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Abstract
Omics approaches can monitor responses and alterations
of biological pathways at a genome scale, which are
useful to predict potential adverse effects from environ-
mental toxicants. However, high-throughput application
of transcriptomics in chemical assessment is limited due
to the high cost and lack of “standardized” toxicogenomic
methods. Here, we have developed a reduced transcrip-
tome approach as an alternative strategy to facilitate
testing a wide range of chemical concentrations, which
targets a reduced set of genes to focus on key toxic
response genes and associated pathways. The reduced
transcriptomic approach allows full dose range testing of
hundreds of chemicals or mixtures using human cells or
zebrafish embryos. Points of departure of genes and
pathways can be used for potency ranking and to classify
chemicals by disrupted biological pathways. It is antic-
ipated that reduced transcriptomic approaches will sig-
nificantly advance pathway-based high-throughput
screening of potentially toxic substances.

1 Introduction

A major challenge in regards to prioritizing environmental
chemicals and/or assessing the hazard of complex mixtures
is the lack of sufficient toxicological information for thou-
sands of chemicals and endless possibility of mixtures

(Zhang et al. 2018). Toxicity pathway profiling could help to
predict potential apical toxicity and prioritize and guide
subsequent testing of the chemicals. To support chemical
risk assessment, analytical frameworks such as the use of
adverse outcome pathways (AOPs) have been adopted to
describe cascading chains of causal events occurring at dif-
ferent levels of biological organization that result in a
measurable ecotoxicological effect (Conolly et al. 2017). In
particular, the AOP framework has gained traction in regu-
latory science as it offers an efficient and effective means for
linking toxicological mechanisms with the standardized
toxicity end points required for regulatory assessments,
increasing their relevance as predictors of ecosystem effects.
Nevertheless, among the many challenges and limitations
that must be addressed to realize the full potential of the
AOP framework in regulatory decision-making, one promi-
nent task is the development of appropriate in vitro bioas-
says to capture all possible molecular initiating events
(MIEs) and/or key events (KEs) that could be generated by
thousands of untested chemicals (Knapen et al. 2018).

Traditionally, monitoring and assessment of mixtures
have relied on chemistry analyses. Although
high-throughput targeted and nontargeted analytical methods
have been developed for the detection of hundreds of
chemicals present in complex environmental samples,
chemical-focused analyses cannot detect contaminants with
unknown structure, and cannot explain the cumulative tox-
icity of mixtures (Altenburger et al. 2015). Effect-based
approaches such as high content screening can provide
assessments of biological activity of environmental mixture.
However, most current cell-based HTS assays are limited in
their coverage of biological pathways, and subsequently
their ability to predict a wide range of potential adverse
outcomes (Escher et al. 2014).

Integrating genomic dose-response modeling into the
hazard characterization with wide-range doses has shown to
be valuable in risk assessment, particularly when applied to
lower, more environmentally relevant doses. Omics tech-
nologies have the ability to provide a global view of the
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cellular processes of an individual in response to chemical
exposure, and to do so in a high-throughput manner with the
advancement of bioinformatics (Zhang et al. 2011). There-
fore, the widespread adoption of omics can increase the
efficacy, efficiency, and timeliness of chemical assessment,
and generate new knowledge on the underlying mechanisms
contributing to adverse effects (Zhang et al. 2018). Genomic
studies on wide-range doses could help to determine new
biomarkers and to derive points of departure for chemical
risk assessment. For instance, certain endocrine-disrupting
chemicals have been reported to alter gene expression in a
nonmonotonic manner at low doses, which indicates a
potential novel molecular mechanism. In addition, applica-
tion of multiple doses with single replicate using human cells
or zebrafish embryo has been shown to effectively identify
vulnerable genes and pathways (Hermsen et al. 2012).
Concentration-dependent bioactivity of chemicals or mix-
tures could indicate potential early responses. Pathway
analysis based on the active values of differentially
concentration-dependent genes implicates the potential
bioactivity of samples, which can be used in diagnostic
analysis of chemical profiles (Wang et al. 2018). However,
utilization of biological-pathway responses derived from
concentration-dependent genomic data is still limited in
hazard characterization.

The development of reproducible, dose-dependent omics
protocols for chemical testing is urgently needed to support
the incorporation of omics technologies into chemical risk
assessment (Zhang et al. 2018). While omics have been
widely used to investigate whole-genome alteration for
MOA prediction and classification of chemicals, consistent
protocols for generation, processing, and interpretation of
omics data should be established before such methodologies
are incorporated into regulatory assessment. Great efforts
have been made on the standardization of transcriptomics to
profile genome expression. For instance, the MicroArray
Quality Control (MAQC) project has been launched to
evaluate the reproducibility of inter- and intraplatform
microarray technologies. In ecotoxicology, a few studies
have highlighted standardized transcriptomic protocols,
ranging from RNA extracts to full bioinformatic pipelines,
potentially improving interlaboratory comparability. One
suggested advantage of concentration-dependent transcrip-
tomic data is the generation of point of departure
(POD) values. We also note that some
concentration-dependent transcriptomics studies have been
conducted using inconsistent bioinformatic methods for data
filtering, concentration–response modeling, and quantitative
characterization of genes and pathways. This makes com-
parison across studies problematic, and as such, we recom-
mend that future studies consider the development of
standardized protocols for concentration-dependent tran-
scriptomic characterization of chemicals (Zhang et al. 2018).

As an alternative strategy to sequencing of the whole
transcriptome, reduced transcriptome analysis targets a
reduced set of genes to focus on key toxic response genes
and associated pathways to facilitate testing a wide range of
chemical concentrations (Xia et al. 2017). A key supporting
principle is that a subset of representative genes in a network
may function as surrogates for all genes of that network. The
use of reduced transcriptomes has been proposed to measure
a subset of genes to focus on toxicologically relevant genes;
this reduces the complexity of such studies, which in turn
supports extending the range of chemical concentrations
being tested—a key statistical consideration. The principle
supporting the use of reduced transcriptomes is that the
expression of key genes can provide a proxy for expression
of all genes in networks or pathways of interest. Recent
examples of the use of gene subsets include the library of
integrated network-based cellular signatures (LINCS) pro-
ject, which has designed a key gene set of 978 human genes,
and the National Institute of Environmental Health Sciences
(NIEHS) has proposed the S1500 gene set consisting of
1500–3000 human genes, which were computationally
selected from thousands of gene expression data sets in Gene
Expression Omnibus (GEO) to be representative of the
whole human transcriptome.

2 Development of Reduced Transcriptome
for Human and Zebrafish

We have recently developed streamlined reduced transcrip-
tome approaches using human cells (RHT) and zebrafish
embryos (RZT) for the assessment of toxic substances
(Fig. 1) (Xia et al. 2017; Wang et al. 2018). Two principles
were employed when selecting genes for reduced tran-
scriptomes: (1) maximal coverage of biological pathways
and (2) toxicological relevance. Firstly, to cover compre-
hensive biological pathways, we selected all genes from
existing biological-pathway databases such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) or Gene
Ontology (GO), followed by computational inference of a
small set of genes playing central roles in entire gene net-
works. Secondly, toxicologically relevant genes were
retrieved from existing toxicology testing databases,
including all gene end points tested in ToxCast (https://
www.epa.gov/chemical-research/toxicity-forecaster-
toxcasttm-data) and all genes associated with MIEs and KEs
in AOP-Wiki (https://aopwiki.org/aops). The above steps
generated RHT and RZT gene sets consisted of 1200 human
genes and 1637 zebrafish genes, respectively (Tables 1 and
2, Tables S1 and S2). In silico evaluation was performed to
validate the coverage of biological pathways by RHT and
RZT gene sets, which showed >90% KEGG and GO path-
ways were covered by at least one gene in each gene set.
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Fig. 1 A streamlined workflow for reduced transcriptomic analysis of
toxic substance by dose-response modeling. (1) Determination of point
of departure of genes (PODgene); (2) Derivation of point of departure of

pathways (PODpath) and development of dose-dependent response of
pathways by ranking of PODpath; (3) Screening chemical by ranking of
potency and chemical classification by disrupted biological pathways

Table 1 Sources of the 1200
genes in the reduced human
transcriptome (RHT)

Main category of genes Number of
genes

Source

Signaling and metabolism pathways 917 Pathway reporter genes (Bluhm et al. 2014)

Molecular initiating events and key
events

42 AOP wiki (http://aopwiki.org)

Associated with endocrine
disruption

143 Graphical gene model

Associated with genotoxicity 67 KEGG (Kyoto Encyclopedia of Genes and
Genomes)

All endpoints tested in ToxCast
bioassays

329 ToxCast (http://www.epa.gov/ncct/toxcast/)

In Total 1200

Table 2 Sources of reduced
zebrafish transcriptome
(RZT) gene panel

Category of genes Number of
zebrafish
orthologs

Sources

Public databases 1019 Pathway reporter genes

1022 L1000 landmark genes

4260 KEGG database

Core genes 1000 Central roles of public databases

Toxicology-relevant
genes

326 ToxCast

173 AOP

176 Graphical gene model

152 Retrieved from references (Jiang et al. 2014; Li et al. 2014;
Guiu et al. 2014; Verleyen et al. 2014; Wanglar et al. 2014;
Xu et al. 2014a, b; Bluhm et al. 2014)

RZT gene panel 1637 Core genes and toxicology-relevant genes
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Further, the ability of RHT and RZT to represent the entire
transcriptome was validated using existing transcriptome
data sets, where reduced transcriptomes were seen to faith-
fully represent clustering patterns in entire transcriptomes.
Finally, genes in reduced transcriptomes were multiplexed
and PCR-amplified, followed by simultaneous measurement
of amplicon abundance (RNA-ampliseq). Below RZT was
used as an example to illustrate the development procedure
for reduced transcriptome.

Design of a Gene Set for Reduced Zebrafish Transcrip-
tome. The RZT gene set was selected to represent the key
biological pathways and toxicologically relevant processes
in zebrafish (Danio rerio) genome. First, a list of genes
associated with key biological pathways (in Entrez ID for-
mats) was curated from three databases, including Kyoto
Encyclopedia of Genes and Genomes (KEGG), zebrafish
orthologs of L1000 landmark genes and zebrafish orthologs
of pathway reporter genes (Table 2). The centrality values of
genes were calculated using CentiScaPe in Cytoscape soft-
ware. Centrality values are node parameters demonstrating
the relevant position of nodes in a whole network. Higher
centrality value suggests more central roles of a gene in
biological pathways. Then the numbers of significantly
enriched KEGG pathways and GO terms (adjusted
p-value < 0.05) were calculated in clusterProfiler by walking
down the list of curated genes from high to low centrality
values by adding 100 genes each time. We selected a min-
imum number of genes playing central roles in biological
pathways, which may significantly represent the maximum
number of biological pathways. Additionally, a list of
toxicology-relevant genes was curated to include the fol-
lowing: (1) genes measured as end points in ToxCast,
(2) genes corresponding to molecular initiating events
(MIEs) and key events (KEs) associated with adverse out-
come pathways (AOPs) described in the AOP-Wiki (https://
aopwiki.org/wiki/index.php/Main_Page), (3) genes listed in
graphical model of the fish hypothalamic–pituitary–gonadal
(HPG) axis, and (4) a set of manually retrieved genes
associated with development. Finally, to avoid potential
amplification bias during mRNA quantification, the com-
bined genes were submitted for online multiplex primers
designed by Ion Ampliseq Designer, where the genes with
high transcript abundance across zebrafish transcriptome
were removed from the RZT gene set.

In Silico Validation of RZT. The numbers of KEGG
pathways or GO terms covered by genes in the RZT gene set
were calculated to evaluate the biological coverage of RZT.
Additionally, the numbers of significantly enriched KEGG
pathways and GO terms associated with the RZT gene set
were compared to a randomly selected gene set (repeated
N = 1000) using clusterProfiler. Furthermore, to evaluate the

representation of RZT gene set on the global expression
patterns and sensitivity of whole zebrafish transcriptome,
five microarray data sets of transcriptomic experiments were
used during in silico simulation analysis, which covers five
distinct life stages of zebrafish (Table 3). The global
expression patterns of the previous study were simulated
with principal component analysis (PCA) by using genes
from RZT gene set and whole genome using edgeR. The
sensitivities of zebrafish transcriptome to toxicants in two
concentration-dependent whole transcriptome data sets were
evaluated by transcriptional point of departure (PODt) cal-
culated by ten previously reported approaches using RZT
gene set and whole transcriptome. The PODt values esti-
mated for the RZT gene set were compared with those for
the whole transcriptome and the lowest observed adverse
effect level (LOAEL) of apical end points.

Methods for estimating transcriptional point of depar-
ture (PODt). The values of PODt based on RZT gene set or
whole transcriptome were derived from data of chemical
toxicity testing on zebrafish embryo by ten approaches
previously described by Farmahin1. In approach 1, 2, 3, 4,
and 5, transcriptional benchmark dose (BMDt) values were
derived from pathway level. In approach 6, 7, 8, 9, and 10,
BMDt values were derived from gene level. The BMDt
values derived from each approach were used for estimating
PODt. The details are as following:

Calculation of BMDt of genes. BMDExpress2 was used for
dose-response modeling and calculation of BMDt of each
gene. First, raw counts of transcriptomic data were submitted
to one-way ANOVA analysis in BMDExpress to identify
genes significantly regulated in at least one treatment group
compared to the vehicle control group. Then a best-fit model
(Hill, Power, Linear, Polynomial 2°, or Polynomial 3°) for
each gene was identified by the default parameters with
slight changes as following: the Hill model was fagged if the
“k” parameter was <1/3 of the lowest positive dose. In that
situation, Hill model was excluded from the best-fit model
selection of that gene.

Calculation of fold changes of genes. In approach 7, the 20
genes with the largest fold changes relative to controls were
used. The normalized raw counts of genes were submitted to
R package, edgeR3 to calculate fold change of each gene.
20 genes with the largest fold changes across all treatment
were selected for further analysis.

Calculation of BMDt of pathways. Genes with calculated
BMDt were submitted to R package, clusterProfiler4 to iden-
tify pathways of Gene Ontology Biological Process (GO BP)
terms.Apathway enriched by at least three geneswas assigned
with the mean BMDt of genes matched to that pathway.
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Estimating PODt by each approach. Bootstrap was used
to present the distribution of BMDt estimated by each
approach. For each approach, BMDt of genes or pathways
was randomly sampled with replacement. Mean BMDt of
genes (in terms of approach 6, 7, 8, 9, and 10) or mean
BMDt of pathways (in terms of approach 1, 2, 3, 4, and 5)
were used for each bootstrap. 2000 bootstraps were used to
simulate the distribution of BMDt for each of the ten
approaches. Finally, the distribution of BMDt for each
approach was presented by boxplot, and the mean values
were used as the PODt for each approach (except approach 7
that used median values).

The developed RZT gene set consists of 1637 zebrafish
Entrez ID genes, including a list of 1000 genes with greatest
pathway centrality scores and a list of 724 toxicology-relevant
genes. The 1000 pathway-central genes were shown to be the
minimum number of genes representing the maximum bio-
logical pathways in terms of GO BP terms and KEGG path-
ways (Fig. 2a). Toxicology-relevant genes (n = 724) were
selected to provide linkages between molecular mechanism
and apical end points (Table 2). Then 44 genes were removed
by the online designer either because their background
expression was too high or too low, or because effective
multiplexed primers could not be designed. This resulted in
1637 genes as the final RZT gene set.

The RZT gene set showed a broad coverage of biological
pathways, where 95% KEGG pathways and 94% GO BP
terms were represented by at least one gene in RZT gene set
(Fig. 2b and c). The uncovered pathways were mainly

associated with basic metabolic processes. Furthermore, the
RZT gene set of 1637 genes were significantly enriched in
29 KEGG pathways and 839 GO BP terms (adjusted
p < 0.05) respectively, which was a 48-fold and 17-fold
more than the average number of KEGG pathways and
GO BP terms enriched by randomly selected genes from
zebrafish transcriptome.

The RZT gene set could faithfully represent the global
expression patterns and sensitivities of a zebrafish’s whole
transcriptome to toxicants. The similar clustering patterns of
samples were revealed by PCA analysis using the RZT gene
set and whole genome on five transcriptomic studies across
24 hpf to adult zebrafish. Furthermore, the RZT gene set
quantitatively represented the sensitivity of whole tran-
scriptome for estimating PODt in response of toxicants. The
PODt estimated by the RZT gene set was similar to that of
whole transcriptome, where the overall ratios of PODt
between RZT to whole genome were less than 1.5 more than
80% of the time (Fig. 2d and e). For the data set with
recorded LOAEL, the overall PODt values calculated by
RZT gene set were within threefold of whole transcriptomic
LOAEL (Fig. 2d). For data sets without LOAEL, the overall
PODt values calculated by the RZT gene set were still within
tenfold ranges of LOAEL retrieved from other literature
(Fig. 2e). The PODt values calculated from pathway-based
approaches (approach 1, 2, 3, and 5) showed robust con-
sistency between whole transcriptome and the RZT gene set,
suggesting that pathway-based approaches may be applica-
ble for estimating PODt by RZT.

Table 3 Description of transcriptome data of zebrafish for in silico validation of RZT gene set

Zebrafish stage Treatment Dose ranges Dose
unit

Accession
number

Literature
reference

Usage for in
silico analysis

24 hpf (10 somites and
18 somites)

Pbx knockdowna GSE8428 Maves et al.
(2007)

PCA

48 hpf Triclosanb 7.37 µM GSE80955 Haggard
et al. (2016)

PCA

96 hpf ZnO
nanoparticlesb

2.64 mg/L GSE77148 Choi et al.
(2016)

PCA

ZnSO4
b 7.75 mg/L

Larvae Bisphenol Ab 500, 1500 and 4500 µg/L GSE22634 Lam et al.
(2011)

PCA

Adult Heart ventricle
amputationc

GSE33981 Hofsteen
et al. (2013)

PCA

24 hpf Flusilazoleb 0.28, 0.6, 1.35, 2.8, 6,
13.5, 28, and 60

lM E-MTAB-832 Hermsen
et al. (2012)

POD

72 hpf Isoniazid 0.5, 1.67 and 5 mM GSE55618 Driessen
et al. (2015)

POD

aGenetic treatment condition; bChemical treatment condition; cPhysical treatment condition; dGEO accession number; eArrayExpress accession
number; PCA means principal component analysis; POD means calculation of transcriptional point of departure
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Fig. 2 In silico evaluation of RZT gene set. a Investigation of minimal
number of candidate genes for representing the maximal biological
pathways including KEGG pathways and GO BP terms. The red dash
line means the cutoff of 1000, where the number of top-ranked
candidate genes is low enough for representing maximal biological
pathways. The percentage of biological pathways coverage of b KEGG
pathways and c GO BP terms by 1637 genes from RZT gene set. d, e
Comparison on the distributions of transcriptional point of departure
(PODt) estimated by RZT gene set (blue boxes) and the whole
transcriptome (yellow boxes) using data from previously published

studies (EMTAB-832 and GSE55618, respectively). The black bold
lines within boxes represent PODt. The number above boxes represents
the ratio of PODt between by RZT gene set and whole genome (larger
value to smaller value). In plot (d), the solid lines in red and green
represent LOAEL (13.5 lM) for pericardial edema (green line), and
LOAEL (28 lM) for malformed heart (red line) induced by flusilazole
in zebrafish embryo at 24 hpf. The dash lines in red and green represent
threefold ranges of corresponding LOAELs. In plot (e), the red solid
and dash lines represent 1/3 and 1/10 values of LOAEL (8 mM) for
liver damage induced by isoniazid in zebrafish embryo reported
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3 Pipeline of Dose-Dependent
Transcriptomes for High-Throughput
Chemical Testing

A standardized pipeline for quantitative characterization of
chemicals by dose-dependent reduced transcriptomes was
developed (Fig. 1). Our study design employed wide-range
doses (eight serial dilutions) with single biological replicates
in human cells or zebrafish embryo for a specified exposure
period, followed by RNA extraction for Ampliseq RNA
library and HTS analysis. For example, the bioinformatics
protocol for RHT contains four steps: (1) filtering genes
which are unresponsive (counts < 5) to toxic substance
exposure; (2) identifying the best-fit model for each gene to
calculate POD values of genes (PODgene); (3) interpreting
genes in the context of the biological pathways they influ-
ence; and (4) deriving POD values of pathways (PODpath) to
support sample-based quantitative assessment. In subsequent
dose–response modeling, the transcriptional expression of
filtered genes against concentrations are fitted to nonlinear
models (e.g., parabolic, linear, sigmoid) by assigning a
best-fit model (least akaike information criterion
(AIC) value) for each gene. PODgene values are determined
according to the best-fit models (Fig. 3, Table 4). The
PODpath value for a specific biological pathway can then be
derived from the average value of PODgene according to
genes assigned to that pathway.

The PODpath estimate can characterize and quantify bio-
logical pathways potentially disrupted by toxic substances
by identifying potentially sensitive pathways. This knowl-
edge can inform understanding of responses at the molecular
level in terms of molecular initiating events (MIEs) or key
events (KEs) of chemical toxicity. The potency values
(PODgene or PODpath) each provide critical information on
the bioactivity of the chemicals. Moreover, altered pathways
identified by this process can provide insight into substance
mode of action, which can be used to predict likely adverse
outcomes, guiding chemical cross read. In an RZT analysis

of zebrafish embryos following 8–32 h of exposure post
fertilization (hpf) to 10E–5–10 lM bisphenol A (BPA), the
most sensitive pathways (PODpath < 0.001 lM) identified
were those involved in neurogenesis-related processes (e.g.,
central nervous system development, nervous system
development, locomotion), which was concordant with a
previously reported adverse effect of hyperactivity under
BPA exposure.

Furthermore, the altered pathways and their correspond-
ing PODpath value by reduced transcriptomics can be used to
prioritize chemicals or environmental mixtures based on
biological activity. RHT in two human cell lines (HepG2 and
MCF7) and RZT in zebrafish embryos have been applied to
a set of water samples ranging from wastewater to drinking
water using a concentration-dependent transcriptomics pro-
tocol. Both RHT and RZT approaches were responsive,
identifying a wide spectrum of biological activities associ-
ated with water-extracts exposure. Moreover, the most sen-
sitive biological pathways were successfully identified, and
were linked to adverse reproductive, genotoxic, and devel-
opmental outcomes. In this way, water quality was bench-
marked by the sensitivity distribution curve of biological
pathways, where the PODpath values of different samples can
be ranked to discriminate polluted and clean samples.
Overall, RHT and RZT approaches provided efficient and
cost-effective tools to prioritize toxic substances based on
the responsiveness of biological pathways.

Although used as a representative approach to whole
transcriptomes, reduced transcriptomes may lose signals of
unmeasured genes or pathways covered by only few genes.
Computational methods have been developed to infer the
remainder of whole transcriptomes, but regions of poor
inference remain due to limitations of existing knowledge
and differences among cell types. Currently, the reduced
transcriptome approach can only be applied successfully for
organisms with well-annotated genomes. In the future,
however, reduced transcriptome approaches will be extended
to other species as knowledge improves. It is also worth

Fig. 3 Overview of three types of concentration–effect curves for
calculating effect concentration of DEGs identified by reduced
transcriptomic analysis. The red symbols stand for effective concen-
trations (ECs) used for each type of concentration–effect curve. EC50,

ECFC=1.5, and ECMax stand for median effective concentration,
concentration causing 1.5-fold change and concentration inducing
maximum effect, respectively
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adding that the genes curated in reduced transcriptomes
should be optimized, updating toxicology databases such as
AOP-Wiki, when both existing and new AOPs are under
development.

4 Benchmarking Water Quality
from Wastewater to Drinking Waters
Using Reduced Transcriptome of Human
Cells

One of the major challenges in environmental science is
monitoring and assessing the risk of complex environmental
mixtures. In vitro bioassays with limited key toxicological
end points have been shown to be suitable to evaluate mix-
tures of organic pollutants in wastewater and recycled water.
Omics approaches such as transcriptomics can monitor bio-
logical effects at the genome scale. However, few studies
have applied omics approaches in the assessment of mixtures
of organic micropollutants. Here, an omics approach was
presented to profile the biological activity of water samples in
human cells by RHT approach and dose-response models.
A pair of widely used in vitro cell models in human toxi-
cology, human hepatoma (HepG2), and human mammary
cancer (MCF7) cells was used to assess the transcriptomic
response induced by the mixtures. Cells were exposed to
eight serial dilutions of each sample, and the transcriptional
expression of 1200 selected genes was quantified by an RNA

amplicon-seq technology. To evaluate the performance of
RHT for benchmarking water mixtures, the samples tested in
this study were a set of ten water extracts that has been
previously characterized by a battery of in vitro assays and
chemical analysis. The objectives of the study were (1) to
identify the mRNA expression profiles of the 1200 RHT
genes in the HepG2 and MCF7 cells exposed to water sam-
ples in serial dilutions, (2) to evaluate the ability of RHT to
assess biological activity of water samples in comparison
with in vitro bioassays, and (3) to compare the
concentration-dependent distribution of biological activity by
mixture to that of chemical profiles.

Methods

Water samples. The ten water samples (Fig. 4) were col-
lected and extracted with solid-phase extraction (SPE) as
previously described (Escher et al. 2014). The dried extracts
were stored in −80 °C until analysis. Samples were dis-
solved in DMSO as stock solutions with relative enrichment
factor (REF) of 10 000. The REF represents the concentra-
tions of water samples (e.g., a REF of ten means tenfold
concentrated sample; a REF of 0.1 means a tenfold diluted
sample). All the ten samples have been tested by 103 in vitro
bioassays covering the relevant steps of cellular toxicity
pathways, including the activation of nuclear receptors,
disruption of hormone synthesis, genotoxicity, adaptive
stress response, and cytotoxicity.

Table 4 Concentration–effect models used for fitting fold changes of genes identified by reduced transcriptome analysis

Curve
type

Model name Equation Parameters

Sigmoid Three-parameter
log-logistic

y ¼ d
1þ expðbðlogðxÞ�logðeÞÞÞ d = upper limit; e = inflection point; b = slope

Four-parameter
log-logistic

y ¼ cþ d�c
1þ expðbðlogðxÞ�logðeÞÞÞ c = lower limit; d = upper limit; e = inflection

point; b = slope

Michaelis–
Menten

y ¼ cþ d�c
1þ e=x

c = lower limit; d = upper limit; e = dose
yielding a response halfway between c and d

Weibull I y ¼ cþðd � cÞexpð�expðbðlogðxÞ � logðeÞÞÞÞ c = lower limit; d = upper limit; e = inflection
point; b = slope

Weibull II y ¼ cþðd � cÞð1� expð�expðbðlogðxÞ � logðeÞÞÞÞÞ c = lower limit; d = upper limit; e = inflection
point; b = slope

Linear Linear y ¼ E0 þ dx E0 = intercept; d = slope

Linear-log y ¼ E0 þ dlogðxþ off Þ E0 = intercept; d = slope; off = a fixed offset
parameter

U-shaped Gaussian
y ¼ cþðd � cÞexp �0:5 log xð Þ�logðeÞ

b

� �2
� �

c = back ground effect; d = peak effect; e = peak
position; b = width

Gaussian-log y ¼ cðd � cÞexp �0:5 x�e
b

� �2� �
c = back ground effect; d = peak effect; e = peak
position; b = width

y = response; x = concentration
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Cell Culture and Cytotoxicity Assay. HepG2 and MCF7
(ATCC) cells were maintained in DMEM medium with 10%
fetal bovine serum (FBS) in a humidified atmosphere of 5%
CO2 at 37 °C. After 24 h of incubation, cells seeded into 96
well plates with 1 � 105 cells/mL were dosed with twofold
serial dilutions of water samples (DMSO = 0.1%). After
24 h of exposure, cell viability was measured using 96
Aqueous One Solution Reagent (Promega, Madison, WI)
according to the manufacturer’s instruction.

Transcriptome Analysis Using RHT. The transcriptional
expression of 1200 selected genes was measured by an
amplicon-seq technology (Fig. 5, Table 1, and Table S1).

RHT Experiment. Cells in 12 well plates with 1 � 105
cells/mL were treated with 8 5-fold noncytotoxic dilutions
(from 10 to 0.000 128 REF for all ten samples in MCF7;
from 2 to 0.000 0256 REF for sample Eff2, and from 10 to
0.000 128 REF in the other nine samples in HepG2) of water
samples with a single replicate, in addition to two vehicle
control. After 24 h of dosing, cells were harvested for total

RNA isolation using an RNeasy Mini Kit (Qiagen, Hilden,
Germany). A total of 164 RNA samples (80 treatments and 2
vehicle controls for HepG2 and MCF7, respectively) were
stored at −80 °C until used. RNA concentrations were
measured using QuBit fluorometer 2.0 (Thermo Fisher Sci-
entific, Waltham, MA) with Quant-iT RNA HS Assay Kit
according to the manufacturer’s procedure. Libraries were
prepared from 10 ng of RNA of each sample using Ion
AmpliSeq Library Kit 2.0 and Ion AmpliSeq custom panels
(Thermo Fisher Scientific, Waltham, MA), followed by
high-throughput sequencing of RHT panel on Ion Torrent
Proton (Thermo Fisher Scientific, Waltham, MA). Briefly,
the 1200 human genes of RHT panel were
multiplex-amplified, and then the counts of genes were
quantified using the coverageAnalysis plugin on Ion Torrent
Service. To examine the suitable sequence depth of RHT for
each sample, Monte Carlo simulations were performed on
the samples with maximum counts in HepG2 and MCF7,
respectively (Text S1). Genes whose counts were not
detected in vehicle control groups were removed, followed
by normalization of counts between libraries using the R

Fig. 4 Description of ten water
samples

Fig. 5 Workflow of reduced
human transcriptome
(RHT) analysis of water samples.
AIC, Akaike’s Information
Criterion; EC, effect
concentration; DEGs,
differentially expressed genes;
REF, relative enrichment factor;
GO, Gene Ontology
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package edgeR. Fold changes of genes in each treatment
were calculated by dividing the counts in treatment by the
mean of counts in two vehicle controls.

Concentration Effect Analysis. For each gene, the fold
change against concentration was first subjected to linear
regression analysis using the R function cor.test (method
“Pearson”). Next, the significant genes (p-value of <0.05)
were subjected to automatic concentration–effect curves fit-
ting analysis using drc and DoseFinding. Briefly,
log2-transformed fold changes of each gene in
log10-transformed concentrations were fitted with any of the
nine concentration–effect models (Table 4). The model with
the least akaike’s information criterion (AIC) value was
identified as the best-fit model for that gene. Genes whose
best-fit models showed significant curve-fitting performance
(p-value of <0.05) were identified as differentially expressed
genes (DEGs). The best-fit models of DEGs were used to
derive the effect concentrations (ECs) of DEGs (Fig. 1).
Briefly, for sigmoidal curves in which the maximum
response could be defined, the concentrations causing 50%
maximum effect were used as the ECs. For linear concen-
tration–effect curves in which no maximum response can be
defined, the concentrations causing absolute 1.5-fold change
were used as the ECs of the gene. For the gene with
U-shaped concentration–effect curves, its EC was assigned
by the concentration causing the maximum response.
A value of 100 REF was an inflection point of all ranked EC
values, above which a small portion of DEGs (EC � 100
REF) were defined as extrapolation artifacts and removed
from further analysis. Finally, concentration-dependent
sequences of molecular events were investigated by net-
work analysis of DEGs using stringApp in Cytoscape.

Pathway Analysis. An unsupervised gene ontology
(GO) analysis was performed to investigate potential
bioactivity of each sample identified by RHT. First, DEGs of
each sample were matched to their corresponding GO terms.
GO terms with less than three DEGs were removed because
three was the minimum number to calculate mean and
standard deviation (SD). Then the EC of each GO term was
calculated as the geometric mean of the ECs of matched
DEGs. A previous study has used the mean of benchmark
dose of DEGs for GO analysis, in which a narrow range of
concentrations across only one or two orders of magnitude
was assessed. However, a wide range of concentrations
across six orders of magnitude was used here. The geometric
mean rather than mean value of ECs of DEGs was used to
represent the EC of each GO term to avoid heavy influence
by DEGs with high EC values. Principal component analysis
(PCA) was performed on ECs of GO in all samples using
FactoMineR.

Representation of In Vitro Pathways. A supervised
approach was used to assess the RHT representation of the
previous in vitro bioassay. First, gene sets associated with
cellular toxicity pathways tested by in vitro bioassays were
manually curated from WikiPathways and Gene Ontology.
Next, the EC of each pathway was calculated by the geo-
metric mean of the ECs of matched DEGs. To be consistent
with in vitro bioassays, the EC values of in vitro pathways of
>30 REF were all assigned with 30 REF. For the in vitro
pathways matched by single DEG, only the single DEG with
acceptably high efficacy (the maximum absolute fold chan-
ges across all treatment being >1.5) was considered to be
robust to represent the perturbation of its matched pathway
(s). For in vitro pathways that were not matched by any
DEGs, their ECs were assigned with 30 REF. Finally, the
EC values of in vitro pathways identified by RHT analysis in
each cell line were presented as a heatmap using the R
package gplot. For biological end points tested by multiple
bioassays, the geometric mean of EC values from multiple
bioassays was calculated to provide a single integrated EC
value for the corresponding pathways. The patterns of
hierarchical clusters of water samples identified by RHT
analysis were compared with the results of in vitro
bioassays.

Comparison of Bioactivity Potency with Chemical Pro-
files. Chemical profiles in water samples may indicate bio-
logical effects of mixture, although there may be a lack of
explanation for overall bioactivity. A total of 54 chemicals
were previously characterized in 6 of 10 water samples at
concentrations above the limit of detection (LOD). The RHT
profiles were compared with chemical profiles of water
samples. The overall biological potency of each sample was
characterized by fitting proportionally ranked EC values of
GO into a four-parameter dose–response curve using
GraphPad (GraphPad Prism 5.0 software, San Diego, CA),
which was defined as biological potency distribution curve
(BDC). BDC was not fitted for samples with GO terms of
<20, which provided too few dots for fitting meaningful
distribution curves. The overall chemical profile of each
sample was characterized by fitting proportionally ranked
concentrations of detected chemicals into a four-parameter
dose–response curve defined as chemical concentrations
distribution curve (CDC). Furthermore, relative biological
potency (REP) and relative chemical contamination
(REC) of each sample were calculated according to BDC
and CDC using Formulas 1 and 2, respectively:

REPi ¼ MBRef

MBi
ð1Þ

MBref and MBi are the median values calculated from
BDC of the reference sample and sample i, respectively:
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RECi ¼ MCi

MCRef
ð2Þ

MCref and MCi are the median values calculated from
CDC of reference sample and sample i, respectively. Sample
Eff2 showed the highest biological activity and chemical
contamination among all water samples and thus was
selected as the reference sample for calculation of REP and
REC. Finally, the REP of each sample was compared to its
REC.

Results and Discussions

Analysis of RHT by Mixture Samples. Only sample Eff2
showed cytotoxicity at REF > 2 in HepG2, while none of
the samples showed any cytotoxicity at REF � 10 in
MCF7. The RHT experiment on serial noncytotoxic dilu-
tions of total 164 samples showed sequence counts that
ranged from 327 000 to 8 327 170 in HepG2 and from 158
025 to 3 025 355 in MCF7 (Fig. 6a, b). Monte Carlo sim-
ulations revealed that sequence depth of 300,000 reads is
needed for detective signals (counts of >5) of at least 750
genes. For the only five samples sequenced with counts
<300 000, even the sample with the lowest counts of 158
025 (the sixth dilution of O3/BAC in MCF7) still showed

coverage of >100 counts for each gene, suggesting that the
sequence depth of each sample was adequate for further data
analysis. Out of the RHT 1200 gene list, 756 and 767 genes
were expressed in HepG2 and MCF7, respectively, with 667
common genes (Fig. 7). The 95% percentile ranges of
log2-fold changes across all ten samples in HepG2 was
0.03–9.51, relatively narrower than 0.02–163.14 in MCF7
(Fig. 8a). The sequence data was deposited in the NCBI
BioProject database (accession no. PRJNA385238; https://
www.ncbi.nlm.nih.gov/bioproject/).

The number of DEGs selected by the nine dose–response
models across all ten samples ranged from 24 to 109 in
HepG2 and from 7 to 157 in MCF7, respectively (Fig. 8b).
The DEGs responsive at low dose range (ECs � 1 REF)
were mainly fitted with U-shaped models (Fig. 9a, b), which
suggest that the mode of hormesis dominates the low dose
response of transcriptome. Taking the DEGs of Eff2 in
HepG2, for instance, (Fig. 10), CSF1R, SIRT3, and TEK
were potentially early response genes (ECs � 0.1 REF)
associated with the regulation of ERK1/2 cascade, which
were all fitted with the Gaussian model. It has been widely
reported that the translocation of ERK1/2 was involved in
early gene response. Secondary and adverse biological
effects were identified by DEGs with higher EC values,
including the regulation of signal transduction (such as

Fig. 6 Sequencing counts of ten water samples across eight fivefold
dilutions and two DMSO controls in a HepG2 and b MCF7. The
number 1–8 of water samples stands for dilutions of samples from
highest concentrations to the lowest concentrations. The numbers 1 and

2 of DMSO mean two replicates of vehicle controls. The red lines stand
for the sequencing depth of 300,000 for detecting at least 750 genes,
which was calculated by Monte Carlo simulation of sequencing counts
of c fifth dilution of AO in HepG2 d eighth-dilution of DW in MCF7
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CDKN2A, DUSP3, and FOXP1, 0.1 < EC � 1 REF),
regulation of cell proliferation (such as CSF1, FYN, and
MAPK1, 1 < EC � 10 REF), and regulation of apoptosis

(all four DEGs including RTN4, CDKN1A, SRC, and
HMOX1, EC > 10 REF). Genes responsive at high dose
ranges (ECs > 10 REF) were mainly fitted with linear
models, which may be due to severely secondary effects
specifically induced at high doses. These results indicated
that the dose–response profiles of DEGs identified by RHT
analysis could differentiate low dose response from a wide
spectrum of biological activities by water samples.

The RHT profiles in both HepG2 and MCF7 demon-
strated significant responses to the polluted water samples.
Most of the DEGs were identified in three polluted samples
(Eff2, Eff1, and MF) in both HepG2 and MCF7. For all three
polluted samples, 7 and 36 DEGs, mainly involved with
cellular response to toxic substance, were identified by RHT
in HepG2 and MCF7, respectively. Furthermore, three
DEGs (ABCC3, CYP1A1, and KLF9) were identified in all
the three polluted samples in both HepG2 and MCF7.
CYP1A1 encodes a member of the cytochrome P450
superfamily of enzymes well known for metabolism of
xenobiotics. ABCC3 encodes a member of the superfamily
of ATP-binding cassette (ABC) transporter involved in
multidrug resistance. KLF9 encodes a transcription factor
has been widely reported to be involved in response to
oxidative stress. The results suggested that polluted water
samples prevalently induced a cellular stress response that
could be commonly identified by HepG2 and MCF7.
Moreover, 29, 23, and 13 DEGs were commonly identified
by HepG2 and MCF7 for Eff2, Eff1, and MF, suggesting that
HepG2 and MCF7 may be consistent in identification of
positive responses in polluted samples.

Fewer DEGs were identified in blank sample in both
HepG2 and MCF7 compared with the polluted water sam-
ples, suggesting that relatively low response was identified
in HepG2 and MCF7 for blank sample. The DEGs of blank
sample in HepG2 and MCF7 were mainly associated with
nonspecific cellular response, but only four and nine DEGs
of the blank sample in HepG2 and MCF7, respectively,
showed an absolute fold change of � 1.5 across all dilution
treatments, suggesting very low biological effects induced
by blank sample. The results are consistent with the previous
results that the blank sample could induce slight nonspecific
bioactivity, which may be due to the tiny impurities present
in the solvent during SPE extract of samples. In addition,
MGMT, encoding the O-6-methylguanine-DNA methyl-
transferase involved in DNA repair, showed an upregulation
trend in HepG2, which may explain the observed genotox-
icity previously reported in the blank sample.

The RHT profiles in both HepG2 and MCF7 may show
specific response to water samples in middle or lower con-
taminated situation. The number of DEGs of DW in MCF7
was 103, which was significantly greater than the 25 DEGs
of blank sample. However, only 24 DEGs of DW were
identified in HepG2, which was equal to the DEGs number

Fig. 7 Venn diagram of RHT detective genes (counts >0 in both two
vehicle control) in HepG2 and MCF7

Fig. 8 a Log2-fold changes of all genes identified by RHT analysis
across all ten water samples in HepG2 and MCF7, respectively.
b Number of differentially expressed genes (DEGs) of ten water
samples identified by RHT analysis in HepG2 and MCF7, respectively
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of blank sample. It is suggested that the RHT analysis of
MCF7 was more sensitive in response to DW sample than
that of HepG2. Previous studies have reported that the DW
sample induced broad bioactivity of xenobiotic metabolism
and genotoxicity. The formation of disinfection by-products
increases the toxicity of DW as compared to RW. Disin-
fection by-products may become more electrophilic after
metabolic activation, resulting in enhanced biological
effects, such as genotoxicity. The relatively weak effects of
DW in HepG2 may be due to the poor expression of
drug-metabolizing enzymes in HepG2.

Unsupervised GO Analysis of RHT. GO analysis of RHT
profiles may implicate distinct bioactivity between water
samples. The number of identified GO terms was propor-
tional to the number of identified DEGs for a sample. For
HepG2, the fewest GO terms were identified at blank sample
(4) and the most at MF (170). For MCF7, the fewest GO
terms were identified at O3/BAC (0) and the most at Eff2
(288). A small number of GO terms enriched by the RHT
profiles of blank sample in HepG2 (4) and MCF7 (6) suggest
low biological activities of blank sample. Change of the
identified GO terms suggests potential changes of bioactivity
of water samples from initial to advanced treatment pro-
cesses. A total of 60 GO terms identified in Eff1 diminished
after MF treatment, while 89 GO terms were specifically
identified in MF in HepG2 (Fig. 11a). The reduced 60 GO
terms of Eff1 were mainly associated with basic cellular
response such as cellular oxidant detoxification, while the
newly introduced GO terms in MF were associated with
more adverse responses such as programmed necrotic cell
death. It is suggested that extra and severe bioactivity was
produced after MF treatment, which may be explained as the
process of chloramination during MF treatment. The
remaining six GO terms after the advanced treatment process
of AO may be explained as background effect introduced
during sample extract, which was similar to the blank sam-
ple. The three remaining GO terms identified in all Eff1 (MF,
RO, and AO) were annotated to biological processes
including that of cellular response to DNA damage stimulus
(GO: 0006974), suggesting potential remaining of geno-
toxicity, which was observed in the previous study. Fur-
thermore, principal component analysis (PCA) of ECs of
identified GO terms showed that polluted and clean samples
were distinctly separated in both HepG2 and MCF7 cells
(Fig. 11b, c), suggesting that GO analysis may distinguish
polluted and clean samples by bioactivity. However, in

Fig. 9 Histogram of the effective
concentration (EC) values of
differentially expressed genes
(DEGs) across ten water samples
in a HepG2 and b MCF7,
respectively

Fig. 10 Concentration-dependent gene network of DEGs identified by
RHT analysis in HepG2 cells treated by Eff2. The EC of DEGs is
expressed as the relative enrichment factor (REF) of the water sample
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MCF7 cells, DW, a presumed clean sample, was grouped
with polluted samples Eff2 and MF, suggesting that HepG2
and MCF7 cells demonstrated cell-type-specific responses.

Cell-type-specific responses identified by GO analysis of
RHT profiles in HepG2 and MCF7. GO terms associated
with DNA damage such as mismatch repair of DW sample
were identified by RHT analysis in MCF7. However, in
HepG2, only nonspecific biological responses such as reg-
ulation of cell growth were identified by RHT analysis of
DW. Moreover, the cell-type-specific responses may be
explained by the GO terms with top lowest EC values, which
may represent low dose effects. For instance, in Eff2, the GO
with the top ten lowest EC values in HepG2 was mainly
associated with immune response, such as transmembrane
receptor protein tyrosine kinase signaling pathway, negative
regulation of inflammatory response, and natural killer cell
mediated cytotoxicity, but the GO terms with the top lowest
EC values in MCF7 were only annotated to pathways
associated with xenobiotic metabolism, such as canonical
Wnt signaling pathway.

Supervised Analysis of RHT for Comparison with In
Vitro Bioassays. The RHT profiles of water samples in
HepG2 and MCF7 both showed similar patterns with in vitro

bioassays, as biological effects were mainly identified in
polluted samples (Fig. 12). For end points of xenobiotic
metabolism, PXR, CAR, and AHR pathways in both two
cell lines showed high responses in less-treated samples and
nearly no response in clean samples, which was highly
consistent with in vitro assays. Consistent with the results of
in vitro assays, the overall activity of pathways associated
with PPAR (PPARa, PPARd, and PPARc) across ten water
samples identified by RHT analysis was relatively low
compared with other xenobiotic metabolism pathways. The
PPARa and PPARd pathway showed slight activity (EC >
10 REF) only at RW in HepG2. The PPARc pathway
showed high responses (EC � 10 REF) only at polluted
samples (Eff1 and MF) in MCF7, partially accordant with
in vitro assays. For specific MOA, the ACHE pathway
showed no response at either of the two cell lines, indicating
that HepG2 and MCF7 were not suitable for identification of
neurotoxic response. The activity of ER and AR pathways
was similar to in vitro assays. A slight difference was shown
in HepG2, in which the activity of AR pathway was iden-
tified in clean samples O3/BAC and AO but at very high
REF (EC � 20). For other hormone receptors, the PR
pathway showed responses only at polluted samples in
MCF7, while no active response of PR was observed in
HepG2. The responses of the GR pathway were similar

Fig. 11 a Venn diagram of GO
terms identified by RHT analysis
in Eff1, MF, RO, and AO in
HepG2; Principle component
analysis of the EC values of GO
terms of ten water samples
identified by RHT analysis in
b HepG2 c MCF7, respectively
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between in vitro assays and RHT profiles in both HepG2 and
MCF7, whereas GR activity was specifically shown in
MCF7. TR activity was not identified by in vitro assays in
any samples, while TR was identified to be activated at
multiple samples by RHT analysis in both HepG2 and
MCF7. No response of TR activity was observed in previous
in vitro thyroid receptor gene bioassays, which has been
explained as nonexistence of thyroid agonists and goitrogens
in extraction of SPE. Nevertheless, RHT analysis in both
HepG2 and MCF7 identified TR activity by multiple sam-
ples, which might be due to the “cross-talk effect” between
molecular pathways or nongenomic modulation of thyroid
hormone signaling pathways on transcript levels.

For reactive MOA, activity of pathways associated with
adaptive stress responses and genotoxicity was identified in
HepG2 and MCF7 exposed to polluted samples, which was
consistent with the results of in vitro assays. Specific end
points associated with adaptive stress responses, such as the
Nrf2 and AP-1 pathways in sample Eff2 showed higher
activity in HepG2 than in MCF7, suggesting that HepG2
may be more sensitive in response to adaptive stress
responses than MCF7. Although immune-related response
was not identified in any samples by in vitro assays, obvious
immune responses were identified in RHT analysis in pol-
luted samples. Only THP1 cytokine assay in antagonist
mode was conducted in a previous in vitro bioassay to
measure immunotoxicity. It has previously reported a poor

correlation between immunosuppressive chemicals and
immunosuppressive activity identified by THP1 assay in
water samples. RHT analysis could complement in vitro
assays by providing measurement of a broader range of
immune-related responses.

Overall, integration of the RHT profiles of HepG2 and
MCF7 may provide a broad representation of bioactivity
identified by the 103 in vitro assays. In the previous study,
the 103 in vitro bioassays included multiple cell lines
including 11 types of human cell lines, 2 types of rat cell
lines and zebrafish embryos as well as lower organisms such
as yeast and Escherichia coli, which were used to measure
integrative end points across cellular toxicity pathway.
Although the results might not be comparable between
in vitro bioassays with different platform background on cell
types and species, the RHT analysis of water samples with
less cell lines, HepG2 and MCF7, was shown to be capable
of reflecting patterns identified by in vitro bioassays. Fur-
thermore, our results support the importance of the utiliza-
tion of multiple cells in RHT analysis of water samples.
HepG2 cell line was more specific in identification of
adaptive stress response, and the MCF7 cell line was more
specific in response to endocrine disruption effects. To
assess the biological responses related to other toxicological
end points, such as neurotoxic potential of water samples,
other functional cell types, such as a human neuronal cell
line, would be necessary.

Fig. 12 Heatmap of ECs of the 24 in vitro pathways calculated from RHT analysis in a HepG2, b MCF7, and c in vitro bioassays previously
analyzed
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Comparison of Chemical Profiles with Bioactivity Iden-
tified by RHT. Distribution curve of the EC values of GO is
a novel approach to estimate the potency of overall biolog-
ical activities by water samples. Although the RHT profiles
in both HepG2 and MCF cells showed the decreasing
potency of overall biological activities after serial water
treatment processes, cell-type-specific signatures can be
observed in the two cell lines (Fig. 13a, b). For the BDC in
both HepG2 and MCF7, Eff2 showed the highest biological
potency, followed by Eff1, and the clean samples such as
SW and AO showed relatively low biological potency. MF
and DW showed relatively high potency close to Eff1 in
MCF7, and DW showed an even greater potency than its
source water RW. However, in HepG2, both MF and DW
showed lower potency than their upstream samples Eff1 and
RW, respectively. This might be due to genotoxic and
oxidative stress effects of disinfection by-products existing
in water samples such as MF and DW. Endocrine tissue
origin MCF7 cells may be more sensitive than hepatocyte
HepG2 cells for identifying the bioactivity of water samples.

The relative potencies of water samples estimated by
RHT profile were consistent with chemical contamination
level of the samples. A total of six water samples (Eff2, Eff1,
O3/BAC, MF, SW, and RO) have been previously charac-
terized by chemistry analysis. Although the concentration of
a chemical does not necessarily reflect overall contamination
level, the chemical profiles showed distinct separation
between polluted samples (Eff2, Eff1, and MF) and clean
samples (SW, O3/BAC, and RO) (Fig. 13c). The CDC
showed that Eff2 was the most contaminated sample, fol-
lowed by Eff1 and MF, which was highly accordant with the
ranks of biological potency reflected by GO distribution. For
clean samples, the CDC showed SW may be more con-
taminated than O3/BAC and RO, which was also consistent
with the GO distribution and the results of previous in vitro
bioassays, in which SW showed higher potency than
O3/BAC and RO.

The relative biological potencies may quantitatively
reflect the alteration of chemical contamination. The overall
values of REPs and REC of the ten samples were mainly
within one magnitude (Fig. 13d and Table 5). The REP of
polluted samples, Eff1 and MF, in MCF7 was both similar to
their REC values, implicating that RHT analysis using
MCF7 may be sensitive for reflecting the relatively small
alteration of chemical profiles between polluted or
less-treated water samples. Although the REPs of polluted
samples in HepG2 were quite inconsistent with REC, the
REP of clean samples, O3/BAC and RO, in HepG2 was
similar to their REC values. It is suggested that RHT anal-
ysis using HepG2 was more appropriate for quantitatively
inferring the alteration of chemical status of clean samples.
More samples and more comprehensive chemical profiles
are needed to validate suitability of MCF7 and HepG2 cells

in assessing specific biological response by water samples in
future study.

The chemical profiles may help to explain the biological
activity identified by RHT analysis. The occurrence of
chemicals such as organophosphate pesticides (chlorpyrifos
and diazinon) and steroids (17-b-Estradiol) in Eff2 might
contribute to the activation of immune response pathway,
which was also suggested by the results of GO terms anal-
ysis of Eff2. Chlorpyrifos and diazinon are two kinds of
organophosphate pesticides and have been reported to
induce immunotoxicity in human cells. 17-b-Estradiol has
been widely reported to be able to induce immune response
and may be synergistic with organophosphate pesticides. In
a relatively clean sample SW, bisphenol A was the dominant
chemical with the highest detected concentrations, suggest-
ing that bisphenol A may partially contribute to the bio-
logical effects of SW. Bisphenol A is a well-known
endocrine-disrupting chemical capable of affecting multiple
nuclear receptors such as AR, ER, and AHR, which may
explain the effects of AR, ER, and AHR identified by RHT
analysis in SW sample. In a clean sample of O3/BAC,
although few chemicals were detected, CYP1A1 was iden-
tified as DEG by RHT analysis in both HepG2 and MCF7,
which may be related to the N, N-diethyl-meta-toluamide
(DEET) detected in O3/BAC. Studies have reported that
DEET may induce CYP1A1 enzyme in human liver cells.
However, knowledge gaps exist in the mixture toxicology of
environmental samples, such as response from unknown
chemicals and a combined effect. To directly link the
observed biological response with the measure chemicals, an
effect-directed analysis (EDA) is necessary. The RHT anal-
ysis could provide a novel untargeted bioassay in EDA
analysis of toxicants in the mixture.

Overall, the RHT method provides a highly dynamic
approach to assess the biological response and to benchmark
the potencies of water samples. The RHT profiles in two cell
lines, HepG2 and MCF7, provided a comparable biological
characterization on the water samples by the previous 103
in vitro bioassays, which could significantly increase the
efficiency and throughput of assessment.
Concentration-dependent bioactivity of water samples could
be identified to indicate potential early responses. Pathway
analysis based on the active values of differentially
concentration-dependent genes implicates the potential
bioactivity of samples, which can be used in diagnostic
analysis of chemical profiles. The data analysis strategies
developed here are also applicable to other omics approa-
ches, such as metabolomics and proteomics, which have also
been applied in mixture toxicology. Furthermore, our results
highlight the value of the integration of multiple approaches,
targeted in vitro assays, and untargeted omics approach,
together with a higher resolution of chemical analysis in the
study of mixtures. Finally, the selection of cell types that are
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relevant to toxicological end points is essential in the
assessment of mixture by RHT approach. Future studies
should explore the utility of other cell types, such as human
primary cells and embryonic stem cells, to increase the
coverage of biological activities and improve the implica-
tions for human health.

5 Assessing Environmental Toxicants Using
Zebrafish Embryo Test

Here, a reduced zebrafish transcriptome (RZT) approach was
developed to represent the whole transcriptome and to pro-
file bioactivity of chemical and environmental mixtures in
zebrafish embryo. RZT gene set of 1637 zebrafish Entrez
genes was designed to cover a wide range of biological
processes, and to faithfully capture gene-level and
pathway-level changes by toxicants compared with the
whole transcriptome. Concentration–response modeling was

used to calculate the effect concentrations (ECs) of DEGs
and corresponding molecular pathways. To validate the RZT
approach, quantitative analysis of gene expression by
RNA-ampliseq technology was used to identify differentially
expressed genes (DEGs) at 32 hpf following exposure to
seven serial dilutions of reference chemical BPA (10–10E–
5 lM) or each of four water samples ranging from
wastewater to drinking water (relative enrichment factors
10–6.4 � 10–4). The RZT-ampliseq-embryo approach was
both sensitive and able to identify a wide spectrum of bio-
logical activities associated with BPA exposure. Water
quality was benchmarked based on the sensitivity distribu-
tion curve of biological pathways detected using
RZT-ampliseq-embryo. Finally, the most sensitive biologi-
cal pathways were identified, including those linked with
adverse reproductive outcomes, genotoxicity, and develop-
ment outcomes. RZT-ampliseq-embryo approach provides
an efficient and cost-effective tool to prioritize toxicants
based on responsiveness of biological pathways.

Fig. 13 Distribution curves of
EC values of GO of water
samples identified by RHT
analysis in a HepG2 and b MCF7
and c distribution curves of
concentrations of chemicals
detected in water samples, which
were used to derive d REP and
REC for comparison between
biological potency and chemical
contamination

Table 5 Relative biological
potency (REP) and relative
chemical contamination
(REC) values of water samples

Eff2 Eff1 O3/BAC SW MF RO RW Blank AO DW

REP in
HepG2

1 0.29 0.10 0.10 0.13 0.10 0.17 0.12 NA 0.14

REP in
MCF7

1 0.72 NA 0.43 0.68 NA 0.60 0.29 NA 0.67

REC 1 0.54 0.12 0.20 0.51 0.08 NA NA NA NA

NA means no available distribution curves for that sample
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The objectives of this study were threefold. The first was
to curate a reduced gene list from zebrafish transcriptome
(RZT) that can comprehensively represent biological path-
ways and toxicologically relevant processes, and be quan-
tified by Ion Ampliseq Technology (RZT-ampliseq).
Second, we aimed to develop a chemical test protocol inte-
grating RZT-ampliseq and dose–response modeling in zeb-
rafish embryo (RZT-ampliseq-embryo). Bisphenol A (BPA),
a well-studied endocrine disruptor frequently detected in
water samples, was selected as a reference chemical. Finally,
we wanted to evaluate the performance of
RZT-ampliseq-embryo for use in hazard assessment of
environmental mixtures. The mixture samples tested in this
study were a set of water extracts previously characterized
by the RHT method.

Zebrafish Embryo Culture and Exposure. Embryos at 1
hpf were obtained from group spawns and incubated in
buffered embryo medium at 28 °C until 8 hpf. Then, 1 mL
of exposure solution was prepared in buffered embryo
medium with a series of concentrations of single chemical or
mixture (Table 5) with a final vehicle concentration of 0.1%
dimethyl sulfoxide (DMSO; Sigma-Aldrich). Ten embryos
were added to each well of 24 well microtiter plates. Plates
were sealed with parafilm and incubated at 28 °C on a
14 h/10 h, light/dark cycle. At 32 hpf, the zebrafish embryos
were collected for RNA isolation. The basal transcriptional
expression of RZT gene set was evaluated on three replicates
of 0.1% DMSO treatment sampled from six batches of
culture.

Single Chemical. Stock solutions of BPA (Sigma-Aldrich)
were prepared in DMSO. First, a single concentration
experiment (0.1 and 10 lM BPA) with three replicates was
conducted to validate the gene expression profiling of
RZT-ampliseq platform by comparing with the whole tran-
scriptome evaluated using microarray. Second, embryos
were dosed to a serial tenfold dilutions of BPA (10–10E–
5 lM) with a single replicate, in addition to three vehicle
control (0.1% DMSO).

Environmental Mixtures. Four water extract samples pre-
viously characterized as representing high-, medium-, and
low-toxic potencies (11) were tested by the
RZT-ampliseq-embryo approach. The dried extracts were
stored at −80 °C until analysis. Stock solutions of samples
were prepared in DMSO with relative enrichment factor
(REF) of 10 000, followed by 8–32 hpf embryo exposure.
The REF represents the concentration in the ambient water
samples (e.g., REF of ten means tenfold concentrated sam-
ple; REF of 0.1 means tenfold diluted sample).

mRNA Expression Profiling by Ampliseq. At 32 hpf,
zebrafish embryos were collected for total RNA extraction
using RNeasy mini kit (QIANGEN, GmbH, Hilden). RNA
quantification was performed by using Agilent 2100 Bio-
analyzer (Agilent technologies, Santa Clara, CA). Ten ng
total RNA from each sample were reverse transcribed into
cDNA by poly-A priming followed by PCR preamplification
(15 cycles) according to the protocol supplied with the Ion
AmpliSeq RNA Library Kit (Life Technologies, Carlsbad,
CA). The library was amplified, purified, and stored at −20 °
C. Amplicon size and DNA concentration were measured
using Agilent High Sensitivity DNA Kit (Agilent Tech-
nologies, Waldbronn, Germany) according to the manufac-
turer’s recommendation. The resulting libraries were
sequenced by Ion Proton (Life Technologies).

Gene Expression Analysis Pipeline. Raw reads were
automatically quantified by using Torrent Mapping Align-
ment Program. Then log2-fold change of each gene was
calculated using edgeR package. Differentially expressed
genes (DEGs) of a single BPA concentration were identified
by the threshold of absolute fold change � 1.5 and Ben-
jamini–Hochberg adjusted p < 0.05. For full dose–response
profiling, log2-fold change of genes against concentrations
was submitted to dose–response modeling analysis using drc
and DoseFinding as described previously with minor mod-
ification. Briefly, nine dose–response models (Table 4) were
fitted for each gene. The best-fit model, with the lowest
akaike’s information criterion (AIC) value, was used for
calculation of effect concentration (EC) values for genes
whose best-fit model showed significant curve-fitting per-
formance (p-value < 0.05). Finally, genes whose EC �
LOEC (BPA) or � 30 REF (water samples, NO effect
concentration) were defined as DEGs.

Robustness Analysis of RZT-Ampliseq. The zebrafish
embryos treated with 0.1% DMSO were used to evaluate the
basal expression of RZT genes, since 0.1% DMSO is fre-
quently used as a control in toxicological studies. To evaluate
the optimum sequencing depth of RZT-ampliseq-embryo for
consistently detecting most genes, mRNA sample of 32 hpf
zebrafish embryo exposed to 0.1% DMSO with 300 0000
sequencing counts of RZT-ampliseq (coverage of *200
counts for each gene) was used. The optimum sequencing
depth of samples was determined by aMonte Carlo simulation
conducted using R language. Each sequenced depth was
repeated 100 times to calculate the detected number of genes
(Reads > 0, Reads > 20) and the coefficient of variation
(CV) (SD/Mean) of each gene’s expression abundance. For
each gene, the relationship between CV and sequencing depth
was fitted with loess model and then the minimum sequencing
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depth of ensuring CV < 15% was calculated. To evaluate the
mRNA profiling performance of ampliseq on the RZT gene
set, the number of detected and undetected genes, as well as
each gene expression abundance measured by RZT-ampliseq
was compared to that by microarray platform (GSE43186)
and RNA-seq platform on 36 hpf zebrafish embryo. Correla-
tions of the gene expression abundance between different
technologies were calculated using number of reads per
amplicon for RZT-ampliseq, RPKM (reads per kilo base per
million reads) values for RNA-seq and signal intensity values
for microarray technology. Finally, to evaluate the repeata-
bility of RZT-ampliseq, the CV of RZT gene set in zebrafish
embryos of 0.1% DMSO (n = 3) from six batches was ana-
lyzed using the edge package.

Pathway-Level and Biological Process Validation. For
single dose experiment, functional enrichment analysis of
identified DEGs was performed using a one-sided Fisher’s
exact test on GO of biological process (BP), and KEGG
pathways with RZT gene list (Table S2) as background. For
full dose experiment, the EC values of GO terms and KEGG
pathways were calculated as the geometric mean of EC
values of matched DEGs. Only GO terms or KEGG path-
ways matched by at least three genes were included in EC
calculation and further analysis. Finally, to analyze the
overall biological potency of each sample, the proportionally
ranked distribution of GO and KEGG of EC values was
fitted with a four-parameter dose–response curve using
GraphPad Prism 5.0 software (San Diego, CA).

The molecular responses profiling (DEGs, KEGG path-
ways of DEGs) of 0.1 lM BPA treatment by RZT-ampliseq
were compared with whole transcriptome analysis of BPA
archived in NCBI. To compare RZT-ampliseq-embryo
approach with existing Toxcast high-throughput in vitro
assays with regard to biological activities associated with
BPA exposure, the responsive gene end points and molec-
ular pathways (KEGG, GO BP terms) identified by both
methods were evaluated. The responsive molecular gene end
points were DEGs captured of dose–response model analysis
of RZT-ampliseq-embryo. The responsive genes of Toxcast
in vitro assay were downloaded from (https://www.epa.gov/
chemical-research/toxicity-forecaster-toxcasttm-data). The
responsive molecular end points were converted to zebrafish
orthologous genes.

Comparison of RZT with In Vitro Bioassays and RHT
Method on Mixtures. A supervised approach was used to
assess the RZT representation of the previous in vitro
bioassays. First, gene sets associated with cellular toxicity
pathways tested by in vitro bioassays were manually curated
from Wiki Pathways and Gene Ontology, KEGG. Then the
EC of each pathway was calculated by the geometric mean
of the ECs of matched DEGs. Pathway patterns identified by

the RZT approach were shown by heatmap using gplot
package. The hierarchical clusters of water samples identi-
fied by RZT analysis were compared with the results of
in vitro bioassays.

To evaluate the sensitivity and specificity of
RZT-ampliseq-embryo in identification of bioactivity of
mixtures, the results of RZT-ampliseq-embryo were com-
pared to that of RHT-ampliseq using human HepG2 and
MCF7 cells on the same sample set. Briefly, the sensitivity
of 50% biological potency of water samples identified by
RZT was compared with those identified by RHT in HepG2
and MCF7 cells in terms of KEGG or GO. In addition, linear
regression was conducted on values of 50% biological
potency identified by RZT and RHT. Finally, the coverage
of the most sensitive pathways (top 20 sensitive KEGG
pathways) of Eff2, the sample with potential highest and
broadest bioactivity was compared between RZT and RHT
approaches.

RZT Assessment of a Classical Chemical: BPA. The RZT
approach showed good repeatability for quantifying tran-
scriptional response to chemical by zebrafish embryo.
Common CV of 32 hpf embryo mRNA samples exposed to
0.1% DMSO from 8 to 32 hpf was 13% (biological repli-
cation within one batch), 14% (biological replication among
six batches) for RZT-ampliseq-embryo. This variation was
acceptably low when compared with other RNA profiling
technology, such as qPCR (CV: 1 * 15%), microarray
(CV:5 * 15%) or RNA-seq (CV:10 � 15%). After expo-
sure of two independent batches of embryos to a single dose
of 10 lM BPA, 67, 45 DEGs (ANOVA, p < 0.05),
respectively, were identified by RZT-ampliseq-embryo and
26 DEGs were common to both batches. Moreover, the fold
change values of all expressed genes showed significant
correlation between batches (R2 = 0.62) and the difference
among the DEGs of two batches was nearly within twofold.

The full dose–response analysis of an RZT profile fol-
lowing exposure to BPA provided a distinct DEGs profile
compared to that detected following single doses. Following
24-h exposure to 0.1 or 10 lM BPA (single dose), 67 and 58
DEGs, respectively, were captured by
RZT-ampliseq-embryo and 31 DEGs were commonly
expressed. Eight GO BP terms and five KEGG terms were
shared between 10 and 0.1 lM BPA concentration groups.
Transcriptional changes associated with DNA damage
(DNA repair, cellular response to DNA damage stimulus)
and central nervous system development were only captured
after 0.1 lM BPA exposure. Oocyte meiosis was only
identified after 10 lM BPA exposure. Moreover, there were
no common DEGs in RZT-ampliseq-embryo and the pub-
lished microarray data in embryo exposed to 8–32 hpf
0.1 lM BPA. Three common KEGG pathways (counts of
mapped gene � 3) were identified in two platforms, but
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these were only involved in fundamental apoptosis process
(FoxO signaling pathway, p53 signaling pathway) and reg-
ulation of actin cytoskeleton. However, 98 DEGs were
identified by dose–response analysis of the embryo exposed
to the seven, tenfold, dilutions of BPA (10 � 10–5 lM).
Three and five of the DEGs identified by dose–response
analysis were also detected as DEGs in embryos exposed to
10 and 0.1 lM, respectively.

One significant advantage of dose–response analysis by
RZT-ampliseq is the sensitivity analysis of genes and bio-
logical pathways in response to chemicals, which could aid
inference regarding the potentially sensitive apical end point
effects. The responsive DEGs were mainly fitted with
U-shaped models, which suggest that the mode of hormesis
dominates the low dose response of transcriptome. However,
there are alternative interpretations other than true hormesis.
For example, the time course of dynamic transcriptional
response may change at different doses; in higher doses, for
example, the transcript abundance can peak earlier, but falls
by 32 h. Alternatively, perhaps there is a developmental
delay at the higher doses, associated with triggering more
and more AOPs in the organism, thereby causing more and
more disruption of normal development. What is effectively
a monotonic response to the chemical may produce a non-
monotonic dose–response for a given snapshot in time. The
response genes (EC < 0.001 lM) (foxa3, dhrs3a, src, rpa3,
myb, csf1ra, flt4) were mainly fitted with Gaussian model
(Fig. 14a) and were primarily associated with pathways of
cell-based process, responses to external stimuli, immune
system, and neurogenesis. The significant enrichment of
neurogenesis-related processes (central nervous system
development, nervous system development, locomotion) at
very low concentrations of BPA (EC < 0.001 lM) was
corroborated by hyperactivity behavior (0.0068 lM(35))
and increased neuronal development(35) observed in previ-
ous study. Moreover, hyperactivity behavior showed a
nonmonotonic concentration-dependent response and was
induced only at very low effect concentrations, which was
consistent with the Gaussian model of the relevant DEGs.
For the DEGs with EC between 0.001 and 0.01 lM, only
apoptosis relevant FOXO signaling pathway (FDR = 0.057,
covered four genes) was enriched. Previous research repor-
ted BPA could induce apoptosis of mice spermatocytes and
zebrafish embryo. A larger number of pathways, which
included liver development, regulation of
nucleobase-containing compound metabolic process, sen-
sory organ morphogenesis, and DNA binding, were associ-
ated with the DEGs with EC between 0.01 and 0.1 lM. The
DEGs with EC (0.1–10 lM), close to the LOEC (10 lM),

were mainly associated with carbohydrate metabolic process
and blood vessel development process.

The coverage of enriched pathways and the correspond-
ing sensitivity detected following full dose–response profil-
ing using RZT-ampliseq-embryo were compared with
ToxCast in vitro results for BPA. Not only was there con-
sistency with ToxCast in terms of the coverage of biological
pathways, the RZT-ampliseq-embryo method appeared more
sensitive (Fig. 14b–d). Bisphenol A was tested with regard
to 821 ToxCast assay end points. Out of 96 genes that
aligned with the 390 relevant assays, 78 genes had a cor-
responding orthologous zebrafish gene. In total, 5 KEGG
pathways and 15 GO BP terms were commonly identified by
Toxcast and RZT, although only five genes were identified
by both approaches (Fig. 14b–d). Furthermore, the sensi-
tivity rank of common genes (ptgre2a, tcf7l1b, src, xbpl,
tfap2b) and KEGG pathways (metabolic pathways, MAPK
signaling pathway, focal adhesion, endocytosis, adhere
junction) was similar across two platforms (Fig. 14b, c).
However, RZT-ampliseq-embryo was more sensitive than
in vitro tests in Toxcast with 2.3, 2.9, and 2.8 magnitude
difference at gene, KEGG, and GO BP level, respectively.

RZT Assessment of Mixtures in Zebrafish Embryo. The
RZT-ampliseq-embryo was able to discriminate the rela-
tively clean water samples from the polluted environmental
samples by the relative potency of altered genes and
molecular pathways. The DEGs responsive at low dose
range (ECs � 0.1 REF) were mainly fitted with U-shaped
models (Fig. 15). For example, the DEGs of MF were
mainly associated with altered metabolic process (ar, smad1,
prpf40a, ak2, uqcrc2b, polr2gl, smc3, gtf2b, psmc1a, rpl7a,
gars, ndufv2, htatsf1, rps24, u2af2b, cwc15, zgc:86599,
nup85, psmc5, tcf7, hnrnpm, ikbkap, nup107), develop-
mental process (such as kif1 bp, atp6v1e1b, flt4, sema3d,
ctnnb1, smad1, raf1a, tgfbr2, ak2, rpl6, tgfb3, rps24, sumo1,
tcf7, cyp26c1, plod3, ikbkap, hdac6), and cellular response
to stimulus (such as ar, flt4, sema3d, smad1, raf1a, tgfbr2,
smc3, ssr4, psmc1a, tgfb3, psmc5, tcf7, ephb2b). The
number of DEGs selected by the nine dose–response models
across all four samples ranged from 78 to 300 (SI Fig. 15).
Although the number of DEGs did not directly correlate with
decreasing pollution level, the sensitivity distribution curve
of biological pathways indicated the decrease of pollution
level (Eff2 > MF > RW > DW). The EC values of the most
sensitive KEGG or GO pathways of DW samples were 1–2
orders of magnitude higher than those of effluent samples,
suggesting relatively weak biological effects were induced
by D.
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The enriched pathways in RZT analysis could be used to
prioritize potential biological end points for future assess-
ment. Specifically, the most sensitive KEGG or GO BP
pathways may be linked with adverse outcomes. All devel-
opment relevant pathways (GO terms, each covered at least
three DEGs suggested Eff2 and MF samples might induce
potential development toxicity while RW and DW samples
may not (Fig. 16a). The predicted adverse outcomes were
corroborated by zebrafish embryo 48hpf lethality and 120hpf
sublethal development experiment.

Comparison between RZT-Embryo and RHT Cell Pro-
files of Water Samples. RZT-embryo also provided differ-
ent profiles of altered genes and pathways of the four water
samples from that by RHT approach, which might be due to
the greater biological complexity represented by a fish
embryo compared to a single cell type. The most sensitive
pathways identified by RZT following exposure to the water
samples were distinct with those by RHT in HepG2 and

MCF7. Take Eff2 for example (Fig. 16b), only four KEGG
pathways were overlapped between the 20 most sensitive
pathways (with lowest EC values) identified by
RZT-embryo and RHT in HepG2 and MCF7 cells. Nine of
the 20 most sensitive pathways uniquely identified by
RZT-embryo were associated with basic biological pro-
cesses, which may suggest that rapidly developing and dif-
ferentiating zebrafish embryos were more sensitive to
alterations of basic processes, such as oxidative phospho-
rylation, than the single cell type in vitro system. Moreover,
the most sensitive KEGG pathways identified by RHT in
HepG2 and RHT in MCF7 showed cell-type responses, such
as pathways involved in immune response and cellular
communication, which were not among the most sensitive
KEGG pathways by RZT-embryo assay. However, some
cell-type-specific responses, including endocrine response in
MCF7 and metabolism response in HepG2, were also
identified by RZT as sensitive KEGG pathways responding
to Eff2.

Fig. 14 Concentration-dependent network of differentially expressed
genes (DEGs) (p < 0.05) in 32 hpf zebrafish embryo treated by BPA
(a). Coverage and sensitivity of biological pathways enriched by BPA
in RZT-ampliseq-embryo (blue, log10 EC value) and Toxcast in vitro
assays (orange, log10 AC50 value) at gene level (b), KEGG pathway
level (c) and GO BP term (d). For KEGG pathways and GO BP terms,
only those with counts of mapped genes � 3 were included in this

analysis. Common molecular end points were labeled by red triangle.
Pathway scores (EC or AC50 value) were the geometric mean of the
effect concentrations (ECs) (RZT-ampliseq-embryo) or AC50 (Toxcast)
values of the relevant genes. The horizontal distance of 50% biological
potency between RZT-ampliseq-embryo and Toxcast in vitro assays
was labeled in red
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A distinct pathway sensitivity distribution in response to
the MF sample was identified by RZT-embryo compared to
RHT in HepG2 and MCF7 cells. Although the potency of
the median sensitive pathway (50% biological potency)
following exposure to MF was lower than that of RW and
DW in RZT-embryo, MF was more potent than that of RW
and DW at the most sensitive pathways which were profiled
by the RZT-embryo. These highly sensitive biological
responses induced by MF were primarily related to embryo
development (e.g., heart jogging, embryo pattern specifica-
tion, notochord development, determination of left/right

symmetry) (Fig. 16a), which might be related to develop-
mentally toxic pollutants present in the MF sample. The MF
sample was water taken after microfiltration using filters
disinfected by chlorination to avoid biofouling in a water
reclamation plant, in which micropollutants such as carba-
mazepine, a teratogen, with the highest detected concentra-
tions (1.9 lg/L) out of ten samples were present.
Carbamazepine has been reported to disturb embryonic
development with increasing hatching rate, body length,
swim bladder appearance, and yolk sac absorption rate at
1 lg/L. However, knowledge gaps associated with unknown

(a) (b) Total

(c) Eff2 (d) MF

(e) RW (f) DW

Fig. 15 a Venn diagram of
DEGs by four water samples
identified by
RZT-ampliseq-embryo in 32 hpf.
Histogram of log10 EC values of
differentially expressed genes
(DEGs) across total four water
samples (b) and by each water
sample (c), (d), (e), and (f)
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chemicals present in the mixtures and their potential com-
bined effects still exist in toxicological assessment of these
environmental samples. An effect-directed analysis
(EDA) integrating extract fractionation and instrument
analysis with the sensitive RZT approach may be used to
identify the chemicals responsible for the observed effect in
future.

In conclusion, we developed reduced transcriptome
approaches (RHT and RZT) by integrating reduced transcrip-
tome, RNA-ampliseq technology, and human cells or zebrafish
embryo test to assess environmental toxicants. Firstly, the
concentration-dependent transcriptomic approach could iden-
tify early molecular response and molecular mechanism of
single chemical which would help to predict apical effect. The
reduced transcriptome approach has potential to be used to
evaluate and prioritize chemicals for further testing and
potentially to predict adverse outcomes. These results demon-
strate a promising and powerful tool for screening hundreds of
chemicals or mixtures by potency ranking and to classify
chemicals by the spectrum of disrupted biological pathways.
The omics-based biological pathway strategy can also be used
in the characterization of potential toxicity by environmental
mixtures. It is anticipated that reduced transcriptomic approa-
cheswill significantly advance pathway-based high-throughput
screening of potentially toxic substances.
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