
Secure Communication Using a New
Hyperchaotic System with Hidden
Attractors

Jay Prakash Singh, Kshetrimayum Lochan and Binoy Krishna Roy

Abstract Objectives of the paper are to (i) develop a new hyperchaotic system hav-
ing hidden attractors and (ii) to show the applications using the new system in the
form of secure communication. New system proposed in the paper has a stable equi-
librium, hence considered under the class of the hidden attractors dynamical system.
Dynamical characteristics of the novel system is confirmed using some numerical
means like phase portrait, Poincaré map and Lyapunov spectrum plot. The applica-
tions of the new system are shown by encrypting and decrypting a sinusoidal signal
and soundwave. Secure communication is achieved by designing a proportional inte-
gral (PI) based sliding mode control (SMC). MATLAB simulation results validate
and ensure that the objectives are satisfied.

Keywords New hyperchaotic system · Hidden attractors · Sliding mode control ·
Secure communication · Control of chaos

1 Introduction

Available dynamical characteristic chaotic systems are classified into two clusters.
The reported systems with (i) hidden attractors or (ii) self-excited attractors [1–8] are
the two main cluster. Finding and advancement of the systems with hidden attrac-
tors is more challenging as compared to the other part. This is because in hidden
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attractors the knowledge of location of equilibrium point does not help in creation
of the attractors [1–8]. Lorenz [9], Chen [10], Lu [11], chaotic system and systems
in [12–17] are the types of self-excited attractors. Systems having stable equilibrium
point [18, 19] or no equilibrium point [20, 21] are the main types of hidden attractors.
Newly the chaotic/hyperchaotic systems with infinite equilibria also belong to the
choice of the hidden attractors [22–27]. The study of the chaotic/hyperchaotic sys-
tems having such nature is significant. This is so because in such system unexpected
and undesired behaviours can be observed [6, 28, 29].

Hidden attractors are seen in various types of chaotic/hyperchaotic system as
discussed in the literature [30, 31]. Dynamical systems with stable equilibrium point
hidden attractors are comparatively less available in the literature as compared with
no equilibrium point system of hidden attractors. We know that the hyperchaotic
systems are more complex as compared with the chaotic systems [24, 32]. Thus,
development of hyperchaotic system is more important. The available dynamical
system (chaotic/hyperchaotic) systems having stable nature of equilibria are given
in the Table 1. Table 1 reflects that hyperchaotic systems having stable nature of
the equilibrium points are very few in the literature. It is noted from the available
literature and the Table 1 that there is still some scope for developing the systemwith
stable equilibria. Considering the above discussion, this paper needs to report a new
hyperchaotic system. The important feature in the new system is that it has a stable
equilibrium point.

The remaining paper goes like this. Section 2 presents the dynamics of the pro-
posed new system having hyperchaotic behaviour and stable equilibria. Numerical
analysis of the reported system is discussed in Sect. 3. Application of the new system
is discussed in the Sect. 4 of the paper. Results and discussion of the application is
presented in Sect. 5 of the paper. And in the last the paper is concluded in the Sect. 6
of the paper.

Table 1 The dynamical
systems
(hyperchaotic/chaotic) having
stable nature of equilibria

3-D/4-D/5-D Types of system References

3-D With 1 equilibrium point [30, 31,
33–43]

With 2 equilibrium points [18, 35,
44–47]

4-D Hyperchaotic system having
one equilibrium point

[48, 19, 49]

4-D Memristive hyperchaotic
system with infinitely many
equilibrium points

[23]

5-D New hyperchaotic system
having two equilibria

[50]
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2 A New Dynamical Hyperchaotic System Having Stable
Nature of Equilibrium Point

In the present section, the dynamics of a new system is presented which is consid-
ered in the work. The new proposed system is developed from the Lorenz-stenflo
system [19] by using state feedback control. The dynamics of the reporting system
is presented in (1).

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + bx2x3 + x3x4
ẋ2 = −bx1x3 + cx2 + x4
ẋ3 = 4 + x1x2 − dx3
ẋ4 = −ex2

(1)

In system (1), a, b, c, d, e are the parameters and x1, x2, x3, x4 are considered as
the state. The system in (1) is obtained from the Lorenz-stenflo system using state
feedback control and perturbing one term.

The system in (1) is invariant when (x1, x2, x3, x4) → (−x1,−x2, x3,−x4).
Therefore, the proposed system dynamics has regularity around the x3 axis.

The new hyperchaotic system proposed in the paper is a dissipative dynamical
system. This is proved by finding the divergence of the new system and is given in
(2).

∇v = ∂ ẋ1
x1

+ ∂ ẋ2
x2

+ ∂ ẋ3
x3

+ ∂ ẋ4
x4

= −a − c − d = −(a + c + d) (2)

It is seen from (2) that the divergence is negative because a, c, d are the positive
constants. Thus the volume in the phase space of the new systemdecays exponentially
with the rate (a + c + d). Therefore it may be said that there can be attractors in
system (1).

Equilibriumpoint of the newconsidered system is foundout byputting the derivate
of each state variable to zero. The system in (1) has only equilibrium point at E =(
0, 0, − d

4 , 0
)
. Eigenvalues of the new system is found out using the Jacobianmatrix

given in (3).

J1 =

⎡

⎢
⎢
⎣

−a a + b(x3)
∗ b(x2)

∗ + (x4)
∗ (x3)

∗

−(x3)
∗ 17 −(x1)

∗ 1
(x2)

∗ (x1)
∗ −d 0

0 −e 0 0

⎤

⎥
⎥
⎦ (3)

Table 2 presents the eigenvalues of the system given in (1). It is specious from
Table 2 that the new system has all the eigenvalues with stable nature. Thus, the new
system may have hidden attractors.
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Table 2 Equilibrium point and eigenvalues of system (1) with a = 35, b = 30, c = 17, d =
0.78, e = 14

Equilibrium point Eigenvalues

E = (
0, 0, − d

4 , 0
)

λ1 = −0.78

λ2 = −16.70367158

λ3 = −0.648164 + 2.719171i

λ4 = −0.648164 − 2.719171i

3 Dynamical Analysis of System (1)

Dynamical behaviour of the considered new proposed system is shown in the present
section using some of the numerical method.

The new system has hyperchaotic behaviour with a = 35, b = 30, c =
17, d = 0.78, e = 14. Finite-time LEs for these sets of parameters are Li =
(1.014, 0.218, 0, −19.686). Hyperchaotic attractors of the new system with a =
35, b = 30, c = 17, d = 0.78, e = 14 are revealed in Fig. 1. Poincaré map
across x1 = 0 plane of the new system is presented in Fig. 2. The dynamical
behaviour/characteristics of the new system is investigated by plotting the finite-
time Lyapunov spectrum (LS). The finite-time LS is plotted by finding the Lyapunov
exponents with the fixed initial conditions x(0) = (0.2, 0.1, 5, 0.1)T and obser-
vation time T = 20,000 time unit. The LEs are calculated by the method of Wolf
et al. algorithm [51] inMATLAB simulation environment. The finite-time Lyapunov
spectrum with varying e keeping other parameter fixed in Fig. 3. Presence of the
two positive natures of the Lyapunov exponents in Fig. 3 indicates the existence of
hyperchaotic behaviour in the new system.

4 Secure Communication Using the System in (1)

Here, an application using the new proposed system is illustrated. The application is
shown in the field of secure communication bymasking and retrieving of information
signals.

In last decade chaotic/hyperchaotic systems are commonly being applied for
secure communication [52–54]. The chaotic signals are being used in various ways
in the secure communication. One common way is for encryption and decryption of
a message signal. The main reason for this is that chaotic signals have apparently
noise like nature and unpredictable behaviour [52–55].

In the paper the secure communication using the new system in (1) is presented
by considering as like the system acting as a master and system acting like as a slave
system. Suppose the system acting like as a master and the system acting like as a
slave system are given in (4) and (5), respectively
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(a) (b)

(c) (d)

Fig. 1 Hyperchaotic attractors with a = 35, b = 30, c = 17, d = 0.78, e = 14 for system (1)

-5 0 5
x2

(a)

5

10

15

x 3

5 10 15
x3

(b)

-10

0

10

x 4

Fig. 2 Poincaré map across x1 = 0 in: a x2 − x3 plane and b x3 − x4 plane of the new system

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + bx2x3 + x3x4
ẋ2 = −bx1x3 + cx2 + x4
ẋ3 = 4 + x1x2 − dx3
ẋ4 = −ex2

(4)

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = a(y2 − y1) + by2y3 + y3y4 + u1
ẏ2 = −bmy3 + cy2 + y4 + u2
ẏ3 = 4 + my2 − dy3 + u3
ẏ4 = −ey2

(5)

where m = x1 + s and s is the message signal and u1, u2, u3 control inputs which
are needed to be designed. Here, the message (m) is added with state x1. When the



72 J. P. Singh et al.

Fig. 3 Finite time LS with a = 35, b = 30, c = 17, d = 0.78 and x(0) = (0.2, 0.1, 5, 0.1)T for
the new system

system acting like a master (4) has states synchronised with the system acting like
the system as a slave (5) systems i.e., yi = xi , then at the receiver end the message
signal s̃ is retrieved as s̃ = m − y ≈ s. Here it is considered that the SNR of the
message signal (m) is less than the masking signal x1. The application is completely
illustrated and sketched in Fig. 4.

Fig. 4 Complete communication scheme [52]
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The synchronisation errors among the system acting like as a master (4) and the
system acting like as a slave system (5) are given in (6).

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = a(e2 − e1) + be2y3 + bx2e3 + e3y4 + x3e4 + u1
ė2 = −e1y3 − x1e3 + ce2 + e4 + u2
ė3 = e1y2 + x1e2 − de3 + u3
ė4 = −ee2

(6)

Next question is to narrate the stabilisation of the error dynamics given in (6). It
is required to bring the error dynamics to zero. The answer for the question and the
required task is performed by designing a suitable SMC. Here proportional integral
SMC is designed for this purpose.

The mathematical structure of the PI sliding surface is presented in (7).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s1 = e1 + t∫
0
(k1e1)dτ

s2 = e2 + t∫
0
(k2e2 − ce4)dτ

s3 = e3 + t∫
0
(k3e3)dτ

(7)

where k1 and k2 are the user defined positive parameters. It is needed that when
dynamics goes through the sliding variable, it requires to satisfies ṡi = 0. Now the
equivalent mode dynamics [56] is be written as (8).

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = −k1e1
ė2 = −(k2e2 − ee4)
ė3 = −(k3e3)
ė4 = −ee2

(8)

The stabilisation of the error dynamics defined in (8) is shown by choosing a
Lyapunov function candidate as V1(e) = 1

2

(
e21 + e22 + e23 + e24

)
. The V̇1(e) along

with (8) is written in (9).

{
V̇1(e) = e1ė1 + e2ė2 + e3ė3 + e4ė4
= e1(−k1e1) + e2(−(k2e2 − ee4)) + e3(−(k3e3)) + e4(−ee2)

After arranging some terms, we get

V̇1(x) = −k1e
2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4 (9)

where k1, k2, k3, k4 are the positive constant. It is apparent from (9) that it is negative
definite. Therefore, the sliding motion is asymptotically stable.

SMC controllers proposed are designed in (10).
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⎧
⎨

⎩

u1 = −ae2 − be2y3 − bx2e3 − e3y4 − x3e4 − k1e1 − ρ1 tanh(σ1)

u2 = e1y3 + x1e3 − ce2 − (1 − e)e4 − k2e2 + sy3 − ρ2 tanh(σ2)

u3 = −e1y2 − x1e2 − k3e3 − sy2 − ρ2 tanh(σ2)

(10)

Theorem 1 The error in (6) converges to σi = 0 if it is controlled by (10) and also
ensure synchronisation between the system as the master (4) and the system as the
slave (5) system.

Proof Suppose Lyapunov candidate function as V2(s) = 1
2

(
s21 + s22 + s23

)
. The time

derivative of V2(s) along with (7) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V̇2(S) = S1 Ṡ1 + S2 Ṡ2 + S3 Ṡ3
= s1(ė1 + k1e1) + s2(ė2 + k2e2 − ce4) + s3(ė3 + k3e3)

= s1(a(e2 − e1) + be2y3 + bx2e3 + e3y4 + x3e4 + u1 + k1e1)

+ s2(−e1y3 − x1e3 + ce2 + e4 + u2 + k2e2 − ce4)+
s3(e1y2 + x1e2 − de3 + u3 + k3e3)

(11)

Now inserting the control laws (10) in (11) we get,

V̇2(s) = −σ1s1 tanh(s1) − σ2s2 tanh(s2) − σ3s3 tanh(s3)

< −ρ1|s1| − ρ2|s2| − ρ3|s3| < 0 (12)

whereρ1, ρ2, ρ3 are the positive constants. Thus,we can say that V̇2(s) < 0 for s �= 0.
Therefore sliding surfaces s1, s2 and s3 converge to s1 = 0, s2 = 0 and s3 = 0, [56]
respectively. Hence, error dynamics given in (7) stabilises at origin. Therefore, the
master (4) and the slave (5) systems states are synchronised. Therefore the message
signal is encrypted and decrypted successfully using the proposed approach.

5 Results and Discussion for Secure Communication Using
the New Hyperchaotic System

This section discussed the secure communication using the newhyperchaotic system.
The application is shown by encryption and decryption of a sinusoidal signal and
sound like signal. Simulation of the master and slave hyperchaotic systems is done
with the initial conditions x(0) = (0.2, 0.1, 5, 0.1)T , x(0) = (0.5, 0.5, 2, 0.5)T ,
respectively. The values of the constants used for the SMC are k1 = k2 = k3 =
2, ρ1 = 5, ρ2 = 2, ρ3 = 2.

For masking, a sinusoidal signal in the form s = sin(2π10t) and a speech signal
available in MATLAB named with “handle.mat” are used.

Results of the secure communication with the sinusoidal signal are shown from
Figs. 5, 6, 7 and 8. Synchronisations of the system considered as the master system
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Fig. 5 Synchronised states of (4) and (5) systems with sinusoidal signal

(a)

(b)

(c)

Fig. 6 Behaviour of the sliding surface designed for the synchronisation with sinusoidal signal

and system considered as the slave systems having synchronised states are shown in
Fig. 5. It is apparent from Fig. 5 that the states of the master and slave systems are
synchronised properly. The time behaviours of the designed sliding surfaces and the
designed control inputs are shown in the Figs. 6 and 7 respectively. The nature of the
carrier, masked and the transmitted signals along with recovered signal are presented
in Fig. 8. Figure 8 discussed that the transmittedmessage signal is recovered properly.

Now a sound signal is used for the secure communication. The synchronisation
errors between the master and slave systems having synchronised states are shown
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(a)

(b)

(c)

Fig. 7 Behaviour of the designed inputs used for the synchronised system as master (4) and slave
(5) systems with sinusoidal signal

(a)

(b)

(c)

Fig. 8 Responses of the carrier, masked and the transmitted sinusoidal message signal along with
recovered sinusoidal message signal
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in Fig. 9. It is apparent from Fig. 9 that master and slave systems are synchronised
properly in smaller synchronising time. Behaviour of the transmittedmessage signal,
masked signal and recovered message signal in case sound wave is shown in Fig. 10.
It is seen fromFig. 10 that the transmittedmessage signal is recovered properly. Thus,
the concept of application in secure communication using the proposed system is
validated.
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Fig. 9 Synchronisation error between the synchronised states of master (4) and slave (5) systems
with considered sound wave message signal

(a)

(b)

(c)

Fig. 10 Responses of the transmitted sound wave message signal, masked signal and recovered
message signal
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6 Conclusions

In the present work, a new hyperchaotic system is reported. Presence of an equi-
librium point having stable nature in the new system makes it to be considered
under hidden attractors dynamical system. Dynamical properties in the new sys-
tem is shown using some numerical methods like phase portrait, Poncaré map and
Lyapunov spectrum. The applications of the new system are shown in secure commu-
nication by masking of a sinusoidal signal and a sound wave. A PI-SMC is designed
for the application. Results using the MATLAB simulation validate the numerous
dynamical characteristics and application of the new system.
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