
Chapter 11
Complex Fractional Moments
for the Characterization
of the Probabilistic Response
of Non-linear Systems Subjected
to White Noises

Mario Di Paola, Antonina Pirrotta, Gioacchino Alotta, Alberto Di Matteo
and Francesco Paolo Pinnola

Abstract In this chapter the solution of Fokker-Planck-Kolmogorov type equations
is pursued with the aid of Complex Fractional Moments (CFMs). These quantities
are the generalization of the well-known integer-order moments and are obtained
as Mellin transform of the Probability Density Function (PDF). From this point of
view, the PDF can be seen as inverse Mellin transform of the CFMs, and it can be
obtained through a limited number of CFMs. These CFMs’ capability allows to solve
the Fokker-Planck-Kolmogorov equation governing the evolutionary PDF of non-
linear systems forced by white noise with an elegant and efficient strategy. The main
difference between this new approach and the other one based on integer moments
lies in the fact that CFMs do not require the closure scheme because a limited number
of them is sufficient to accurately describe the evolutionary PDF and no hierarchy
problem occurs.
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11.1 Introduction

The dawns of stochastic differential calculus is dated back to the last century. Thanks
to the pioneering papers of Itô, Wong and Zakaj, Kolmogorov and other authors new
horizons were opened giving rise to the modern stochastic mechanics [5, 17, 23, 31].
In this context, a relevant problem is represented by the study of nonlinear system
forced by normal white noise. Excitations such as ground motion, wind turbulence,
sea waves, surface roughness, blasts and impacts loads being stochastic processes
induce that structural responses are stochastic processes too. Thus, the analysis is
concerned with the problem of the response statistical characterization. An approach
to describe this kind of problems, that is typical of several physical applications
[16], is based on the study of the Fokker-Planck equation (FPK) which represents a
partial differential equation that describes the evolution of the response conditional
probability density function (PDF).

Nowadays, the resolution of FPK equation or its generalized form for different
kind of forced white noise (Poissonian, α-stable, etc.) still represents an open prob-
lem. Indeed, the FPK equation admits analytical solution in very few cases, for this
reason we resort to numerical methods. A possible way to treat such partial differ-
ential equation problem is related to the evaluation of the moments of the PDF. This
method consists in writing differential equations for the response statistical moments
of any order. However, when dealingwith nonlinear systems, a serious problem arises
in the Moment Equation (ME) approach, the entire system is hierarchic in the sense
that the equations for the moments of a fixed order, say K, contain moments of
order higher than K. In this way, the ME form an infinite hierarchy. Then, due to the
hierarchical nature of the forcing processes, this approach needs a truncation of the
involved higher-orders moments in the solution.

Although other strategies, based upon the Hermite polynomials, and cumulants,
provide some solutions for a certain fewcases, these approaches showsomeparticular
limits [13, 16, 25, 26, 34]. Certainly, a meaningful limit of such classical methods
is the inability to well describe the tails of the PDF that leads to serious problem in
reliability analysis.

Other more complex approaches are available in literature but they are not dis-
cussed here for sake of brevity [11, 14, 20, 22, 24, 27, 29, 32, 35, 37]. Instead, in
this chapter we focus on a recent development in the resolution of the FPK based on
the moment approach [1, 12, 14]. Such recent improvement is obtained thanks to the
introduction of the complex-order moments. It has been shown that these complex
quantities, known as Complex Fractional Moments (CFMs), are related to theMellin
transformand to theRiesz integral at the origin of the PDF [30, 33].Moreover, the link
between CFMs, Mellin transform and Riesz integrals has provided several important
relations and properties [7, 9, 15]. Undoubtedly, one of important properties of CFMs
is the capability to reconstruct both PDF and characteristic function. Therefore, the
knowledge of the CFMs represents another way to characterize random variables.
As will be shown later, this property is fundamental for the resolution of FPK by this
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new approach. Further information on the applications of these complex quantities
can be found in [2, 8, 11, 21, 28, 36].

11.2 Basic Concepts on Mellin Transform Operator

The Mellin transform operator is a very interesting tool of fractional calculus. It
proves to be very useful in solving some problems of engineering interest [1, 2, 4,
7–12, 14, 15, 18, 28, 36]. Let f (x) be any real function defined in 0 ≤ x < ∞. The
Mellin transform, labeled as M f (γ − 1), is defined as

M{ f (x); γ } = M f (γ − 1) = ∞∫
0
f (x)xγ−1dx; γ = ρ + i η (11.1)

where i = √−1 and ρ, η ∈ R.
If the Mellin transform exists, then the function f (x) may be rewritten in the form

f (x) = M−1{M f (γ − 1); x} = 1

2π

∞∫
η=−∞

M f (γ − 1)x−γ dη ; x > 0 (11.2)

It is noted that the integration is performed along the imaginary axis and the value
of ρ remains fixed. The condition for the existence of the Mellin transform is that
−p < ρ < −q, being p and q the order of zero at x = 0 and x = ∞, respectively.
Namely

lim
x→0

f (x) = O(x p); lim
x→∞ f (x) = O(xq) (11.3)

where O(·) stands for the order of the term in parenthesis.
For example, let us assume that f (x) = (1 + x)−1, since lim

x→0
f (x) = 1

[
O(x0)

]

then p = 0, and lim
x→∞ f (x) = x−1

[
O(x0)

]
, then q = −1; it follows that in this

case the existence condition of the Mellin transform is 0 < ρ < 1.. The strip in the
complex plane such that −p < ρ < −q is commonly known as Fundamental Strip
(FS) of the Mellin transform. If −q is lesser than −p the Mellin transform and its
inverse do not exist.

Equation (11.2) may be used in a discretized form as

f (x) ∼= �η

2π

m∑

k=−m

M f (γk − 1)x−γk ; γk = ρ + i k �η (11.4)

where�η is the discretization step along to the imaginary axis,m�η = η is a cut-off
value chosen in such a way that the contribution of terms of higher order than m do
not produce sensible variations on f (x). It is to be remarked thatM f (γ −1) is analytic
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onto the fundamental strip, and is such that

M f (ρ + i η − 1) = M∗
f (ρ − i η − 1) (11.5)

where the star means complex conjugate. It follows that with simple manipulations
the summation in (11.4) may be rewritten in a summation from 0 to m.

The Riesz fractional integral of a certain function f (x) that is zero for x < 0,
denoted as (I γ f )(x), is defined as

(I γ f )(x) = 1

2νc(γ )

∞∫
0
f (ξ)|x − ξ |γ−1dξ ; ρ > 0, ρ 
= 1, 3, .. (11.6)

where νc(γ ) = 	(γ ) cos
(
γ π

2

)
and 	(·) is the Euler Gamma function. By compar-

ing (11.1) and (11.6) it may be stated that the Mellin transform is related to Riesz
fractional integral in x = 0, that is

2νc(γ )(I γ f )(0) = M f (γ − 1) (11.7)

Under this perspective the representation in (11.4) looks like a Taylor expan-
sion because it involves an operator in zero and a (complex) power series on x; for
more details see [33]. The main difference is that when a truncation on the classical
Taylor series is performed, always the Taylor series diverges as x diverges, while
no divergence problem occur using (11.4) since summation is performed along the
imaginary axis and ρ remains fixed. Moreover, unless f (x) belongs to the class C∞
in zero, the various derivatives in zero may be divergent quantities and the Taylor
expansion in such cases is meaningless. On the contrary the series expressed in (11.4)
never diverges provided ρ belongs to the FS of the Mellin transform and then f (x) is
reproduced in the whole domain with the exception of the value in zero. With these
simple information we can now solve the FPK equation by using Mellin transform
theorem.

11.2.1 Use of CFMs to Construct Probability Density
Functions

In the ensuing derivations, for simplicity sake’s, we suppose that the PDF of a
stochastic process X(t), in the following denoted as pX (x, t), is symmetric, namely
pX (x, t) = pX (−x, t).

The Mellin transform of pX (x, t), denoted as MpX (γ − 1), is given in the form

MpX (γ − 1, t) = ∞∫
0
pX (x, t)xγ−1dx = 1

2
E
[|X (t)|γ−1] (11.8)
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where E[·] means ensemble average. From this equation it may be stated that the
Mellin transform of the PDF is strictly related to moments of the type E

[|X (t)|γ−1].
According to (11.4) the discretized version of the inverse Mellin Transform is

written for x > 0 in the equivalent forms

pX (x, t) = 1

4b

m∑

k=−m

E
[|X (t)|γk−1]x−γk = 1

2b
x−ρ

m∑

k=−m

MpX (γk − 1, t)x−i kπb ;

γk = ρ + i
kπ

b
(11.9)

where b = π/�η and ρ belongs to the FS of pX (x, t). Since pX (x, t) ≥ 0 and
the area of the PDF in 0 ÷ ∞ is 1/2 then lim

x→∞ pX (x, t) = 0. It follows that the

fundamental strip of pX (x, t) always exists and, for pX (0, t) 
= 0, it is 0 < ρ < u.
The value of u depends of the order of zero of the PDF at x = ∞. As an example for
α-stable random variable the moments E[|X |β](β ∈ �) do not diverge only in the
range −1 < β < α [33]. Then for such random variable the FS is 0 < ρ < α + 1. In
general if for a given stochastic process the integer moments diverge starting from a
certain value, say r, then the strictest FS is 0 < ρ < r + 1.

An important issue of this representation of the PDF is the discretization of the
inverse Mellin transform, more specifically the number m that define the number
of CFMs to be used in order to efficiently represent the PDF. In order to properly
define the parameterm, some considerations are necessary: (i) the choice ofm strictly
depends of �η since m�η = η̄ is the truncation of Mp(γ − 1) that in turns depends
of the value of ρ selected; (ii) higher value of ρ, at a parity of the PDF at hands
produces oscillations in Mp(γ −1) as shown in Fig. 11.1 in which CFM are reported
for different values of ρ (ρ = 0.5; ρ = 10). It follows that in order to properly
discretize the inverse Mellin transform it is necessary of a smaller value of �η as ρ

increase.
In the case of α-stable Lévy white noise the selection of ρ is obligated by the

limitations of the FS of the Mellin transform and on the non-linearity. So because
m and consequently �η depends on many parameters we can proceed with trial and
error (two or three attempts are enough) or if we have a crude estimation on the

Fig. 11.1 CFMs of a Gaussian distribution with unitary variance and different values of ρ
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PDF of the response at steady state by using approximate techniques (like stochastic
linearization) then a preliminary choice ofmmay be readily performed. In quiescent
systems, since in t = 0 all CFMs are zero and the tails of the PDF increase then the
worst situation will remain the PDF at the steady state or when the scale attains the
maximum value. It follows that as the PDF is well reproduced for the steady state or
in correspondence of the maximum scale (or of the variance if it exists) then all the
parameters (m and η̄) may be used also in the transient zone.

11.3 Applications of CFMs for the Solution of FPK-Type
Equation

In this sectionwewill showhow to solve the equations ruling the evolution of the PDF
describing the motion of a spring-dashpot system (first-order differential equation)
subjected to aGaussianwhite noise (Fokker-Planck equation), to a-stable white noise
(Fractional Fokker-Planck equation) and to Poissonian white noise (Kolomogorov-
Feller equation). For all the three cases some numerical applications are also pre-
sented in order to show the accuracy of this approach.

11.3.1 Fokker-Planck Equation (Gaussian White Noise)

Let us suppose that the equation of motion of a (mass-less) non-linear system is given
in the form

{
Ẋ = f (X, t) + W (t)
X (0) = X0

(11.10)

W (t) is a normal zero mean white noise, formal derivative of the Brownian motion
B(t), (dB(t)/dt = W (t)) characterized by E

[
dB2(t)

] = q dt, being q the intensity
of the white noise. In (11.10) it is assumed that f (X, t) = − f (−X, t) is a determin-
istic non-linear function of the stochastic output processX(t). X0 is a randomvariable
with assigned distribution (pX (x, 0) = pX (−x, 0)). Under these assumptions the
output stochastic process has a symmetric distribution pX (x, t).

The Fokker-Planck equation, ruling the transition probability of X(t), is written
in the form

{
∂pX (x,t)

∂t = − ∂
∂x ( f (x, t)pX (x, t)) + q

2
∂2 pX (x,t)

∂x2

pX (x, 0) = pX (x)
(11.11)

where the overbar means assigned PDF in t = 0.
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The differential equations of integer moments may be obtained multiplying
(11.11) by xkdx(k = 0, 1, . . . , n), and integrating over −∞ ÷ ∞. The solu-
tion of the FPK equation in terms of integer moments cannot be obtained, unless
f (X, t) = cX, since the set of differential equations is hierarchical. That is, the
moment equation of an assigned order, say s, involves moments of higher order than
s. Since fractional moments are able to return the PDF in the whole range (excluding
the value in zero), one may wonder what happens when CFM are used instead of
integer moments. In order to answer this question, we multiply (11.11) by xγ−1dx
and integrating over the range 0 ÷ ∞ yields

∂MpX (γ − 1, t)

∂t
= −[ f (x, t)xγ−1 pX (x, t)

]∞
0 +

(γ − 1)
∞∫
0
xγ−2 f (x, t)pX (x, t)dx + q

2

[
∂pX (x, t)

∂x
xγ−1

]∞

0

+

−q

2
(γ − 1)

[
xγ−2 pX (x, t)

]∞
0 + q

2
(γ − 1)(γ − 2)

∞∫
0
xγ−3 pX (x, t)dx (11.12)

where the first, third and fourth term at the right-hand side of (11.12) come out from
integration by parts.

Under the hypothesis that X(t) is stable in distribution and moments up to the
m-order are stable, by properly selecting ρ > 2, it may be easily demonstrated that
the first, the third and the fourth term in (11.12) vanish. For more details see [14].

Next, let us suppose that f (X, t) = −
n∑

j=1
c j |X(t)|β j sgn(X(t))

(
c j > 0, β j > 0

)
,

then the equation in terms of fractional moments is written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂MpX (γ−1,t)
∂t = −(γ − 1)

n∑

j=1
c j MpX (γ + β j − 2, t)+

q
2 (γ − 1)(γ − 2)MpX (γ − 3, t); ρ > 2

MpX (γ − 1, 0) = ∞∫
0
xγ−1 pX (x)dx assigned

(11.13)

This equation may be discretized for γk = ρ + i k π
b so obtaining a set of (2m+1)

ordinary (linear) differential equations, being m the truncation of the discretized
inverse Mellin transform of the PDF.

The main difficulty in solving such a set of differential equations is that the frac-
tional moments are evaluated for different values of ρ. This problem is the analogue
of the infinite hierarchy problem. Then at first glance it seems that the use of complex
fractional moments does not open new breaks for the solution of the FPK equation.
However, to overcome this drawback the following strategy can be adopted.

Since (11.9) remains valid for every value of ρ, provided it belongs to the FS, we
equate (11.9) for two different values of ρ say ρ1 = ρ and ρ2 = ρ +�ρ, denoting as
MpX (γ

(1)
k −1, t) and MpX (γ

(2)
k −1, t) the CFM evaluated in γ

( j)
k = ρ j + i k�η ( j =

1, 2). Then multiplying such equation for x−1/2 gives
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x−1/2
m∑

k=−m

MpX (γ
(1)
k − 1, t)e−ik π

b ln x = x−(�ρ+1/2)
m∑

k=−m

MpX (γ
(2)
k − 1, t)e−ik π

b ln x ;

x > 0 (11.14)

It is to be emphasized that equality in (11.14) strictly holds for x > 0, since zero
singularities appear. Now it is assumed that MpX (γ

(2)
k − 1, t) are already known

and thus it is possible to evaluate MpX (γ
(1)
k − 1, t), i.e., to evaluate MpX (γ − 1, t)

for different values of ρ. Because (11.9) is an approximation then (11.14) is to be
satisfied in a weak sense in the interval x1 > 0, x2  x1, i.e.,

x2∫
x1

1

x

{[
m∑

k=−m

MpX (γ
(1)
k − 1, t)e−ik π

b ln x − x−�ρ

m∑

k=−m

MpX (γ
(2)
k − 1, t)e−ik π

b ln x

]

×

×
[

m∑

k=−m

M∗
pX (γ

(1)
k − 1, t)eik

π
b ln x − x−�ρ

m∑

k=−m

M∗
pX (γ

(2)
k − 1, t)eik

π
b ln x

]}

dx =

= min(MpX (γ
(1)
k − 1, t)) (11.15)

Now performing the following change of variable

ξ = ln x, dξ = dx

x
; ξ j = ln x j , j = 1, 2 (11.16)

In order to find MpX (γ
(1)
s − 1, t) as a linear combination of MpX (γ

(2)
k − 1, t) we

perform variations and instead of putting x1 = 0, x2 = ∞, we put x1 = e−b and
x2 = eb: In this way three goals are achieved: (i) the interval e−b ÷ eb is very large
since b = π/�η and �η is of order 0.3 ÷ 0.5 then the interval e−b ÷ eb is of order
e−10 ÷ e10 (for �η = 0.314) or e−6.28 ÷ e6.28 (for �η = 0.5); (ii) the value x1 = 0
is excluded, that is the main problem to perform variations in (11.15) since in zero a
divergence occurs; and (iii) with the choice e−b ÷ eb the integral (11.15), taking into
account the position of (11.16), is in the range −b ÷ b.

It follows that with the choice of the interval e−b ÷ eb, (11.15), with the positions
in (11.16), is written as

b∫
−b

{[
m∑

k=−m

MpX (γ
(1)
k − 1, t)e−ik π

b ξ − e−�ρξ

m∑

k=−m

MpX (γ
(2)
k − 1, t)e−ik π

b ξ

]

×
[

m∑

k=−m

M∗
pX (γ

(1)
k − 1, t)eik

π
b ξ − e−�ρξ

m∑

k=−m

M∗
pX (γ

(2)
k − 1, t)eik

π
b ξ

]}

dξ =

= min(MpX (γ
(1)
k − 1, t)) (11.17)

with the orthogonality condition of eik
π
b ξ and after minimization we get
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2bMpX (γ
(1)
s − 1, t) =

m∑

k=−m

MpX (γ
(2)
k − 1, t)aks(�ρ) (11.18)

where

aks(�ρ) = b∫
−b

e−�ρξe−i(k−s) π
b ξdξ = 2b sin[π(k − s) − ib�ρ]

π(k − s) − ib�ρ
(11.19)

From (11.18) we recognize that MpX (γ
(1)
s − 1, t) may be obtained as a linear

combination of MpX (γ
(2)
k − 1, t), i.e., it is possible to solve FPK equation by using

Mellin transform.
Since in (11.13) we have MpX (γs −1, t), MpX (γs +β −2, t), and MpX (γs −3, t),

thenwe select the initial value of ρ > 2. In thismannerwe are sure that Re(γs−2) > 0
is inside the FS. Thus, taking into account (11.13) and (11.18), yields

MpX (γs + β − 2, t) = 1

2b

m∑

k=−m

MpX (γk − 1, t)aks(1 − β)

MpX (γs − 3, t) = 1

2b

m∑

k=−m

MpX (γk − 1, t)aks(2) (11.20)

By inserting these equations in (11.13) for γ = γs (s = −m, .., 0, ..m) we get a
set of complex ordinary differential equations in the unknowns MpX (γs − 1, t).

If the system of differential equations is directly implemented using a computer
program the solution is not correct because we need of another information, i.e., the
area of the PDF into the interval e−b÷eb will be 1/2. This constraint may be enforced
very easily. Taking into account (11.9), we get

1

2b

m∑

k=−m

MpX (γk − 1, t)
eb∫
e−b

x−γk dx = 1

2
(11.21)

This equation gives the following information in the Mellin transform domain

MpX (γ0 − 1, t) = 1 − ρ

e0

⎡

⎢
⎣b −

m∑

k=−m
k 
=0

(
ek

1 − γk

)
MpX (γk − 1, t)

⎤

⎥
⎦ (11.22)

where

e0 = (eb)1−ρ − (e−b
)1−ρ

(11.23)

and
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ek = (eb)1−γk − (e−b
)1−γk (11.24)

In this manner, a set of 2 m linear (complex) differential equations is obtained,
which involves only CFMs evaluated in the same value of ρ ruling the evolution of
the CFMs. The s-th equation is

∂MpX (γs − 1, t)

∂t
= −(γs − 1)

n∑

j=1

c j

⎡

⎢⎢⎢
⎣

m∑

k=−m
k 
=0

MpX (γk − 1, t)aks (1 − β j )+

+ 1 − ρ

e0
a0s (1 − β j )

⎛

⎜⎜⎜
⎝
b −

m∑

k=−m
k 
=0

MpX (γk − 1, t)
ek

1 − γk

⎞

⎟⎟⎟
⎠

⎤

⎥⎥⎥
⎦

+

+ q

2
(γs − 1)(γs − 2)

⎡

⎢⎢⎢
⎣

m∑

k=−m
k 
=0

MpX (γk − 1, t)aks (2)+

+ 1 − ρ

e0
a0s (2)

⎛

⎜⎜⎜
⎝
b −

m∑

k=−m
k 
=0

MpX (γk − 1, t)
ek

1 − γk

⎞

⎟⎟⎟
⎠

⎤

⎥⎥⎥
⎦

s = −m, . . . , −1, 1, . . . ,m

(11.25)

Equation (11.25) constitute a set of linear coupled ordinary differential equations
in the unknown MpX (γs − 1, t) that may be easily solved by inserting the initial
conditions given in (11.13). Moreover MpX (γ0 − 1, t) in (11.25) is given in (11.22).
Thus (11.25) is not homogeneous and the steady state solution may be readily found.
If the system is quiescent at t = 0, that is p̄X (x) = δ(x), then all MpX (γs − 1, 0)
are zeros.

System of (11.25) may be reduced to onlym equations by taking into account that
Mp(γs − 1, t) = M∗

p(γ−s − 1, t).
In order to show the capability of the method, we suppose that the nonlinear

function in (11.10) is f (X, t) = −c|X |βsgn(X), with c > 0 and β ≥ 0.
Moreover, let us suppose that p̄X (x) = δ(x), that is the system is quiescent at t = 0.
For this system for the case β = 1 (linear system) the transient response is already
known and is given in the form

pX (x, t) = 1√
2πσ(t)

exp

(
− x2

2σ 2(t)

)
(11.26)

where

σ 2(t) = q

2c
(1 − e−2ct ) (11.27)

while if β 
= 1 the stationary solution is known in analytical form and it reads
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Fig. 11.2 Probability density function for different values of β; continuous line solution in terms
of CFM, dotted line Monte Carlo simulation; dashed line exact solution

pX (x,∞) = ν exp

(
− 2c|x |β+1

(β + 1)q

)
(11.28)

where v is a normalization constant such that
∫∞
0 pX (x,∞)dx = 1/2.

In Fig. 11.2 the PDF of the nonlinear system given by the procedure outlined
above is contrasted with the solution obtained by the Monte Carlo simulation with
106 samples, for different values ofβ (β = 0, β = 0.3, β = 1, β = 3). In particular
for β = 1 also the exact solution given in (11.26) is plotted (dashed line) at various
time instants. Further in Fig. 11.2a, b and d also the steady state solution is plotted in
dashed line and contrasted with the results obtained by CFMs. During the transitory
phase the comparison is made with the PDF obtained by Monte Carlo simulation.
The value of c selected for these applications is c = 1 and q = 2. The various
parameters (ρ, �η, η̄) are given in the figures.

11.3.2 Fractional Fokker-Planck Equation (α-Stable White
Noise)

Let us now suppose that the same mechanical system of the previous section (spring-
dashpot system) is subjected to an α-stable white noise Wα(t). Without loss of gen-
erality we assume that Wα(t), formal derivative of the Lévy α-stable process Lα(t),
is a symmetric α-stable (SαS) process.
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The corresponding non-linear Langevin equation may be written as follows

{
Ẋ = f (X, t) + Wα(t)
X (0) = X0

(11.29)

The Itô equation associated to (11.29) may be written in the form

dX (t) = f (X, t)dt + dLα(t) (11.30)

where the characteristic function (CF) of dLα(t) is in the form

φdLα
(t) = exp(−dtσ |θ |α) (11.31)

where σ is the scale factor (not the standard deviation) and α is the stability index.
The equation ruling the evolution of the PDF of the output process is known as
Fractional Fokker-Planck (FPP) equation and is given in the form

{
∂pX (x,t)

∂t = − ∂
∂x ( f (x, t)pX (x, t)) + σαDα

X (pX (x, t))
pX (x, 0) = pX (x)

(11.32)

where the symbol Dα
X (·) denotes the Riesz fractional derivative defined as

Dα
x (u(x, t)) =

{
− 1

2 cos(πα/2)

[
Dα

x+(u(x, t)) + Dα
x−(u(x, t))

]; α 
= 1

− d
dxH[u(x, t)]; α = 1

(11.33)

In (11.33) Dα
x+ and Dα

x− are the left and right Riemann-Liouville fractional deriva-
tives that may be written in the form

Dα
x+(u(x, t)) = 1

	(n − α)

dn

dxn

x∫

−∞

u(ξ, t)

(x − ξ)α−n+1
dξ

Dα
x−(u(x, t)) = 1

	(n − α)

(
− d

dx

)n
∞∫

x

u(ξ, t)

(ξ − x)α−n+1
dξ (11.34)

where n = [α] + 1 and [α] is the integer part of α and H[·] is the Hilbert transform
operator defined as

H[u(x, t)] = 1

π
P

∞∫

−∞

u(ξ, t)

|x − ξ |dξ (11.35)

being P the Cauchy principal value.
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In order to solve the FFP equation the same approach of the previous section is

adopted. We suppose that f (X, t) = −
r∑

j=1
c j |X(t)|β j sgn(X(t)) (c j > 0, β j > 0)

and we perform Mellin transform of (11.32):

∂Mp(γ − 1, t)

∂t
=

r∑

j=1

c j
[
x
γ−1+β j pX (x, t)

]∞
0

− (γ − 1)
r∑

j=1

c j Mp(γ − 2 + β j , t)+

−
n−1∑

k=0

Γ (γ − 1 + k)

Γ (γ − 1)

⎡

⎣ dn−k−1

dxn−k−1

⎛

⎝
x∫

−∞

pX (ξ, t)

(x − ξ)α−n+1
dξ+

+(−1)n
∞∫

x

pX (ξ, t)

(ξ − x)α−n+1
dξ

⎞

⎠xγ−k−1

⎤

⎦

∞

0

− σα νc(γ )

νc(γ − α)
Mp(γ − 1 − α, t) (11.36)

The terms in square brackets, coming from integration by parts, vanish by properly
selecting the value of ρ and (11.36) reduces to

∂Mp(γ − 1, t)

∂t
= −(γ − 1)

r∑

j=1

c j Mp(γ − 2 + β j , t) − σα νc(γ )

νc(γ − α)
Mp(γ − 1 − α, t) (11.37)

By evaluating (11.36) for different values in 2m + 1 values γk = ρ + ik�η, a set
of ordinary linear differential equations is obtained. In order to solve this system, it
is necessary to write all CFMs in terms of CFMs of one order. Then, following the
results of the previous section, we may write:

MpX (γs + β j − 2, t) = 1

2b

m∑

k=−m

MpX (γk − 1, t)aks(1 − β j ) (11.38)

MpX (γs − 1 − α, t) = 1

2b

m∑

k=−m

MpX (γk − 1, t)aks(α) (11.39)

By inserting (11.38) and (11.39) into (11.37) and enforcing the normalization
condition (11.21)–(11.22) a solvable set of 2 m linear differential equations ruling
the time evolution of CFMs is obtained. The s-th equation is written as

∂Mp (γs − 1, t)

∂t
= −(γ − 1)

r∑

j=1

c j

⎛

⎜⎜⎜⎜
⎝

m∑

k=−m
k 
=m

Mp (γk − 1, t) aks (1 − β j )+

+ 1 − ρ

e0
a0s (1 − β j )

⎛

⎜⎜⎜⎜
⎝
b −

m∑

k=−m
k 
=0

MpX (γk − 1, t)
ek

1 − γk

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

+

− σα νc(γ )

νc(γ − α)

⎛

⎜⎜⎜⎜
⎝

m∑

k=−m
k 
=m

Mp (γk − 1, t)aks (α) + 1 − ρ

e0
a0s (α)

⎛

⎜⎜⎜⎜
⎝
b −

m∑

k=−m
k 
=0

MpX (γk − 1, t)
ek

1 − γk

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

(11.40)
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The solution of FFP in terms of CFMs has been tested with different values of
the stability index α and with different order of non-linearity β. The case α = 2
corresponds to the case of Gaussian white noise that has been treated in the previous
section, hence for the sake of brevity it is not repeated in the following. The solution
in terms of CFMs have been contrasted with analytical solutions, when available,
and with results of Monte Carlo simulations with 106 samples.

Consider

• α = 1.5

This value of α has been investigated as a general case in the range 1 ÷ 2. When
stability index is less than 2 the fundamental strip depends on the values of α and β,
because of the decay of the PDF for x → ∞. In particular, it has been demonstrated
by Chechkin et al. [6] that for α-stable input, the tails of the PDF of the output decay
as a power law x−u , being u = α + 1 for the linear dashpot-system (β = 1) and
u = α + 3 for the quartic system (β = 3), so in both cases u = α + β. This
allows us to do some considerations on the FS that is unknown. These considerations
resulted in the choice of ρ in the range 0 ÷ 1 + α. From this descends that, since in
the Mellin transform of FFP equation there are CFMs evaluated for different value
of ρ, we cannot solve the system with some values of β > 1.7 because CFMs from
the drift term and from diffusive term are evaluated in value of ρ outside the FS, for
more details see [1]. In the following, results for α = 1.5 are reported in Fig. 11.3.

• α = 1

Fig. 11.3 Probability density function for different values of β; continuous line solution in terms
of CFM, dotted line Monte Carlo simulation
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This is the case when the input is a Cauchy process. In this case the steady state
solution for β = 1 is known as

pX (x,∞) = σc

π(σ 2 + c2x2)
(11.41)

Figure 11.4 shows the response pdf for various value forβ at different time instant.

• α = 0.8

This case is taken as general case in the range 0 ≤ α ≤ 1. In the following result
for various values for β at different instants are shown in Fig. 11.5.

• α = 0.5

In this case the input is a symmetric Lévy process. For this value of α we are
actually able to solve only the linear case for which the steady state solution may be
obtained in the following form

pX (x,∞) =
√

σ̄

2π |x |3
(

cos

(
σ̄

4x

)(
1

2
− Fc

(√
σ̄

2π |x |

))

+

+ sin

(
σ̄

4x

)(
1

2
− Fs

(√
σ̄

2π |x |

)))

(11.42)

where Fc(·) and Fs(·) are the Fresnel integrals defined as follow

Fig. 11.4 Probability density function for different values of β; continuous line solution in terms
of CFM, dotted line Monte Carlo simulation, dashed line exact solution
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Fig. 11.5 Probability density function for different values of β; continuous line solution in terms
of CFM, dotted line Monte Carlo simulation

Fc(x) =
∫ x

0
cos

(
π t2

2

)
dt

Fs(x) =
∫ x

0
sin

(
π t2

2

)
dt (11.43)

and σ̄ is the scale factor of the output defined as

σ̄ = σ
( c
2

)−2
(11.44)

The following Fig. 11.6 shows the results for β = 1.

• Trend of the PDF at ∞
Figure 11.7a, b show logarithmic plots of the stationary solution of the FFP equa-

tion for the linear case (β = 1) and for two different values of α 1 and 0.5,
respectively, for which the stationary solution is known in analytical form. From
these figures it is possible to observe that the solution provided by the proposed
method coalesces with the exact one also for large values of x. This fact is very
important because other methods of solution fail in the description of the long tails
of the PDF.
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Fig. 11.6 Probability density function for β = 1 and α = 0.5; continuous line solution in terms of
CFM, dotted line Monte Carlo simulation, dashed line exact stationary solution

Fig. 11.7 Log-Log plot of the stationary solution for β = 1 and α = 0.5, 1 contrasted with exact
steady state solution

11.3.3 Kolmogorov-Feller Equation (Poissonian White Noise)

Let us now consider the case of a non-linear system, as in (11.10), in which, however,
W (t) is nowaPoissonwhite noise process. This process can be assumed as constituted
by a train of impulses of random amplitude Y, with assigned PDF pY (y, t). The
impulse occurrence is distributed in time according to a Poisson law. Thus, each
impulse Yk occurs at a time instant Tk, with random independent distribution T.
Under these assumptions the Poisson white noise W (t) is given by

W (t) =
N (t)∑

k=1

Yk δ(t − Tk) (11.45)

where δ(·) is the Dirac’s delta and N(t) is a Poisson counting process giving the
number of impulses in 0 ÷ t .
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In this case, the equation governing the evolution of the transition probability of
X(t) is the so-called Kolmogorv-Feller (KF) equation, which can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂pX (x, t)

∂t
= − ∂

∂x
( f (x, t)pX (x, t)) − λ(t)pX (x, t) + λ(t)

∞∫

−∞
pY (ξ) pX (x − ξ, t)dξ

pX (x, 0) = pX (x)

(11.46)

Note that, the drift term in (11.46) is identical to the corresponding one in the
case of normal white noise input (FPK equation) in (11.11). On the other hand, the
diffusive expression (second and third term at the right-hand side of (11.46)) contains
a convolution integral instead of the second derivative of the PDF.

Next, assuming that also pY (y) has a symmetric distribution, i.e., the response
PDF is symmetric, and taking into account (11.4) the discretized version of theMellin
Transform of pX (x − ξ, t) is

pX (x − ξ, t) ∼= 1

2b

m∑

k=−m

MpX (γk − 1, t) |x − ξ |−γk ; γk = ρ + i
kπ

b
(11.47)

Further, following the procedure described in Sect. 11.3.1, and after some algebra,
yields the equation evaluated for γs = ρ + i s �η as

∂MpX (γs − 1, t)

∂t
= −

[
f (x, t)pX (x, t)xγs−1

]∞
0

+ (γs − 1)

∞∫

0

f (x, t)pX (x, t)xγs−2dx+

− λMpX (γs − 1, t) + λ

b

m∑

k=−m

MpX

(
γk − 1, t

)
νc
(
1 − γk

)
μks (t); s = −m, . . . , 0, . . . ,m

(11.48)

where

μks(t) =
∞∫

0

(
I1−γk pY (y, t)

)
xγs−1dx (11.49)

which represents the Mellin transform of the Riesz fractional integral of the function
pY (y, t), defined as

(Iγ pY )(y, t) = 1

2νc(γ )

∞∫

−∞

pY (ξ, t)

|y − ξ |1−γ
dξ ; ρ 
= 1, 3, . . . (11.50)

Now consider again the nonlinear function of the form

f (X, t) = −c|X |βsgn(X), β ≥ 0, c > 0,
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then if β + ρ − 1 > 0 (that is ρ > 1 − β), the first term at the right hand side of
(11.48) vanishes leading to the equation of CFMs in the form

∂MpX (γs − 1, t)

∂t
= −c(γs − 1)MpX (γs + β − 2, t) − λMpX (γs − 1, t)+

+ λ

b

m∑

k=−m

MpX (γk − 1, t) νc(1 − γk )μks (t); s = −m, . . . , 0, . . . ,m

(11.51)

Further, taking into account the condition in (11.22), yields

∂MpX (γs − 1, t)

∂t
= −c(γs − 1)

m∑

k=−m
k 
=0

MpX

(
γk − 1, t

)
aks (1 − β) − λMpX (γs − 1, t)+

+ λ

b

m∑

k=−m
k 
=0

MpX

(
γk − 1, t

)
νc
(
1 − γk

)
μks (t) − c(γs − 1)

1 − ρ

e0
a0s×

×

⎛

⎜⎜
⎝b −

m∑

k=−m
k 
=0

MpX

(
γk − 1, t

) ek
1 − γk

⎞

⎟⎟
⎠+

+ λ

b

1 − ρ

e0
νc(1 − γ0)μ0s (t)

⎛

⎜⎜
⎝b −

m∑

k=−m
k 
=0

MpX

(
γk − 1, t

) ek
1 − γk

⎞

⎟⎟
⎠; s = −m ÷ m ; s 
= 0

(11.52)

In this manner, a set of 2 m linear (complex) differential equations is obtained,
which involves only CFMs evaluated in the same value of ρ.

In order to show the accuracy of the method, consider the non-linear system with
c = 0.2 and β = 0.6. Further, let the assigned PDF at the initial time instant be given
as

p̄X (x) = 1√
2πσ0

exp

(
− x2

2σ 2
0

)
(11.53)

and the PDF of the impulse amplitude be

pY (y) = 1√
2πσy

exp

(

− y2

2σ 2
y

)

(11.54)

with λ(t) = λ = 1, σ0 = 1 and σy = 0.5.
Figure 11.8 shows the evolution of the response PDF of the system. Specifically,

the system in (11.52) is solved assuming ρ = 0.95,�η = 0.5 and a cut-off value
η̄ = 50 (thus m = 100). Solution obtained by the proposed procedure is compared
with MCS data, using 40000 samples.
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Fig. 11.8 Probability density function at various time instant; continuous line solution in terms of
CFM, dots Monte Carlo simulation: a t = 0 s; b t = 0.5 s; c t = 1 s; d t = 1.5 s

11.4 PDF Representation Through CFMS Versus Integer
Moments

In this section an emphasis is given to the comparison between the capability of
integer order moments and CFMs to efficiently describe PDF and to solve FP-type
equations. The expression of PDF in terms of CFMs reminds that one in terms of
cumulants of integer order j K j in the form at steady state condition as [19]

px (x) ∼= 1√
2πσ

exp

[
− (x − μ)2

2σ 2

]⎛

⎝1 +
m∑

j=3

K j (−1) j

j !σ j
Hj

(
x − μ

σ 2

)⎞

⎠ (11.55)

being σ the standard deviation, μ the mean, Hj (x) the probabilistic Hermite poly-
nomials and K j the cumulants of order j which are related to the integer moments
through the following relation

E[X j ] = K j +
j−1∑

r=1

( j − 1)!
r !( j − 1 − r)!K j−r E[Xr ] (11.56)

With the above expression the PDF of the system response is approximated with
the Gram-Charlier series. However, as it is well known, such a series can be inconsis-
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tent with probability theory, e.g., negative probabilities may result.Moreover another
problem related to this expression is the jth-order hierarchy truncation method.

In fact, the cumulants K j are written once all integer moments E
[
X(t) j

]
are

known solving the following system of differential equation

Ė
[
X(t) j

] = ( j)

∞∫

0

xk−1 f (x, t)pX (x, t)dx + q

2
( j)( j − 1)E

[
X(t) j−2] (11.57)

Such a strategy belongs to the moment equation (ME) approach, proposed in
1978 [3] as an alternative method to Monte Carlo approach. If on one hand the ME
method requiresmuch less computation involving the solution of a system of coupled
deterministic ordinary differential equations, on the other hand the disadvantage
of the ME is that, unless for linear systems or special case of nonlinear ones, the
differential equations for moments of a given order will contain terms involving
higher-order moments leading to an infinite hierarchy of coupled equations requiring
a closure scheme-procedure. Then, the jth-order hierarchy truncation will require
approximations for the (j + 1)th- and (j + 2)th-order moments.

At this point, some important remarks come out:

(i) Although the system (11.57) is very similar to system (11.13) (setting (γ − 1) =
j) the hierarchy problem does not in the latter case.

(ii) At first glance the required evaluation of CFMs in different values of ρ may
mislead. However, if one thinks that the same requirement occurs for linear
systems, it will be clear that this is not a closure scheme procedure.

11.4.1 Numerical Applications

Let the nonlinear function f (X, t) in (11.10) be given in the form f (X, t) = −c1X−
c2|X |βsgn(X) with β > 0. Further let the assigned PDF in zero be p̄(x) = δ(x),
that is the system is quiescent in t = 0. In order to compare the accuracies of the
proposed and integer moments approach, the case of a bimodal PDF is considered.
Thus, let c1 < 0, c2 > 0 and β = 3 (quartic system). Note that in this case the steady
state PDF is known in closed form as

pX (x,∞) = ν exp

[
1

2q

(
x2 − x4

2

)]
(11.58)

in which v is a normalization constant such that
∞∫

0
pX (x,∞) dx = 1/2.

As far as the Gram-Charlier series expansion in (11.55) is concerned, the equation
of integers moments for the steady state case can be particularized as
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Fig. 11.9 Comparison among the Exact steady state PDF (black line) and Gram-Charlier series
expansion with 8 cumulants (red dotted line) and 10 cumulants (blue dashed line)

−kc1E[Xk] − kc2E[Xk−1+β ] + q

2
k(k − 1)E[Xk−2] = 0 (11.59)

Note that this equation cannot be solved since an infinite order hierarchy problem
appears. However, the aforementioned issue can be circumvented by expressing
integer moments in terms of cumulants through (11.56) and considering equal to
zero cumulants of order n > m̃ with m̃ arbitrary.

Figure 11.9 shows a comparison among the exact steady state PDF and the PDF
obtained through (11.55), for the case c1 = −0.5 and c2 = 0.5, considering two
different values of m̃.

As it can be observed from this figure, as the number of cumulants increases, the
Gram-Charlier expansion does not lead to the exact solution and even considering
10 cumulants the approximated PDF is rather different from the exact steady state
solution pX (x,∞).

On the other hand, as far as the series form of the PDF throughCFMs is concerned,
for the system under consideration the equation ruling the evolution of the CFMs is
explicitly given as

ṀpX (γ − 1, t) = −c1(γ − 1)MpX (γ − 1, t) − c2(γ − 1)MpX (γ + β − 2, t)+
+ q

2
(γ − 1)(γ − 2)MpX (γ − 3, t) (11.60)

in which CFMs MpX (γ + β − 2, t) and MpX (γ − 3, t) can be easily evaluated
through the following relations

MpX (γ + β − 2, t) =
m∑

k=−m

Mp(γk − 1)aks(1 − β) (11.61)

MpX (γ − 3, t) =
m∑

k=−m

Mp(γk − 1)aks(2) (11.62)
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Following the approach extensively discussed in Sect. 11.3 the system in (11.60)
may be reduced to a set of 2mcoupled ordinary differential equationswhich solutions
in terms of CFMs is easily found.

Figure 11.10 shows the evolution of the system response PDF for various time
instants vis-à-vis the exact steady state solution. In this case the values of�η = 0.5
and m = 140 have been chosen for solution in terms of CFMs. Note that, even if the
value m of CFMs is greater than the number of cumulants chosen m̃, computational
time is comparable for the two approaches.

Finally, in order to show the accuracy of the proposed approach with respect to the
closure method, Fig. 11.11 shows the solution obtained through CFMs is contrasted
with the Gram-Charlier expansion for the steady state case in (11.58).

Fig. 11.10 Evolution of the response PDF

Fig. 11.11 Comparison among Exact steady state solution (Black line), CFMs (Red dashed line)
and Gram-Charlier Expansion for 10 cumulants (Blue dashed line)
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11.5 Conclusions

This chapter presented an efficient method to analyse the stochastic response of non-
linear systems in terms of fractional moments. Instead of using moments of integer
order, the FPK equation is written in terms of complex fractional order obtained as
Mellin transform of the PDF. The main advantage in using CFMs instead of classi-
cal integer order ones is that thanks to the properties of Mellin transform operator
the PDF may be reconstructed accurately with a limited number of terms. More-
over, CFMs of a given order may be written in terms of CFMs of a different order,
thus eliminating the infinite hierarchy problem that affects the integer order moment
approach. Numerical applications have extensively shown that the method is very
accurate not only in describing the steady-state PDF but also its evolution for a range
of non-linear systems forced by Gaussian, Lévy and Poissonian white noises.
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