
Weight-Assignment Last-Position
Elimination-Based Learning Automata

Haiwei An(&), Chong Di, and Shenghong Li

School of Cyber Space Security, Shanghai Jiao Tong University, 800 Dong
Chuan Road, 200240 Shanghai, China
anhaiwei1995@sjtu.edu.cn

Abstract. Learning Automata (LA) is an adaptive decision-making unit under
the reinforcement learning category. It can learn the randomness of the envi-
ronment by interacting with it and adaptively adjust its behavior to maximize its
long-term benefits from the environment. This learning behavior reflects the
strong optimization ability of the learning automaton. Therefor LA has been
applied in many fields. However, the commonly used estimators in previous LA
algorithms have problems such as cold start, and the initialization process can
also affect the performance of the estimator. So, in this paper, we improve these
two weaknesses by changing the maximum likelihood estimator to a confidence
interval estimator, using Bayesian initialization parameters and proposes a new
update strategy. Our algorithm is named as weight-assignment last-position
elimination-based learning automata (WLELA). Simulation experiments show
that the algorithm has higher accuracy and has the fastest convergence speed
than various classical algorithms.

Keywords: Learning automaton � Weight-assignment � Bayesian
initialization � Confidence interval estimator

1 Introduction

Learning automaton can be seen as an adaptive decision-making unit, It can constantly
interact with the random environment to adjust its choices to maximize the probability
of being rewarded. The process of the LA interacting with the environment is shown in
Fig. 1; [1]. At each moment t, an action a(t) will be chosen by LA to interact with the
random environment and receives the environment feeds back b(t), which can be either
a reward or a penalty. Then, the automaton updates the state probability vector
according to the received feedback. Because it’s simple algorithm, strong anti-noise
ability and strong optimization ability, it has received extensive attention and has been
applied in many fields, such as random function optimization, QoS Optimization and
certificate authentication.

© Springer Nature Singapore Pte Ltd. 2020
Q. Liang et al. (Eds.): CSPS 2019, LNEE 571, pp. 348–354, 2020
https://doi.org/10.1007/978-981-13-9409-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9409-6_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9409-6_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9409-6_41&domain=pdf
https://doi.org/10.1007/978-981-13-9409-6_41

In the LA field, the most classical discrete pursuit algorithm with deterministic
estimator is the DPRI algorithm given by Oommen in [2]. The main idea of the DPRI
algorithm is to increase the probability vector which has the maximum value in the
running estimates when the environment rewards the current action and decreases
others; otherwise, the automaton changes nothing. Furthermore, many classical pursuit
algorithms, such as DGPA [3] and SERI [4], also use estimators and discretization to
improve the convergence speed of automaton. In [5], an algorithm named last-position
elimination-based LA(LELA) which is contrary to the classical pursuit algorithm is
proposed. Instead of greedily increasing the probability vector of the optimal estimation
action, this algorithm reduces the probability of choosing the current worst estimation
action, t Experiments show that LELA can get faster convergence speed than DGPA.

However, the estimator used by LELA has some innate defects. One typical flaw is
the cold start and initialization problem, for example, since the maximum likelihood
estimator does not have any information at the beginning, each action has to interact
with the environment a certain number of times, it will Increase the cost of getting
information in some complicated situations. And the update strategy of the LELA
algorithm simply makes all active actions equally share the penalized state probability
from the last-position action, does not consider the difference between optimal action
and other actions at all. Thus, in this paper, we propose a weight assignment LELA
(WLELA) algorithm which has made the following three changes: 1. Improvement of
initialization parameters; 2. the estimator improvement; 3. changes in the probability
vector update strategy.

In Sect. 2, a brief introduction of the LELA algorithm is given. In Sect. 3 we will
show our algorithm WLELA in detail. Then in Sect. 4 part, we will give the simulation
results of the WLELA algorithm, which will be compared with LELA and other classic
algorithms such as DPRI, DGPA. Finally, summarize in Sect. 5.

2 Related Work

LA can be represented by a four-tuple A, B, Q, Th i model. They are explained as
follows.

Fig. 1. LA interacts with the random environment

Weight-Assignment Last-Position Elimination-Based Learning 349

A is the set of actions. B is the feedbacks from random environment, when B = {0,
1}, where b = 0 represents that the LA has been penalized, and b = 1 means the LA
has been rewarded. Q = <P, E>, E represents the estimator, it contains all the historical
information that each action interacts with the environment. The most commonly used
estimator is the maximum likelihood estimator. P is the state probability vector of
choosing an action a(t) at any instant t, it satisfies

P
pi(t) = 1. T is the state transition

function of LA, which determines how LA migrates to the state of t + 1 according to
the state of output, input, and t at time t.

The random environment can also be described by a triple <A, B, C> mathematical
model. where A and B are defined in the same way as above, and C is defined as
C = {cij = Pr{b(t) = bj|a(t) = ai}}.

In the original LELA algorithm [5], it uses the maximum likelihood estimator to
record the historical information of all actions, according to the following formula

di tð Þ ¼ Wi tð Þ
Zi tð Þ ð1Þ

where Zi(t) is the number of times the action ai was selected up to time instant t and Wi
(t) is the sum of the environmental feedbacks received up to time t. when an action is
rewarded, the automaton will select the worst performing action from the estimator
vector set and decrease corresponding state probability vector by a step Δ = 1/rn, where
r is the number of allowable actions and n is a resolution parameter. If some action’s
state probability vector is reduced to zero during the process, this action will be
removed from the optional set of actions, while the remaining actions will evenly share
the state probability value from each decrease. The update scheme is described as
follows:

If b(t) = 1 then
Find m 2 Nr such that

dm tð Þ ¼ min di tð Þjpi tð Þ 6¼ 0f g; i 2 Nr

pm tþ 1ð Þ ¼ max pm tð Þ � D; 0f g

If pm tþ 1ð Þ ¼ 0 Then k tð Þ ¼ k tð Þ � 1 Endif

pj tþ 1ð Þ ¼ min pj tð Þþ pm tð Þ � pm tþ 1ð Þ
k tð Þ ; 1

� �

; 8j 2 Nr; such thatpt tð Þ[0:

Else

pi tþ 1ð Þ ¼ pi tð Þ8i 2 Nr

Endif.

j(t) denotes the number of active actions and is initialized by r.
LELA has been proved to be e-optimal in every stationary random environment.

350 H. An et al.

3 Proposed Learning Automata

In order to overcome the shortcomings of the LELA algorithms, we propose the
following improvements.

Firstly, we use the Bayesian estimator introduced in [6] to solve the cold start and
initialization problems. However, if the Bayesian estimator is used directly in the LA
algorithm, the convergence speed will be additionally affected, so in WLELA, we
directly modify it to the mean of the posterior distribution which is to set all actions’
di(0) = 0.5, thereby improving convergence efficiency while ensuring overcoming cold
start and initialization problems.

Secondly, in order to get more information, in the WLELA algorithm we used the
confidence interval estimator proposed in [7] which is

di tð Þ ¼ 1þ Zi tð Þ �Wi tð Þ
Wi tð Þþ 1ð ÞF2 Wi tð Þþ 1ð Þ;2ðZi tð Þ�Wi tð Þ;0:005

� ��1

; 8i 2 Nr ð2Þ

where F2 Wi tð Þþ 1ð Þ; 2 ðZi tð Þ�Wi tð Þ; 0:005 is the 0.005 right tail probability of the F distribution
2 Wi tð Þþ 1ð Þ and 2ðZi tð Þ �Wi tð Þ dimensional degrees of freedom.

Last, since all state probability vectors add up to a total of 1, so the value of each
state probability vector can be thought of as its weights in the vector set. So, WLELA
increase their probability vector according to their weights. In this way, similar to the
idea of finding the optimal action in the classic pursuit algorithm, the probability vector
of the optimal action will get more attention when updating, so that more values can be
added to the optimal action’s state probability vector each time. Assigning the added
value by weight is more in line with the purpose of learning the automatic machine to
select the optimal action.

A detailed description of the WLELA is as follows
Algorithm WLELA
Initialize pi 0ð Þ ¼ 1

r ;Wi 0ð Þ ¼ 1; Zi 0ð Þ ¼ 2; 8i 2 Nr

Initialize di 0ð Þ ¼ 1þ Zi 0ð Þ�Wi 0ð Þ
Wi 0ð Þþ 1ð ÞF2 Wi 0ð Þþ 1ð Þ;2ðZi 0ð Þ�Wi 0ð Þ;0:005

� ��1

; 8i 2 Nr

Step 1: At time t, pick a(t) = ai according to the state probability vector P(t);
Step 2: Receive feedback bi(t) {0,1}. Update the estimate values

Wi tð Þ ¼ Wi t� 1ð Þþ bi tð Þ;

Zi tð Þ ¼ Zi t� 1ð Þþ 1

di tð Þ ¼ 1þ Zi tð Þ �Wi tð Þ
Wi tð Þþ 1ð ÞF2 Wi tð Þþ 1ð Þ;2ðZi tð Þ�Wi tð Þ;0:005

� ��1

Step 3: If bi(t) = 1 Then
Find m 2 Nr such that

Weight-Assignment Last-Position Elimination-Based Learning 351

dm tð Þ ¼ min di tð Þjpi tð Þ 6¼ 0f g; i 2 Nr

pm tþ 1ð Þ ¼ max pm tð Þ � D; 0f g

If pm tþ 1ð Þ ¼ 0 Then k tð Þ ¼ k tð Þ � 1 Endif

pj tþ 1ð Þ ¼ min
8j2Nr;pj tð Þ[0

pj tð Þþ fpm tð Þ � pm tþ 1ð Þg � fpj tð Þþ pm tð Þ � pm tþ 1ð Þ
k tð Þ g; 1

� �

Endif
Step 4: If bi(t) = 0 Then

pi tþ 1ð Þ ¼ pi tð Þ8i 2 Nr

Goto Step 1.
Endif
Step 5: If max P tð Þf g ¼ 1;
Then CONVERGE to the action whose p = max P tð Þf g.
ELSE
Goto step 1.
Endif
END
The parameter k(t) has the same meaning in algorithm LELA.

4 Simulation Results

This section we compare the relative performances of the proposed WLELA with the
LELA and the classical pursuit algorithms DPRI and DGPA by presenting their
accuracy and convergence speed. The random environment we used is the most
commonly used benchmark environment E1-E4 with 10 allowable actions as shown in
Table 1.

In the process of the LA simulation experiment, if the state probability vector of a
certain action exceeds the set threshold T(0 < T � 1), the algorithm is considered to
have converged, if the converged action has the highest reward probability in the
environment, it is considered that the learning automaton converged correctly.

Table 1. Benchmark environments

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

E1 0.60 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10
E2 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10
E3 0.70 0.50 0.30 0.20 0.40 0.50 0.40 0.30 0.50 0.20
E4 0.10 0.45 0.84 0.76 0.20 0.40 0.60 0.60 0.50 0.30

352 H. An et al.

For all the algorithms in the experiment, they are simulated with their best
parameters, which are defined as the values that yielded the fastest convergence speed
and guaranteed the automaton converged to the optimal action in a sequence of NE
experiments. Specifically, in our experiment, we set the same threshold T and NE in [2,
3, 5], that is, T = 0.999 and NE = 750. After adjusting to the best parameters, we
carried out 250,000 experiments to evaluate the average convergence rate and
accuracy.

Accuracy is an indicator for judging the performance of an automaton, accuracy is
defined as the probability that a learning automaton converges to the optimal action in
an environment. As can be seen from Table 2, “Res” denotes the best resolution
parameter, all algorithms can converge with high accuracy, while WLELA has higher
accuracy than other algorithms, although the difference is not insignificant.

A. Average converge times

Convergence speed is one of the most critical performance indicators in learning
automata. Convergence speed comparison data is shown in Table 2, “Ite” denotes the
convergence speed.

From the Table 3, we can see that the WLELA algorithm is better than other
algorithms in terms of convergence speed. Compared with LELA, the rate of con-
vergence improvement in each environment is {6.93, 19.76, 3.13, 12.49 %}. Com-
pared with the traditional DGPA and DPRI algorithms, the rate of improvement is
{27.91, 40.43, 18.01, 28.28%} and {51.45, 72.24, 21.65, 56.02%}. It can be seen that
WLELA converges faster than the other three algorithms, and the E2 environment is
the most complex compared to other environments, and WLELA still performs best.

Table 2. Accuracy (number of correct convergences/number of experiments)

ENV WLELA LELA DGPA DPRI
Res Acc Res Acc Res Acc Res Acc

E1 n = 24 0.997 n = 20 0.996 n = 65 0.996 n = 653 0.994
E2 n = 98 0.997 n = 68 0.995 n = 204 0.995 n = 3221 0.993
E3 n = 12 0.998 n = 10 0.997 n = 28 0.99 n = 216 0.996
E4 n = 31 0.998 n = 27 0.997 n = 55 0.997 n = 881 0.994

Table 3. Convergence speed

ENV WLELA LELA DGPA DPRI
Res Ite Res Ite Res Ite Res Ite

E1 n = 24 1209 n = 20 1299 n = 65 1677 n = 653 2490
E2 n = 98 3090 n = 68 3851 n = 204 5187 n = 3221 11,132
E3 n = 12 619 n = 10 639 n = 28 755 n = 216 790
E4 n = 31 1037 n = 27 1185 n = 55 1446 n = 881 2358

Weight-Assignment Last-Position Elimination-Based Learning 353

5 Conclusion

This paper proposes an improved algorithm WLELA. By using Bayesian initialization
eliminates the cold start problem, using confidence interval estimator gets more
interactive information and using weight allocation strategy to realize the classical LA’s
idea of pursuing the best behavior. These three improvements allow the WLELA
algorithm to achieve high accuracy and fast convergence in the simulation experiments,
and the results show that WLELA not only has the highest accuracy, but also the fastest
convergence speed. Especially in the most complex environment, the WLELA still
performs very well. In future work, consider using a random estimator instead of a
deterministic estimator in WLELA. and the WLELA algorithm can be used in many
applications that need to learn automata.

Acknowledgements. This work was supported by the National Key Research and Development
Project of China under Grant 2016YFB0801003.

References

1. Thathachar M, Sastry PS (2004) Networks of learning automata: techniques for online
stochastic optimization. Kluwer, Dordrecht

2. Oommen BJ, Lanctôt JK (1990) Discretized pursuit learning automata. IEEE Trans Syst Man
Cybern 20(4):931–938

3. Agache M, Oommen BJ (2002) Generalized pursuit learning schemes: new families of
continuous and discretized learning automata. IEEE Trans Syst Man Cybern Part B Cybern 32
(6):738–749

4. Papadimitriou GI, Sklira M, Pomportsis AS (2004) A new class of e-optimal learning
automata. IEEE Trans Syst Man Cybern Part B 34(1):246–254

5. Zhang J, Wang C, Zhou MC (2014) Last-position elimination-based learning automata. IEEE
Trans Cybern 44(12):2484–2492

6. Xuan Z, Granmo OC, Oommen BJ (2013) On incorporating the paradigms of discretization
and Bayesian estimation to create a new family of pursuit learning automata. Appl Intell 39
(4):782–792

7. Hao G, Jiang W, Li S et al (2015) A novel estimator based learning automata algorithm. Appl
Intell 42(2):262–275

354 H. An et al.

	Weight-Assignment Last-Position Elimination-Based Learning Automata
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Learning Automata
	4 Simulation Results
	5 Conclusion
	Acknowledgements
	References

