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Abstract
Tox21 is a collaborative effort among the National Center
for Advancing Translational Sciences, the Environmental
Protection Agency, the National Toxicology Program,
and the Food and Drug Administration to elucidate the
toxic effects of compounds found in the environment
and/or created by humans. Since 2008, this program has
screened many different pathways, targets, or phenotypes
(more than 70 assays) using an in vitro quantitative
high-throughput screening approach. Endocrine disrup-
tion and stress-related signaling pathways have been the
main focus of the Tox21 screening program. Nuclear
receptors play an important role in endocrine disruption,
modulating many different biological processes and
metabolism. It is therefore important to classify endoge-
nous and exogenous compounds for their ability to alter
the function or quantity of these nuclear receptors.
Stress-related signaling pathways are necessary for body
homeostasis and are involved in many disease states as
well. Identifying compounds which induce stress signal-
ing pathways in the body is prudent to fully determine the
safety of an environmental chemical. This book chapter
describes an in-depth analysis of Tox21, a summary of
select examples of their assays, and the future plan for the
screening program.
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1 Introduction to Toxicology
in the Twenty-First Century (Tox21)

An increasing amount of chemicals is released into the
atmosphere each year, requiring more expedient and thor-
ough screening techniques in order to effectively determine
the toxicological effects on humans and the environment.
Traditionally, the main source in identifying compound
toxicity was in vivo animal models utilized to generate a
detailed profile of each chemical (Greaves et al. 2004).
These animal models were able to detect one specific toxi-
cological endpoint (e.g., reproductive, oral, dermal, or
developmental toxicity) per experiment (Shukla et al. 2010).
However, these models may not fully represent the effects on
humans, are performed at a low throughput, and/or are
expensive to perform, leading to a lack in sufficient knowl-
edge to evaluate safety concerns (NRC 1984). Regardless of
these limitations, the preponderance of knowledge for a
drug’s toxicity and therapeutic window has mainly been
founded based on these types of experiments, as a result of
the lack of other robust in vitro options (Zurlo et al. 1994).
Owing to these challenges, future chemical toxicity testing
was suggested in a report by the National Research Council
(NRC), which stated a predictive toxicology approach rely-
ing on identifying chemical modulators of cellular pathways
using human cell-based in vitro assays and computational
modeling was a novel method in tackling the identification
of potential health risks (Gibb 2008). A collaborative effort,
called Tox21, among the Environmental Protection Agency
(EPA), the National Toxicology Program (NTP), and the
National Chemical Genomics Center (NCGC) which is now
a part of the National Center for Advancing Translational
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Sciences (NCATS) was generated to bring compound toxi-
city testing into the twenty-first century. In 2010, the Food
and Drug Administration (FDA) joined this effort. Since the
inception of this esteemed program, over 200 peer-reviewed
scientific articles related to the Tox21 program have been
published within about 56 journals (Thomas et al. 2018). All
data acquired throughout this program is also available
online for public viewing (e.g., https://tripod.nih.gov/tox21
and https://pubchem.ncbi.nlm.nih.gov), which is intended to
progress toxicology and science beyond the scope that a
single program could achieve.

Each of the collaborating entities plays a specific role
throughout the Tox21 program. In 2004, NTP generated a
vision for what science in the twenty-first century should
look like, including the exploration of an alternative method
to animal testing. The idea quickly led to establishing a
high-throughput screening (HTS) program, which allowed
for the testing of toxicity for thousands of environmental
agents at a time (https://ntp.niehs.nih.gov/results/tox21/
history-index.html). The EPA contributes to Tox21 by pri-
oritizing toxic chemicals through the generation of data and
predictive models using the Toxicity Forecaster (ToxCast,
https://www.epa.gov/chemical-research/toxicity-forecasting
). Building novel pathways to study the toxicity of the
compounds, which the FDA regulates, fits into the overall
theme of the Tox21 program. To fulfill this goal, the FDA
has taken substantial strides toward the generation of com-
prehensive predictive toxic models (FDA’s Predictive Tox-
icology Roadmap 2017). Lastly, NCATS’ role for Tox21
includes performing the most advanced HTS models which
the current technology has to offer so that more can be
known about the hazards of commonly used chemicals in a
quick and efficient manner (https://ncats.nih.gov/tox21/
about/goals).

2 Tox21 Quantitative High-Throughput
Assay Screening and Data Analysis

Quantitative HTS (qHTS) has become an innovative way to
efficiently screen hundreds and thousands of chemical
compounds at multiple concentrations in a short time. Each
Tox21 qHTS assay is optimized into a 1536-well plate for-
mat so that each compound of the Tox21 10 K compound
library, which includes * 8900 unique compounds, can be
quickly tested at 15 different concentrations in triplicate.
This compound collection, put together by NCATS, NTP,
and the EPA, of environmental chemicals and clinically used
drugs includes solvents, food additives, drinking water dis-
infection by-products, sunscreen additives, preservatives,
industrial chemicals, flame retardants, synthesis by-products,
natural product components, plasticizers, pesticide/herbicide
additives and their metabolites, and therapeutic agents. Once

an initial optimization is complete, the Tox21 10 K com-
pound primary screen is run and potential active compounds
are selected for further studies (Fig. 1). Any compound
going through mechanism-based assays also go through
compound quality control (QC) to verify the purity and
specific molecular weight of each selected compound.

The assay types used for a primary screen are usually path-
way-, target-, or phenotype-based assays. In this book chapter,
we discuss certain target-specific assays (see Sects. 2.1 and
2.2); however, a more in-depth analysis and explanation of a
few phenotypic assays can be found in a previous review paper
(Hsu et al. 2017). Once the primary screen is complete, whether
phenotypic, target, or pathway based, there is the potential
ability to confirm certain compounds as agonists or antagonists
for the specific endpoint being measured. Through a robust
assay performance and a rigorous analysis of the data (see
Sect. 2.3), Tox21 performs the initial step into profiling these
potentially hazardous chemicals.

Owing to its ability to quickly and efficiently use a qHTS
platform, Tox21 has performed more than 70 screens to
identify the activity caused by environmental compounds in
different signaling pathways and targets. Each screen was
vigilantly optimized and tested to ensure robust performance
data. A list of all current screens, performed by Tox21, is
displayed in Table 1. The specific cell lines used for each
assay target or pathway are shown alongside the endpoint
readout followed by either a reference or where the cell line
was acquired. For a few assay targets (androgen receptor,
estrogen receptor a, and estrogen-related receptor a), mul-
tiple engineered stable cell lines were utilized to fully
identify compounds, from the Tox21 collection, which were
active for those respective assays.

2.1 Nuclear Receptors

Nuclear receptors play a pivotal role in development, home-
ostasis, and/or disease states (Giguere 1999). Modulation of
some nuclear receptors, through environmental chemicals
and/or exogenous compounds, can be hazardous or beneficial
to the human body depending on the extent of the alteration.
Classifying these compounds as inhibitors or inducers of
certain nuclear receptors would expound upon the knowledge
of their toxic or therapeutic effect on humans. Modifying the
androgen receptor (AR), estrogen receptor (ER), or
estrogen-related receptor (ERR) pathways can lead to endo-
crine disruption and potentially cause reproductive and
developmental disorders, as well as cancer (Gonzalez et al.
2019; Park et al. 2016). Altering the activity of the constitutive
androstane receptor (CAR) or pregnane X receptor (PXR) can
potentially be utilized for therapeutic purposes in certain
disease states (Gao and Xie 2010; Hedrich et al. 2016) or
identify potentially hazardous drug–drug interactions. The
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Tox21 program has screened different stably transfected cell
lines for their activity on these nuclear receptors.

AR Agonist Identification The transcriptional factor AR
regulates male sexual development, affects female fertility,
and is involved in pathological processes which alter the state
of certain diseases such as Kennedy’s disease, Klinefelter’s
syndrome, and certain reproductive cancers (Culig et al. 2002;
Pihlajamaa et al. 2015; Chang et al. 2014; Skakkebaek et al.
2014; Tanaka et al. 2012). Therefore, it is important to identify
compounds, from the environment and elsewhere, which
modify the activity of this important nuclear receptor. The
Tox21 10 K chemical library was screened to categorize
compounds as potential AR agonists if they generated AR
activity in at least one of the two reporter gene cell lines
utilized (Lynch et al. 2017). Through this endeavor, Tox21
scientists identified a potentially novel class of AR agonists—
fluoroquinolone antibiotics. A binding assay was performed
on the actives identified from the reporter gene assays to
further define each compound as an AR agonist due to binding
capability; an overall 72% concordance rate between binding
and reporter assays demonstrated a high predictive ability of
the cell-based primary screening results. Translocation of AR
from the cytoplasm into the nucleus, thefirst step of activation,
was also observed for 16 of the 17 most promising AR ago-
nists, including GSK232420A, norethisterone enanthate, and
prulifloxacin. This study was a first step in identifying certain
compounds as potentially hazardous with respect to the AR
pathway.

ERR Modulation Profiling Alongside its previously
mentioned endocrine disruption involvement, ERR is also
involved in energy homeostasis, as well as controlling
mitochondrial oxidative respiration (Leone et al. 2005; Lin
et al. 2004; Luo et al. 2003). A poor prognosis for breast,
prostate, and endometrial cancer occurs when increases in
ERRa gene expression levels are found within the respective
tumors (Fradet et al. 2016; Matsushima et al. 2016; Park
et al. 2016). With all the pathways and disease states that
ERR regulates, it is important to identify agonists (toxicants)
and antagonists (potential therapeutics) to determine the full
scope of internalizing these compounds. One of the unique
features of this nuclear receptor is its crosstalk with perox-
isome proliferator-activated receptor gamma co-activator 1
alpha (PGC-1a), which is sometimes a necessary component
to ERRa activation (Teng et al. 2014). When the Tox21
10 K compound library was screened for ERR agonists, a
class of novel compounds was identified—statins (Lynch
et al. 2018). Interestingly, this group of compounds had no
effect in the PGC/ERR cell line, which implies activation of
ERRa independently of PGC-1a. A known ERRa inhibitor,
XCT790, was co-treated with each statin and screened again
using the ERR cell line. Each of the six statins showed
concentration-dependent inhibition when co-treated with 0,
5, or 10 µM XCT790, indicating ERR dependence. Two of
the statins, cerivastatin sodium and fluvastatin, were also
used to treat ERR siRNA transfected cells which showed an
inhibition in three ERRa-regulated genes, ERR, COX8, and

Fig. 1 Each screen starts with
about 10,000 compounds from
the Tox21 collection being
assayed in a high-throughput
screening manner, in either
target/pathway or
phenotypic-based platforms. The
blue-colored words on the left
side of the figure are the actions
taken for each step to occur. The
right side displays the endpoints
used to generate a cutoff value for
each future step, so that the
collection can be further
narrowed down in size based on
significance. NR = nuclear
receptor, TF = transcription
factor
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Table 1 Cell Line and Assay Readouts for Tox21 Screens

Cell lines Assay target Assay readout Cell lines acquired/Reference

AChE-SH-SY5Y Acetylcholinesterase Absorbance
Fluorescence

Li et al. (2017a)

AhR-HepG2 Aryl hydrocarbon receptor Luminescence He et al. (2011)

AP1-ME180 Activator protein 1 Fluorescence Invitrogen (Carlsbad, CA)

AR-HEK293 Androgen receptor (LBD) Fluorescence Lynch et al. (2017)

AR-MDA Androgen receptor (full) Luminescence Lynch et al. (2017)

Aromatase-MCF7 Aromatase Luminescence Chen et al. (2015)

CAR-HepG2 Constitutive androstane receptor Luminescence Lynch et al. (2013, 2014, 2015, 2016, 2019a)

HepG2 Caspase-3 and Caspase-7 Luminescence Huang et al. (2008)

DT40 DNA repair Luminescence Nishihara et al. (2016)

ELG1-HEK293 Telomere length regulation
protein ELG1

Luminescence Fox et al. (2012)

ERa-HEK293 Estrogen receptor a Fluorescence Huang et al. (2011, 2014), Rotroff et al. (2014), Judson et al. (2015)

ER-MCF7 Estrogen receptor a Luminescence Huang et al. (2014), Judson et al. (2015), Rotroff et al. (2014)

ERb-HEK293 Estrogen receptor b Fluorescence Invitrogen

ERR-HEK293 Estrogen-related receptor a Luminescence Lynch et al. (2018, 2019b), Teng et al. (2017)

ESRE-Hela Endoplasmic reticulum stress
response element

Fluorescence Bi et al. (2015)

FXR-HEK293 Farnesoid X receptor Fluorescence Hsu et al. (2014, 2016a, 2016d)

GR-Hela Glucocorticoid receptor Fluorescence Invitrogen

CHO H2A histone family member X Fluorescence ATCC (Manassas, VA)

HCT116 HDAC I and HDAC II Luminescence Hsu et al. (2016c)

HRE-ME180 Hypoxia-inducible factors Fluorescence
Luminescence

Hsu et al. (2016b), Khuc et al. (2016)

HSE-Hela Heat shock element Fluorescence Hancock et al. (2009)

MMP-HepG2-ME180 Mitochondrial membrane
potential

Fluorescence Li et al. (2017b), Sakamuru et al. (2012, 2016), Xia et al. (2018),
Attene-Ramos et al. (2013, 2015)

NFjB Nuclear factor-kappa B Fluorescence Miller et al. (2010)

Nrf2/ARE-HepG2 Antioxidant response element Fluorescence Shukla et al. (2012), Zhao et al. (2016)

p53-HCT-116 p53 Fluorescence Witt et al. (2017)

PGC/ERR-HEK293 Estrogen-related receptor a Luminescence Lynch et al. (2018, 2019b), Teng et al. (2014)

PPARd-HEK293 Peroxisome
proliferator-activated receptor d

Fluorescence Invitrogen

PPARc-HEK293 Peroxisome
proliferator-activated receptor c

Fluorescence Invitrogen

PR-HEK293 Progesterone receptor Fluorescence Invitrogen

PXR-HepG2 Pregnane X receptor Luminescence Shukla et al. (2011), Dr. Taochen Chen

RAR-C3H10T1/2 Retinoic acid receptor Luminescence Chen et al. (2016)

RORc-CHO Retinoic acid-related orphan
receptor c

Luminescence Dr. Anton M. Jetten

RXR-HEK293 Retinoid X receptor Fluorescence Invitrogen

ShhGli1-3T3 Sonic hedgehog pathway Luminescence Dr. Yanling Chen
Dr. David H. Reese

SMAD-HEK293 Smad signaling pathway Fluorescence Invitrogen

TRE-GH3 Thyroid hormone receptor Luminescence Freitas et al. (2014)

TRHR-HEK293 Thyrotropin-releasing hormone
receptor

Fluorescence Codex Biosolutions (Gaithersburg, MD)

TSHR-HEK293 Thyroid stimulating hormone
Receptor

Fluorescence Codex Biosolutions

VDR-HEK293 Vitamin D receptor Fluorescence Invitrogen
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IDH3. Owing to the newly identified connection of statins
with ERRa agonism, it is plausible to assume that these
compounds might potentiate a poor outcome or progression
in different types of cancer. Further studies need to be per-
formed to fully understand the implications of these initial
studies performed by the Tox21 program.

A screen was performed on the Tox21 10 K compound
collection to identify ERRa antagonists as well (Lynch et al.
2019b). Two major groups, antineoplastic agents and pesti-
cides, were classified as antagonists of ERRa activity as well
as some compounds inhibiting mRNA expression of five
downstream genes (cytochrome c oxidase subunit 8A,
COX8A; isocitrate dehydrogenase 3 (NAD(+)) alpha,
IDH3a; peroxisome proliferator activated receptor alpha,
PPARa; cytochrome c oxidase subunit 4I1, COX4I1; and
cytochrome c). A heat map was also displayed showing the
activity of each compound on multiple targets and pathways,
including AR, nuclear factor erythroid 2-related factor
2/antioxidant response element (Nrf2/ARE), CAR, ER, ERR,
farnesoid X receptor, thyroid hormone receptor, mitochon-
drial membrane potential, p53, PPARc, progesterone recep-
tor, retinoic acid receptor, retinoic acid-related orphan
receptor, and sonic hedgehog. Most of the antineoplastic
agents (artemisinin, bortezomib, carfilzomib, decitabine,
etoposide, topotecan, and suberoylanilide hydroxamic acid)
activated the p53 pathway which is consistent with a previous
study (Guo et al. 2019), while most of them (artemisinin,
bortezomib, carfilzomib, etoposide, gimatecan, methodi-
chlorophen, topotecan, and suberoylanilide hydroxamic acid)
also had antagonistic activity in the sonic hedgehog assay,
which is a pathway known for being associated with tumor
development (Jiang and Hui 2008). Interestingly, many of the
pesticides demonstrated an activation of the antioxidant
responsive element (ARE) pathway (Lynch et al. 2019b)
which is known to counter oxidative stress (Johnson et al.
2008). However, it is likely these pesticides are causing the
formation of free radicals, which induce oxidative stress, and
ultimately, the increase in the ARE pathway would then
occur. The Tox21 10 K compound study, for both agonist
and antagonist identification of ERRa modulation, was a
major step into investigating the mechanism of action for
many compounds, though future studies are certainly war-
ranted and necessary to fully understand the scope of each
specific compound and how they will interact in the body.

CAR Agonist Classification Classically, CAR had pre-
viously been known to regulate drug metabolizing enzymes
and transporters which have an effect on all phases of drug
metabolism (Qatanani and Moore 2005). It has recently been
shown that CAR also plays an important role in energy
homeostasis, as well as certain cancer progression and
treatments (Gao and Xie 2010; Hedrich et al. 2016; Yama-
moto et al. 2004). Owing to this novel function, it is
important to identify any novel selective CAR agonists,

which is what the Tox21 10 K compound collection was
screened for in a previous publication (Lynch et al. 2019a).
Four compounds (neticonazole, diphenamid, phenothrin, and
rimcazole) were identified to be hCAR activators through a
confirmation study, using human primary hepatocytes,
examining mRNA and protein expression of cytochrome
P450 (CYP) 2B6 and CYP3A4. A nuclear translocation
assay was also performed to display these four compounds
exhibiting the first step of hCAR activation—translocation
from the cytoplasm into the nucleus. Future studies will need
to be performed to truly understand the usage of these
compounds in a therapeutic capacity, as well as to identify
possible drug–drug interactions which may occur.

2.2 Stress-Related Pathways

Acetylcholinesterase Inhibitor Profiling Acetyl-
cholinesterase (AChE EC 3.1.1.7), found primarily in neu-
romuscular junctions and cholinergic brain synapses, is an
enzyme involved in the termination of impulse transmission
with a highly specific catalytic activity for hydrolyzing
acetylcholine (ACh) into choline (Quinn 1987; Taylor and
Radic 1994). After this transformation, choline is taken up
into the pre-synaptic nerve and combined with acetyl-CoA to
produce acetylcholine through the action of
choline-acetyltransferase (Soreq and Seidman 2001). The
majority of AChE can be found in an amphiphilic globular
tetramer (G4) form or a monomeric G1 form (Fernandez et al.
1996; Wang and Tang 2005), inside either motor neurons or
sensoryfibers (Massoulie et al. 1993).Within these two forms,
there are two subsites of the active site, which are called the
anionic subsite and the esteratic subsite (Nachmansohn and
Wilson 1951). The anionic subsite binds ACh and quaternary
ligands, acting as competitive inhibitors to assist in inhibiting
AChE (Mooser and Sigman 1974;Wilson and Quan 1958). In
addition, one or more peripheral anionic sites, distinct from
the choline-binding pocket, were also identified to bind ACh
and other quaternary ligands acting as uncompetitive inhibi-
tors (Taylor and Lappi 1975). In the esteratic subsite, the basic
function of hydrolyzing ACh into acetate and choline is per-
formed (Nachmansohn andWilson 1951). Inhibition of AChE
can lead to acetylcholine accumulation in the synaptic space,
enhanced nicotinic and muscarinic receptor stimulation, as
well as disrupted neurotransmission (Colovic et al. 2013).
Therefore, AChE inhibitors play an important role in both
toxicology and pharmacology, and it is important to identify
compounds which can be associated as such.

Depending on the mode of action, AChE inhibitors can
be divided into two subcategories: reversible and irreversible
inhibitors. Reversible inhibitors, competitive or noncom-
petitive, have therapeutic applications, while irreversible
inhibitors are more commonly associated with having toxic
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side effects. Tacrine, a noncompetitive reversible AChE
inhibitor, was the first approved drug for the treatment of
Alzheimer’s disease; however, due to its hepatotoxic side
effects, the use of this drug has since been eradicated (Wat-
kins et al. 1994). Other AChE inhibitors which have been
approved by the U.S. Food and Drug Administration (FDA),
to be utilized as drugs, include donepezil, rivastigmine, and
galantamine (Bond et al. 2012). Carbamates, a group of
reversible AChE inhibitors, are organic compounds which
can be used as therapeutic drugs (for treating Alzheimer’s
disease, glaucoma, and Parkinson’s disease), pesticides,
parasiticides (in veterinary medicine), or as a prophylaxis of
organophosphorus compound poisoning (Giacobini 2000).
Organophosphorus pesticides exert their pesticidal activity
by inhibiting AChE activity irreversibly, causing toxic effects
such as headaches, impaired memory and concentration,
disorientation, severe depression, irritability, drowsiness, or
insomnia (Colovic et al. 2013). Many environmental pollu-
tants, such as heavy metals, other pesticides, polycyclic
aromatic hydrocarbons, and dioxins also show inhibition of
AChE activity (Ademuyiwa et al. 2007; Kang and Fang
1997; Reddy and Philip 1994; Xie et al. 2013). Therefore,
measurement of AChE activity has been widely used as a
biomarker of toxic effects on the nervous system following
exposure to organophosphate and carbamate pesticides
(Lionetto et al. 2013). Although AChE inhibitors have sig-
nificant consequences to human health, there are still a large
number of compounds which have not been identified as
irreversibly inhibiting AChE activity, including synthesized
drug candidates, food additives, and industrial chemicals.

Regarding the role of AChE in pharmacology and toxi-
cology, many biochemical readouts, including spectropho-
tometric, colorimetric, radiometric, fluorometric, and
electro-chemical, have been used to measure the activity of
cholinesterase (Holas et al. 2012; Miao et al. 2010). The
Ellman method is regarded as the golden method for deter-
mining AChE activity (Ellman et al. 1961). This highly
regarded assay still has certain limitations, such as its reac-
tion with AChE reactivators (e.g., oximes) as well as inter-
ference from hemoglobin in the blood (Sinko et al. 2007).
Recently, a fluorescent assay has been developed using
whole blood and cultured human neuroblastoma cells
(SH-SY5Y) in which AChE activity was determined by
measuring the fluorescence of resorufin, which is produced
from coupled enzyme reactions involving acetylcholine,
horseradish peroxisome, choline oxidase, and Amplex Red
(10-acetyl-3,7-dihydroxyphenoxazine) (Santillo and Liu
2015). With the growing number of chemicals in the envi-
ronment, as well as the need for novel therapeutics, devel-
oping AChE inhibition assays that are suitable to qHTS
platforms will greatly add value to human health.

While the previously mentioned fluorescent method using
Amplex Red was developed in a homogenous format using

SH-SY5Y cells, an enzyme-based assay using eel AChE was
also optimized into a 1536-well format. In the Tox21 pro-
gram, both assays were used to screen 1368 compounds,
which included a library of pharmacologically active com-
pounds (Library of Pharmacological Active Compounds,
LOPAC) and 88 additional compounds, at multiple con-
centrations in a qHTS format (Li et al. 2017a). Each assay
exhibited exceptional performance characteristics, including
assay signal window and reproducibility. A group of inhi-
bitors were identified from this study, including known (e.g.,
physostigmine and neostigmine bromide) and novel AChE
inhibitors (e.g., chelerythrine chloride and cilostazol). As a
result, this screening method developed for AChE was
determined to be a useful tool for profiling inhibitors of this
enzyme.

Some organophosphorus pesticides are not active AChE
inhibitors in their parent form and require bioactivation in
order to be effective (Sultatos 1994). A high-throughput
AChE assay, in a 1536-well format, using liver microsomes
was developed to provide an accurate estimation of meta-
bolism using an in vitro method. In order to validate this
assay, a group of organophosphorus pesticide compounds,
containing both parental compounds and their active
metabolites, was screened for AChE inhibition activity (Li
et al. 2019). The assay utilized recombinant human AChE
protein with human or rat liver microsomes; the Ellman
colorimetric or fluorescent method was then used to measure
AChE activity. Once the assay was completed, the repro-
ducibility was evaluated, and each compound was ranked in
the order of potency. Large potency differences between
some parent compounds and their metabolites were observed
in the assay with microsome addition. Many parental
organophosphorus pesticides, such as chlorpyrifos, tebupir-
imfos, and chlorethoxyfos, only showed the inhibitory
effects on AChE after addition of the metabolic component
into the reaction, signifying the need of bioactivation to
occur in order to become potent AChE inhibitors. Together,
these data demonstrated the promising ability to profile
AChE inhibitors using metabolic simulation; further studies
will be vital to acquire the full extent of safety assessment
for each chemical. Cell- and enzyme-based AChE assays
would increase the library of AChE inhibitors, having a
significant impact on both the pharmaceutical and toxicol-
ogy fields.

Mitochondrial Toxicant Identification Mitochondria,
the intracellular powerhouse, generate 95% of cellular
energy in the form of ATP through oxidative phosphoryla-
tion (Wallace et al. 1997). Mitochondrial membrane poten-
tial (MMP), the electric potential across the inner
mitochondrial membrane, is generated by the mitochondrial
electron transport chain through a series of redox reactions
(Chen 1988). MMP is a key parameter for assessing mito-
chondrial function, cell health, and apoptosis. Several
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cationic lipophilic fluorescent dyes are routinely used to
evaluate MMP changes, including rhodamine 123 (R123)
(Chen 1988), chloromethyl tetramethyl rosamine (Macho
et al. 1996), tetramethylrhodamine methyl and ethyl esters
(TMRM and TMRE) (Farkas et al. 1989), 3,3′-diehexilox-
adicarbocyanine iodide (DiOC6(3)) (Farkas et al. 1989), and
5,5′,6,6′-tetracholoro-1,1′,3,3′-tetra-
ethylbenzimidazolcarbocyanine iodide (JC-1) (Salvioli et al.
1997).

Mitochondrial membrane potential indicator (m-MPI), a
water-soluble derivative of JC-1 with improved signal to
background performance, was developed by Codex Bioso-
lutions to determine the MMP of certain chemicals. Using
m-MPI, a homogenous cell-based assay was developed,
optimized, and miniaturized into a 1536-well plate for
assessing changes in MMP to determine mitochondrial
toxicity (Sakamuru et al. 2012). In healthy cells, m-MPI
accumulates in mitochondria as red fluorescent aggregates
(emission at 590 nm); conversely, after mitochondrial toxi-
cant treatment, the cells depolarize and become less healthy
maintaining m-MPI in the cytoplasm as green fluorescent
monomers (emission at 540 nm). The calculation of the ratio
of red/green channel readings is then used to assess the
mitochondrial function of the cells (Sakamuru et al. 2016).
Using the m-MPI assay, the chemicals from the LOPAC,
NTP, and Tox21 10 K compound collections were screened
for mitochondrial toxicity by evaluating the effect of
chemical compounds on changes of MMP in HepG2 cells
(Attene-Ramos et al. 2015; Attene-Ramos et al. 2013;
Sakamuru et al. 2012). The screening for mitochondrial
toxicants from the NTP collection resulted in about 5% of
the compounds having a potential decrease in MMP, while
the selected active ones were further clustered based on
structural similarity (Attene-Ramos et al. 2013). Some of
these compounds were selected for confirmation and
mechanistic studies based on potency, efficacy, and struc-
tural diversity by selecting at least one representative com-
pound from each cluster. This study demonstrated the
effectiveness of Tox21’s strategy for evaluating the toxico-
logical properties of a chemical collection.

In a separate study, the compounds identified as MMP
inhibitors from the initial Tox21 10 K compound library
screen were further profiled to identify the structural features
associated with MMP changes (Attene-Ramos et al. 2015).
For this approach, a multiplexed qHTS (measuring two
endpoints: MMP and intracellular ATP) method was com-
bined with structure-based clustering analysis. After the
primary screening, about 11% of the compounds from the
Tox21 10 K compound collection showed a decrease in
MMP, among which several triarylmethane dyes and
organotin compounds were identified to be potent. The
cluster analysis from this study displayed that different cat-
egories of compounds, including flavonoids, chlorinated

organic insecticides, parabens, and thiazolidinedione-based
drugs, are capable of decreasing MMP. The most potent
MMP toxicants from the Tox21 primary screen were further
tested with a tier-based approach that evaluated the mecha-
nistic characterization of chemicals affecting mitochondrial
function, which can potentially reduce animal use for toxi-
cological testing (Xia et al. 2018). Based on the follow-up
m-MPI assay, performed in HepG2 cells and rat hepatocytes,
a group of compounds were selected for further testing in
assays which had an effect on reactive oxygen species
(ROS) production, p53 signaling pathway modulation,
Nrf2/ARE pathway modulation, cellular respiration (i.e.,
mitochondrial oxygen consumption), cellular Parkin
translocation, as well as larval development and ATP con-
tent in the nematode Caenorhabditis elegans. From this
study, a group of known mitochondrial complex inhibitors,
uncouplers, and a few not well-characterized mitochondrial
toxicants (e.g., lasalocid, picoxystrobin, pinacyanol, and
triclocarban) were identified.

2.3 Tox21 Data Analysis

Tox21 data analysis for raw data processing as well as
concentration–response curve fitting and classification fol-
lows a standardized qHTS data analysis strategy that has
been developed at NCATS (Inglese et al. 2006). The raw
plate reads for each concentration point are initially nor-
malized to the positive control compound (agonist mode:
100%; antagonist mode: −100%) and negative control
(DMSO; 0% for both agonist and antagonist modes). Percent
activity is then calculated as equal to ((Vcompound – VDMSO)/
(Vpositive – VDMSO)) � 100, where Vcompound denotes the
compound well values, Vpositive denotes the median value of
the positive control wells, and VDMSO denotes the median
values of the DMSO wells. The values are then corrected
using two compound-free control plates (DMSO-only plates)
placed before the compound plate stack. Concentration–re-
sponse curves for each compound are fitted to a
four-parameter Hill equation yielding concentrations of
half-maximal activity (AC50) and maximal response (effi-
cacy) values (Wang et al. 2010). Concentration–response
curves are then designated as classes 1–4 based on efficacy,
quality of fit, and the number of data points observed above
background activity. Each curve class is converted to a curve
rank such that more potent and efficacious compounds with
higher quality curves are assigned a higher rank (5–9) and
inactive compounds are assigned curve rank 0 (Huang
2016). These curve ranks are numerical measures of each
compound’s activity. Since the Tox21 screens are run in
triplicate, the assay performances from three independent
runs are measured by reproducibility scores. Three types of
reproducibility calls (match, mismatch, and inconclusive) are
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made based on the concordance of the replicate assay runs
(Huang et al. 2011). The active compounds are selected and
consequently cherry-picked for secondary follow-up studies.
Lastly, as previously mentioned, all Tox21 screening data is
released to public domains such as PubChem, a database for
chemical compounds which includes bioactivity data
alongside their respective names and general information
(http://pubchem.ncbi.nlm.nih.gov).

3 Usage of Tox21 Data and Future
Directions

The vast amount of data generated from high-throughput
screenings are of valuable resources for many scientific
areas, including data mining and predictive modeling stud-
ies. The high-quality concentration–response data generated
so far, as a part of the Tox21 collaboration, including a broad
array of phenotypic-, target-, and pathway-specific assays,
provide datasets which can be used in quantitative structure–
activity relationship (QSAR) studies to build robust com-
puter models. In 2014, the Tox21 data challenge utilized this
immense amount of data by asking participants to predict the
effect of compounds on cellular signaling pathways and
targets using chemical structure information. The challenge
generated several high-quality models, demonstrating that
computational approaches can provide meaningful predic-
tions in the toxicology field (Huang et al. 2016a). By com-
bining the structural information of the compounds with the
Tox21 screening data, predictive models for 72 in vivo
toxicity endpoints were built with a cluster-based approach,
which suggests that primary screening data not only serves
as in vitro signatures for predicting in vivo toxicity but also
helps to prioritize compounds for further toxicological
evaluation (Huang et al. 2016b). Predictive models for
human-adverse drug effects have also been built using the
Tox21 screening data with or without compound structure
data, as well as a combination of structure and screening data
with or without drug target annotations and animal toxicity
endpoints (Huang et al. 2018), which validated that further
addition of drug-target annotations to the current dataset
resulted in improved model performances. Therefore, these
predictive computational models combining screening data
alongside structural features will facilitate a faster approach
for assessing interference of compounds on various targets
and/or endpoints.

The Tox21 program has been an instrumental asset to
prioritizing environmental chemicals as toxic or safe.
However, throughout the process, new challenges have
arisen due to the results from these previous methods.
A main biological issue discovered was the lack of
metabolically competent systems within the assays, meaning
that only the parent compound of a chemical was being

assessed, as well as an inability to determine if certain
chemicals were still available once the initial metabolic
process of the body was complete (Thomas et al. 2018). Due
to these difficulties, Tox21 plans to use more physiologically
relevant systems, including the use of liver microsomes and
cells already comprising certain metabolizing enzymes.
Another challenge that Tox21 is attempting to overcome is
the issue of covering every pathway involved in a complex
organism. Moving forward, new technologies will be used
that can provide information that represents the global
transcriptome, including global gene expression. Throughout
the history of Tox21, it has become clear that this program is
not only necessary for the identification of toxic chemicals
but is a revolving, ever-changing entity which strives to
improve and expand upon the knowledge of toxicity testing
in the future.
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