
Chapter 6
Integrated Optimization Model
for Two-Level Epidemic-Logistics
Network

As mentioned in the above chapters, the demand of emergency resource is usually
uncertain and varies quickly in anti-bioterrorism system. With the consideration of
emergency resources allocated to the epidemic areas in the early rescue cycles will
affect the demand in the following periods, we construct an integrated and dynamic
optimization model with time-varying demand for the emergency logistics network
based on the epidemic diffusion rule. The heuristic algorithm coupled with ‘DDE23
tool’ in MATLAB is adopted to solve the optimization model, and the application of
the model as well as a short sensitivity analysis of the key parameters in the time-
varying demand forecast model is presented by a numerical example. The win-win
emergency rescue effect is achieved by such an optimization model. Thus, it can
provides some guidelines for decision makers when coping with emergency rescue
problem with uncertain demand, and offers an excellent reference when issues are
pertinent to bioterrorism.

6.1 Introduction

Bioterrorism is the intentional use of harmful biological substances or germs to cause
widespread illness and fear. It is designed to cause immediate damage and release
dangerous substances into the air and surrounding environment. Because it would
not usually be signaled by an explosion or other obvious cause, a biological attack
may not be recognized immediately and may take local health care workers time to
discover that a disease is spreading in a particular area.

Over the past few years, the world has grown increasingly concerned about the
threat bioterrorists pose to the societies, especially after the September 11 attacks
and the fatal delivery of anthrax via the US Mail in 2001. Henderson [1] points
out that the two most feared biological agents in a terrorist attack are smallpox
and anthrax. Radosavljević and Jakovljević [2] propose that biological attacks can
cause an epidemic of infectious disease, thus, epidemiological triangle chain models
can be used to present these types of epidemic. Bouzianas [3] presents that the
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deliberate dissemination of Bacillus anthracis spores via the US mail system in
2001 confirm their potential use as a biological weapon for mass human casualties.
This dramatically highlights the need for specific medical countermeasures to enable
the authorities to protect individuals from a future bioterrorism attack.

Generally, emergency logistics in anti-bioterrorism system is more complex and
difficult, and differs from business logistics in the following aspects. First of all, a
bioterror attack usually happens suddenly and causes a surge of demand for a partic-
ular medicine during a very short period of time. Hence, emergency resources must
be allocated to the epidemic areas as quickly as possible. Second, the demand infor-
mation is quite limited and varies rapidly with time. It is often very difficult to predict
the actual demand based on historical data [4]. Third, unlike logistics management
in which all the activities are triggered based on customer orders, emergency logis-
tics network in the anti-bioterrorism system is derived from the epidemic diffusion
network.

Considering the relationship between an unexpected bioterror attack and the asso-
ciated emergency logistics decisions, Liu and Zhao [5, 6] focus on how to control
the emergency resources and divide the whole emergency rescue process into three
stages. In the first stage, for the disaster area is just suffered from a bioterror attack,
and the bio-virus (such as smallpox, Bacillus anthracis and so on) hasn’t cause a
widespread diffusion, thus, we should deliver the existing emergency resources in
the local health departments to the disaster areas as quickly as possible. Then, objec-
tive of the second stage is that emergency resources can be allocated to the disaster
areas along with the spreading of the bio-virus, continually. Thus in this study, we
focus on the third rescue stage, and the following problem should be answered:
how to replenish emergency resources to the local health departments, and simulta-
neously, how to allocate emergency resource to the infected areas? To accomplish
such objective, we employ network flow techniques to develop an integrated and
dynamic optimization model, with the objective of minimizing the total rescue cost
and subject to related operating constraints. The model is expected to be an effective
decision-making tool that can help improve the efficiency of emergency rescue when
suffered from a bioterror attack.

6.2 Problem Description

As mentioned before, we have divided the entire emergency rescue process into
three stages in Liu and Zhao [5], and this study focuses on the optimization of the
emergency logistics network in the third rescue stage. In such stage, situation of the
epidemic diffusion tends to be stable and the spread of the epidemic goes to under
control. Thus, optimization goal in such stage is to construct an integrated, dynamic
and multi-level emergency logistics network, which includes the national strategic
storages, the urban health departments and the epidemic areas. The research idea of
the third emergency rescue stage is shown in Fig. 6.1.
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Fig. 6.1 Research idea of the third emergency rescue stage

As Fig. 6.1 shows, the entire rescue process in the third emergency rescue stage is
decomposed into several mutually correlated sub-problems (i.e. n decision-making
cycles). To each decision-making cycle, there exist two sub-problems. In the upper
level, we consider the problem how to replenish emergency resources to the urban
health departments. Besides, we adjust the replenishment arcs by a heuristic algo-
rithm, and construct a mixed-collaborative delivery system. Thus, the total rescue
cost of the upper level sub-problem would be minimized. In the lower level, we
present the problem how to allocate emergency resources to the infected areas. We
propose a forecastingmodel for the time-varying demand in the epidemic areas based
on the epidemic diffusion rule. Such two phases are executed iteratively. Besides,
at the end of each rescue cycle, effect of emergency resources allocated is analyzed
and the number of infected people is updated. Such a sequential operational routine
is continued until the bio-virus diffusion is under control.

It isworthmentioning that the optimal result of the upper level sub-problemaffects
the result of the lower level sub-problem, directly; on the other side, the optimal
result of the lower level sub-problem will affect the result of the upper level sub-
problem in the next emergency rescue cycle. Therefore, this is different to the bi-level
programming method. In what follows, we will present the SEIR epidemic diffusion
model and the forecasting models for the time-varying demand and inventory.
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6.2.1 SEIR Epidemic Diffusion Model

Since most epidemics divide people into four classes: the susceptible people (S), the
people during the incubation period (E), the infected people (I), and the recovered
people (R). Thus, as Fig. 6.2 shows, without consideration of the population migra-
tion, and the natural birth and death rate of the population, we can use a SEIR model
based on small-world network to describe the developing epidemic process.

Therefore, the following SEIR model [6] is adopted in this study.

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = −β〈k〉S(t)I (t)
dE
dt = β〈k〉S(t)I (t) − β〈k〉S(t − τ)I (t − τ)
d I
dt = β〈k〉S(t − τ)I (t − τ) − (d + δ)I (t)
dR
dt = δ I (t)

(6.1)

In such epidemic diffusion model, the time-based parameters S(t), E(t), I (t)
and R(t), represent the number of susceptible people, the number of people during
the incubation period, the number of infected people, and the number of recovered
people, respectively. Other parameters include: 〈k〉 is the average degree distribution
of the small-world network; β is the propagation coefficient of the bio-virus (small-
pox); δ is the recovered rate of the infected people; d is the death rate caused by the
disease; τ stands for the incubation period. Furthermore, 〈k〉, β, δ, d, τ > 0.

From the Eq. (6.1), we can see that I (t), which denotes the number of infected
people, can be calculated by solving the ordinary differential equations when the
initial values of S(t), E(t), I (t) and R(t) are given. Actually, this parameter is one
of themost important concerns during the emergency rescue process, and it is desired
that I (t) stays at a value as low as possible, which implies that the situation is stable
and the spread of the epidemic is under control. Wang et al. [4] propose that the
change of I (t) mainly depends on the population of the recovered people and the
onset people at the end of the incubation period. And thus, we should improve the
recovered rate δ and reduce the propagation coefficient β, thereby decreasing the
value of I (t) effectively.

β<k>S(t-τ)I(t-τ) δI 

d1I

β<k>SI
S I R E

Fig. 6.2 SEIR epidemic diffusion model
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6.2.2 Forecasting Model for the Time-Varying Demand

As mentioned before, for both upper and lower sub-problems are existed in each
emergency rescue cycle, thus, the time-varying demand in each sub-problem should
be the forecasted respectively.

(1) Forecasting model for the time-varying demand in the epidemic area

As introduced in Sect. 6.1, the demand information is quite limited and varies rapidly
with timewhen suffered froma bioterror attack. Thus, it is often difficult to predict the
actual demand based on historical data. Xu et al. [7] propose that demand forecasting
after a disaster is especially important in emergency management, and present an
EMD-ARIMA(empiricalmodedecomposition and autoregressive integratedmoving
average) forecasting methodology to predict the agricultural products demand after
the 2008 Chinese winter storms. Other related works can be found in [8, 9]. Note
that emergency demand in the previous literature has always been formulated as a
stochastic or deterministic variable, while the effectiveness that emergency resource
allocated in the early rescue cycle will affect the demand in the later rescue cycle has
not been considered. Based on the previous works ([5]), the following forecasting
model for the time-varying demand in the epidemic area is adopted in this study.

d∗
t = aI (t), t ∈ 0, 1, 2, . . . , n (6.2)

ηt = (d∗
t+1 − d∗

t )
/
d∗
t
, t ∈ 0, 1, 2, . . . , n − 1 (6.3)

When t = 0, d0 = aI (0) (6.4)

When t = 1, d1 = (1 + η0)

(

1 − θ

�

)

d0 (6.5)

When t = 2, d2 = (1 + η1)

(

1 − θ

�

)

d1 = (1 + η0)

(

1 + η1)(1 − θ

�

)2

d0 (6.6)

. . .

When t = n, dn =
n−1∏

i=0

(1 + ηi )

(

1 − θ

�

)n

d0 (6.7)

Herein,
∏n−1

i=0 (1 + ηi ) = (1 + η0)(1 + η1) . . . (1 + ηn−1). Equation (6.2) is the
traditional forecasting model for the time-varying demand. d∗

t means demand of the
emergency resources in the epidemic area at time t, t ∈ 0, 1, 2, . . . , n. I (t) is the
number of infected people in the epidemic area at time t. a is the proportionality
coefficient. Equation (6.3) is used to calculate the linear scale factor of the change in
demand for each rescue cycle. Furthermore, ηt ≤ 0. d0 in the Eq. (6.4) is the initial
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demand of emergency resources in the epidemic area, and I (0) represents the initial
number of infected people in the epidemic area. d1, d2, . . . , dn in Eqs. (6.5)–(6.7)
represent the demand of emergency resources in emergency rescue cycle 1, 2, . . . , n.
Other parameter include: θ is the effective rescue rate in each cycle;� is the treatment
cycle for each infected person. To facilitate the calculation process in the following
sections, we assume that � is an integral multiple of the rescue cycle.

According to the above recursion formulas, the change of emergency demand
mainly depends on these two important parameters. Thus, in the context of emergency
rescue, there should be enough emergency resources to cure the infected people, so
that the effective rescue rate θ can be improved and the treatment cycle Γ can be
reduced, thereby, decreasing the total emergency rescue cost.

(2) Forecasting model for the time-varying demand in urban health depart-
ment

As introduced before, in the upper level sub-problem, we consider the problem
how to replenish emergency resources to the urban health departments. Thus, the
urban health departments, which are the emergency suppliers in the lower level sub-
problem, have been changed to be the demand nodes in the upper level replenishment
network. Note that time-varying demand in the urban health department mainly
depends on the unsatisfied capacity. Hence, to facilitate the calculation process in
the following sections, we assume that the initial inventory in each urban health
department is equal to zero. Besides, we suppose that capacity of each urban health
department is equal to Vcap. Supposing that dv

t represents the demand of emergency
resources in urban health department at rescue cycle t, Pt represents the total supply
of the emergency resources in urban health department at rescue cycle t (Such value
is obtained by solving the lower level sub-problem in the previous rescue cycle).
Thus, the forecasting model for time-varying demand in urban health department
can be formulated as follows.

dv
t =

{
Vcap, t = 0
Pt−1, t = 1, 2, . . . , n

(6.8)

6.2.2.1 Forecasting Model for the Time-Varying Inventory

Asmentioned in Sect. 6.1, the focus of this study is placed on replenishing emergency
resources to the urban health departments and distributing them to the epidemic areas,
simultaneously. Thus, the urban health departments play the role of the link in the
multi-level emergency logistics network. Intuitively, inventory of the emergency
resources in the urban health department should also be changed as time goes by.
Supposing that Vt is the inventory of the emergency resources in the urban health
department at rescue cycle t, and we can get the following equation.
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Vt =
{

0, t = 0
Vcap − Pt−1, t = 1, 2, . . . , n

(6.9)

6.3 Optimization Model and Solution Methodology

6.3.1 The Integrated Optimization Model

To facilitate the model formulation in the following section, we make the following
four assumptions.

(1) Once suffered from a bioterror attack, each epidemic area can be isolated from
other areas to avoid the spread of the disease.

(2) The locations of the national strategic storages, and urban health departments
are known. Practically, the number of storage places to be used can be preset
by a national disaster plan.

(3) Holding cost of the emergency resources is not considered.
(4) Capacity of the national strategic storage is large enough, and in each rescue

cycle, each one of them can supply a certain amount of emergency resources.

Notations used in the following integrated and dynamic optimization model are
specified as follows.

nci j : Unit replenishment cost of the emergency resource from the nation strategic
storage i to the urban health department j .
ce jk : Unit distribution cost of the emergency resource from the urban health depart-
ment j to the epidemic area k.
nsi : The certain amount of emergency resources that can be supplied by the nation
strategic storage i in each rescue cycle.
Vcap: Capacity of the urban health department.
dkt : Demand of the emergency resources in epidemic area k at rescue cycle t .
dv
j t : Demand of the emergency resources in urban health department j at rescue cycle

t .
Pjt : Total supply of the emergency resources in urban health department j at rescue
cycle t.
Vjt : Inventory of the emergency resources in the urban health department j at rescue
cycle t.
xi j t : Amount of the emergency resources that transport from the national strategic
storage i to the urban health department j at rescue cycle t.
y jkt : Amount of the emergency resources that transport from the urban health depart-
ment j to the epidemic area k at rescue cycle t .
TC : Total cost of the multi-level emergency logistics network.
N : Set of the national strategic storages.
C : Set of the urban health departments.
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E : Set of the epidemic areas.
T : Set of the decision-making cycles.

According to the above explanation and assumptions, the integrated and dynamic
optimization model for the multi-level emergency logistics network can be formu-
lated as follows:

Min TC = ∑

t∈T

∑

i∈N

∑

j∈C
xi j t nci j+ ∑

t∈T

∑

j∈C

∑

k∈E
y jkt ce jk (6.10)

s.t.
∑

j∈C
xi j t ≤ nsi , ∀i ∈ N , t ∈ T (6.11)

∑

i∈N
xi j t = dv

j t , ∀ j ∈ C, t ∈ T (6.12)

dv
j t = Vcap, ∀ j ∈ C, t = 0 (6.13)

dv
j t = Pjt−1, ∀ j ∈ C, t = 1, 2, . . . , T (6.14)

Pjt =
∑

k∈E
y jkt , ∀ j ∈ C, t ∈ T (6.15)

∑

k∈E
y jkt ≤ Vcap, ∀ j ∈ C, t ∈ T (6.16)

∑

j∈C
y jkt = dkt , ∀k ∈ E, t ∈ T (6.17)

dkt = aIk(t), ∀k ∈ E, t = 0 (6.18)

dkt =
t−1∏

i=0

(1 + ηki )

(

1 − θ

Γ

)t

dk0, ∀k ∈ E, t = 1, 2, . . . , T (6.19)

t−1∏

i=0

(1 + ηki ) = (1 + ηk0)(1 + ηk1) . . . (1 + ηk(t−1)),∀k ∈ E, t = 1, 2, . . . , T

(6.20)

xi j t ≥ 0, ∀i ∈ N , j ∈ C, t ∈ T (6.21)

y jkt ≥ 0, ∀ j ∈ C, k ∈ E, t ∈ T (6.22)

Herein, the objective function in Eq. (6.10) is to minimize the total cost of the
multi-level emergency logistics network. Equations (6.11) and (6.12) are constraints
for flow conservation in the upper level sub-problem. Equations (6.13)–(6.15) are
the time-varying demand models in the upper level sub-problem. Equations (6.16)
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and (6.17) are constraints for flow conservation in the lower level sub-problem.
Equations (6.18)–(6.20) are the time-varying demand models in the lower level sub-
problem. At last, Eqs. (6.21) and (6.22) ensure all the arc flows in the emergency
logistics network within their bounds.

Our model is formulated as an integrated, dynamic and multi-stage program-
ming model, and could thus be difficult to solve directly, especially for realistically
large-scale problems. Therefore, as mentioned in Sect. 6.2, we should decompose
the problem into several mutually correlated sub-problems, and then solve them sys-
tematically in the same decision scheme. In what follows, we will develop a heuristic
algorithm to efficiently solve the problem.

6.3.2 Solution Methodology

(1) Solution procedure for the optimization model

As introduced before, we decompose the entire emergency process in the third rescue
stage into n sub-problems (i.e. n decision-making cycles or n rescue cycles). Thus, to
each rescue cycle, the research problem has been become a two correlated program-
ming problems and simple to solve. The ‘DDE23’ tool in MATLAB coupled with
the forecasting model for the time-varying demand (As introduced in Sect. 6.2.2)
is adopted to calculate the dynamic demand. Then, the solution procedure can be
presented as follows.

Step 1. Preset the decision-making cycle, and decompose the entire emergency pro-
cess in the third rescue stage into n decision-making cycles.
Step 2. Let t = 0, and initialize parameters in the SEIR epidemic diffusion model.
Step 3. Analyze the epidemic diffusion rule, and calculate the initial demand of the
emergency resources in each epidemic area according to the Eq. (6.18).
Step 4. Solve the two correlated programming problems in rescue cycle t = 0 and
obtain the initial solution.
Step 5. Improve the initial solution by heuristic algorithm (Detail about the heuristic
algorithm is introduced in Sect. 6.3.2).
Step 6. Get the final solution of the emergency allocation in such rescue cycle.
Step 7. Set t = t + 1, if the termination condition for the rescue cycle is not satisfied,
update the demand in each epidemic area and urban health department, and update
the inventory level of the emergency resources in each urban health department, go
back to Step 3. Else, go to the next step.
Step 8. End the programme and output the final result.

(2) Heuristic algorithm for improving the initial solution

It is not difficult to find that only two types of distribution arcs (type (a) and (c)
in Fig. 6.1) have been optimized in the above model, while the collaborative arcs
(type (b) in Fig. 6.1) have not been considered. In other words, the collaborative
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effect among the national strategic storages has not been considered. Zhao and Sun
[10] propose that emergency rescue system with a supply source can results in better
performance in both aspects of operational efficiency and operating cost. Thus, to
improve the performance of the emergency rescue system without supply source, as
Fig. 6.3 shows, we can select an adjacent national strategic storage in the network as
the HUB location, and then take the national strategic storages which are at some dis-
tance from the epidemic area as the supply sources. As a result, a mixed-collaborative
replenishment system is constructed.

Obviously, such mixed-collaborative replenishment system allows both hub-and-
spoke and direct shipment (we call it point to point mode) deliverymodes. Thus, both
advantages of the economies of scale in hub-and-spoke system and the effectiveness
in direct shipment system can be taken account. It is worth mentioning that some
previous works are related (e.g. [11, 12]), and the experiment results in these works
show that the mixed system can save total traveling distance or delivery cost as
compared with either of the two pure systems. Therefore, such mixed-collaborative
system can improve the initial solution in the last section. Besides, the heuristic
algorithm in Liu et al. [12] can be applied in this study with suitable modified as
follows (The flowchart of the procedure is also given in the Fig. 6.4).

Step 1. Solve the pure point to point replenishment mode, and let the distribution
arc set be Dd . By solving the objective Eq. (6.10), we can get the total emergency
replenishment cost at rescue cycle t. Let TCd = ∑

i∈N
∑

j∈C xi j t nci j .
Step 2. Solve the pure hub-and-spoke problem. This is done as follows: select a
national strategic storage h(h ∈ N ) which is adjacent to the epidemic areas as the
HUB location, and then, solve a programming problem with the depot located at h

National strategic 
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Urban health 
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Urban health 
department 2

Urban health 
department j

National strategic 
storage2 

Urban health 
department 3

Epidemic 

National strategic 
storage 3 

National strategic 
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Fig. 6.3 Mixed-collaborative replenishment system
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to collect the emergency resources from all the other storages and to distribute the
emergency resources to the urban health departments. Let the distribution arc set
be Dh . qih represents amount of emergency resources that transport from national
strategic storage i to the HUB, and the unit transportation cost is nzih . Thus, TCh =∑

i∈N\h zihqih + ∑
h∈N

∑

j∈C
xhjt nchj is the total emergency replenishment cost at

rescue cycle t.
Step 3. Compare TCd and TCh , if TCd < TCh , let Dd = D, Dh = ∅, record it as
the case 1; else if TCd ≥ TCh , let Dh = D, Dd = ∅ and record it as the case 2.
Let TCs = min{T d , T h} and TCm ← TCs .
Step 4. Adjust the distribute arc according to the following two situations.

Step 4.1. If case 1 appears, then for every replenishment arc (Ni ,C j ) ∈ Dd ,
compute Sdhi j , which is an estimate of the improvement in the solution value if
the replenishment arc is transferred from Dd to Dh . Transfer all those pairs with
positive Sdhi j from direct shipment delivery to hub-and-spoke delivery, and set
Dd ← Dd\{(Ni ,C j )|Sdhi j ≥ 0}, Dh ← Dh ∪ {(Ni ,C j )|Sdhi j ≥ 0}.
Step 4.2. If case 2 appears, then for every replenishment arc (Ni ,C j ) ∈ Dh ,
compute Shdi j , which is an estimate of the improvement in the solution value if
the replenishment arc is transferred from Dh to Dd . Transfer all those pairs with
positive Shdi j from direct shipment delivery to hub-and-spoke delivery, and set
Dh ← Dh\{(Ni ,C j )|Shdi j > 0}, Dd ← Dd ∪ {(Ni ,C j )|Shdi j > 0}.

Step 5. Solve the mixed-collaborative delivery problem with demand partition
{Dd , Dh}, and record the total emergency rescue cost as TC ′.
Step 6. Compare the TCs and TC ′, if TC ′ < TCs , let TCs ← TC ′ and record the
partition {Dd , Dh}. Thus, TCs is the value of the best solution obtained so far, if
TCs < TCm , let TCm ← TCs .
Step 7. Let j = j + 1, go back to the Step 4, if top limit of j is satisfied, go to the
next step.
Step 8. Let i = i + 1, go back to the Step 4, if top limit of i is satisfied, go to the
next step.
Step 9. End the programme and output the optimal result.

Since Sdhi j or Shdi j are updated at every iteration and for more results on this topic,
we refer readers to Liu et al. [12]. In what follows, we will test how well the model
may be applied in the real world.
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6.4 A Numerical Example and Implications

6.4.1 A Numerical Example

In this section, we rely on a numerical analysis to demonstrate the efficiency of the
proposed method for the multi-level emergency logistics network when suffered a
bioterror attack. Since the focus of this study is placed on the third emergency rescue
stage, and goal of the optimization model is to better control the total emergency
rescue cost and the inventory level in the local health departments, thus, the subse-
quent numerical example will be focused on the analysis of these two objectives.
We assume that a region is suffered from a smallpox attack. There are 8 epidemic
areas, 6 urban health departments and 3 national strategic storages in such region.
The values of the parameters in the epidemic diffusion model are given in Table 6.1.

Taking the epidemic area 1 as the example, Fig. 6.5 is the numerical simulation of
the epidemic model in this disaster area. The four curves respectively represent the

Table 6.1 Values of the parameters in SEIR epidemic diffusion model

Area 1 2 3 4 5 6 7 8

S(0) 5 × 103 4.5 × 103 5.5 × 103 5 × 103 6 × 103 4.8 × 103 5.2 × 103 4 × 103

E(0) 30 35 30 40 25 40 50 45

I (0) 5 6 7 8 4 7 9 10

R(0) 0

β 4 × 10−5

〈k〉 6

δ 0.3

d 1 × 10−3

τ 5

Fig. 6.5 Solution of the
SEIR epidemic diffusion
model (epidemic area 1)
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number of four groups of people (S, E, I, R) as time goes by. As this study focuses
the third emergency rescue, we assume that it runs from the 45th day (rescue cycle t
= 0) to the 55th day (rescue cycle t = 10). Meanwhile, the rescue cycle is set to be
one day. Thus, a total of 8640 arcs are generated and used in the experiment).

Let a = 1, θ = 90% and � = 15 (days), the ‘DDE23 tool’ in MATLAB coupled
with Eqs. (6.18)–(6.20) are adopted to forecast the time-varying demand for each
epidemic area from time t = 0 to t = 10. As before, taking the epidemic area 1 as
the example, demand of the emergency resources at each rescue cycle by both of the
time-varying and traditional forecast models are shown in the Fig. 6.6.

As Fig. 6.6 shows, the forecasting model for time-varying demand can reflect
the effectiveness that emergency resources allocated in the early rescue cycle will
affect the demand in the following periods efficiently. The time-varying demand
of emergency resources is reduced obviously when compared with the traditional
demand in the following periods. It is worth to mentioning that both these two
curves get a similar variation tendency, which represents the epidemic is going to
be controlled. After getting demand of emergency resources in each rescue cycle, in
what follows, we will focus on how to allocate emergency resources to the epidemic
areas, and at the same time, how to replenish emergency resources to each urban
health department, with the objective of minimizing the total emergency rescue cost.
Table 6.2 shows the unit transportation cost from the supply point to the demand
point in the emergency logistics network (Suppose that national strategic storage 1
is preset as the HUB location).

As mentioned before, we assume that each national strategic storage can supply a
certain amount of emergency resources in each rescue cycle. Let they be 400, 420 and
450, and let the capacity of the urban health department be 210. Take the emergency
allocation result at time t = 0 as the example, we can solve the programming model
according to the solution procedure (As introduced in Sect. 6.4). The initial solution
is reported in Table 6.3 (Total cost 6576.24). Then, the heuristic algorithm is adopted

Fig. 6.6 Demand of the
emergency resources in
epidemic area 1



6.4 A Numerical Example and Implications 123

Table 6.2 Unit transportation cost between two different points

Cost N1 C1 C2 C3 C4 C5 C6

N1 – 2 9 1 3 10 2

N2 4 7 2 10 8 9 8

N3 5 10 8 2 9 2 8

E1 E2 E3 E4 E5 E6 E7 E8

C1 6 2 6 7 4 2 5 9

C2 4 9 5 3 8 5 8 2

C3 5 2 1 9 7 4 3 3

C4 7 6 7 3 9 2 7 1

C5 2 3 9 5 7 2 6 5

C6 5 5 2 2 8 1 4 3

Table 6.3 Solution of the optimization model at time t = 0

Amount N1 C1 C2 C3 C4 C5 C6

Before the adjustment N1 – 106 – – 94 – 200

N2 – 104 210 – 106 – –

N3 – – – 210 10 210 10

After the adjustment N1 – 210 – – 210 – 210

N2 210 – 210 – – – –

N3 20 – – 210 – 210 –

E1 E2 E3 E4 E5 E6 E7 E8

C1 – 81.8 – – 128.2 – – –

C2 29.3 – – 117.5 – – – 12.8

C3 – 114.3 55.8 – – – 39.9 –

C4 – – – – – 35.4 – 174.6

C5 173.4 36.6 – – – – – –

C6 – – 38.2 – – 124.7 47 –

to adjust and improve the solution, and thus, the final solution is obtained (Total cost
6346.24).

As Table 6.3 shows, while the replenishment arcs (N2,C1) ∈ Dd , (N2,C4) ∈ Dd ,
(N3,C4) ∈ Dd and (N3,C6) ∈ Dd are transferred from the direct shipment delivery
system to the hub-and-spoke delivery system, the total rescue cost can be reduced.
Our test on the selected problem instance shows that the mixed-collaborative system
can save 5.9% of the rescue cost compared with the cost before the adjustment. And
at last, a mixed-collaborative replenishment system is conducted for the upper level
sub-problem. Actually, to better control the total emergency rescue cost, the decision
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maker can adjust and improve the initial solution of the lower level sub-problem as
similar to the above way.

In a similar way, we can complete the whole operations according to the solution
procedure (Fig. 6.4), then we can obtain the optimal initial solution for each rescue
cycle. Then, the heuristic algorithm is adopted to adjust and improve the solution for
each cycle. Replenishment arcs which need to be transferred in each cycle are shown
in Table 6.4. At last, the final solution and the total emergency rescue cost for each
cycle can be obtained.

Figure 6.7 shows the change in total rescue cost as time goes by. From this figure,
we can get the following two conclusions: (1) Coupled with Fig. 6.6, we can see
that demand of emergency resources becomes less and less, which implies that the
epidemic diffusion situation is going to be stable and the spread of the epidemic is
going to be under control. (2) Coupled with Table 6.4, we can see that the total rescue
cost can be reduced by the proposed heuristic algorithm in a certain degree. It is worth
mentioning that there is no adjustment after the rescue cycle t = 4, that’s because the
national strategic storages which are adjacent to the epidemic areas will have stored

Table 6.4 Transferred arcs in each cycle

Cycle Arcs need to be transferred Cycle Arcs need to be transferred

Before After Before After

t = 0 N2 → C1
N2 → C4
N3 → C4
N3 → C6

N2 → N1 → C1
N2 → N1 → C4
N3 → N1 → C4
N3 → N1 → C6

t = 1 N2 → C1
N2 → C4

N2 → N1 → C1
N2 → N1 → C4

t = 2 N2 → C1
N2 → C4

N2 → N1 → C1
N2 → N1 → C4

t = 3 N2 → C1
N2 → C4

N2 → N1 → C1
N2 → N1 → C4

Note There is no adjustment when t = 4, 5, 6, 7, 8, 9, 10

Fig. 6.7 Total rescue cost
for each rescue cycle
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Fig. 6.8 Inventory level in
different urban health
departments as time goes by

enough emergency resources at that time, and thus, the emergency logistics network
will be simplified greatly by then.

As mentioned before, the other control target of the optimization model is to
better control the inventory level of the local urban health departments. Figure 6.8
implies that inventory level in each urban health department has been improved and
raised as time goes by. Therefore, with the application of the integrated and dynamic
optimization model, the total emergency rescue cost can be controlled effectively,
and meanwhile, inventory level in each urban health department can be restored
and raised gradually. Thus, such optimization model achieves a win-win emergency
rescue effect in anti-bioterrorism system.

6.4.2 A Short Sensitivity Analysis

From the previous analysis we can see that the change in total rescue cost mainly
depends on the change in demand. In this section, a short sensitivity analysis of the
key parameters (θ and �) in the forecasting model for the time-varying demand is
conducted.

Taking the total rescue cost at time t = 10 as the example, holding all the other
parameters fixed as in the numerical example given in Sect. 6.4.1, except that θ and
Γ take on five different values, respectively. The changes in total rescue cost are
shown in Figs. 6.9 and 6.10. As Fig. 6.9 shows, θ takes on five values ranging from
60% to 100% with an increment of 10%, we can obtain the following conclusion:
the larger the θ is, the higher of the actual effective rescue rate in each cycle is, thus,
the less of demand is, and finally, the lower of the total rescue cost is. Similarly, as
Fig. 6.10 shows, � takes on five values ranging from 9 to 21 with an increment of
3. Conversely, the larger of � is, the longer of the treatment cycle is, thus, the larger
of the demand of emergency resources is, and finally, the higher of the total rescue
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Fig. 6.9 Change in total
rescue cost with different
value of θ (t = 10)

Fig. 6.10 Change in total
rescue cost with different
value of G (t = 10)

cost is. The above analysis confirms that both of the two key parameters play an
important role in the emergency decisions. For a small change of θ and �, the total
rescue cost at each cycle can change significantly. Unfortunately, precise value of
these two parameters for an epidemic is difficult to get. As the accuracy of these two
parameters is vital to the success of emergency rescue, a great deal of effort needs to
be devoted to scientifically estimating these two parameters of different epidemics.

Overall, to enhance the emergency rescue effectiveness in the anti-bioterrorism
system, we should improve our rescue work from the following aspects:

(1) Once suffered from a bioterror attack, the epidemic area should be isolated from
other areas to avoid the spread of the disease as far as possible.
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(2) Demand of the emergency resources in the epidemic area should be forecasted
quickly and precisely, for medicine in such emergency period is precious and
should not be wasted.

(3) An effective, integrated and dynamic optimization model should be conducted
for the emergency logistics network so that a win-win emergency rescue effect
will be achieved.

(4) There should be enough emergency resources to cure the patients so that the
actual effective rescue rate and the treatment time for each infected person can
be improved, and then, the epidemic diffusion can be controlled effectively.

6.5 Conclusions

In this chapter, the optimal decision of the multi-level emergency logistics network
with uncertain demand is investigated. An integrated and dynamic optimization
model is developed, and an effective solution procedure is designed. To verify the
validity and the feasibility of the solution procedure, we have presented a numeri-
cal example and an accurate result is obtained in a short amount of time. The main
differences distinguish this study to the past literature are presented as follows.

(1) With the consideration of that emergency resources allocated in the early rescue
cycle will affect the demand in the following periods, a unique forecast mecha-
nism to predict the demand in the epidemic area is proposed. Furthermore, we
construct two forecasting models for the time-varying demand and inventory
level in urban health department.

(2) A win-win emergency rescue effect is achieved by the integrated and dynamic
optimization model. The total emergency rescue cost is controlled effectively,
and meanwhile, inventory level in each urban health department is restored and
raised gradually.

(3) Emergency planning has always been formulated as vehicle routing problem
(VRP), or vehicle routing problemwith timewindows (VRPTW) in the precious
literature, which includes many sub-tour constraints and is difficult to solve.
Furthermore, time duration factor is not incorporated into the decision, resulting
in incomplete decisions in real operations. In this study, the emergency problem
has been decomposed into several mutually correlated sub-problems, and then
be solved systematically in the same decision scheme. Thus, the result will be
suitable to the real operations much better.

To summarize, in this study, emergency logistics network in the anti-bioterrorism
systemhas been optimized from the perspective of integration. Andwe have achieved
the win-win rescue goal. However, it’s also necessary to point out some limitations of
this research. First of all, we assume that once suffered from a bioterror attack, each
epidemic area can be isolated from other areas to avoid the spread of the disease.
Second, emergency resources in the anti-bioterrorism system may include vaccine,
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antibiotics,masks and so on, thus, the emergency logistics problem should be amulti-
commodity problem. Third, to facilitate the calculation process, initial inventory
and capacity of the urban health departments are assumed ideally. The situations in
actual operations would be much more complex. All these areas represent our future
research directions.
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