
Chapter 10
Analytical Approach to a Two-Module
Vibro-Impact System

Pawel Fritzkowski, Roman Starosta and Jan Awrejcewicz

Abstract A mechanical system composed of two weakly coupled vibro-impact
modules under harmonic excitation is considered. The mathematical model of the
system is presented in a non-dimensional form. The analytical approach based on the
combination of the multiple scales method and the saw-tooth function is employed.
The periodic responses of the system with two impacts per cycle near 1:1 reso-
nance are studied. The results have semi-analytical character. Stability of the periodic
motions is evaluated. In the unstable case, occurrence of a different response regime
is shown: the strongly modulated response. The analytical predictions are compared
with purely numerical results.

10.1 Introduction

Vibro-impact processes arise in many areas of physical science and engineering.
Computational analysis and understanding of the mechanical systems in which sys-
tematic collisions occur requires specific approaches and tools. From the theoret-
ical point of view, the vibro-impact systems, even the simplest ones, are strongly
nonlinear. Their non-smooth dynamics and complex behaviours make it practically
impossible to formulate general analytical solutions or strategies.

Many approximate analytical methods suitable for nonlinear dynamical systems
have evolved from the classical perturbation approach. Therefore, their applicability
is usually limited to weakly nonlinear problems [1, 2]. However, over past decades,
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a number of analytical techniques have been developed to cope with vibro-impact
models, e.g. the power-law phenomenological modeling [3], the Ivanov non-smooth
coordinate transformation [3], the non-smooth temporal transformation (NSTT) [3–
5], the concept of impact modes [6].

In particular, a combination of the multiple scales method with a saw-tooth func-
tion has been recently applied to the systems including vibro-impact nonlinear energy
sink (VI NES) [7–12]. Such problems are strictly connected with the increasingly
extensive studies on targeted energy transfer (TET) and energy harvesting [13]. How-
ever, this analytical approach has been used to relatively simple systems (two degrees
of freedom: one primary oscillator and one impacting particle).

In what follows, a more complicated mechanical system is considered. It consists
of two weakly coupled vibro-impact modules under harmonic forces. The main
aim of this chapter is to present the applicability of the abovementioned method to
the four-degree-of-freedom system. The response of the system in the case of 1:1
resonance is studied, and the effect of selected model parameters on the dynamics is
analyzed.

10.2 Mechanical System and Mathematical Model

Consider a two-module system schematically illustrated in Fig. 10.1. Each module
consists of two interacting parts: a primary body (box) of mass M , and a particle of
massm, moving freely in a straight cavity. Basically, the boxes themselves are linear
oscillators (LO) with viscous damping and harmonic excitation. The stiffness con-
stants of linear springs and the damping coefficients are denoted by ki and ci , respec-
tively (i = 1, 2). The external forces, in turn, take the form Fi (t) = Fi0 sin(ωi t).
The modules are interconnected by a linear spring and damper (k12 and c12).

Mass of the balls is assumed to be relatively small (M � m). Impacts between the
particles and the boxes are characterized by the restitution coefficient, κ. We focus
on the case of imperfectly elastic collisions (0 < κ < 1). Moreover, the coupling
between the two modules is supposed to be weak (k12 � k1, k2 and c12 � c1, c2).
Friction and any other resistance forces in the system are neglected.

c1 c2c12

F1( )t F2( )t

k1 k2k12

x1

y1 y2

x2

M M

m m

Fig. 10.1 The vibro-impact system to be considered
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A single-module system of this type was analyzed by Gendelman [7] as well as
Gendelman and Alloni [8]. The analytical approach proposed in these papers has
been adpoted and used in our studies.

In recent years, different configurations of primary structures andNESs have been
investigated analytically, numerically as well experimentally, and the researches are
not of a purely theoretical nature. Particularly, VI NESs are simple in construc-
tion and have been found to be very efficient devices with the capacity for rapid
energy absorption. Thus, they can be used to suppress shock effects, e.g. in struc-
tures under seismic vibrations or in vehicles during collisions [13]. The presented
studies, focused on various response regimes and stability of analytical solutions, are
the first step, and can be followed by optimization of the VI NES to obtain the most
efficient response regime.

Let xi and yi denote the absolute displacements of the primary bodies and the balls
(−L � yi � L , see Fig. 10.2). Using these variables as the generalized coordinates,
we can write the equations of motion of the four-degree-of-freedom system between
impacts (for |xi − yi | < L) as:

Mẍ1 + c1 ẋ1 + k1x1 − c12(ẋ2 − ẋ1) − k12(x2 − x1) = F10 sin(ω1t)

mÿ1 = 0

Mẍ2 + c2 ẋ2 + k2x2 + c12(ẋ2 − ẋ1) + k12(x2 − x1) = F20 sin(ω2t)

mÿ2 = 0

(10.1)

We assume that the duration of the box-ball collision is very short, and the classical
approach can be applied: the simplest impact law (Newton’s restitution rule) together
with the law of conservation of linear momentum [14, 15].

Let us introduce the dimensionless time and displacements:

τ = ω10t, ω2
10 = k1

M
, Xi = xi

L
, Yi = yi

L

Fig. 10.2 A single module
of the system and the
characteristic dimension

Fi( )t xi

yi

M
m

L L
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Taking into account the mentioned standard description of impacts, equations of
motion (10.1) can be reformulated and written in the non-dimensional form:

Ẍ1 + γ1 Ẋ1 + X1 − γ12(Ẋ2 − Ẋ1) − α12(X2 − X1) =

= −ε
1 + κ

1 + ε

∑

j

(Ẋ−
1 − Ẏ−

1 )δ(τ − τ j ) + f10 sin(Ω1τ )

εŸ1 = ε
1 + κ

1 + ε

∑

j

(Ẋ−
1 − Ẏ−

1 )δ(τ − τ j )

Ẍ2 + γ2 Ẋ2 + Ω2
20X2 + γ12(Ẋ2 − Ẋ1) + α12(X2 − X1) =

= −ε
1 + κ

1 + ε

∑

j

(Ẋ−
2 − Ẏ−

2 )δ(τ − τ j ) + f20 sin(Ω2τ )

εŸ2 = ε
1 + κ

1 + ε

∑

j

(Ẋ−
2 − Ẏ−

2 )δ(τ − τ j )

(10.2)

where

ε = m

M
, Ω2

20 = k2
Mω2

10

, γ1 = c1
Mω10

, γ2 = c2
Mω10

,

α12 = k12
Mω2

10

, γ12 = c12
Mω10

, Ωi = ωi

ω10
, fi0 = Fi0

MLω2
10

.

Obviously, now the overdots denote differentiation with respect to τ . Moreover, δ(•)

stands for the Dirac delta function, τ j is the time instance of the j th impact (for
|Xi − Yi | = 1), and Ẋ−

i , Ẏ
−
i are the velocities immediately before the impact. The

sums on the right-hand sides of (10.2) come just from the simple impact model and
correspond to the momenta transferred to/from the primary oscillators in consecutive
impacts (e.g. see [7, 8]).

For the convenience of further analytical studies, the following new coordinates
are defined:

Ui = Xi + εYi , Wi = Xi − Yi (i = 1, 2)

Using these relations in (10.2), we get
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Ü1 + γ1
U̇1 + εẆ1

1 + ε
+ U1 + εW1

1 + ε
+ γ12

U̇1 + εẆ1

1 + ε
+ α12

U1 + εW1

1 + ε
+

− γ12
U̇2 + εẆ2

1 + ε
− α12

U2 + εW2

1 + ε
= f10 sin(Ω1τ )

Ẅ1 + γ1
U̇1 + εẆ1

1 + ε
+ U1 + εW1

1 + ε
+ γ12

U̇1 + εẆ1

1 + ε
+ α12

U1 + εW1

1 + ε
+

− γ12
U̇2 + εẆ2

1 + ε
− α12

U2 + εW2

1 + ε
=

= −(1 + κ)
∑

j

Ẇ−
1 δ(τ − τ j ) + f20 sin(Ω2τ )

Ü2 + γ2
U̇2 + εẆ2

1 + ε
+ Ω2

20
U2 + εW2

1 + ε
+ γ12

U̇2 + εẆ2

1 + ε
+ α12

U2 + εW2

1 + ε
+

− γ12
U̇1 + εẆ1

1 + ε
− α12

U1 + εW1

1 + ε
= f20 sin(Ω2τ )

Ẅ2 + γ2
U̇2 + εẆ2

1 + ε
+ Ω2

20
U2 + εW2

1 + ε
+ γ12

U̇2 + εẆ2

1 + ε
+ α12

U2 + εW2

1 + ε
+

− γ12
U̇1 + εẆ1

1 + ε
− α12

U1 + εW1

1 + ε
=

= −(1 + κ)
∑

j

Ẇ−
2 δ(τ − τ j ) + f20 sin(Ω2τ )

(10.3)

As can be seen, the left-hand sides of all the equations are more complicated now.
However, the impact-related sums are present only in the differential equations cor-
responding to variables Wi .

10.3 Analytical Treatment of the Problem

In the approximate analytical approach to the problem, the mass ratio plays a role
of the small parameter (ε � 1). From the physical viewpoint, some factors within
the system are assumed to be weak, and the following parameters are formally intro-
duced:

γi = εγ̂i , α12 = εα̂12, γ12 = εγ̂12, fi0 = ε f̂i0. (10.4)

Moreover, we focus on the most common type of motion studied in the field of
vibro-impact systems, i.e. periodic oscillations with two impacts per cycle, near 1:1
resonance. Let us describe the proximity of Ω20 and Ω1, Ω2 to the natural frequency
(normalized to unity) of the first LO by

Ω2
20 = 1 + σ20, Ω1 = Ω2 = 1 + σe, (10.5)
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Fig. 10.3 The saw-tooth
function used as a part of the
solution Wi0

where the detuning parameters can be expressed as

σ20 = εσ̂20, σe = εσ̂e. (10.6)

In the following analysis, the method of multiple scales is employed [1, 2]. Two
time scales are used:

τk = εkτ , k = 0, 1

and the solution of the problem is approximated by

Ui = Ui0(τ0, τ1) + εUi1(τ0, τ1), Wi = Wi0(τ0, τ1) + εWi1(τ0, τ1). (10.7)

Substituting expansions (10.7), frequencies (10.5) with (10.6), and parameters
(10.4) into (10.3), and then equating coefficients of order ε0, we obtain

D2
0Ui0 +Ui0 = 0,

D2
0Wi0 = −(1 + κ)

∑

j

D0W
−
i0δ(τ0 − τ0 j ) −Ui0,

(10.8)

where Dn
k = ∂n/∂τ n

k . For the first equation, the solution is simply

Ui0 = Bi (τ1) sin(τ0 + φi (τ1)). (10.9)

In the second case, in turn, we assume that

Wi0 = Bi (τ1) sin(τ0 + φi (τ1)) + Zi (τ0, τ1), (10.10)

where Zi is the saw-tooth function

Zi (τ0, τ1) = 2

π
Ci (τ1) arcsin[cos(τ0 − θi (τ1))] (10.11)

which describes the non-smooth nature of the motion due to impacts that occur at
τ0 j = jπ + θi for j = 0, 1, 2, . . .. This specific part of the solution for constant Ci

and θi is presented graphically in Fig. 10.3.
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In order to determine relations between Bi and Ci , we analyze the impact con-
ditions. Firstly, it is assumed that Wi = ±1 for τ0 j = jπ + θi . Taking into account
(10.10), we get

Bi sin(θi + φi ) + Ci = 1 (10.12)

Secondly, inserting solution (10.10) to the second equation of (10.8) leads to

∂2Zi

∂τ 2
0

+ (1 + κ)
∑

j

[
Bi cos(τ0 + φi ) + ∂Z−

i

∂τ0

]
δ(τ0 − τ0 j ) = 0. (10.13)

After integration of this equation over a small time interval around τ0 = θi , we obtain:

− 4

π
Ci + (1 + κ)

[
Bi cos(θi + φi ) + 2

π
Ci

]
= 0. (10.14)

A combination of (10.12) and (10.14) gives the following relation between the slow-
time-scale variables:

Ci =
1 ±

√
(1 + ρ2)B2

i − ρ2

1 + ρ2
, ρ = 2(1 − κ)

π(1 + κ)
(10.15)

or alternatively
B2
i = 1 − 2Ci + (1 + ρ2)C2

i . (10.16)

The equations define the so called slow invariant manifold (SIM) of the problem for
the case of 1:1 resonance. Furthermore, the phase angles, φi and θi , are specified by
the formulas:

sin(θi + φi ) = 1 − Ci

Bi
, cos(θi + φi ) = ρCi

Bi
. (10.17)

In order to find the fixed points and observe the evolution of the system on the
SIM, the equations related to Ui at the higher order of approximation (ε1) are used
(due to their complexity they are not presented in the full form):

D2
0U11 +U11 = g1(τ0, U10, W10, U20),

D2
0U21 +U21 = g2(τ0, U20, W20, U10).

(10.18)

The functions Zi included on the right hand sides, gi , can be expanded into a Fourier
series (with respect to τ0):

Zi = 8

π2
Ci

∞∑

n=1, 3, 5

1

n2
cos[n(τ0 − θi )] (10.19)
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Next, elimination of secular terms provides the solvability conditions, i.e. the system
of differential equations for the amplitudes and phases:

D1B1 = hB1(τ1, B1, φ1, B2, φ2, C1, θ1),

D1φ1 = hφ1(τ1, B1, φ1, B2, φ2, C1, θ1),

D1B2 = hB2(τ1, B1, φ1, B2, φ2, C2, θ2),

D1φ2 = hφ2(τ1, B1, φ1, B2, φ2, C2, θ2).

(10.20)

To transform (10.20) into an autonomous system, we use relations (10.17) and put

ψ1 = σ̂eτ1 − φ1, ψ2 = σ̂eτ1 − φ2. (10.21)

Consequently, we obtain

D1B1 = h∗
B1(B1, ψ1, B2, ψ2, C1),

D1ψ1 = h∗
ψ1(B1, ψ1, B2, ψ2, C1),

D1B2 = h∗
B2(B1, ψ1, B2, ψ2, C2),

D1ψ2 = h∗
ψ2(B1, ψ1, B2, ψ2, C2).

(10.22)

The steady-state motions correspond to the solutions of the algebraic system

h∗
B1 = 0, h∗

ψ1 = 0, h∗
B2 = 0, h∗

ψ2 = 0. (10.23)

Finally, determining sinψi , cosψi and sin(ψ2 − ψ1), cos(ψ2 − ψ1) appearing in
(10.23), and using elementary trigonometric identities, we can eliminate ψi and
arrive at the rational equations in which Bi , Ci are the only unknowns:

h1(B1, C1, B2, C2) = 0, h2(B1, C1, B2, C2) = 0. (10.24)

Solving these equations together with (10.16), we can find the fixed points of the
slow flow.

The SIM, that is the curve Bi (Ci ), is shown in Fig. 10.4. The minimal allowable
(real) value of Bi and the corresponding value of Ci are given by

Bmin = ρ√
1 + ρ2

, Cmin = 1

1 + ρ2
(10.25)

A careful analysis of the function Wi0(τ0, τ1) leads to the conclusion that non-
degenerate solutions, i.e. the ones that do not violate the no-penetration condition
(|Wi0| � 1 for all τ0), exist for Ci ≥ 0.

Moreover, the curve Bi (Ci ) can be divided into two branches: one is stable and
the other is unstable. Stability of periodic motions can be studied by means of the
techniqueproposedbyMasri [16] and adopted, for example, in [17, 18]. The approach
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Fig. 10.4 SIM of the system
for κ = 0.65: the stable
branch (bold solid) and the
unstable branch (dashed);
dotted line depicts the Bmin
level

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Ci

B
i

Bmin

Fig. 10.5 Stable (shaded)
and unstable (white) regions
for the vibro-impact system;
dotted line depicts the
Cmin(κ) curve

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

C
i Cmin

allows one to analyze the propagation of small perturbations in the original periodic
motion. More precisely, one can evaluate the effect of small variation of the steady-
state values (displacement and velocity) just after an impact, (Δ1θ

+
i , Δ1Ẇ

+
i ), on

the instants of subsequent collisions and the resulting variation in the displacement
and velocity, i.e. (Δ jθ

+
i , Δ j Ẇ

+
i ) with j = 2, 3, . . .. More detailed discussion of the

technique goes beyond the scope of this paper. Such an analysis conducted for the
considered system leads to the following condition for the existence of asymptotically
stable periodic motions:

Ci >
4

4 + πρ
. (10.26)

The stability region on the plane (κ, Ci ) is presented in Fig. 10.5. As can be seen, the
right arm (Ci > Cmin) of the hyperbola Bi (Ci ) belongs entirely to the stable branch,
which additionally contains a short piece of the left arm (Ci < Cmin).

10.4 Analytical-Numerical Results

The results presented belowhave an analytical-numerical character. Firstly, due to the
complexity of the system of algebraic equations (10.16)–(10.24), the fixed points of
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Fig. 10.6 Fixed points of the system: a unstable, b stable, c stable. Results obtained for f̂10 =
f̂20 = 1

the slow flow are searched numerically. Secondly, the theoretically predicted steady-
state responses of the system are compared to the purely numerical solutions, i.e.
the results obtained by a direct numerical integration of (10.1). All the numerical
experiments are performed for the following set of dimensionless parameters:

ε = 0.1, κ = 0.65, α̂12 = 1,

γ̂1 = γ̂2 = γ̂12 = 0.2, σ̂20 = 0.5, σ̂e = 0.2.

Values of the excitation amplitudes will be altered.
Let us start with identical amplitudes of two forces: f̂10 = f̂20 = 1. Three fixed

points existing in this case are illustrated in Fig. 10.6. More precisely, the projection
of the fixed points on the (Ci , Bi ) planes are represented by black circles. The
projection on the (C1, B1) plane located on the left arm of the SIM (see Fig. 10.6a)
indicates that the corresponding fixed point is unstable; the next two ones are stable.

The theoretically predicted steady-state response of the system (two impacts per
cycle) for the stable fixed point (c) is presented in Fig. 10.7. The absolute displace-
ments of the primary oscillators and the coordinatesUi are marked in grey while the
absolute and relative displacements of the particles are shown in black lines. Simi-
lar results can be obtained numerically. Needless to say, in a dynamic simulation, a
long-term behaviour of the system must be analyzed to omit any transient motion.
As an example, the purely numerical solutions W2 and X2 are given in Fig. 10.8.



10 Analytical Approach to a Two-Module Vibro-Impact System 197

Fig. 10.7 Steady-state response of the system – fixed point (c): Ui , Xi (grey) and Wi , Yi (black).
Results obtained for f̂10 = f̂20 = 1

(b)

(a)

Fig. 10.8 Steady-state response of the system: a displacement of the second box, b relative dis-
placement of the particle. Numerical solution obtained for f̂10 = f̂20 = 1

The grey squares appearing in Fig. 10.6 are related to singular points. Let P1 =
(C∗

1 , B∗
1 ) and P2 = (C∗

2 , B∗
2 ) be the projections of a fixed point onto (C1, B1) and

(C2, B2) planes, respectively. By S1 we denote a point on (C1, B1) corresponding
to a singularity of h1 and h2 in (10.24) at C2 = C∗

2 and B2 = B∗
2 . Analogously, S2

on the (C2, B2) plane comes from a singularity of h1 and h2 when C1 = C∗
1 and

B1 = B∗
1 . Obviously, locations of P1, P2 and S1, S2 on the SIM projections change



198 P. Fritzkowski et al.

(a) (b) (c)

Fig. 10.9 Fixed points of the system: a unstable, b unstable, c stable. Results obtained for f̂10 = 1,
f̂20 = 0.89

with varying values of some parameters. However, if Pi gets closer to Si , the fixed
point becomes a singular point, potentially associated to a bifurcation.

Now, let us decrease one of the excitation amplitudes. For f̂20 = 0.89, there are
still three fixed points (see Fig. 10.9), but only one of them turns out to be stable. As
can be seen from a comparison of all cases in Figs. 10.6 and 10.9, the projections P1
and P2 move along the SIM-related curves from right to left. Particularly, projections
of the stable fixed points move down the right branch of the SIM.

As the last example, let us consider the case when both the excitation amplitudes
are decreased up to 0.5. In such a case only one fixed point exists. Its projections on
the (Ci , Bi ) planes as well as the corresponding steady-state response are presented
in Fig. 10.10. However, since P1 and P2 are located on the left branch of the SIM, the
fixed point is unstable. The only possible behaviour for the system is the so called
strongly modulated response (SMR). Thus, the analytical periodic solution has no
practical importance. The actual motion of the system can be observed by means of
numerical simulations. As can be seen from Fig. 10.11, in the relative displacement
of a particle we can distinguish intervals of resonant motion divided by relatively
short, irregular non-resonant behaviour. The primary oscillators, in turn, undergoe the
characteristic beating-like motion, i.e. large modulations of the vibration amplitudes.

To sum up, when treating the forces amplitudes as the control parameters, we
can observe a series of changes in the location of fixed points on the SIM and their
stability. By decreasing the amplitudes, we can lead to the case when no stable fixed
points exist, and the mechanical system exhibits strongly modulated response that
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Fig. 10.10 Fixed point (unstable) and the theoretical response of the system:Ui , Xi (grey) andWi ,
Yi (black). Results obtained for f̂10 = f̂20 = 0.5

(b)

(a)

Fig. 10.11 Stronglymodulated response of the system: a displacement of the second box, b relative
displacement of the particle. Numerical solution obtained for f̂10 = f̂20 = 0.5
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may be advantageous for potential energy harvesting applications [8, 13]. Analysis
of the interplay between various model parameters goes beyond the scope of this
paper.

10.5 Conclusions

The four-degree-of-freedom system composed of two weakly coupled vibro-impact
modules under harmonic forces has been considered. The analytical approach based
on the multiple scales method combined with the saw-tooth impact modelling has
been adopted and used. The response of the system with two impacts per cycle near
1:1 resonance has been studied.

The applied technique can provide semi-analytical periodic solutions, and is useful
in assessing stability of the solutions. It should be noticed that this approach does
not require the restitution coefficient to be close to unity. Validity of the analytical
predictions has been examined by numerical experiments.

Naturally, such a mechanical system can undergo complex behaviours, and many
interesting problems may be studied in detail, e.g. stability of fixed points, singular
points and bifurcations, interplay between different model parameters. Apart from
that, the applicability of the method to more complex mechanical systems should be
verified and extended. Particularly, models including strong and nonlinear couplings,
and one-sided impact interactions merit further attention.
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