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Abstract Transition metal cation–molecular complexes are produced in the gas
phase environment of a molecular beam using laser ablation in a supersonic expan-
sion. Complexeswith carbonmonoxide, carbon dioxide, water, acetylene, or benzene
are produced by entraining small partial pressures of these molecules into an expan-
sion of either argon or helium. A specially designed time-of-flight mass spectrom-
eter is used to analyze the ions produced and to mass-select them for spectroscopy.
Mass-selected ions are excited in the infrared region of the spectrumwith a tunable IR
optical parametric oscillator laser system to measure photodissociation spectroscopy
in the 2000–4500 cm−1 region. Infrared band patterns, combined with structures and
spectra predicted by density functional theory, reveal the coordination and solvation
interactions in these systems, and how binding to metal distorts the structures of
small molecules.

Keywords Ion–molecule complexes · Mass spectrometry · Ion spectroscopy ·
Photodissociation

6.1 Introduction

Metal–molecular interactions lie at the heart of heterogeneous [1–5] and homoge-
neous [6, 7] catalysis, metal–ligand bonding [7–11], metal ion solvation [12–14],
metal chelation and sequestration [15], and the function of many biological systems
[16]. Additionally, new composite materials, such as metal-decorated nanotubes,
metal-intercalated graphene, or metal-organic frameworks (MOFs), involve many
of the same metal–molecular interactions [17–26]. These areas are critically impor-
tant in petroleum processing, solar energy generation, hydrogen storage, battery
materials, and related areas such as water splitting, CO2 reduction, or heavy metal
waste disposal. However, the molecular-level understanding of such systems is lim-
ited because of the complexity of metal electronic structure and bonding. Conven-
tional chemistry has documented the properties of stable metal complexes and com-
pounds [7–11]. Likewise, heterogeneous catalysis has been studied extensively on
well-characterized metal surfaces [1–3]. However, emerging catalytic systems often
involve oxide-supported clusters in the ultra-small size range, with a distribution of
particle sizes [4, 5, 27–32]. Homogeneous catalysis is mediated by metal complexes
in solution with a delicate relationship between coordination and solvation [33–36].
Metal-organic andmetal-carbonmaterials involve cation–π interactions [17–19], and
metal ion solvation involves many subtleties of covalent versus electrostatic inter-
actions [37–43]. Unfortunately, detailed insights into this rich and varied chemistry
are often limited because theory and experiments cannot study the same systems
in the same environment. Isolated metal complexes provide model systems, more
tractable for theory, that can elucidate key interactions. Careful investigations of elec-
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tronic structure, geometries, bonding energies, and reactivity are therefore possible.
As discussed in this chapter, our research focuses on these model metal–molecular
complexes and their clusters using molecular beam sources, mass spectrometers, and
infrared laser spectroscopy, in combination with computational chemistry.

To investigate metal systems containing a specific composition, we study ion-
ized clusters and complexes which can be mass-selected. Isolated metal centers or
those with specific numbers of attached ligand or solvent molecules can be produced
and studied. Transition metal ion–molecule complexes have been studied with mass
spectrometry for many years, providing reaction products and rates, as well as bond
energies [44–57]. While these data are valuable, spectroscopy is needed on these
systems, evaluated with corresponding computational studies, to make real progress
in the understanding of metal electronic structure and bonding.

Vibrational spectroscopy provides the best probe of structure and bonding for
metal complexes, and both IR and Raman spectroscopy have been used for many
years in this area [58, 59]. However, although these methods are straightforward for
conventional inorganic complexes [58], and can be adapted for adsorbates on surfaces
[59], they are not easily applied to low-density samples in the gas phase. Vibrational
information can be obtained via electronic [60–81] or photoelectron spectroscopy
[82–97], but IR spectra can be compared more directly to the predictions of theory.
Small metal ions have been studied with infrared absorption spectroscopy in rare gas
matrices [98], but the identification of the spectral carrier in these experiments can
be ambiguous. Ionized complexes in the gas phase can be size-selected with mass
spectrometers, but the resulting density is too low for absorption spectroscopy. Ion
spectroscopy is often further complicated by the conditions in ion sources, gener-
ally involving discharges, hot plasmas, or other forms of energetic excitation. Until
recently, these issues severely limited the IR spectroscopy of ions. However, much
recent progress has been made in this area [99–118]. Improved ion sources using
laser ablation or electrospray ionization (ESI) now produce a wide variety of met-
al–ligand and metal–solvent complexes. Ion cooling, needed for sharp spectra, has
been implementedwith supersonic expansions or cryogenic ion traps. Sensitivity lim-
itations have been addressed by using laser photodissociation spectroscopy rather
than absorption. Finally, new IR lasers provide intense sources with broad tuning
ranges to access the full-vibrational spectrum [119, 120]. Infrared spectroscopy of
gas phase ions is now a rapidly expanding area of research, in which our group has
been actively engaged.

Our experiments use laser vaporization in pulsed-nozzle/supersonic molecular
beam sources to produce cold metal-containing ions [121]. Although other groups
use electrospray ionization (ESI) sources,wefind the laser source to be better suited to
the ions we study. The ions produced are analyzed andmass-selected with a specially
designed reflectron time-of-flight spectrometer (RTOF) [122]. This instrument pro-
vides high throughput for maximized ion density, while maintaining the cold temper-
atures produced by the source. The selected ions are spatially bunched at the turning
point in the reflectron field to optimize overlap with the laser. Excitation here allows
the full mass spectrum to be detected for each laser shot so that different fragment
channels can be recorded simultaneously. The experiment uses the high-intensity,
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broadly tunable, optical parametric oscillator/amplifier (OPO/OPA) laser sold by
LaserVision [119]. Its main configuration covers the range of 2000–4500 cm−1, cor-
responding to the higher frequency vibrations of small ligand or solvent molecules. A
secondOPA configuration uses silver-gallium-selenide crystals, extending the tuning
range to the 600–2300 cm−1 region [120]. Here, we study lower frequency ligand or
solvent vibrations, as well as the M–O stretches of oxide clusters. The two laser con-
figurations allow almost full coverage of the infrared spectrum. Combined with our
ion source and mass spectrometer, these lasers have produced spectroscopy for many
transition metal–molecular complexes [106, 107, 123–169]. This work is comple-
mented by that of other groups using similar infrared OPO laser systems [108–118,
170–200] or free-electron lasers (FELs) [201–212].

This kind ofmass spectrometry combinedwith IR spectroscopy provides the coor-
dination numbers, geometries and electronic structures of metal–molecular com-
plexes. Mass spectra and photodissociation patterns reveal the number of ligand
or solvent molecules attached to a specific metal center. The vibrations in these
complexes typically occur near those of the corresponding free ligand or solvent
molecules, indicating that binding usually takes place without dissociation or inser-
tion chemistry. The number of IR bands, their shifts compared to the vibrations of
the isolated ligand or solvent molecules, and the relative band intensities provide
distinctive patterns that can be compared with the predictions of theory to determine
structures. Density functional theory (DFT) is used in these studies, although we
use due caution in its applications. For example, a well-known issue in transition
metal complexes is determination of the correct spin configuration giving rise to the
ground state [213–219]. DFT has trouble with the relative energies of spin states,
but usually predicts a valid infrared pattern for each spin state. The measured vibra-
tional patterns are then compared with the (scaled harmonic) predictions of theory
for different electronic states. These vibrational patterns, rather than the computed
relative energies, are generally good enough to determine the spin of the ground state
or to reveal the presence of more than one electronic state. Infrared patterns can also
reveal the occurrence of intracluster reactions through the appearance of new spectra
corresponding to reaction products.

A key aspect of this work is the ligand or solvent molecule binding energy and
our ability to cause fragmentation with IR photons. Dissociation energies for many
metal ion complexes are known via methods such as collision-induced dissociation
[44–55]. Bond energies range from 5000 cm−1 (12–15 kcal/mol) for electrostati-
cally bonded metal–CO2 ions, up to as high as 30,000 cm−1 (70–80 kcal/mol) for
metal–benzene complexes with strong covalent bonds. Across this range, one pho-
ton infrared excitation on vibrational fundamentals is not energetic enough to cause
photodissociation. Bond energies usually decrease in complexes with more ligands,
but these systems have the same problem until the metal coordination is completed.
However, when ligands are present beyond the inner-sphere coordination, they are
bound by weaker electrostatic forces and their elimination is efficient, providing
good spectra. The onset of greater dissociation yields therefore identifies the coor-
dination number. To study smaller complexes with partial coordination and stronger
bonding, we attach weakly bound rare gas atoms, using the “tagging” method first
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used by Lee et al. [99–101]. This general method is now used throughout ion spec-
troscopy [102–118]. To document the effects of tagging, we use theory to investigate
the spectra of complexes with and without the tag atom.

Another essential requirement for this work has been the extension of IR laser
coverage to the fingerprint region. In the past, this could only be done using FEL’s,
such as the FELIX system in theNetherlands. Previous studies there by our group and
others used infrared resonance-enhanced multiphoton dissociation (IR-REMPD) of
cations to obtain vibrational spectra [201–212]. However, the quality of these spectra
is often poor because of the laser linewidth and power broadening from themultipho-
ton processes. The new OPO’s have broader wavelength coverage (600–4500 cm−1)
and higher resolution. Using tagging, or elimination of external ligands, spectra can
be measured via single-photon dissociation, and line widths are much improved
(1–5 cm−1, limited by predissociation). As shown in Fig. 6.1, the quality of the
spectra obtained is excellent.

In this chapter, we describe the work from our lab investigating metal ion
complexes with carbon monoxide [143–155], carbon dioxide [123–128], water
[129–142], acetylene [156–162], and benzene [165–168]. These experiments show
that IR photodissociation spectroscopy can be applied to ions containing virtually
any metal or ligand. It provides the dissociation products, the number of IR-active
vibrations, the frequency shifts that occur when ligands bind to metal, and the rela-

Fig. 6.1 The infrared spectra of V+(CO2)6 complexes, illustrating the broad tunability of our IR-
OPO lasers. The CO2 bend and asymmetric stretch have two bands corresponding respectively
to molecules coordinated to the metal ion and those attached only to other CO2 molecules. The
symmetric stretch is only IR-active for molecules attached to themetal and a single band is observed
here
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tive intensities of different bands. Computational chemistry complements the exper-
iments, predicting the structures of complexes, their electronic configurations, and
their spectra.

6.2 Metal-Carbonyl Complexes

Transition metal carbonyls provide classic examples of inorganic complexes [7–11],
and CO is the classic probe molecule for surface science and catalysis [1–3, 58].
In both contexts, the carbonyl stretch reveals the nature of the bonding. Metal car-
bonyls are characterized by the positions of the C–O stretch relative to the vibration
of the isolated CO diatomic (2143 cm−1) [220]. Unsaturated carbonyls, including
ions, have been investigated by mass spectrometry [45–55, 221–226], matrix iso-
lation spectroscopy [98], and photoelectron spectroscopy [82, 83, 85, 87]. Compu-
tational studies have explored the mechanism of the shifts that occur for the C–O
stretches in different systems, including the familiar effects of σ donation andπ back-
bonding [219, 227–235].Our grouphas investigated transitionmetal carbonyl cations
[143–155] to compare these towell-known neutrals. Other research groups have used
similar methods to investigate other atomic metal cation–carbonyls [190–197] or the
carbonyls of metal atom clusters [205–209].

We first studied cation complexes that could provide isoelectronic analogs to
knownneutralmetal carbonyl complexes.TheCo+(CO)5 complexprovided an analog
to Fe(CO)5 [145], Mn+(CO)6 provided an analog to Cr(CO)6 [147], and Cu+(CO)4
provided an analog to Ni(CO)4 [150]. In each case, the cations were found to have the
same coordination and structures as the corresponding neutrals (trigonal pyramid,
octahedral, and tetrahedral, respectively) and the same closed-shell singlet ground
states. However, significant differences were apparent in the spectroscopy between
the neutrals and the corresponding cations. In the neutrals, the C–O stretch vibrations
are strongly red-shifted compared to the stretch of molecular CO by 100–150 cm−1.
However, as shown in Fig. 6.2, the C–O stretch vibrations were hardly shifted at
all for the Co and Mn cations and they were blue-shifted for the Cu cations. The
frequencies for these neutrals and ions are summarized in Table 6.1. It is well known
in inorganic chemistry that the shifts of the C–O stretches arise from the competing
effects of σ donation and π back-bonding [219, 227–235]. For most neutral metals,
π back-bonding is the more significant factor, and the carbonyl stretches occur at
much lower frequencies than that of CO itself. The smaller red shifts seen for the
cations here are attributed to their reduced π back-bonding [149]. Blue shifts to
higher frequencies are known to occur for certain metals with filled d shells that are
inefficient at back donation. We find this behavior not only for the copper carbonyl
cations shown here [150], but also for Au+, Pt+ and Rh+ carbonyl complexes [143,
144, 155].

The fully coordinated ions and their corresponding neutrals shown in Table 6.1
all have the 18-electron configuration, which is recognized as a guiding principle
in transition metal chemistry. We were also interested to see how robust this rule
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Fig. 6.2 The infrared
spectra of the saturated
carbonyl complexes for
selected metal cations. The
red dashed line shows the
frequency of the isolated CO
molecule

Table 6.1 A comparison of
the carbonyl stretch
frequencies for isoelectronic
neutral and cationic
complexes

Complex Experimental C–O stretch (cm−1)

Cr(CO)6 2003 [236]

Mn+(CO)6 2115

Fe(CO)5 2013, 2034 [237]

Co+(CO)5 2140, 2150

Ni(CO)4 2056 [238]

Cu+(CO)4 2193

is, and what its limitations are, if any. Early transition metals have fewer valence
d electrons, and therefore would require more carbonyl ligands to achieve the 18-
electron configuration. We investigated the cation carbonyls of the group V metals
(V, Nb, Ta) [146, 151], which would need seven carbonyls to reach this limit, and
those of Sc and Y [154], which would need eight carbonyls, to see if such higher
coordination numbers were possible. According to theory, these higher coordination
complexes are stable for each of thesemetals. However, we found experimentally that
vanadium did not form the seven-coordinate (7C) carbonyl, but instead formed the
six-coordinate (6C) complex (see spectrum in Fig. 6.2). Niobium and tantalum, on
the other hand, did form the 7C complexes. The spectrum of Ta+(CO)7, which forms
a capped octahedral structure rather than the pentagonal bipyramid, is presented in
Fig. 6.3. Likewise, scandium did not form the 8C complex, but yttrium did. In both
groups, only the heaviermetals formed the expected high coordination.We explained
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Fig. 6.3 The infrared
spectrum of Ta+(CO)7
compared to the spectra
predicted by density
functional theory for two
different isomers. The
spectrum agrees with that
predicted for the capped
octahedron structure

this trend in terms of the kinetics of carbonyl addition to thesemetals. In both systems,
the filled coordination produces a singlet ground state, while the n − 1 complex is
a triplet. Adding the last CO therefore requires a spin change, which may inhibit
the rate of this process. Our clusters grow in a 1–3 ms time frame (defined by the
pulsed jet expansion) by sequential addition of ligands to the ablated metal cations,
and therefore slower growth rates may inhibit the formation of complexes, even if
they are stable. The heavier metals with stronger spin-orbit coupling should change
spin more readily, possibly explaining how these species could achieve the higher
coordination. This reasoning was used previously by Weitz et al. to explain similar
results for CO addition to unsaturated neutral carbonyls [239, 240]. Harvey et al. used
computational studies to model these spin-controlled kinetics [241–243]. Since our
work on these systems, Zhou and coworkers have found eight-coordinate complexes
for other early transition metal cations [196], and they have found unexpected 8C
complexes for the alkaline earth metal cations [197].

The group IV metals (Ti, Zr, Hf) all have an odd number of electrons as cations,
and it is therefore unclear what coordination would be expected for these systems.
We found that they all formed 6C complexes rather than the 7C (17-electron) or 8C
(19-electron) species [152, 195]. Rhodium carbonyls provided another interesting
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case [155]. Rh+ is a d8 species, which is generally expected to form 4C square
planar complexes [11], even though the 18-electron species would be 5C. We found
a primary coordination of four carbonyls but a secondary coordination of five. The
fifth ligand had an intermediate binding energy, weaker than the first four, but not
as weak as the external ligands. The spectrum of the n = 4 complex indicated a
square-planar structure, while that of the n = 5 species was a square pyramid.

Wehave also studiedmetal oxide carbonyls.Oxidation of themetal center removes
the d electron density available for back-bonding, which reduces or eliminates the red
shifts in these systems. The V+(CO)6 complex spectrum has a slightly red-shifted
C–O stretch, with one main band because of the octahedral structure [146, 151].
VO+(CO)5, VO2(CO)+4, and VO3(CO)+3 (each measured by elimination of one excess
CO from the next larger complex) have C–O stretches shifted progressively further to
the blue because of the reduced back-bonding (Fig. 6.4) [153]. Similar blue-shifted
carbonyl stretches are observed for CO binding on metal oxide surfaces [2, 59].
The metal–oxygen stretches in these clusters can be compared with those of the
corresponding VO+, VO2

+, and VO3
+ ions recently measured by Asmis et al. [244].

The oxide stretches in the carbonyls shift to the red compared to those in the isolated
oxides, another result of partial charge transfer in these systems.

Fig. 6.4 The IR spectra of vanadium oxide carbonyls and the structures predicted to be most
stable for these complexes. Each complex has one external ligand, which is eliminated in the
photodissociation process to obtain the spectrum. The C–O stretch vibrations are shifted to the
same or higher frequencies than the free-CO vibration, indicated as the dashed red line. The bands
at 2169–2174 cm−1 come from the external CO ligand
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6.3 Metal–CO2 Complexes

The binding of CO2 to metals is of widespread importance for CO2 capture and
catalytic conversion to small organics [20, 21, 25, 34, 35]. However, the binding
of CO2 to metal ions in the gas phase involves primarily electrostatic interactions
[245–247], and these systems have been studied less than the corresponding carbonyl
complexes. Our lab has studied the electronic spectroscopy of Mg+(CO2) [65] and
Ca+(CO2) [67], and the infrared photodissociation spectroscopy of severalM+(CO2)n
cation complexes [123–127]. Figure 6.1 shows the infrared spectrum of V+(CO2)6,
which illustrates the behavior seen for many of these systems. Of the normal modes
for CO2, the degenerate bendingmode (ν2, 667 cm−1) and the asymmetric stretch (ν3,
2349 cm−1) are IR active for the isolated molecule, whereas the symmetric stretch
(ν1, 1333 cm−1) is inactive [248]. However, theory and experiments agree that metal
cation binding is most favorable in the M+–O=C=O linear configuration. In this
structure, all three vibrations are IR active. As shown in the figure, CO2 molecules
attached to metal have these three vibrations, with shifts to higher frequencies than
the vibrations of the isolated molecule. In a cluster like V+(CO2)6, there are coordi-
nated molecules, which give rise to shifted vibrations, and second-sphere molecules
not attached to the metal whose vibrations are mostly unshifted. This gives rise to
doublet features (shifted plus unshifted bands) for the asymmetric stretch and bend-
ing vibrations, and a single band (shifted only) for the symmetric stretch, which is
only IR-active when it is attached to the metal. This pattern of bands has been seen
for almost all the metal ion–CO2 complexes that we have studied.

An exception to this general behavior occurs in larger V+(CO2)n clusters, in which
additional bandswere seen beyond the coordination and solvation features. As shown
in Fig. 6.5, new bands at 1140, 1800, 2402, and 3008 cm−1 were seen for clus-
ters with seven or more CO2 ligands, and these bands became more intense in the
larger clusters. These new bands suggest that there was an intracluster reaction
producing a new kind of structure. Because the clusters were mass-selected, the
reaction product must have the same mass as one or more CO2 units, which could be
true for an oxide-carbonyl species, VO+(CO)(CO2)n−1, a metal carbonyl-carboxylate
species, V+(CO)(CO2)n−1(CO3), or a metal oxylate species, V+(CO2)n−2(C2O4). To
explore these possibilities, we made the oxide-carbonyl species direct, and found
that the VO+ and carbonyl stretches in these systems (Fig. 6.4) do not match the new
bands. Instead, we found that the reaction product is an oxalate species (C2O4

–),
with covalently linked CO2 molecules. The lower frequency vibrations (1140 and
1800 cm−1) are those of the oxalate moiety, and the higher frequency vibrations
(2402 and 3008 cm−1) are those of solvating CO2 molecules interacting with the
new kind of charge center in the clusters. Although we cannot determine the exact
charge states in this system, oxalate is most stable when it carries a negative charge.
This reaction therefore apparently occurs by electron transfer from theV+ ion toCO2,
producing a V2+, C2O4

− ion pair. This suggestion would explain the onset at larger
cluster sizes. Solvation from the surrounding excess CO2 molecules could stabilize
the higher charge state ofV2+ and that of the oxalate. Theory on this system is plagued



6 Metal Cation Coordination and Solvation Studied … 167

Fig. 6.5 The infrared spectrum of V+(CO2)7 compared to that for V+(CO2)6 showing the sudden
appearance of several new vibrations associated with an intracluster reaction

by multireference issues, and we were not able to determine whether the ion pair is
in contact or solvent-separated. However, the same kind of chemistry has also been
seen byWeber and coworkers [174] for negative ionM−(CO2)n clusters. Apparently,
the negative charge on CO2 activates it to enable a rich variety of chemistry.

6.4 Metal–Water Complexes

The interaction of water with metal ions is fundamental to the chemistry of solvation
[12–14, 37–43]. Unfortunately, the details of cation–water interactions are diffi-
cult to obtain from solution measurements, which involve ensemble averaging over
many structures. Gas phase measurements have investigated the thermochemistry of
cation–water bonding [47, 48, 50, 54, 55, 249–264], and computational studies have
studied structures and energetics of these systems [57, 265–277]. However, infrared
spectroscopy probes the structures of these systems more directly. Our work has
examined several M+(H2O)n and M2+(H2O)n systems [129–142], focusing on both
the mono-hydrated complexes and the coordination behavior when multiple water
molecules condense around the metal ion. Other groups have also explored the same
kinds of systems using similar methods [170–173, 178–181, 183–187, 192].

We have studied nearly all of the singly charged first-row transition metals in
complexeswith a singlewatermolecule [129–142]. The spectra in theO–H stretching
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region are shown in Fig. 6.6. The binding energies of argon are very different for the
early versus late transition metals. Consequently, the late transition metals require
the attachment of two ormore argon atoms before photodissociation can bemeasured
in this region of the IR. As shown in the left frame of the figure, those complexes
tagged with a single argon have more complex vibrational patterns than those tagged
with two argons. The additional structure at higher frequency arises from partially
resolved rotational structure (K-type bands) on the asymmetric stretch band. This
structure is discussed in more detail later. We found that water bound to metal ions
generally has O–H stretching frequencies that are shifted to the red compared to
those of the free molecule (3657 and 3756 cm−1 for the symmetric and asymmetric
stretches, respectively) [248]. In a charge-transfer process not unlike that for metal
carbonyls, the cation polarizes water, removing electron density from its highest
occupied molecular orbital. This orbital involves not only the non-bonding lone pairs
on oxygen but also has bonding character along the O–H bonds; weakening these
bonds lowers the vibrational frequency. Figure 6.7 shows the electron density map of
the Ti+(H2O) complex in its doublet ground state compared to that in the separated

Fig. 6.6 The infrared spectra in theO–Hstretching region for different transitionmetal cation–water
complexes compared to the symmetric and asymmetric O–H stretch frequencies for the isolated
water molecule (dashed red lines). The early transition metal complexes are tagged with a single
argon, producing partially resolved rotational structure in some cases, whereas the late-transition
metal complexes are usually tagged with two or three argons. The spectra for the early transition
metal complexes are generally shifted further to the red than those of the late transition metals.
The lowest frequency band for Fe+(H2O) is from an isomer with argon attached to an OH of water,
inducing an even greater red shift [130]
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Fig. 6.7 The charge density
map of the Ti+(H2O)
complex in its doublet
ground state. Red color
shows an increase in charge
density compared to the
separated cation–water
system, whereas blue shows
a reduction in charge density

cation–molecule system. This illustrates the effects of the charge transfer between
the water and the metal. As shown in the two views, electron density increases on
the metal ion center, and decreases in the vicinity of the O–H bonds. This charge
transfer drives the shift in the vibrational frequencies. In addition to the red shift
in the frequencies—which varies considerably with different metals—the relative
intensities of the two O–H stretches change, with the symmetric stretch gaining
relative to the asymmetric. In the free water molecule, the asymmetric/symmetric
stretch intensity ratio is about 18:1, whereas in the cation water complexes this ratio
is closer to 1:1. The symmetric stretch in these metal complexes oscillates charge
more effectively along the molecular axis, enhancing the dynamic dipole and the
IR intensity. The shifts seen for these singly charged metal complexes have been
compared with selected examples of doubly charged complexes [135, 137–139]. In
those systems, the shifts of the vibrational frequencies and the enhancement of the
symmetric stretch intensity are both greater than that for the corresponding singly
charged complexes.

Interestingly, the shifts of the O–H stretching frequencies measured are generally
greater for the early transition metals than they are for the late transition metals.
Figure 6.8 shows a plot of the O–H stretch frequencies across the periodic table
groups and a comparison to the corresponding M+–(H2O) bond energies determined
in other labs. Surprisingly, the magnitudes of the red shifts for the two O–H stretches
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Fig. 6.8 Plots of the shifts
in the O–H stretches for
different transition metal
cation–water complexes
compared to the
cation–water binding
energies

ofwater are greater for the early transitionmetal, and less for the late transitionmetals,
with a local maximum for the manganese cation. The binding energies are greater for
the late transition metals. It therefore seems that there is no clear correlation between
binding energies and vibrational band shifts, even though the charge transfer that
causes the vibrational shifts should have at least some relevance for the electrostatic
bonding in these systems. However, the bonding in these transition metal–water
complexes is a complex mixture of both electrostatic and covalent interactions, and
so it may be oversimplified to assume a correlation between these two properties. It
is worth noting that density functional theory accurately predicts both the trends in
binding energies and vibrational frequency shifts.

In Ar–M+(H2O) complexes when the tag atom binds opposite water, the complex
has C2v symmetry and is nearly a symmetric top, with only the light hydrogen atoms
located off theC2 symmetry axis. This causes theA rotational constant to be relatively
large (>10 cm−1) and K-type rotational sub-band structure can be resolved, even
with our modest 1 cm−1 laser line width. This is apparent in the spectra for the early
transition metals, in the left frame of Fig. 6.6, with the exception of the Mn+(H2O)
spectrum (it binds argon in a bent position,which produces amuch smallerA constant,
and the structure is not resolved [138]). In these systems, a multiplet structure arises
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for the asymmetric stretch,which is a perpendicular-type band.The symmetric stretch
is a parallel-type band, with more closely spaced rotational structure that cannot
be resolved under these conditions. Because the hydrogen molecules of water are
equivalent by symmetry, ortho–para symmetry rules must be applied, resulting in a
3:1 statistical weight for transitions originating in the K = 1 versus K = 0 levels. At
low temperature, only the K = 0 and 1 levels are populated significantly, and K = 1
cannot relax toK= 0 because of the nuclear spin symmetry. The only transitions seen
are those originating from these two levels. The K′′ = 0→K′ = 1 transition (labeled
0,1 in the figure) is then lower in relative intensity than the K′′ = 1 → K′ = 0 or K′′
= 1 → K′ = 2 transitions (labeled 0,1 and 2,1 in the figure). The rotational structure
can be simulated using the PGopher software [278], and the parameters are adjusted
to get the best match with the experiment, as shown in Fig. 6.9. The best fit produces
the A rotational constant and the temperature of the ions. As shown in the figure,
the non-equilibrium conditions of the supersonic molecular beam produces slightly
different temperatures for the J and K quantum states, an effect that is not uncommon
in such molecular beam experiments. Assuming that the O–H bond distances remain
nearly constant (suggested by theory), then the A rotational constant reveals the
H–O–H angle, which is often expanded by the cation–water polarization interaction.
In the scandium example shown here, this angle is estimated to be 107.13°, which
is significantly larger than the angle in an isolated water molecule (104.7°). Our
rotationally resolved studies on the Sc+, Ti+, V+, Nb+, and Cr+ systems all found
H–O–H angles expanded with respect to that of water [135, 137, 141, 142]. In the
case of the vanadium and niobium complexes, the analysis of the rotational structure
was complicated by an unexpected quenching of the ortho–para separation catalyzed
by themetal ions, changing the selection rules and the appearance of the spectra [142].

IR spectroscopy of metal cations solvated by multiple water molecules can reveal
their coordination numbers. In small clusters, water coordinated directly to metal
has free O–H stretching vibrations near those of the isolated water molecule. How-
ever, when water adds to the second sphere, hydrogen bonding causes a strong red
shift of 200–400 cm−1 in the O–H stretches, and the IR intensity increases. The
first appearance of vibrations in the hydrogen bonding region therefore identifies
the coordination number for the metal cation. We found in the past that this is four
water molecules for Ni+ [132], and three for Zn+ [140]. Figure 6.10 shows spectra
for different sizes of V+(H2O)n, in which the first evidence for a band in the hydro-
gen bonding region occurs for the n = 4 cluster, indicating that the coordination is
complete with three molecules [278]. In related work, Nishi et al. studied V+(H2O)n
complexes without tagging, finding a coordination of four molecules [172]. Our
result here can be rationalized to agree with their result, if we assume that argon acts
as a coordinating ligand in at least some of the n = 4 complexes. V+ ions exhib-
ited a coordination of six for carbonyl ligands [146, 151] and four for CO2 ligands
[127], contrasting with the behavior seen here for water. Coordination numbers for
the single positive ions we have studied are generally lower than those expected for
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Fig. 6.9 An expanded view of the IR spectrum in the O–H stretching region for scandium–water
cations compared to a simulated spectrum including partially resolved rotational structure. The
rotational structure is consistent with expectations for a C2v structure, with a triplet for the asym-
metric stretch and a 3:1 intensity alternation from the nuclear spin statistics. A, B, and C are the
rotational constants in the ground (′′) and excited (′) vibrational states, and B.O. indicates the band
origins. B and C values come from the theoretical structure, whereas the A values are adjusted to
fit the spacings in the spectrum. The temperature is adjusted to fit the relative band intensities (TK)
and line widths from unresolved structure (TJ) in the spectrum. Figure used from Ref. [137] with
permission from the American Institute of Physics, Copyright 2011

the more highly charged metal ions found in normal solutions. The highly charged
metal ions in solution have fewer electrons occupying the valence orbitals than the
singly charged species. It is likely that ligand–electron repulsion from the occupied
orbits causes the lower coordination numbers for the singly charged species.
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Fig. 6.10 Infrared spectra
for V+(H2O)n clusters in the
n = 1–4 size range. The first
evidence for a band in the
hydrogen bonding region
occurs for the n = 4 cluster,
with the band at 3504 cm−1

marked with the red arrow.
This suggests that the
solvation sphere is filled with
the next-smallest n = 3
cluster

6.5 Metal–Acetylene Complexes

Metal–acetylene and metal–ethylene complexes form the simplest examples of
cation-π interactions relevant in many areas of catalysis and biological chemistry
[6–11, 16, 279–282]. These systems have been studied often in ion chemistry and
investigated with computational chemistry [283–288]. In some of the first spectro-
scopic work, our group measured electronic spectra for Ca+(C2H2) and Mg+(C2H2)
complexes [69, 70]. In the infrared, we investigated the C–H stretches in several tran-
sition metal ion complexes with a single acetylene [157], comparing the vibrations to
the known symmetric and asymmetric stretches of acetylene (3374 and 3289 cm−1,
respectively) [248]. Figure 6.11 shows a comparison of severalM+(C2H2) complexes,
including new examples from more recent work. As shown in the figure, all the C–H
stretches for these metal ion complexes occur at frequencies lower than those of
acetylene itself. The cation–π interaction transfers charge from the molecule to the
metal in much the same way seen already for metal-carbonyls and metal–water com-
plexes. In acetylene complexes, polarization removes electron density from the C–C
and C–H bonds, lowering their frequencies. The C–C and symmetric C–H stretches
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Fig. 6.11 Infrared spectra of
cation–acetylene complexes
in the C–H stretching region

of acetylene are not IR active in the free molecule, whereas the asymmetric C–H
stretch is IR-active. However, in cation–acetylene complexes, the C–C and symmet-
ric C–H stretches can become weakly IR active from the distortion of the molecule
(e.g., CH groups bending away from linear) or the changing dipole produced by
concerted metal and molecular motion. Consequently, the spectra shown in Fig. 6.11
have stronger asymmetric stretch vibrations at lower frequency and weaker symmet-
ric stretch bands at higher frequency. The intensity of the weaker symmetric stretch
band varies for different metals depending on the degree of “activation” induced
by the metal. The exception to this trend is the V+(C2H2) complex, which has two
bands with nearly equal intensities. This suggests that the bonding in this complex
is somehow different from that in the other species considered here.

Computational studies were insightful for these systems. We found that most
metals form cation–π complexes, with the cation in a two-fold position above the π

cloud and some slight bending of the CH groups away from the metal. However, the
V+ complex formed a very different structure—that of a VC2 metallacycle with the
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CH groups bent strongly away from the metal (computed CCH angle = 37.7°). In
this bent configuration, both C–H stretches are IR active with comparable intensity
and there are much greater red shifts in the two frequencies, all consistent with the
experimental spectrum. There are covalent bonds between the metal and the carbons,
and the C–C bond has lengthened (computed from 1.199 in acetylene to 1.301 Å in
V+-acetylene), consistent with its reduced bond order. The interaction between V+

and acetylene is clearly very different from that of the other metal ions studied so
far.

Complexes with multiple acetylene molecules coordinated to a single metal ion
make it possible to investigate the coordination sphere and possible reactions between
ligands mediated by the metal. In the case of multiple acetylene complexes of Ni+, a
coordination of four acetylenes was determined in a near-tetrahedral structure [158].
In larger clusters, a new band appeared which indicated an intracluster reaction
forming cyclobutadiene [156]. In recent work, we examined the multiple acetylene
complexes of Cu+, finding an inner coordination of three acetylenes and a secondary
solvation of three additional acetylenes in the highly symmetric Cu+(C2H2)6 com-
plex [159]. In this structure, whose spectrum is shown in Fig. 6.12, each acetylene
molecule in the second coordination sphere is bonded to two inner-sphere molecules
via bifurcated CH–π hydrogen bonds. Because of the highly symmetric structure,
the IR spectrum has only two bands corresponding to the in-phase and out-of-phase
asymmetric stretches of the core (3172 cm−1) and outer (3258 cm−1) ligands. Gold

Fig. 6.12 The infrared spectrum of Cu+(C2H2)6 and the spectrum predicted by theory for the
structure with three inner-sphere and three outer-sphere molecules. Figure used from Ref. [159]
with permission from the American Chemical Society, Copyright 2015
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cation also forms a three-fold inner-sphere coordination, but with less symmetric
second-sphere structures [160].

As noted earlier, the interaction between vanadium ions and acetylene molecules
is quite different from that of the other transition metals, prompting us to examine its
behavior as multiple acetylenes are added around the metal. Figure 6.13 shows some
of the spectra and structures obtained. The di-acetylene complex forms a bow–tie
structure, with each of the two acetylenes bound in a three-membered ringmetallacy-
cle like that seen for the mono-acetylene complex. When three acetylenes are added,
the spectrum becomes more complex, with several more vibrational bands spread
over a wider frequency region. Additionally, the spectrum varies with the concentra-
tion of acetylene added to the experiment. The third trace down in the figure shows
the spectrum measured at lower acetylene concentration (2.5% in argon), while the
lower trace shows the spectrum measured with higher concentration (15%). The
multiband spectrum at lower concentration can be assigned to two isomers, primar-
ily the one shown with both three- and five-membered metallacycle rings, and a

Fig. 6.13 The infrared
spectra and structures
formed from the addition of
multiple acetylene ligands
around vanadium ions. The
third trace down shows the
spectrum for V+(C2H2) at
low concentration, while the
bottom trace shows the same
mass ion when acetylene is
added at higher
concentration. Cyclization
chemistry occurs, which
eventually forms benzene
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secondary one with three, three-membered metallacycle rings. The single band in
the lower spectrum is assigned to the V+(benzene) complex! This is predicted by
theory, which shows that this isomer is the most stable for this composition, and it
can also be confirmed by producing the same mass ion directly from benzene and
measuring its spectrum, which is identical to that shown here. The structures men-
tioned for the spectrum of V+(C2H2)3 at low concentration have been implicated in
previous theoretical work on other metal–acetylene systems as intermediates along
the reaction path to form benzene via the cyclization of acetylene. Apparently, we
have observed the same kind of cyclization chemistry here for the vanadium cation
system too. Although the cyclization of acetylene to form benzene is a known chem-
istry on a number of different catalysts, the mechanism for the reaction has always
been uncertain. Our infrared spectra at low concentration reveal for the first time
the specific intermediate structures involved. Additional work will be necessary to
understand the concentration dependence in more detail and to determine whether
other metal ions might catalyze similar cyclization chemistry.

6.6 Metal–Benzene Complexes

Metal–benzene complexes are known for the formation of sandwiches, and cation–π
interactions are well studied in organometallic chemistry [6–11, 16, 279–282]. These
systems have been studied in gas phase ion chemistry and in computational chemistry
[289–306]. As shown in previous studies in our lab, the interaction of metal cations
with the aromatic π system has distinctive effects on vibrational spectra. Charge
transfer from the ring system toward the metal induces a red shift on the in-plane
carbon ring distortion, ν19 (1486 cm−1 in isolated benzene), while this also causes
a blue shift in the out-of-plane hydrogen bend, ν11 (673 cm−1 in isolated benzene)
[167, 302]. We documented these patterns for several cation–benzene systems in
work done at the FELIX free electron laser using infrared multiphoton photodissoci-
ation (IR-MPD) spectroscopy on the ions without tagging [201–203], as the cluster
source available at that time did not allow sufficient cooling for the formation of rare
gas adducts. Unfortunately, the conditions used for the IR-MPD process can cause
significant power broadening in spectral lines and shifts to lower frequencies. Rare
gas tagging has not yet been applied to transition metal–benzene complexes, except
for spectra in the C–H stretching region [165, 166]. The vibrations most sensitive
to the metal–benzene charge transfer are in the fingerprint region, and therefore the
details of this chemistry are yet to be revealed.

The most well-studied metal ion–benzene complex is Al+(benzene)n, for which
we have measured spectra for the n = 1–4 complexes using argon tagging [168].
The spectrum for the n = 1 complex is shown in Fig. 6.14, where it is compared to
the spectrum reported previously for this complex using IR-MPD with the FELIX
free electron laser [202]. As shown, the quality of these tagged spectra is now far
superior to the previous work in signal levels and resolution. Bandswhichwere broad
in the IR-MPD spectrum are much sharper, and the shifts from the IR-MPD process
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Fig. 6.14 The IR spectrum of Al+(bz) in the C–H and fingerprint regions, measured with argon
tagging (middle) compared to that measured with IR multiphoton dissociation spectroscopy with
the FELIX free electron laser (top). The lower trace (blue) shows the spectrum predicted by theory.
The C–H stretch region has a triplet structure from a Fermi resonance, as seen in isolated benzene.
Figure used from Ref. [168] with permission from the American Chemical Society, Copyright 2014

apparently occur in an unpredictable way at both higher and lower frequencies for
different bands. The light red dashed lines in the figure show the positions of the free-
benzene IR-active vibrations, including the well-known Fermi resonance that splits
the single C–H stretch expected into a triplet [307]. The purple dashed lines show the
positions of Raman-active (IR-inactive) vibrations, which appear in the IR spectrum
of the metal ion complex because of its reduced symmetry. The red shift in the ν19
band associated with charge transfer is only 10 cm−1, whereas the blue shift of the ν11
out-of-plane bending mode is 75 cm−1. The former is much smaller than the shifts
seen for transition metal complexes, consistent with their expected greater charge
transfer, but the latter is comparable to the shifts seen before because it arises from
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the mechanical action of the bending hydrogen molecules bumping into the metal.
The data on the larger complexes reveals that the coordination around Al+ contains
three benzene molecules, that is, it does not form the same kind of sandwich seen for
transition metals. Clearly, the quality of spectra for tagged ions is highly desirable,
and our lab is working to get similar data for transitionmetal ion complexes. Ongoing
work has obtained partial spectra for V+(bz) and for Co+(bz)2 [308]. Both of these
systems exhibit multiplet structure in the ν19 vibration, indicating that the benzene
ring is distorted from its D6h symmetric structure by the strong metal binding.

Although metal ion–benzene systems have been studied for many years, their
electronic structure remains a significant challenge. In the case of V+(benzene) and
V+(benzene)2, ordinary DFT (B3LYP or BP86 functionals with large basis sets)
misses the ground state spin configuration (triplet predicted; quintet agrees with
experiment and higher level theory) [165, 201]. Higher levels of theory get the correct
quintet spin state for this system [304, 305]. For Ni+(benzene)2, DFT apparently
gets the wrong ground state structure (η4 sandwich predicted; η6 observed) [166].
As in the case of other systems, the 18-electron rule is a useful guiding principle for
metal ion–benzene complexes. Mn+(benzene)2 is isoelectronic to the known neutral
dibenzene chromium species, but the infrared spectrum of this ion has not yet been
measured in the gas phase. Its expected η6 coordination on the six-fold axis of
benzene is common for many metal ions. However, later transition metal ions have
more valence electrons, and do not need to interact with all sixπ electrons to achieve
the 18-electron configuration. Some of these systems are known to adopt η4 or lower
coordination in the condensed phase, and then their sandwich structures should have
the two rings offset from each other. In extreme cases, some transition metals are
predicted to bind strongly enough to distort the planarity of the ring (e.g., Fe+, V+,
Co+, Ni+). All of these structures will lead to recognizable patterns in the fingerprint
region. Future studies of these systems with tagging are therefore highly desirable.

A final aspect of these metal-benzene complexes worth mentioning is that the
early transitionmetal systems, particularly vanadium, formmultiple decker sandwich
structures with unusual electronic structure and bonding [296–298]. IR spectra have
been obtained for neutrals following cation deposition on surfaces, but not for ions.
These systems will be even more challenging for future experiments and theory.

6.7 Conclusions

The studies described in this chapter illustrate how infrared photodissociation spec-
troscopy can be applied to a variety of metal–molecular complexes in the gas phase.
These gas phase studies eliminate the effects of solvent or counterions and make
it possible to investigate isolated molecules with different numbers of ligand or
solvent molecules. Vibrational band patterns, in coordination with computational
predictions, make it possible to determine the structures of these complexes, and
the effects that metal binding has on the geometry and charge distribution of the
molecular adducts. Additionally, the spectral patterns reveal the number of ligand or
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solventmoleculesmaking up the first (and sometimes higher) coordination sphere(s).
In the case of carbonyl ligands, this provides an opportunity to make comparisons to
several well-known neutral complexes that are isoelectronic analogs to the cations
studied here. Because vibrational band patterns vary with the electronic state and
spin multiplicity of the system, these spectra also make it possible to investigate the
electronic structure of these complexes, and to identify strengths and weaknesses
of density functional theory computations. We find examples in which DFT fails
to describe the system adequately, such as the transition metal–benzene spin states,
but also find many examples where it performs quite well to describe vibrational
band patterns. The computations presented here usually use the B3LYP functional.
We have tried other functionals, especially including dispersion-corrected versions
which are believed to describe the energetics of bonding more accurately. However,
our experiments do not probe bonding energetics; they measure IR spectra. For this
application, we find that harmonic DFT/B3LYP calculations with proper scaling to
account for anharmonicity provide the best description of vibrational patterns.

Although we have presented a variety of metal–molecular complexes here, there
are clearly many more which could be investigated. Complexes with larger ligand or
solvent molecules becomemore chemically interesting, and these studies can also be
extended to metals other than the main group and transition metal species described
here (e.g., lanthanides, actinides). We anticipate that this general area of activity will
continue to provide fundamental insights into metal–molecular interactions for the
foreseeable future.
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