
An Efficient Character Segmentation
Algorithm for Connected Handwritten

Documents

Vishal Rajput1, N. Jayanthi2(B), and S. Indu2

1 Department of Electronics and Communication Engineering,
PDPM-Indian Institute of Information Technology,

Design and Manufacturing Jabalpur, Jabalpur 482005, MP, India
vishal.stark42@gmail.com

2 Department of Electronics and Communication Engineering,
Delhi Technological University, Delhi, India

{njayanthi,s.indu}@dce.ac.in

Abstract. This paper proposes an efficient method of character segmen-
tation for handwritten text. The main challenge in character segmenta-
tion of hand-written text is the varied size of each letter in different
documents, connected alphabets in a word in cursive writing and the
presence of ligatures within an open character. Hence, this paper pro-
poses an adaptive vertical pixel count algorithm to solve the problem of
over-segmentation due to the presence of open characters such as ‘w’,
‘v’ and ‘m’. Proposed algorithm works effectively against both the hand-
written and standard text. The proposed method is evaluated on IAM
and self-created data set.

Keywords: Optical Character Recognition ·
Potential segmented column

1 Introduction

Since the advent of computers, a whole lot of information has paved its way to
the digital format. There are so many digital platforms to save data. Despite the
availability of so many digital platforms, paper and pen are still in use. There
will always be manuscripts and books which will not be available in the soft
copy format. No matter the amount of the digital space, information will still
be present in the hard copy format. Since old documents are very fragile and
degrades with time so they need a digital storage. Such systems which can inter-
pret handwritten or printed documents needs to build. To solve this problem,
researchers use a tool called OCR (Optical Character Recognition). An OCR is
a tool which extracts text from images and saves them in a machine-readable
format. Today there are types of OCR available in the market but almost each
one of them suffers some kind of drawback. Modern day OCR works well on
the standard and non-connected text, but they are ineffective for handwritten
c© Springer Nature Singapore Pte Ltd. 2019
S. Sundaram and G. Harit (Eds.): DAR 2018, CCIS 1020, pp. 97–105, 2019.
https://doi.org/10.1007/978-981-13-9361-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9361-7_9&domain=pdf
https://doi.org/10.1007/978-981-13-9361-7_9


98 V. Rajput et al.

and connected text. The primary reason for the failure of most of the OCR is
the inability to segment the characters present in a word. Because of different
writing styles it is very difficult to find the correct segmentation point. Gener-
ally, computer finds it difficult to find the correct segmentation point. To solve
this issue proposed algorithm should be intelligent enough to adapt to different
writing styles.

2 Related Work

In the past, researchers have used different schemes for the character segmen-
tation. Every technique suffers some or the other drawback. Different errors
which happens generally during the segmentation are Bad-Segmentation, Over-
Segmentation, and Miss-Segmentation. Figure 1 shows all the different types of
errors. Some researchers proposed segmentation based on the average width of a
character. This approach works only when the characters are of uniform width
and fails when the characters present in a word are of non-uniform width. This
technique is useless for normal writing sample because of the difference in each
character’s width.

Fig. 1. Images showing types of segmentation errors.

In this paper, an improved version of the vertical pixel count algorithm is
presented. The Proposed technique was tested on IAM and self-created data
set to check the efficiency of the presented algorithm. The proposed method is
simple and very effective on connected text but in case of overlapping characters
obtained results are not satisfactory. Further investigation will be made to handle
overlapping characters by segmenting at a slope instead of vertical segmentation.

Javed et al. [2] proposed a character segmentation algorithm based on white
spaces between characters. This algorithm works fine for standard text but fails
for connected text. Javed’s algorithm is not able to produce any result in presence
of a ligature.

Rehman et al. [7] used an implicit technique to divide the image into very
fine parts (much smaller than the words). And then every part passes through
a neural network which identifies presence of a character in that part. It is a
character identification technique whose by-product is character segmentation
[6]. This approach is costly in terms of time it takes to segment the character.
Its accuracy is dependent on the number of samples used to train the neural
network. Another reason for the failure of their technique is that it often confuses
‘w’ as ‘u’ & ‘i’ or ‘u’ as ‘i’ & ‘i’.



An Efficient Character Segmentation Algorithm 99

In [10], a graph model describes the possible locations for segmenting neigh-
bouring characters. Then they use an average longest path algorithm to identify
the globally optimal segmentation. This approach may fail when the lexicon
domain is insufficient.

Choudhary et al. [1] have used a pixel counting approach for the character
segmentation. If words are well separated, proposed method takes the average
of all PSC’s to solve the problem of over-segmentation. And in case of open
characters like ‘w’, ‘u’ or ‘m’ they use the distance between two PSC’s, if it is
less than 7 following PSC’s merges with the previous PSC. A significant problem
in their proposed approach is to decide the threshold value i.e. 7 (in their case).
Threshold value will change if there is large variation in characters width in a
single word. Even with consistent character width same threshold may not work
when same word is in large font. Choudhary’s technique performs very bad in
cases like ‘m’ & ‘n’.

Yamada et al. [12] used multiple segmentation determined by contour anal-
ysis for Cursive handwritten word recognition and Saba et al. [9] considered a
neural network for cursive character recognition which gives the confidence for
the similarity of a given character with all the characters in the database. In
[11], a probabilistic model based on Word model recognizer is used to segment
the handwritten words. Lee et al. [3] used a totally different technique in which
the character segmentation regions are determined by using projection profiles
and topographic features extracted from the gray-scale images. A multi-stage
graph search algorithm finds a nonlinear character segmentation path in each
character which is the basis for the segmentation point.

3 Problem Statement

There are various challenges in the character segmentation of handwritten words
due to the varied nature of individual’s hand-writing. Most significant problem
in character segmentation is the presence of a connected component in a given
word. Cursive nature of words adds another layer of difficulty in the segmentation
process. Overlapping characters also create lots of problem in segmentation as
it increases the chance of a point wrongly identified as a segmentation point.
Most of the characters can be written in multiple ways thus a holistic solution
is required which is able to identify the correct segmentation point even after
all the feature differences in the same character. Proposed method solves the
problem of connected components by using the modified vertical pixel count.

4 Proposed Methodology

The proposed method uses local maxima and minima to convert vertical pixel
count graph into a binary graph which is the basis for finding the segmentation
points in a word. The binarized graph is processed adaptively according to the
width of peaks present in it to identify the wrong segmentation points and finally
potential segmentation points are marked i.e. positions where a word is segmented.



100 V. Rajput et al.

Characters which doesn’t have any type of full or partial loop in them like
m, n, u, w, are hard to segment. These characters are often over segmented
because of multiple local minima’s in vertical pixel count graph as shown in
Fig. 1. To avoid the over-segmentation problem, peaks in vertical pixel count
graph are combined in an adaptive manner to find the correct PSC (Potentially
Segmented Column). In Fig. 2(a), three peaks of character are combined together
to find the correct segmentation point. Same is the case in Fig. 2(b), where peaks
are combined to solve over segmentation in character ‘n’.

In the proposed method vertical pixel count of a word is used as the basis
for finding the PSC’s. The proposed text segmentation algorithm is summarized
by Algorithm 1 and explained in detail in the further subsection.

Algorithm 1

1. Image pre-processing for noise removal and contrast enhancement.
2. Formation of vertical pixel count graph.
3. Binarizing the vertical pixel count graph.
4. Assignment of Flag value (either 0 or 1) to each peak according to their width.
5. Merging the peaks to eliminate the wrong segmentation point based on the Flag value of peaks.
6. Centre of each trough of the processed graph is used as the point of segmentation.
7. If a character is segmented at a position where PSC cuts the text more than once, ignore that PSC.

4.1 Formation of Binarized Graph

Given word image is read vertically from top to down following the same along
the column (width) of the image. Vertical pixel count graph for the sample word
“guys” is shown in Fig. 3(b). It is clear from the sample word graph shown in
Fig. 3(b) that the vertical pixel graphs is not uniform in nature. To make further
processing easy, obtained vertical pixel count graph is converted into binary

Fig. 2. How peaks are combined in vertical pixel count graph to solve the problem of
over segmentation.



An Efficient Character Segmentation Algorithm 101

Fig. 3. (a) Sample word“guys” (self-created dataset) and “easy” (from IAM dataset)
to show the sample images. (b) Pixel count of word “guys”.

graph. The Obtained vertical pixel count graph is converted into a binary graph
Py based on basic thresholding operation mentioned in Eq. 1 and the binarized
graph is shown in Fig. 4(a).

Py =

{
1, if pixel count > 10
0, otherwise

(1)

4.2 Assignment of Flag Values to the Peak

To identify the over/wrongly segmented characters, peak’s width in the binarized
graph needs to be checked. Some peaks are very short in width as compared to
the rest of the peaks. Peaks which are having width lesser than the average
width indicates an over/wrongly segmented word. Now, to mark the characters
which are over/wrongly segmented, the peak of that particular character in the
binarized graph Py is flagged with value ‘0’. For marking the peaks, comparison
of each peak width in the binarized graph Py is done with the average peak
width Wavg to assign the flag values to be either 0 or 1 based on the Eqs. 2 and
3. Binarized flagged graph is shown in Fig. 4(a).

Wavg =
∑n

i=1 Wi

n
, (2)

Fip =

{
0, if Wi < k ·Wavg

1, otherwise,
(3)

where Fip is the flag used for marking of ith peak, k is a constant whose value
lies between 0.6 & 0.9 and Wi is the width of ith peak.

The optimum value of k = 0.7 is obtained by experimenting multiple times.
Peaks width is compared to 0.7Wavg because single character width often varies
quite largely with the average width.



102 V. Rajput et al.

Identification of over/wrongly segmented characters is done after marking
the peaks and based on the width of the peak. Combining the peak flagged as
‘0’ with the adjacent peaks solves the problem of over-segmentation. This can
be understood by seeing the binarized graph of word “guys” shown in Fig. 4(a),
where the character ‘u’ is marked with two peaks instead of one peak, to solve
this problem following two peaks are merged into one as shown in Fig. 4(b),
solving the over-segmentation problem. All the ‘0’ flagged peaks needs to be
merged with other adjacent peaks to eliminate the case of over-segmentation.
Merged peaks can be seen in Fig. 4(b) with reassigned flag values. The middle
point of each trough is marked as an SC (segmentation column), i.e. point of
segmentation. The process of merging of peaks is based on the following ways:

– CASE 1: If the successive peak/peaks are marked as flag 0 initially, merge
them to form a single peak and reassign it as flag 1, removing the over-
segmentation.

– CASE 2: If peaks adjacent to flag 0 are flag 1 then the distance from both
the adjacent peaks is calculated and flag 0 peak is merged to the peak which
has a shorter distance from it.

Fig. 4. (a) Pixel count converted into binary graph (b) Smaller peaks merged into one
peak (Ti & Pi is width of ith trough & peak respectively).

4.3 Elimination of False PSC’s

If the obtained PSC intersects the text more than once (Fig. 5(a) ‘o’ is over-
segmented), that PSC is discarded. To find the number of intersections made
by a PSC, adjacent text pixels are traced along the PSC from top to bottom. If
the intersection count increases to 2 then the given PSC is discarded. Wrongly
segmented characters shown in Fig. 5(a) and (c) is corrected by the elimination
of false PSC as shown in Fig. 5(b) and (d) respectively.



An Efficient Character Segmentation Algorithm 103

Fig. 5. (a) and (c): Wrong segmented results (b) and (d): Corrected over segmentation
results.

5 Result and Discussion

In this paper self-created database consisting of 5 writers is used to test on the
given algorithm along with the standard IAM dataset [5], out of which 300 non-
overlapping words are chosen randomly. Segmentation results of the proposed
algorithm are shown in Fig. 6. The proposed technique overcomes the problem
of wrong segmentation due to the varied width of the same character as shown
in Fig. 7. For the qualitative comparison of the proposed technique, the work
of Amjad et al. [8] and Choudhary et al. [1] are used on the following words
‘several’, ‘common’, ‘accomplish’ and ‘percentage’ and the results are shown
in Fig. 8. Method presented in [8] over segments the character like ‘m’ and ‘n’
whereas [1] miss-segments and over-segments the word like ‘m’, ‘n’, ‘i’ etc.

Also, it is quite difficult to compare the segmentation results with different
researchers because the dataset used by everyone is different. Results achieved
varies too much because some researchers assumed the absence of noise, some
researchers collected the handwriting samples from a different number of writers
and so on. However, for the quantitative comparison of the proposed technique,
the methods presented by Salvi et al. [10] and Marti et al. [4] are considered
because they have also used IAM dataset for the segmentation. The quantitative
result comparison is shown in Table 1. Proposed technique fails to segment the
characters if the characters are overlapping on each other, samples of wrongly
segmented words with overlapping characters are shown in Fig. 9.

Table 1. Segmentation results of different methods on IAM dataset

Method No. of words
(IAM
dataset)

Correctly
segmented
words

Wrongly
segmented
words

Percentage of
correctly
segmented
words

Percentage of
wrongly
segmented
words

Proposed method 300 255 45 85% 15%

Salvi et.al [10] 300 195 105 65% 35%

Marti et.al [4] 300 220 80 73.45% 26.55%



104 V. Rajput et al.

Fig. 6. Segmentation results from IAM and self-created dataset.

Fig. 7. Same word of different character width is segmented properly.

Fig. 8. (a) Original image, (b) wrong segmented images, (c) proposed method segmen-
tation result.

Fig. 9. Wrongly segmented samples.



An Efficient Character Segmentation Algorithm 105

6 Conclusion

In this paper, an improved version of the vertical pixel count algorithm is pre-
sented. The Proposed technique was tested on IAM and self-created data set to
check the efficiency of the presented algorithm. The proposed method is sim-
ple and very effective on connected text but in case of overlapping characters
obtained results are not satisfactory. Further investigation will be made to handle
overlapping characters by segmenting at a slope instead of vertical segmentation.

References

1. Choudhary, A., Rishi, R., Ahlawat, S.: A new character segmentation approach for
off-line cursive handwritten words. Proc. Comput. Sci. 17, 88–95 (2013)

2. Javed, M., Nagabhushan, P., Chaudhuri, B.B.: A direct approach for word and
character segmentation in run-length compressed documents with an application
to word spotting. In: 2015 13th International Conference on Document Analysis
and Recognition (ICDAR), pp. 216–220. IEEE (2015)

3. Lee, S.W., Lee, D.J., Park, H.S.: A new methodology for gray-scale character seg-
mentation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 1045–
1050 (1996)

4. Marti, U.V., Bunke, H.: Text line segmentation and word recognition in a system
for general writer independent handwriting recognition. In: Proceedings of Sixth
International Conference on Document Analysis and Recognition, pp. 159–163.
IEEE (2001)

5. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline
handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002)

6. Oliveira, L.S., Britto, A., Sabourin, R.: A synthetic database to assess segmenta-
tion algorithms. In: Eighth International Conference on Document Analysis and
Recognition (ICDAR 2005), pp. 207–211. IEEE (2005)

7. Rehman, A., Mohamad, D., Sulong, G.: Implicit vs explicit based script segmen-
tation and recognition: a performance comparison on benchmark database. Int. J.
Open Prob. Comput. Math. 2(3), 352–364 (2009)

8. Rehman, A., Saba, T.: Performance analysis of character segmentation approach
for cursive script recognition on benchmark database. Digi. Signal Process. 21(3),
486–490 (2011)

9. Saba, T., Rehman, A., Sulong, G.: Cursive script segmentation with neural confi-
dence. Int. J. Innov. Comput. Inf. Contr. (IJICIC) 7(7), 1–10 (2011)

10. Salvi, D., Zhou, J., Waggoner, J., Wang, S.: Handwritten text segmentation using
average longest path algorithm. In: 2013 IEEE Workshop on Applications of Com-
puter Vision (WACV), pp. 505–512. IEEE (2013)

11. Tulyakov, S., Govindaraju, V.: Probabilistic model for segmentation based word
recognition with lexicon. In: Proceedings of Sixth International Conference on Doc-
ument Analysis and Recognition. pp. 164–167. IEEE (2001)

12. Yamada, H., Nakano, Y.: Cursive handwritten word recognition using multiple
segmentation determined by contour analysis. IEICE Trans. Inf. Syst. 79(5), 464–
470 (1996)


	An Efficient Character Segmentation Algorithm for Connected Handwritten Documents
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Proposed Methodology
	4.1 Formation of Binarized Graph
	4.2 Assignment of Flag Values to the Peak
	4.3 Elimination of False PSC's

	5 Result and Discussion
	6 Conclusion
	References




