Ω = 0.5 (f) Ω = 0.6

(g) Ω = 0.7 (h) Ω = 0.8 (i) Ω = 0.9

Fig. 3.8 Phase space trajectories projections for 0.1 ≤ Ω ≤ 0.9 and f = 0.115

furthermore, the tendency of narrowing as the systemmoves away from the unforced
system equilibrium points (presents in (−1, 0) and (1, 0)) continues. The chaos still
remains, as the attractors keep to increase in amplitude.A similar behavior is observed
by considering f = 0.115, as show on Fig. 3.8c. For Ω = 0.4, on Fig. 3.7d, one can
note the predominance of the blue basin, although the red and blue basins are even
more mixed. An expressive incidence of chaos is noted, despite of the presence of
a new basin, depicted on green color, is noteworthy. The attractors show that such
basin is more energetic due to a greater amplitude both in displacement and velocity.
In addition, it is observed the emergency of two other basins, depicted on cyan and
magenta colors, both with more energy than others, presenting two periods. For
f = 0.115, on Fig. 3.8d, similar results can be observed except for the double period
basins, which have disappeared. For Ω = 0.5, in Fig. 3.7e, an expressive growth
of the green basin occurs, along with the greater mix of peripheral regions, as the
system gets closer to the resonance frequency. The attractors show the expansion of
the green, blue and red basins and the inexistence of cyan and magenta ones. Also
noteworthy is the transformation of the blue and red basins, now with two periods.
No differences can be noted for f = 0.115 results, on Fig. 3.8e. The Fig. 3.7f, for
Ω = 0.6, shows the predominance of the green basin with blue and red islands.
The attractors present a continuous growth of the green orbit, alongside with small
growth of the blue and red orbits, which returned to present a single period and, in
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counterpart with the previous case, there is absence of chaotic responses. Similar
results are observed for f = 0.115, on Fig. 3.8f. For Ω = 0.7, in Fig. 3.7g, a growth
of the blue and red islands, as an increasing relevance of the green basin can be
observed. The attractors continue to have more energetic orbits. Similar results can
be observed for f = 0.115, depicted on Fig. 3.8g. In the system resonance frequency
of Ω = 0.8, depicted on Fig. 3.7h, the chaotic responses predominates along with
the most energetic orbit, on green color. The attractors show that such orbit is the
only regular one. Similar results are observed for f = 0.115, on Fig. 3.8h. Finally,
for Ω = 0.9, which results are depicted on Fig. 3.7i, the blue and red basins return
subtly, still with presence of chaos. The attractors show the most energetic orbits. For
f = 0.115, on Fig. 3.8i, despite of the similarities, the red and blue basins present
double period orbits.

3.4 Bifurcation Analysis

The system bifurcation diagrams are built by sampling 1200 values for external
excitation parameters from regularly spaced observation interval. Results are referred
as forward and backward for an ascending and descending values sampling ordering,
respectively. For each sampled amplitude, the dynamical system is integrated for a
constant frequency. The first 90% of system response time series is neglected, as a
way to avoid the transient response. From displacement, velocity and voltage results,
the amplitude forward andbackward bifurcation diagrams are obtained, according the
chosen sampling ordering. A similar process can be carried out for frequency values,
with constant amplitudes, leading to frequency forward and backward bifurcation
diagrams. For ongoing results, typically, cool colors are reserved for forward results,
while the warm colors scale depict the backward ones.

3.4.1 Influence of Excitation Amplitude

Regarding amplitude analysis, both forward and backward bifurcation diagrams are
built for nine Ω values regularly sampled from 0.1 ≤ Ω ≤ 0.9, considering the
amplitude sampling interval as 0.1 ≤ f ≤ 1.4. The output voltage results are shown
on Fig. 3.9.

The blurred regions depict chaotic dynamic on system response, for those on
that output voltage may assume a wide range of different values. An overview of
both, forward and backward bifurcation diagrams, points that the system is strongly
sensitive to non-regular dynamics for the highest amplitude and lowest frequency
values analysed. Some similar phenomena can be seen on the first portion of ampli-
tude control interval on highest frequencies. From Ω = 0.5 and higher frequency
values, some expressive discrepancies are observed on voltage output by comparison
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of forward and backward sampling orderings. This concerns to the nonlinear effects
introduced by the pair of magnets on harvester, which are also responsible for the
bistable configuration. For Ω = 0.6 and 0.7, the system voltage response keeps reg-
ular for all tested amplitudes on the interval. A multiple period region appears for
the last forcing amplitude values, after some slim band of chaotic dynamics. Similar
formations are observed between the chaotic regions on the two highest frequencies
analysed.

The Fig. 3.10 presents both forward and backward bifurcation diagrams for Ω =
0.2 and 0.8 extracted from frequencies observation window overview in Fig. 3.9. In
both cases, for Ω = 0.2, the system presents chaotic dynamics about 0.260 ≤ f ≤
0.270. A pitchfork bifurcation revealed on forward diagram near f = 0.23 is hidden
by system dynamics on backward, and reappears about f = 0.27, which highlights
the system response dependence from the problem initial conditions. Discontinuous
regions are also observed on the last portion of amplitudes interval, suggesting a

Fig. 3.9 Bifurcation diagram of voltage as function of excitation amplitude f , for several values
of excitation frequency Ω

Fig. 3.10 Bifurcation diagrams for Ω = 0.2 (left) and Ω = 0.8 (right). Forward diagrams on blue
colors and backward, on red and yellow
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voltage behavior more independent of initial conditions, thus, reliable for the early
amplitudes on this frequency. It is important to take account that such conclusions
are true only for the model parameters defined. A similar analysis can be carried
out for the amplitude bifurcation diagram for Ω = 0.8. A pair of chaotic voltage

Fig. 3.11 Voltage time series for Ω = 0.2/Ω = 0.8 and several values of f . Forward diagrams on
blue colors and backward, on red
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bands can be seen on forward diagram for 0.07 ≤ f ≤ 0.08 and 0.09 ≤ f ≤ 1.00
filled by a richer multiple region. Now, instead, a strong regular dynamics region
fills the middle and the last portions of the amplitude intervals both for forward and
backward results.

Extending the previous discussion, Fig. 3.11 shows the voltage waveforms,
obtained by sampling the system dynamics for specific forcing amplitude values
taken from Fig. 3.10. For example, for Ω = 0.2 and f = 0.2146, the harvester out-
put voltage is regular, both on forward andbackwarddiagrams, as seenbefore, besides
the signal waveforms are quite distorted. For f = 0.2695 and the same excitation
frequency, although both forward and backward waveforms have no period defined
due to the chaotic motion.

3.4.2 Influence of Excitation Frequency

For the frequency analysis, the forward and backward diagrams are built for nine
amplitude regularly sampled values from 0.019 ≤ f ≤ 0.275, for 0.01 ≤ Ω ≤ 1.4
set as the frequency sampling interval. The Fig. 3.12 presents the harvester output
voltage results.

For both forward and backward cases, the system reveals itself more susceptible
to the chaos occurrence, when compared with those for amplitude analysis, depicted
in Fig. 3.9. Despite of it, all diagrams present a common regular behavior in the
middle portion of frequencies interval. The blurred regions became more evident for
the last amplitude values in the observation windows, for which both low and high
frequencies leads the system to chaos condition. Particularly, for f ≥ 0.179, voltage
results present multiple chaotic regions on backward diagrams, what emphasizes

Fig. 3.12 Bifurcation diagram of voltage as function of excitation frequency Ω , for several values
of excitation amplitude f
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the influence of sampling ordering on explicit IPV solution. For higher amplitudes,
multiple period regions and pitchfork bifurcations appear close to the chaotic regions,
although it still means regular dynamics. A similar phenomena occurs on the early
portion of frequencies interval 0.083 ≤ f ≤ 0.147, where some discontinuities are
also observed, both on forward and backward cases. By comparison with the same
regions on higher amplitudes diagrams, the discontinuities, thus, may be inferred
as a way to predict the chaos occurrence. For the lowest amplitude, system voltage
results remains regular for all investigated frequencies. A small pitchfork bifurcation
can still be noted on backward results about f = 0.6. This indicates that for different
operation frequencies, a small forcing amplitude value may be interesting once it
prevents chaotic dynamics.

The Fig. 3.13 presents the forward and backward diagrams for f = 0.083 and
f = 0.179, sampled from amplitude observation window overview in Fig. 3.12.
For f = 0.083, forward and backward methods reveals a similar dynamics profile
regarding the chaos and regularity. The exception is confined to the region between
0.4 ≤ f ≤ 0.6, where a pitchfork bifurcation on backward case gives rise to a dis-
continuity on forward one. The chaotic dynamics region about Ω = 0.8 is small if
compared with those observed for higher amplitude values, both on forward and
backward results. For f = 0.179, as an overview of Fig. 3.12 suggestsc that the
system presents a rich dynamics related to chaos occurrence. A strongly nonlinear
region can be observed on the first middle of the frequencies interval, filled with
large discontinuities region on its early portion. The system susceptibility to initial
conditions for higher amplitudes, inducted by the sampling ordering, becomes more
evident when forward and backward results are compared. A massive chaotic region
rises around of Ω = 1.0 on backward case, in contrast with regular dynamics on
forward diagram on same region.

The system results investigation may be improved by sampling amplitude and
frequency values from diagrams in Fig. 3.13, as shown by the voltage time series
presented in Fig. 3.14. The voltage time series for f = 0.179 and Ω = 0.3786, for
example, highlights the importance of a deep investigation. System voltage wave-
forms presents a regular pattern, both on forward and backward diagrams. Although,
the multiple period region distortion is more evident on backward case, once forward
voltage waveform seems to preserve some characteristics of the harmonic forcing.

Fig. 3.13 Bifurcation diagrams for f = 0.083 (left) and f = 0.179 (right). Forward diagrams on
blue colors and backward, on red
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Fig. 3.14 Voltage time series for f = 0.083/ f = 0.179 and several values ofΩ . Forward diagrams
on blue colors and backward, on red

In this sense, best results are observed for f = 0.179 with Ω = 1.0585, where for-
ward amplitudes overcomes backward one. The chaotic dynamics consequences is
observed better for f = 0.083 with Ω = 0.8037, in Fig. 3.14. A periodic behavior
is not clearly seen on voltage waveforms, neither on forward or backward cases.
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3.5 Concluding Remarks

This chapter presents a nonlinear dynamic analysis of a piezo-magneto-elastic energy
harvesting system. Its nonlinear behavior is explored by time series, Poincaré maps,
phase space trajectories and bifurcation diagrams. The voltage output time series
and the phase attractors analysis allow to relate the length of the transient dynamics
response to the external forcing frequency and amplitude parameters values. The
same graphs also provide a way to link the magnitude of the harmonic forcing and
the amount of output power. The bifurcation diagrams analysis reveals a hysteresis
effects on the system dynamics which may be associated to the model nonlinearities,
introduced by the pair of magnets placed on the rigid structure lower part, also
responsible to the bistable configuration. The voltage time series sampled from such
diagrams provides a detailed overview of the chaos incidence distortions on system
output voltage waveforms.
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