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Oscillations Under Hysteretic
Conditions: From Simple Oscillator
to Discrete Sine-Gordon Model
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Andrey M. Solovyov and Peter A. Meleshenko

Abstract In this paper we study the resonance properties of oscillating system in the
case when the energy pumping is made by external source of hysteretic nature. We
investigate the unbounded solutions of autonomous oscillating systemwith hysteretic
block with a negative spin. The influence of a hysteretic block on an oscillator in the
presence of Coulomb and viscous friction is also investigated. Namely, we establish
the appearance of self-oscillating regimes for both kinds of friction. A separate part
of this work is devoted to synchronization of periodic self-oscillations by a harmonic
external force. Using the small parameter approach it is shown that the width of
“trapping” band depends on the intensity (amplitude) of the external impact. Also in
this work we introduce the novel class of hysteretic operators with random param-
eters. We consider the definition of these operators in terms of the “input-output”
relations, namely: for all permissible continuous inputs corresponds the output in
the form of stochastic Markovian process. The properties of such operators are also
considered and discussed on the example of a non-ideal relay with random param-
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eters. Application of hysteretic operator with stochastic parameters is demonstrated
on the example of simple oscillating system and the results of numerical simula-
tions are presented. We consider also a nonlinear dynamical system which is a set
of nonlinear oscillators coupled by springs with hysteretic blocks (modified sine-
Gordon system or hysteretic sine-Gordon model where the hysteretic nonlinearity is
simulated by the Bouc-Wen model). We investigate the wave processes (namely, the
solitonic solutions) in such a system taking into account the hysteretic nonlinearity
in the coupling.

12.1 Introduction

Oscillatory processes are widely used in various fields of both fundamental and
applied science. The theory of oscillations, which studies oscillations occurring
in various systems, is an intensively developing field of modern mathematics and
physics [11, 20, 22, 26]. The main models of the theory of oscillations are the linear
and nonlinear oscillators, rotators, RLC circuit, etc. These are used in modeling of
physical processes in various real-life systems. New features of oscillatory processes
appear in the cases when there is a large number of interacting subsystems. The stan-
dard model of wave processes is a finite and infinite chain of coupled (interacting)
oscillators. Such chains are often used in radio engineering as filters that allocate
or suppress signals with frequencies lying in a certain band. From the fundamental
point of view, chains of oscillators are used as models of solid media with oscilla-
tions and waves with various properties [3, 16, 27]. The oscillatory processes of a
large number of such elements are called waves. Wave phenomena are widespread in
nature: waves on the surface of a fluid, sound waves in a gas, compression-expansion
waves in a solid, vibrations of a string and membrane, electromagnetic waves, etc.

Note that, in addition to nonlinear oscillations, there are also nonlinear waves
described by nonlinear partial differential equations. Within the framework of the
theory of nonlinear waves there exist the standard models, similar to the reference
models in the theory of oscillations, namely, simple waves, shock waves, as well as
the solitary waves (solitons), that play significant roles in the theory of nonlinear
processes. One of the basic models for studying the nonlinear processes is the sine-
Gordon model (a chain of nonlinear oscillators connected by coil springs) [17].

Another example of a strong nonlinear system playing a significant role inmodern
research is hysteresis (see [4, 9, 14, 18, 19, 28] and related references). Hysteretic
behavior is typical both for the characteristics of substances (ferroelectrics, ferro-
magnetics, piezoelectrics, etc.), and for the dynamics of many mechanical systems
(backlash, stop, etc.). In the mechanical systems hysteretic nonlinearities arise due
to an aging of the material and must be taken into account at the modeling level
for the corresponding mechanical systems. The hysteresis in such systems leads to
the problem of investigation of nonlinear operator-differential equations, which is an
extremely complex problem.
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Such an interest to hysteretic phenomena is caused by high incidence of these
phenomena in a various technical systems (such as robotic, mechanical, electro-
mechanical systems, management systems for tracking of aircrafts, etc.) Also, these
phenomena determine some unusual elasto-plastic properties of modern nanomate-
rials (such a properties are served as a base for construction of modern self-healing
materials) on the basis of fullerene films. Moreover, the hysteretic phenomena are
widely known in biology, chemistry, economics, etc. It should be noted that the hys-
teretic behavior of such systems is caused by either their internal structure, or the
presence of separate blocks with hysteretic characteristics. Of course, when model-
ing the dynamics of such systems, it is necessary to use an adequate mathematical
apparatus.

Currently used models of hysteretic phenomena both constructive (such as non-
ideal relay, Preisach and Ishlinskii-Prandtl models, etc. [21]), and phenomenological
(Bouc-Wenmodel, Duhemmodel, etc. [6]) assume a priori the stability of the param-
eters that identify the hysteretic properties of the corresponding operators. However,
the stability of parameters in real-life engineering systems (e.g., in the systems mod-
elled by the coupled inverted pendula [20]) does not always take place. In this way,
such operators are the natural model in the situation when the parameters of hystere-
sis carrier are under influence of stochastic, uncontrollable affections. For example,
it is difficult to control the switching numbers of non-ideal relay, which is a part
of control systems of the corresponding devices, when the various external factors
take place (in this case the switching numbers may be subjected to random changes).
These circumstances make it necessary to develop the extended models of hysteretic
effects, taking into account the stochastic changes in the parameters of the corre-
sponding hysteretic operators. We note that the equations with random parameters
(principally such equations are linear) were considered in [13, 30, 31]. The strongly
nonlinear differential equations containing the operator nonlinearity with random
properties have not been considered in the literature. Thus, construction and investi-
gation of the properties of hysteretic operators with random parameters seems novel
and promising problem.

An important problem is the study of resonance phenomena in systems with
hysteresis [9]. In this way we note a well-known fact: in the presence of viscous
friction the harmonic resonance is not realized (for details see, e.g., [8]). In particular,
in [8] it is considered the dynamics of the oscillator with strong nonlinearity (authors
studied its phase portrait and the trajectory). It is proved that the form of periodic
solutions depends on the “origin” of strong nonlinearity. The main result of [8] is
that for a class of equations, which describe the harmonic oscillations with resonance
external force and hysteretic operator in the right part of equation, the presence or
absence of unbounded solutions depend on the amplitude of the external excitation.

In this chapter we study the resonance properties of systems in which the energy
pumping is realized due to the presence of external source with hysteretic nature.
Examples of such systems are the oscillations of the ferromagnetic ball in a magnetic
field, oscillations of the system of coupled oscillators when the “connection force”
has a hysteretic nature [18], etc. Moreover, we introduce the new class of hysteretic
operators with random parameters. We consider the definition of these operators in
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terms of the “input-output” relations. The properties of such operators are also con-
sidered and discussed for the example of a non-ideal relay with random parameters.
Application of hysteretic operator with stochastic parameters is demonstrated for
the example of simple oscillating system and the results of numerical simulations
are presented. Also, the dynamics of nonlinear oscillatory system (discrete mechan-
ical sine-Gordon system) is investigated taking into account the hysteretic coupling
conditions between individual links of such a system. We consider the sine-Gordon
model in the casewhen the links between pendulums contain hysteresis nonlinearities
(modified sine-Gordon model). On the basis of numerical modeling, the dynamics of
soliton-like solutions in such a system is studied and filtering properties of hysteretic
links are established.

12.2 Oscillator Under Hysteretic Force

12.2.1 Unbounded Solutions to Autonomous Systems
with Hysteretic Blocks with Negative Spin

Let us consider a system whose dynamics is described by the following equation
with the corresponding initial conditions:

ẍ + ω2x = R[α, β, ω0]x,

x(0) = x0, ẋ(0) = x1.
(12.1)

where R[α, β, ωr ] is a non-ideal relay operator with the negative spin, and ω0 is an
initial state of this operator. A more detailed description of the properties of such an
operator can be found in [9].

Theorem. Let the initial value satisfies the condition x0 /∈ [α, β]. Then, the cor-
responding solutions are unbounded.

Proof : For simplicity we consider the case where α = −1, β = 1. Let us assume
that the initial conditions obey the following inequality x0 < −1, then at a certain
initial period of time (t ≥ 0) the solution to (12.1)will have the form x0 = A1 cos(t +
ϕ0) + 1, 0 ≤ t ≤ t0, where t1 is the time at which the equality x(t1) = 1 is satisfied.
It is clear that this moment exists. The solution to (12.1) at interval [t1, t2] will be
determined by the relation x1(t) = A1 cos(t + ϕ1). Here t2 is the moment at which
the equality x1(t2) = −1 is satisfied. It is also clearly that such a moment exists
(A1 ≥ 1 because x1(t1) = 1), etc.

Thus, in the absence of switching the solution to (12.1) is composed of the func-
tions defined by following relations for even n:

xn(t) = An cos(t + ϕn) + 1,
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and for odd n:
xn+1(t) = An+1 cos(t + ϕn+1).

Using the continuity conditions for solution and its derivative at the point tn (the
moment when the right switching number is achieved) we obtain the following equal-
ity: ⎧

⎪⎨

⎪⎩

An cos(ϕn) + 1 = An+1 cos(ϕn+1),

−An sin(ϕn) = −An+1 sin(ϕn+1),

An cos(ϕn) + 1 = 1.

(12.2)

Squaring and summing the first two equalities in (12.2) we obtain:

⎧
⎪⎨

⎪⎩

A2
n cos

2(ϕn) + 2An cos(ϕn) + 1 = A2
n+1 cos

2(ϕn+1),

A2
n sin

2(ϕn) = A2
n+1 sin

2(ϕn+1),

An cos(ϕn) = 0,

(12.3)

or {
A2
n + 2An cos(ϕn) + 1 = A2

n+1,

An cos(ϕn) = 0.
(12.4)

Finally we obtain:
A2
n + 1 = A2

n+1 (12.5)

Similarly, for the next interval, at the point at which the solution has the value −1,
we have: ⎧

⎪⎨

⎪⎩

An+1 cos(ϕn+2) = An+2 cos(ϕn+3) + 1,

−An+1 sin(ϕn+2) = −An+2 sin(ϕn+3),

An+1 cos(ϕn+2) = −1.

(12.6)

Squaring the first two equalities:

⎧
⎪⎨

⎪⎩

A2
n+1 cos

2(ϕn+2) − 2An+1 cos(ϕn+2) + 1 = A2
n+2 cos

2(ϕn+3),

A2
n+1 sin

2(ϕn+2) = A2
n+2 sin

2(ϕn+3),

An+1 cos(ϕn+2) = −1.

(12.7)

Then, summation of them leads to

{
A2
n+1 − 2An+1 cos(ϕn+2) + 1 = A2

n+2,

An cos(ϕn) = −1.
(12.8)

Finally we get:
A2
n+2 = A2

n+1 + 3 (12.9)
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Fig. 12.1 Solution (left panel) and phase portrait (right panel) to (12.1) with given initial conditions

Then, from (12.8) and (12.9) it follows:

A2
n+2 = A2

n + 4

In other words, if the initial value is such that the hysteretic element “works”, then the
corresponding solution is unbounded. Results of numerical simulations are presented
in Fig. 12.1.

Note 1. Let us note that the solution oscillates and the rate of growth of amplitude
is proportional to

√
t .

Note 2. The theorem remains valid for other types of hysteretic nonlinearities.
The main requirement is the positiveness of the loop’s area.

12.2.2 Systems with Coulomb and Viscous Friction

“Natural” generalization of the system under consideration is the system with vari-
ous types of friction (namely, the Coulomb and viscous friction). The dynamics of
oscillator with a viscous friction can be described by the equation:

ẍ + 2bẋ + ω2x = R[α, β, ω0]x,
x(0) = x0, ẋ(0) = x1.

(12.10)

In the following consideration we assume that switching numbers of a non-ideal
relay are symmetric relative to the origin. Considering the dynamics of the solution,
it should be noted that once the amplitude of the solution becomes high enough, the
work of the friction force balances the energy obtained by the oscillator from the
hysteretic element. Let us consider two cases related to the different kind of the roots
of characteristic equation of the linear part of the (12.10).
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Let us consider (12.10) with a given initial conditions for these two cases:

ẍ+ + 2bẋ+ + ω2x+ = 1, (12.11)

ẍ− + 2bẋ− + ω2x− = −1. (12.12)

For the first case a solution to equation has the following form:

x+(t) = 1

ω2
+ C1 exp

[
t
(
−b −

√
b2 − ω2

)]
+ C2 exp

[
t
(
−b +

√
b2 − ω2

)]

(12.13)
Obviously, the term 1

ω2 is an asymptotic limit for this solution, and therefore, if the
inequalities α < 1

ω2 , β > − 1
ω2 are satisfied for some T , then the inequality x+ = −α

is obeyed too. Further dynamics will be determined by an equation with a value of
a non-ideal relay converter equal −α = −1. Reasoning in a similar way, it is easy
to establish that for some T1 the solution will take the value α. Taking into account
the fact that the equations are autonomous, the solutions obtained in this way will be
periodic. A period can be found using the following relations:

x+(t) = C1 exp (tλ1) + C2 exp (tλ2), (12.14)

x−(t) = C3 exp (tλ3) + C4 exp (tλ4), (12.15)

where

C1 =
(
1 + ω2

) (
−b + √

b2 − ω2
)

2ω2
√
b2 − ω2

,

C2 =
(
1 + ω2

) (
b + √

b2 − ω2
)

2ω2
√
b2 − ω2

,

C3 = −
(−1 + ω2

) (
−b + √

b2 − ω2
)

2ω2
√
b2 − ω2

,

C4 = −
(
1 + ω2

) (
b + √

b2 − ω2
)

2ω2
√
b2 − ω2

,

λ1 = λ3 = −b − √
b2 − ω2,

λ2 = λ4 = −b + √
b2 − ω2,

(12.16)

and the period of oscillations is determined by

T = π√
b2 − ω2

. (12.17)
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Let us consider the second case when the roots of the characteristic equation to
the linear part of (12.10) are complex conjugate. Then, the solution to the equation
with initial conditions can be written as follows:

x(t) = exp (−bt) [B cos(ωt) + C sin(ωt)] − 1

ω2
0

, (12.18)

where ω =
√

b2 − ω2
0.

Taking into account the initial conditions, we get:

− 1

ω2
0

+ 1 + ω2
0

ω2
0

√

1 +
(
b

ω

)2

exp (−bt) sin

⎡

⎣ωt + arcsin

⎛

⎝
1

√

1 + (
b
t

)2

⎞

⎠

⎤

⎦ = 1.

(12.19)
A half period can be defined as a solution to a transcendental equation (12.19). A

solution and phase portrait are shown in the following Fig. 12.2.
Note that for a given value of the parameter b = 1, a bifurcation occurs. Such a

bifurcation corresponds to a change in the period (see Fig. 12.3).

Fig. 12.2 Solution (left panel) andphase portrait (right panel) to (12.10)with given initial conditions

Fig. 12.3 Oscillations in the system (12.10) at b = 0.9 (left panel) and b = 1.1 (right panel)
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Fig. 12.4 Solution (left panel) and phase portrait (right panel) to the system (12.20) at η = 0.5

The dynamics of the oscillator with the Coulomb friction under external hysteretic
affection is described by the equation:

ẍ + ηsign(ẋ) + x = R[α, β, ω0]x (12.20)

Multiplying both sides of (12.21) by ẋ , and integrating over the period T we obtain:

T∫

0

1

2

d

dt
(ẋ2 + x2)dt = −

T∫

0

ηsign(ẋ)ẋdt +
T∫

0

ẋ R[α, β, ω0]xdt, (12.21)

ΔE = −η

T∫

0

|ẋ |dt + Sp. (12.22)

From the (12.22) it follows that the energy gain ΔE will be positive if the work of
friction forces will be smaller than the loop’s area Sp (otherwise it will be negative).
Thus, the considered system can be treated as a system with the negative feedback.
Let us note that at steady-state regime the condition 2(xmax − xmin)η = Sp is satisfied.
This means that the amplitude of the oscillation is such that the work of frictional
forces on the period is equal to the loop’s area. These results are illustrated inFig. 12.4.

As it can be seen from the presented results, a harmonic oscillator with Coulomb
and viscous friction under hysteretic external force significantly differs from the
“classical” model of a harmonic oscillator, where, regardless to initial conditions,
the damped oscillations in the vicinity of equilibrium point take place.
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12.2.3 Frequency “trapping” in the System with Relay
Nonlinearity: The Small Parameter Method

Synchronization of periodic self-oscillations by a harmonic external force has been
a long-studied phenomenon, which can be formulated as follows. As soon as the
frequency of the external excitation becomes close to the frequency of free self-
oscillations, synchronization (“trapping”) of the frequency occurs. Let us consider a
self-oscillating system with one degree of freedom, which is under periodic external
force with a frequency ω (we consider the case where this frequency is close to the
frequency of free self-oscillations).

ẍ + 2bẋ + ω2
0x = R[α, β, ωr ]x + B1 sinωt . (12.23)

To analyze the dynamic features of such a system, the small parametermethod is used
[10], which allows to make an identification of the process of frequency “trapping”
(the frequency of external harmonic force) by an autonomous systemwith hysteresis.
To do this, we rewrite the original (12.23) in the form:

ẍ + ω2
0x = ε (−2bẋ + R[α, β, ωr ]x + B1 sinωt) , (12.24)

where ε is a small parameter. The solution to this equation can be written in the
following standard form:

x = A cosψ + εu1 (A, ψ) + · · · , (12.25)

where ψ = ωt + ϕ(t), and u1 (A, ψ) are unknown functions which do not contain
resonance frequencies; A and ϕ are the amplitude and phase, respectively, which
satisfy the following equations:

Ȧ = ε f1 (A, ϕ) + . . . ; ϕ̇ = −Δ + εF1 (A, ϕ) + · · · , (12.26)

and Δ = ω − ω0 is the frequency difference. F1, f1 are unknown functions that are
to be determined from the condition of the absence of resonant terms in the function
u1. Substituting the general form of the solution into the original equation, taking into
account the equations for the amplitude and phase and using the described definitions
we obtain for ẋ and ẍ :

ẋ = Ȧ cosψ − A sinψψ̇ + εu̇1ω; (12.27)

ẍ = Ä cosψ − 2 Ȧ sinψψ̇ − A cosψψ̇2 − A sinψψ̈ + εü1ω
2. (12.28)

Substituting the obtained expressions in the left side of the (12.24), and using (12.25)
and (12.26) we get:
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ẍ + ω2
0x = Ä cosψ − 2 Ȧ sinψψ̇ − A cosψψ̇2 − A sinψψ̈ + εü1ω2+

+ω2
0A cosψ + ω2

0εu1 = εü1ω2 + ω2
0εu1 − (

2 Ȧψ̇ + Aψ̈
)
sinψ+

+ (
Ä − Aψ̇2 + ω2

0A
)
cosψ =

= εü1ω2 + ω2
0εu1 − (

2ε f1 (−Δ + εF1) + Aε Ḟ1
)
sinψ+

+ (
ε ḟ1 − A(−Δ + εF1)

2 + ω2
0A

)
cosψ.

(12.29)

For the right side of the (12.24) we obtain in the same manner:

ε (−2bẋ + R[α, β, ωr ]x + f (t)) =

= ε
(
R[α, β, ωr ]x − 2b

(
Ȧ cosψ − A sinψψ̇ + εu1ω)

) + f (t)
) =

= ε (R[α, β, ωr ]x − 2bε f1 cosψ + 2bA (−Δ + εF1) sinψ + εu1ω + f (t)) .

(12.30)
Equating the terms of the same order of smallness in the right and left parts, we
obtain the equation for determining the unknown function u1:

ω2 ∂2u1
∂ψ2

+ ω2
0u1 =

(

2ω0 f1 − A
∂F1

∂ϕ
Δ

)

sinψ +
(

2ω0AF1 − A
∂ f1
∂ϕ

Δ

)

cosψ−

− AR[α, β, ωr ]x cosψ + f (t).
(12.31)

From the condition of the absence of resonant terms in the function u1(A, ψ)

(factors at harmonic functions are equal to zero) we obtain the following equations
for the unknown functions F1 and f1:

2 f1 − A
Δ

ω0

∂F1
∂ϕ

= −2bA − B1
ω

sin ϕ; 2AF1 + Δ

ω0

∂ f1
∂ϕ

= AR[α, β, ωr ]x − B1
ω

cosϕ.

(12.32)
The particular solution to this system is:

f1 = −bA − B1 sin ϕ

ω + ω0
; F1 = R[α, β, ωr ]x

2
− B1 cosϕ

A(ω + ω0)
. (12.33)

In the first approximation in ε from (12.33) and (12.26), taking into account the
condition u1(A, ψ) = 0 we get:

Ȧ = −bA − B1 sin ϕ

ω + ω0
, ϕ̇ = −Δ + R[α, β, ωr ]x

2
− B1 cosϕ

A(ω + ω0)
. (12.34)

The numerical values of the amplitude and phase are presented in Fig. 12.5. In
Fig. 12.6 we present the amplitude-phase portrait as well. The amplitude-phase
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Fig. 12.5 Aplitude (left panel) and phase (right panel) versus time for the following parameters:
b = 0.5, B1 = 1, ω0 = 1, ω = 1.2, α = −β = 1, ωr = 1

Fig. 12.6 Aplitude-phase
portrait for the system under
consideration with the
parameters as in Fig. 12.5

portrait of the system (12.34) is characterized by complex behavior, with many
self-intersections.

In Fig. 12.7 we present the numerical solution to the system (12.23) together with
the time dependence of the disturbing force, as well as the behavior of the system
without external excitation.

As follows from the presented numerical results, the solution to the system
becomes not-smooth while switching of a non-ideal relay takes place function. Ana-
lyzing the obtained solution, it can be noted that it contains harmonics of a smaller
amplitude in addition to themain harmonics. Note that the synchronization of the fre-
quency of free self-oscillations with the frequency of external force also takes place
for systems containing hysteretic nonlinearity. As the amplitude of the external force

Fig. 12.7 Left panel: numerical solution to the system (12.23); Middle panel: time dependence of
the disturbing force; Right panel: system behavior without external force
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Fig. 12.8 The frequency
“trapping” domain

increases, the frequency interval (Δ) increases too (at this interval the frequency
“trapping” takes place). Figure12.8 presents the dependence of the amplitude of
the external force on the frequency of the periodic force, at which the frequency
“trapping” occurs.

12.3 Oscillator Under Hysteretic Force with Random
Parameters

12.3.1 Non-ideal Relay with Random Parameters

Consider a non-ideal relay (a detailed description of this and other hysteretic con-
verters, as well as their properties in the case of deterministic parameters, are given
in the classical book of Krasnosel’skii and Pokrovskii [9]), in which the switching
numbers are not fixed, but are treated as random variables with absolutely continu-
ous distribution function. Concerning these random variables, wemake the following
assumption: the probability density of each of the switching numberswill be assumed
to be finite with non-intersecting supports. We denote these switching numbers as
ϕα(u) and ϕβ(u). We will consider the case when the supports of the function ϕα(u)

and ϕβ(u) are contained in the intervals [u−
α , u+

α ] and [u−
β , u+

β ], respectively.
Following the basic ideas presented in [9] (as well as, following the terminology

presented in this book), the dynamics of the input-output relations for the operator
of a non-ideal relay with random switching numbers is determined by two rela-
tions, namely: “input-state” and “state-output”. We assume that all permissible con-
tinuous inputs are given on the non-negative semi-axis (t > 0) (the input-output
relation for this converter R has the form x(t) = R [t0, x0, α, β] u(t), (t ≥ t0)).
The space of possible states of such an operator is defined as Ω = Ω(ω, p, u),
(ω = 0, 1, 0 ≤ p ≤ 1,−∞ < u < +∞).
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The variable state of the converter R
[
(1; p0); x0;ϕα(u);ϕβ(u)

]
u(t) is a random

value that takes the value 0with probability (1 − p(t)) and a value of 1with probabil-
ity p(t). In other words, it can be presented as a pair {1; p(t)} (here the second output
component corresponds to the probability that at the time t the first component is 1).
The output of this converter is a random function x(t) (Markovian process) taking
a value of 1 with probability p(t). The rule that determines the value of probability
p(t) will be given below.

12.3.1.1 Definition of Input-Output Relation for a Non-ideal Relay
with Random Switching Numbers

Following the classical scheme proposed in [9], we give the definition of the input-
output relation by means of a three-step construction:

• At the first step we define the input-output relation on the monotonic inputs only;
• At the second step, using the semi-group identity, the input-output relation is
defined for all piece-wise monotonic inputs;

• At the third step, using the special limit construction, the corresponding converter
will be defined for all monotonic inputs.

We define the operator R on the monotonic inputs. Let us assume that at the initial
time point t0 (to simplify the calculations, we assume that t0 = 0) the operator R is
in the state 1; p0; u0 ∈ Ω, (u(0) = u0). Let the input u(t) be a monotonic increase,
then for the time t > 0 the output is x(t) = {1; p(t)} where

p(t) = max

⎧
⎨

⎩
p0;

u(t)∫

−∞
ϕβ(u)du

⎫
⎬

⎭
. (12.35)

The semi-group identity for the operator R immediately follows from the defini-
tion. Let t1 be an arbitrary moment of time satisfying the inequality 0 < t1 < t , then
the semi-group identity for the operator of a non-ideal relay has the form:

R
[
t0; p0; u0;ϕα;ϕβ

]
u(t) = R

[
t1; R

[
t0; p0; u0;ϕα;ϕβ

]
u(t1); u(t1);ϕα;ϕβ

]
u(t).

(12.36)
To define an operator on the piece-wise monotonic inputs (in the case of a finite

interval [0, T ]), we break this interval by points t1, t2, . . . , tn into intervals of mono-
tonicity. On each of them we define the corresponding operator as an operator on a
strictly monotonic input whose initial state will be defined as the state at the instant
corresponding to the “last” change in the behavior of the input.

To determine the operator R on continuous inputs, we use the following limit con-
struction. Let u(t)(t ∈ [0, T ]) be an arbitrary continuous input. Let us consider an
arbitrary sequence of piece-wise monotonic inputs un(t), (n = 1, 2, ...) that con-
verges uniformly to each element of this sequence u(t). A single-variable state
pn(t), (n = 1, 2, ...) will form a sequence of state variables pn(t), (n = 1, 2, ...).
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Let us prove that the sequence pn(t), (n = 1, 2, ...) converges uniformly. We esti-
mate the absolute value of the difference:

|pn(t) − pm(t)| ≤ max
t

∣
∣
∣
∣
∣
∣

un(t)∫

−∞
ϕα(u)du −

um (t)∫

−∞
ϕα(u)du

∣
∣
∣
∣
∣
∣
= max

t

∣
∣
∣
∣
∣
∣
∣

um (t)∫

un(t

ϕα(u)du

∣
∣
∣
∣
∣
∣
∣

.

(12.37)
Since the function ϕα(u) is continuous, and because of uniform convergence also

lim
n,m→∞max

t
|un(t) − um(t)| = 0,

as well as, using the mean value theorem:

max
t

∣
∣
∣
∣
∣
∣
∣

um (t)∫

un(t

ϕα(u)du

∣
∣
∣
∣
∣
∣
∣

≤ max
t

ϕα(t) [un(t) − um(t)]

the right-hand side of the inequality (12.37) tends to zero. Thus, the sequence
of probabilities pn(t) is fundamental (the continuity is obvious), then there is
lim
n→∞ pn(t) = p(t), which is comparable to an arbitrary continuous input u(t).

12.3.1.2 Monotonicity of a Non-ideal Relay with Random Parameters

Let us consider the monotonicity property for the constructed converter. We deter-
mine the monotonicity with respect to the initial state of the non-ideal relay: if
{u(t0, x0}, {v(t0, y0} ∈ Ω(α, β), x0 ≤ y0 and u(t) ≤ v(t) (t ≥ t0), then we have:

R [t0, x0, α, β] u(t) ≤ R [t0, x0, α, β] v(t) (t ≥ t0).

This property can be used as the definition of a non-ideal relay. In order to use
it, we define the outputs corresponding to monotonic inputs. Applying a semi-group
identity, we define the outputs for piece-wise monotonic inputs. Further, this relation
is extended by means of the special limit construction to all monotonic inputs. In
this case, this relation will be the exclusive. We can also note a natural monotonicity
in the switching numbers. With respect to the modified operator of a non-ideal relay
with random parameters, the analogue of monotonicity can be presented in the form
of the following theorem.

Theorem 12.1 Let p{x01 = 1} ≥ p{x02 = 1} and x1(t) ≥ x2(t). Then for any t:
p{x1 = 1} ≥ p{x2 = 1}.
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12.3.2 Dynamics of a System Under Non-ideal Relay with
Random Parameters

In order to show the action of the developed operator on the real physical system
let us consider the simple oscillating system under hysteretic force with random
parameters. Such a simple system is considered in [23, 24] and the external force has
the form of a non-ideal relay with inversion of the switching numbers. One of the
main results of these studies is the existence of unlimited solutions, namely, if the
initial conditions are such that the hysteretic operator is triggered at the first cycle of
oscillations, then the corresponding solution is unlimited, while the growth rate of
the amplitude is proportional to the square root of time. Let us consider an analogous
system with a non-ideal relay with switching numbers distributed according to an
even-dimensional law. The equation ofmotion togetherwith the corresponding initial
conditions has the following form:

ẍ(t) + ω2x(t) = R[t0; p0; u0;ϕα;ϕβ]x(t),

x(0) = x0, ẋ(0) = x1.
(12.38)

To implement the numerical solution of the system (12.38), it is necessary to
generate a set of random values corresponding to the switching numbers. Let us
consider the case when ϕα(u) and ϕβ(u) corresponds to the uniform distribution law
for α and β. For definiteness, we will assume that these functions correspond to
uniform distributions in the intervals [−1.5,−0.5] and [0.5, 1.5], respectively. The
solution of the system (12.38) can be obtained by specifying the initial conditions and
the values of the switching numbers corresponding to the non-ideal relay. At each
period, the switching numbers are selected from the corresponding distributions with
the initial conditions for the next realization corresponding to the values of the phase
coordinates obtained at the previous step. Using the described algorithm, a solution
to the system (12.38) is obtained and the corresponding law of motion together with
the phase portrait are shown in Fig. 12.9. Let us note, that non-smooth character of
the phase portrait is caused by the hysteretic nature of the external excitation, as well
as the random nature of the parameters of a non-ideal relay.

The following theorem characterizes the dynamics of the system (12.38).

Theorem 12.2 Let us suppose that the supports of the function ϕα and ϕβ do not
intersect. Then lim

t→∞ x(t) = ∞, that is the amplitude tends to infinity with probability

equals to 1.

The proof of this theorem follows from the fact that the area of the minimal
hysteretic loop is positive Smin > 0, as a consequence, the amplitude value at each
cycle satisfies the inequality:

A2
n(t) ≥ nSmin.
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Fig. 12.9 Solution (top
panel) and phase portrait
(bottom panel) for the
system (12.38)
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We also note that under the conditions of the theorem, the rate of growth of the
amplitude with probability 1 is proportional to the square root of time.

12.4 Hysteresis in Discrete Sine-Gordon Model

12.4.1 Bouc-Wen Model

Dependencies of hysteretic type are determined by input-output correspondences,
when the output depends not only on the instantaneous value of the input, but also on
its behavior in the precedingmoments of time (memory effect).Mathematicalmodels
of mechanical properties of many building materials, such as reinforced concrete,
steel, wood, as well as the damping materials, usually include a nonlinear hysteresis
mechanism that takes into account the restoring properties of these structures.
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Fig. 12.10 Visualization of
the Bouc-Wen model

Mathematicalmodels of hysteresis-type phenomena are rather diverse and include
both design models (backlash, stop, non-ideal relay, as well as their continuous
analogues, namely the Ishlinskii and Preisach models [9]), and phenomenological
models (S-converter, Duhem model, Bouc-Wen model, etc. [1, 5, 7, 14, 29]). In this
paper, we focus on the phenomenological approach based on the Bouc-Wen model
for describing the hysteresis nonlinearity [2, 7, 23].

Let us consider the equation of motion of a single-degree-of-freedom (Fig. 12.10)
system:

μü(t) + F(u, z) = f (t), (12.39)

where μ is the mass, u(t) is the displacement, F(u, z) is the restoring force and f (t)
is the excitation force (hereafter the overdot indicates the derivative with respect
to time). Following the Bouc-Wen approach the restoring force is presented as (the
corresponding function depends on the input and output states)

F(u, z) = αku(t) + (1 − α)kz(t). (12.40)

From (12.40) it follows that the restoring force F(u, z) can be divided into elastic
and hysteretic parts, where k is the yielding stiffness, α is the ratio of post-yield to
pre-yield (elastic) stiffnesses and z(t) is the non-dimensional hysteretic parameter
that satisfies the following nonlinear differential equation with zero initial condition
(z(0) = 0):

ż(t) = [
A − |z(t)|n(β + sign (z(t)u̇(t)) γ )

]
u̇(t), (12.41)

where, A, β, γ and n are non-dimensional parameters controlling the behavior of the
model and sign(·) is the standard signum-function. For small values of the positive
exponential parameter n the transition from elastic to post-elastic branch is smooth,
whereas for large values of this parameter the transition becomes abrupt, approaching
that of a bilinear model. Parameters β and γ control the size and shape of the
hysteretic loop.Thus, such amulti-parametermodel describeswide class of hysteretic
systems [2, 7, 23].
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12.4.2 Discrete Sine-Gordon Model with Hysteretic
Nonlinearity

The most well-known and well-studied equations in mathematical physics are equa-
tions describing the propagation ofwaves in a linearmedium. For a nonlinearmedium
with hysteresis properties, there are no ready-made methods for solution of such
equations.

One of the interesting results of the analysis of wave propagation processes in
nonlinear media is the existence of soliton solutions—solitary waves behaving like
particles. One of the models that has a soliton solution is the sine-Gordon system.
This system can be presented as a chain of nonlinear pendulums with elastic torsion-
tied links. This model is widely used both in biology and in physics. This system has
many applications, including the propagation of crystal defects and domains in fer-
romagnetic and ferroelectric materials, the propagation of splay waves on biological
(lipid) membranes, one-dimensional model of elementary particles and propagation
of magnetic flux quanta in the long Josephson junction [17].

In what follows we consider a mechanical system with hysteretic links [12, 25].
The physical model of such a system is shown in Fig. 12.11. It is a chain of identical
pendulums strung on a string and connected by springs [15]. Pendulums oscillate
transversely to the direction of the chain. The principal feature of the mechanical
system under consideration is that the backlash-type hysteretic nonlinearity [24]
is included in the connection between two neighboring pendulums. This system is
a modification of the classical mechanical sine-Gordon system and can be called
hysteretic sine-Gordon system.

Let μ be the mass of the pendulum, μl2 is the moment of inertia, l is the length,
and κ is the torsion constant of the spring. When the deviation of the pendulum with
number m from the equilibrium point by an angle θm takes place, the gravitational
force moment −μgl sin θm acts on the pendulum alongside the torsional moment
acting on the side of adjacent springs −κ(θm − θm−1) + κ(θm+1 − θm). Since the
hysteretic nonlinearity is included in the system, the equation of motion can be
presented as:

Fig. 12.11 Hysteretic
sine-Gordon system model
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μl2θ̈m = −μgl sin θm + ωl
m + ωr

m,

ωl
m = L[ωl

m(t0); ylm(t0)]ylm(t),

ylm = −κ(θm − θm−1),

ωr
m = L[ωr

m(t0); yrm(t0)]yrm(t),

yrm = κ(θm+1 − θm),

(12.42)

where the time-dependent outputsωl
m, ωr

m and inputs ylm, yrm (these inputs are the cor-
responding moments affecting single pendulum from the left and right sides relative
to neighbor pendula, respectively) are the corresponding outputs and inputs for the
physically realizable converter L[·] in the frame of Krasnosel’skii and Pokrovskii
approach [9], and ω...

m (t0), y...
m (t0) are the corresponding initial states (output and

input, respectively) of the converter.

12.4.3 Numerical Results

It is known that the operator interpretation of the hysteretic nonlinearity implies the
non-smoothness of the corresponding operator. Therefore, in our numerical simula-
tion we use the approach to hysteresis based on the Bouc-Wen phenomenological
model. In this case, the sine-Gordon system with the hysteretic nonlinearity in the
links takes the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μl2θ̈m = −μgl sin θm − ακ(θm − θm−1) − (1 − α)κzlm+
+ακ(θm+1 − θm) + (1 − α)κzrm,

żlm = (
A − |zlm |n {

β + sign
[
zlm(θ̇m − θ̇m−1)

]}
γ

)
(θ̇m − θ̇m−1),

żrm = (
A − |zrm |n {

β + sign
[
zrm(θ̇m+1 − θ̇m)

]}
γ

)
(θ̇m+1 − θ̇m).

(12.43)

We performed the numerical simulation of the dynamics of themechanical system
described by (12.43). Namely, we obtained the numerical solutions to the Cauchy’s
problem for (12.43) using the 4-th order Runge-Kutta method (our numerical results
obtained using MATLAB� system). For example, for results presented in Fig. 12.12
(right panel) the model time is t = 200 and the corresponding time-step is h = 0.1.
In such a system appearance of soliton-like solutions is expected (in the samemanner
as for the classical sine-Gordon system). The solitary wave, which is the solution
to (12.43), is treated as a dynamical object that retains energy for a long time. The
chain has a finite length m = 100 (we recall that we consider a discrete system), and
its ends are fixed. The initial conditions for pendulums

θ1(t0), θ̇1(t0), θ2(t0), θ̇2(t0), . . . , θm−1(t0), θ̇m−1(t0), θm(t0), θ̇m(t0)
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Fig. 12.12 Simulation of the collision of two soliton-like solutions without hysteresis (left panel)
and with hysteresis (right panel) in the links

generate a family of solitonic solutions moving with different velocities along the
(m, t)-planewith reflection at the ends of the chain (m = 1,m = 100). For the param-
eters of the hysterestic blocks formalized by means of the Bouc-Wen model, zlm(t0),
zrm(t0), the initial conditions are zero by default.

Let us have a look on the dynamics of two solitonic solutions launched from oppo-
site ends of the chain, as shown in Fig. 12.12. The corresponding initial conditions

θ1(t0) = 2π, θ̇1(t0) = 1, θ2(t0) = 0, . . . , θ̇m−1(t0) = 0, θm(t0) = 2π, θ̇m(t0) = 1

generate two pulses, moving towards each other. During the simulation, two soli-
tary waves collide in situations without (α = 1, left panel) and with (α = 0.75, β =
0.1, γ = 0.9, right panel) hysteresis in the links. The interaction of two pulses can
demonstrate the nature of the colliding formations, since solitons interacting with
each other, show special properties (similar to particle behavior). As follows from
the numerical results presented in Fig. 12.12 (left panel), the dynamics of solutions
demonstrates all the properties of soliton-like objects (they do not change their shape
and speed). In the case when there are hysteretic connections between the pendulums
(right panel in Fig. 12.12), soliton-like solution changes the speed (as can be seen by
breaking the symmetry of the reflection process at the ends of the chain), retaining
its shape, as well as the nature of interaction.

In order to study the influence of hysteresis bonds in the system, we con-
sider the case in which the vibrations of 25th (θ25(t0) = 2π, θ̇25(t0) = 0) and 75th
(θ75(t0) = π, θ̇75(t0) = 0) pendulums are excited with the corresponding initial con-
ditions. Under these initial conditions, the oscillations of the corresponding compo-
nents are excited in the chain (Fig. 12.13 (left panel)). In the case when the hysteresis
in the links is taken into account (Fig. 12.13 (right panel)), spatial localization of
oscillations is observed.

Let us consider in more detail the evolution of the states of the components of the
chain (θ(t), θ̇ (t)) in the neighborhood of 25th and 75th pendulums. Figures12.14
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Fig. 12.13 Simulation of the dynamics of localized oscillations of pendulums in a chain without
hysteresis (left panel) and with hysteresis (right panel) in the links

Fig. 12.14 Phase portraits of 24th, 25th, 26s pendulums without hysteresis (left panel) and with
hysteresis (right panel) in the links. The input (right panel) shows the corresponding hysteretic loop
obtained as a solution to (12.41)

and 12.15 show the phase portraits for 24th, 25th, 26s, 74th, 75th, 76s pendulums,
respectively together with corresponding hysteretical loops (such loops are obtained
as a numerical solution to (12.41) of theBouc-Wenmodel). As follows from these fig-
ures, in the absence of hysteretic bonds (α = 1) the dynamics of pendulums demon-
strates a complex oscillatory structure. However, in the presence of hysteresis in
the bonds (α = 0.5, β = 0.1, γ = 0.9), the dynamics in the neighborhood of the
25th pendulum is regularized and the stable limit cycle can be seen. Note a similar
behavior for the 75th pendulum (Fig. 12.15).

Also, we investigated the influence of the hysteretic blocks in the connections
between pendulums by using the methods of spectral analysis. We performed the
Fourier transform for the 25th pendulum in the presence of hysteretic block (α =
0.5, β = 0.1, γ = 0.9) and without (α = 1) it. The corresponding results are shown
in Fig. 12.16. As it follows from the results presented in this figure, the oscillation
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Fig. 12.15 Phase portraits of 74th, 75th, 76s pendulums without hysteresis (left panel) and with
hysteresis (right panel) in the links. The input (right panel) shows the corresponding hysteretic loop
obtained as a solution to (12.41)

Fig. 12.16 The oscillation spectrum of the 25th pendulum without hysteresis (left panel) and with
hysteresis (right panel) in the link

spectrum changes after inclusion of hysteretic bonds. Thus we can conclude that
the hysteresis in such a system plays a role of a “filter” that quenches frequencies
corresponding to small-amplitude oscillations and releases the main frequency.

12.5 Conclusions

In this chapter we study the resonant properties of autonomous system in which the
energy “pumping” takes place due to the presence of a part with hysteretic prop-
erties. Unlimited solutions to differential equation corresponding to autonomous
system containing hysteretic part with inversion of switching numbers are investi-
gated. The cases of Coulomb and viscous friction for the system being considered
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and the occurrence of self-oscillatory regimes is established. We applied also the
small parameter approach to the problem of the frequency “trapping” in the system
under consideration. It is shown that the “trapping” band is uniquely dependent on
the amplitude of the external force.

Also we present a generalization of the classical hysteretic converter in the form
of non-ideal relay to the case when its switching numbers are randomly distributed
according to a corresponding law. The properties of this converter are established
(namely, the definition, together with the monotonicity), as well as the dynamics
of the simple mechanical system in the form of oscillator under hysteretic force
determined by a non-ideal relay with random parameters is considered.

Special attention was paid to the dynamics of an oscillatory system with many
degrees of freedom under conditions of hysteretic blocks in the coupling between the
individual parts of the system. This system can be classified as amodifiedmechanical
model of the sine-Gordon system in the case when the connections between the pen-
dulums contain a hysteretic nonlinearity. The hysteretic nonlinearity was formalized
bymeans of the Bouc-Wenmodel which allows a fairly simple numerical realization.
On the basis of numerical simulations, the dynamics of the solitonic solution for this
system was studied taking into account the hysteretic nature of the coupling. It was
demonstrated that the presence of hysteretic coupling leads to a change in the speed
of propagation of the solitary solution while maintaining the character of interaction
between various solitary solutions. Also, the results of numerical simulation demon-
strate the regularizing role of hysteresis bonds in the character of oscillatorymotions.
The filtering properties of hysteretic bonds are inferred from the spectral analysis of
the oscillatory motions of individual components of the system under consideration.
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