Chapter 12 ®)
Three Short Time-Space Network oo
Models for Medicine Management

Generally, medicine order and delivery are operated based on the previous experi-
ences. First of all, estimating the average annual demands of hospital storage center.
Second, planning a medical goods order and delivery schedule based on the annual
average demands as well as establishing the period of ordering and delivering. Third,
in the process of operating, medical system supplies goods according to the re-order
point and safe stock. In this chapter, we propose three time-space network models
for medicine order and shipment, which may help improve the effectiveness when
managing the medicine in hospitals.

12.1 Model I: A Basic Time-Space Network Model

12.1.1 Introduction

To minimize the operation cost, Wei [1] applied the concept of JIT and stockless
in hospital materials management system. Breen and Crawford [2] pointed out that
the use of electronic commerce technology can improve the internal pharmaceutical
supply chain. Danas et al. [3] proposed virtual hospital pharmacy (VHP) information
system to meet the demands and calculate minimum stock level and reorder point of
hospital departments. Zhu et al. [4] designed an improved randomized algorithm for
the vehicle routing problem of medical goods for large-scale emergency scenario.
The time-space network approach has been popularly employed to solve medical
material transit scheduling problems, because it is natural and efficient to represent
conveyance routings in the dimensions of time and space. Liao [5] and Cao [6]
employed time-space network techniques with the system optimization perspective to
construct a deterministic real-time and stochastic real-time medical goods scheduling
model and adopted integer programming method to minimize the total cost of medical
system. Yan and his colleagues [7, 8] developed a novel time-space network model
with the objective of minimizing the length of time needed for emergency repair.

© Science Press and Springer Nature Singapore Pte Ltd. 2020 231
M. Liu et al., Epidemic-logistics Modeling: A New Perspective
on Operations Research, https://doi.org/10.1007/978-981-13-9353-2_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9353-2_12&domain=pdf
https://doi.org/10.1007/978-981-13-9353-2_12

232 12 Three Short Time-Space Network Models for Medicine Management

Steinzen et al. [9] presented a new modeling approach that is based on a time-space
network representation of the underlying vehicle-scheduling problem. Yan et al. [10,
11] applied time-space network to present a logistical support scheduling model for
the given emergency repair work schedule to minimize the total operating cost.

This study presents a logistics support model for medical goods scheduling to
address the uncertain demand in the hospital nodes. The model is a stochastic order
and delivery scheduling model, which systematically considers the demand of med-
ical goods for every time slot in different hospital nodes, the storage capacity and
other constraints, as well as the integrated delivery plan of medical goods in the
dimensions of time and space. The problem is formulated as a mixed 0-1 integer
programming model and a heuristic algorithm is proposed to solve it. The test results
show the good performance of the proposed model. Hence, it is expected to be a
useful planning tool for decision-maker to get effective medical goods supply order
and delivery schedules.

12.1.2 The Time-Space Network Model

In this section, we will first introduce the dynamic decision-making structure and the
time-space network structure which can help us to understand the logistics support
process. After that, we will give the mathematical formulation of the problem.

(1) The dynamic decision-making structure

As Fig. 12.1 shows, we make a dynamic decision-making framework for the whole
planning cycle. We operate the model once a week and it will present the scheduling
result for the whole remainder planning cycle. For example, in the first week, the
optimal result will show the schedules for the whole 26 weeks. However, only the
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Fig. 12.1 Dynamic decision-making framework
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result for the first week will be adopted while the results in the other 25 weeks are
used as reference. We do this because the demand information in the recent week is
more deterministic and the demand information in further is inaccurate. After that,
we will update the demand information in the following weeks and then repeat the
above work until the end of the planning cycle.

(2) Time-space network structure

As Fig. 12.2 shows, a time-space network is built for supply routing and inventory
state at one planning cycle. The horizontal axis represents the manufacturer, the sup-
plier and the hospitals in medical system; the vertical axis stands for the time duration.
“Nodes” and “arcs” are the two major components in the network. The nodes include
the manufacturer, the supplier, the hospitals and the collection points. The supplier
node provides medical goods to hospitals. The hospitals nodes order medical goods
from suppliers. The collection node is used to ensure flow conservation. One time
point represents one week. The arc flows express the flow of medical goods in the
network. The arc flow’s lower and upper bounds are defined as the minimum and
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maximum number of flow units allowable on the arc. Three types of arcs are defined
as below.

®

(ii)

(iii)

3

Supply arc. A supply arc (see (1-2) in Fig. 12.2) represents the medical goods
are delivered from the manufacturer to the supplier, or from the supplier to the
hospital. The arc’s cost for (1-2) is the purchase cost of the medical goods plus
the fixed ordering cost. The arc flow’s upper bound for (1-2) is the inventory
capacity of the supplier or the hospital. The arc flow’s lower bound is zero.
Holding arc. A holding arc (see (3—4) in Fig. 12.2) represents the holding of
medical goods in the supplier or in the hospital. The arc flow denotes the number
of medical goods held in the supplier or the hospital in a moment. The arc’s
cost is the inventory cost. The arc flow’s upper bound is the inventory capacity
of the supplier or the hospital. The arc flow’s lower bound is safe stock of the
supplier or the hospital.

Collection arc. A collection arc (see (5-7) in Fig. 12.2) connects the last node
associated with a supplier, the last node associated with a hospital and the
manufacturer node to the collection node. It is used to ensure flow conservation
at the last time associated with each supplier and hospital point. The arc flow’s
upper bound is infinity and the arc flow’s lower bound is zero. The arc’s cost
is zero.

Mathematical formulation

The assumptions for the mathematical formulation are listed below:

1.

Demand for each hospital node at every time point is uncertain and obey random
distribution. When the model is operated, the demand information will be updated
in each decision period.

The manufacturer can provide enough medical goods, thus out-of-stock will not
take place.

Lead time of the order is one week. However, when to order and the order quantity
is uncertain, they are the decision variables.

For simplicity, only one manufacturer, one supplier and one kind of medical good
are considered in the supply network.

The initial inventory of every hospital in the first week is the safe inventory plus
the maximum demand.

Before introducing the model’s formulation, the notations and symbols are listed

below:

Parameters:

cb;j Supply arc (i, j) cost.

csij Holding arc (i, j) cost.

Cojj Fixed ordering cost for the supply arc (i, j).
L Arc (i, j) flow’s lower bound.

Ui Arc (i, j) flow’s upper bound.

S, W, H The set of all manufacturer, supplier and hospital nodes, respectively.
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NM Set of all nodes in the network.
AB, AS Set of all supply arcs and holding arcs, respectively.
a;(w) The ith node’s supply or demand in the wth random event (if a; > 0,

supply; else demand).
Decision variables:

x;j(w) The supply arc (i, j) flow in the wth random event.

vij(w) The holding arc (i, j) flow in the wth random event.

;j(w) A binary variable in the wth random event which indicates whether supply
arc (i, j) in the network has flows. If §;;(w) = 1, then x;;(w) > 0; else,
Xij (W) =0

Based on the notations, the proposed problem can be formulated as follows:

Min z = Z Cb,’jx,'j(W)+ Z Csijyij(w)+ Z CO,’j(S,'j(W) (121)

VijeAB VijeAS VijeAB

s.t.: Z xij(w) + Z Yir(w) — Z Xpi (W)
jeEWUH reWUH peSUW
- Y yiw)=a;(w), YieNM (12.2)
ceWUH

xij(w) < Mé;;(w), VijeAB (12.3)

lij < X,’j(W) =< Uijj, Vlj € AB (12.4)

l,‘j < y,'j(W) =< Uijj, Vje AS (12.5)

xijw), yijw)yel, VjeAS (12.6)

8ij(w)=0,1, VijeAB (12.7)

The objective function (12.1) minimizes the total cost of the medical system. The
first item of objective function represents all supply costs; the second item stands for
all inventory costs; the third item expresses all order costs. Constraint (12.2) denotes
the flow conservation constraint at every node in the network. Constraint (12.3)
denotes whether the node orders medical goods or not. Constraint (12.4) and (12.5)
holds all the arc flows within their bounds. Constraint (12.6) ensures the integrality
of the supply flows and holding flows, and constraint (12.7) denotes all the decision
variables are either O or 1.
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12.1.3 Solution Algorithm

The model is formulated as a mixed 0—1 integer network flow problem that is charac-
terized as NP-hard problem. To efficiently solve this problem we develop a heuristic
algorithm, with the assistance of the mathematical programming solver, CPLEX.
The procedure is described as follows:

Step 1. Initialization, generate a sequential data follows uniform distribution, which
includes 26 data stand for the demand at 26 time points.

Step 2. Set f = 1 as the decision period.

Step 3. With the target of minimizing the total cost of the medical system, we solve
the medical goods order and delivery schedules for the remainder weeks by CPLEX.
Step 4. Take the schedules of decision period (f) as a certain result. Then we execute
it and put the holding situation and the ordering situation in the decision period as
the initial conditions of the next decision period.

Step 5. If f = 26, then go to Step 6; otherwise, f = f + 1, and return to Step 3.
Step 6. Record the optimal schedules and the operations cost.

12.1.4 Numerical Tests

To test how well the proposed model may be applied in the real world, we perform
some numerical tests using data in Ref. [5]. The matlab computer language, coupled
with the CPLEX 12.4 mathematical programming solver, is used to develop all the
necessary programs for building and solving the proposed model. Assume there
are five hospitals and thus the model contains 156 nodes, 468 variables and 778
constraints.

(1) The initial data setting

We generate the demands for the hospitals by using unidrnd() function in the matlab
tool. The average of each hospital demand is 450, 550, 600, 450 and 450, respectively.
The variance of each hospital demand is 300, 833, 133, 208 and 300, respectively.
The unit procurement price for the supplier is 20 yuan, and it is 22 yuan for the
hospital. The unit inventory cost for the supplier and the hospital is 0.3 yuan and 0.5
yuan per week, respectively. The fixed ordering cost for the supplier and the hospital
is 3000 and 600 yuan, respectively. Safe stock in each hospital is set as 450, 550, 600,
450 and 500, respectively. The safe stock of the supplier is 3 times of the sum of all
hospital’s average demand. The inventory capacity of the supplier and the hospital is
5 times of their safe stock, respectively. In practice, relevant data can be set according
to the actual situation.

(2) The test results

As shown in Fig. 12.3, the objective value decrease as the dynamic decision-making
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Fig. 12.3 Objective value variation with the solution procedure continuous implement

procedure continuous implement. In the first week, the optimal result will give out
the schedules for the whole 26 weeks. Thus the total cost is 2,796,137.7 yuan. As
the reference period goes down, the number of decision variables reduce, then the
objective values decrease.

To test the stability of the solution result, we adjust the inventory capacity as 2,
3,4, 5 and 6 times of the safe stock, and then we solve the model respectively. The
results are shown in Fig. 12.4. As inventory capacity increases, the total costs reduce.
For the frequency of ordering decrease, but the order quantity increases. When the
fixed ordering cost and the inventory cost balanced, the inventory capacity will not
affect the final result.

We change the variances of the demands to observe the influence on the objective
values. When the variances are changed to 1, 4 and 9 times of the original variances,
their squared correlation coefficient (R?s) are 0.9917, 0.992 and 0.9921 in scatter
diagrams, as shown in Fig. 12.5. The results show that variances of demands can
only bring slight changes on the objective values.

Furthermore, we evaluate our model with a certain order time model which may
always adopted in an actual operation. The order time of the certain order time model
is one week. Other parameters are set as the same to proposed model. We adjust the
ordering cost for the two models. The comparison results are shown in Fig. 12.6.
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Fig. 12.6 Comparison of certain order time model and uncertain order time model

When the ordering cost is set as no more than 50% of the original costs setting, the
two results are similar. However, when the ordering cost is greater than 50% of the
original costs setting, the objective values of the proposed model in this work is more
optimal.

12.1.5 Conclusions

In this study, the time-space network technique is applied to develop a model to
find optimal medical goods order and delivery schedules. The model is a stochastic
order and delivery scheduling model, which systematically considers the demand of
medical goods for every time slot in different hospital nodes, the storage capacity
and other constraints, as well as the integrated delivery plan of medical goods in the
dimensions of time and space. The problem is formulated as a mixed 0-1 integer
programming model and a heuristic algorithm is proposed to solve it. In an actual
practice, the medical goods could be multi-commodities, and lead time of the order
would be influenced by many factors and therefore be stochastic. Hence, how to
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incorporate a multiple commodity flow and stochastic lead time of the order into the
model, to make the schedule more reliable, are our research directions in the future.

12.2 Model II: An Improved Time-Space Network Model

12.2.1 Introduction

Nowadays, most domestic hospitals still make medical resource order plans by expe-
rience or according to historical data. In actual operations, this subjective and unsci-
entific method could not only increase inventory level, but also lead to stock-outs
sometimes. Hence, how to plan the order and distribution of medical resource, and
how to improve hospitals’ service quality has become a hot issue in recent years.
To the best of our knowledge, several past studies have focused on the medical
resource order and distribution scheduling problem. For example, Shi [12] devel-
oped a two stage supply chain inventory or supplier-hospital model with Vender
Managed Inventory (VMI), which could effectively reduce the overall inventory cost
of the hospitals and the supply chain. Rachaniotis et al. [13] established a determin-
istic model to schedule limited available resource under the situation of an epidemic
infection with the concept of deteriorating jobs. Zhou et al. [14] built a stochastic
dynamic programming model for ordering a perishable medical product, and con-
cluded that the total expected cost was sensitive to changes in the expected demand
as well as the regular policy. Nagurney [15] developed a tractable network model
and computational approach for the design of medical nuclear supply chains to mini-
mize the total operational cost, the cost associated with nuclear waste discarding, and
capacity investment costs. Chen et al. [16] proposed a model based on a relational
view, delineating the factors that influence hospital supply chain performance: trust,
knowledge exchange, IT integration between hospital and its suppliers, and hospital-
supplier integration. Uthayakumar and Priyan [17] presented an inventory model that
integrated continuous review with production and distribution for a supply chain to
achieve hospital customer service level (CSL) targets with a minimum total cost.
As the time-space network can visually and effectively show the movement both
in the dimensions of time and space, this approach has been widely used to solve
scheduling problems in many fields. Zhang and Li [18] applied time-space network
to establish a dynamic pricing model to maximize manufacturers’ profits. To help
airport authorities with flight-to-gate reassignments following temporary airport clo-
sures, Yan et al. [19] developed a reassignment network model with the objective to
minimize the number of gate changes. Steinzen et al. [9] developed a time-space net-
work model to solve the integrated vehicle- and crew-scheduling problem in public
transit with multiple depots, and numerical results showed that this approach could
perform well. Buhrkal et al. [20] used the time-space concept to develop three main
models of the discrete dynamic berth allocation problem, and the results indicate
that a generalized set-partitioning model outperforms all other existing models. Yan
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et al. [10] developed a logistical support scheduling model for the emergency road-
way repair work schedule to minimize the short-term operating cost subject to time
constraints and other related operating constraints. Lin et al. [21] developed a plan-
ning model and a real-time adjustment model based on a time-space network to plan
courier routes and schedules and adjust the planned routes in actual operations for
an international express company facing uncertain demands.

But as for medical resource order and distribution scheduling, the time-space
network concept has seldom been applied to this problem. Liao [5] and Cao [6]
established a deterministic real-time and stochastic real-time medical resource order
and transit scheduling model based on the time-space network with the objective of
minimizing the total operation costs. However, they did not consider the constant
ordering cost (related to ordering frequency), which is not practical. In this work,
the ordering cost is taken into consideration, and we employ the time-space network
flow technique to develop a model designed to help a hospital to plan the order and
distribution of medical resource.

12.2.2 Model Formulation

This section presents the formulation of medical resource order and distribution
model. In practice, hospital staff would periodically review the current standards of
purchasing plans (e.g. safety inventory, ordering frequency), and adjust the plans to
new demands. Therefore, the ‘dynamic decision-making framework’ is introduced
into the time axis of the scheduling model to correspond with real-world opera-
tions. The time axis is divided into 2 parts: ‘decision period’ and ‘reference period’.
To make the scheduling results more consistent with reality, after every decision
period, the order and distribution will be rescheduled according to new demands.
This operation would be repeated until the end of the scheduling cycle. Besides, the
scheduling results during decision period are deterministic scheduling, and results
during reference period can be used as a reference for the current scheduling.

For example, if we implement the model every week, the duration of every
scheduling is from the time where the implementation starts to the end of scheduling
cycle, as shown in Fig. 12.7. The duration of implementation for the first time is
26 weeks. After that, 25 weeks is remained for the second time, and 24 weeks for the
third time. It’s worth mentioning that only the scheduling results during the decision
period (the first week) would be put to actual use.

(1) Basic assumptions

Only one kind of medical resource is considered in this work. To facilitate the model
formulation, we set some assumptions as follows:

1. Demands for medical resource at each time interval can be set to obey a normal
distribution according to history data.

2. The scheduling cycle is half a year (26 weeks); both of the order lead time and
the distribution lead time are one week.
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Fig. 12.7 Dynamic decision framework of the scheduling model

3. Medical resource is supplied by one supplier; there is only one warehouse in the
hospital.

4. The supplier can meet the market demand completely, and transit medical
resources to the hospital warehouse in time and in the right quantity.

5. The storage capacity of the hospital warehouse and departments are known and
fixed.

(2) Time-space network of medical resource order and distribution

A time-space network is established to describe the supply of medical resource in the
dimensions of time and space, as shown in Fig. 12.8. The horizontal axis represents
the supplier, the hospital warehouse and departments. The vertical axis stands for
the duration of scheduling. The time interval is one week.

The time-space network contains two basic elements: node and arc. Next, we will
introduce them in detail respectively as follows.

1. Node

A node represents the supplier, the hospital warehouse or a department at a specific
time. There are 4 types of nodes in this time-space network: the supplier node,
the hospital warehouse node, the hospital department node and the collection node.
The supplier must convey the medical resource to the warehouse first, and then the
resource will be distributed to each department after arrangement. The department
nodes will place an order to the warehouse when their inventory cannot afford their
demands. The warehouse and each department have an initial amount of medical
resource at the beginning of the scheduling cycle, which is the remaining inventory of
the previous scheduling cycle. The collection node maintains the flow conservation of
the network. All unused medical resource on the nodes will assemble at the collection
node at the last week of the scheduling cycle.
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Fig. 12.8 Time-space network of medical resource scheduling

2. Arc

An arc denotes the activity of medical resource distribution in different time and
space. The arc flows express the flow of medical resource in the network. There are
4 types of arcs: supply arc, distribution arc, holding arc and collection arc.

®

(ii)

(iii)

(iv)

Supply arc: It represents that the supplier delivers medical resource to the
hospital. The arc cost is the unit price of medical resource plus a fixed ordering
cost. The arc flow’s upper bound is the warehouse’s storage capacity, and the
lower bound is zero.

Distribution arc: It represents that the warehouse delivers medical resource to
the departments. The arc cost is the unit distribution cost plus a fixed labor
cost. The arc flow’s upper bound is each department’s storage capacity, and the
lower bound is zero.

Holding arc: It represents the holding of medical resource at the warehouse
or departments. The arc cost is the unit inventory-holding cost. The arc flow’s
upper bound is the storage capacity of the warehouse/departments, and the
lower bound is the safety stock of the warehouse/departments.

Collection arc: It connects the supplier node, the warehouse node and depart-
ment nodes to the collection node, and ensures the flow conservation of this
network. The arc cost is zero. The supplier collection arc flow’s upper bound
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is infinity, and the lower bound is zero. The warehouse/departments collection
arc flow’s upper bound is the storage capacity of the warehouse/departments,
and the lower bound is the safety inventory of the warehouse/departments.

(3) Notations used in the model formulation

Parameters:

Z The total costs of the order and distribution of medical resource;

aj;  The demand for medical resource of the jth department at the time interval
of t;

psw Unit purchasing cost from the supplier;

swp  Unit distribution cost from the warehouse to departments;

N Constant fixed ordering cost from the supplier to the warehouse;
f Constant fixed labor cost from the warehouse to departments;

h,,  Unit inventory-holding cost of medical resource in the warehouse;
hy Unit inventory-holding cost of medical resource in each department;
T The set of time interval;

SW  The set of arcs between the supplier and the warehouse;

WD The set of arcs between the warehouse and the departments;

D The set of all departments in the hospital;

LW  Minimum inventory level of the warehouse;

UW Maximum inventory level of the warehouse;

LD; Minimum inventory level of the jth department;

UD; Maximum inventory level of the jth department.

Decision variables:

x;j  Supply arc (i, j) flow from the supplier to warehouse;

vjr Distribution arc (j, k) flow from the warehouse to departments;

Zw Holding flow in the warehouse at the time interval of 1; when t =0, z,,, represents
the initial inventory of medical resource in the warehouse;

z;j; Holding flow in the jzh department at the time interval of #; when t = 0, z;
represents the initial inventory of medical resource in the jth department;

8i; A binary variable that indicates whether the hospital warehouse sends an order
to the supplier. If §;; = 1, then x;; > 0; if §;; = 0, then x;; = 0;

&jx A binary variable that indicates whether the departments send an order to the
warehouse. If £;; = 1, then yj; > 0;if &z = 0, then y;; = 0.

(4) The mathematic model
Based on the notations, the scheduling model can be formulated as follows:
Min Z = Z (pswxij + f1)di; + Z Gwpyjk + )&k + hwzwe + Zhdet

ijeSw jkeWD jebD
(12.8)
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Subject to:
Xij8ij F Zwm1 — Y Vjk = 2w, Vij € SW, jke WD, teT (12.9)
JjeD
yikjk +2ji—1 — 2y =aj, Vjke WD, jeD, teT (12.10)
0<x; <UW, VijeSW (12.11)
0<yx <UD, Vjke WD (12.12)
LW <z, <UW, VteT (12.13)
LD; <z, <UD, VjeD,teT (12.14)
xij €1, VijeSW (12.15)
yix€l, Vjke WD (12.16)
w€l, VieT (12.17)
ziel, VjeD, teT (12.18)
8ij=0o0r1, VijeSW (12.19)
Eix=00r1, VjkeWD (12.20)

The objective function (12.8) denotes the minimization of total costs of medical
resource order and distribution, including purchasing cost, distribution cost in hospi-
tal and holding cost. Constraints (12.9) and (12.10) indicate the flow conservation in
this network. Constraints (12.11) to (12.14) ensure that all arc flows are within their
bounds. Constraints (12.15) to (12.20) ensure that all variables are binary number or
integers.

12.2.3 The Solution Procedure

In this section, we discuss how to solve the proposed model. The model is formulated
as a mixed 0-1 integer network flow problem with NP-hard complexity. Considering
the long scheduling cycle and the number of departments in practice, it is almost
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impossible to optimally solve this large problem within a limited time. Thus the
solution effectiveness and efficiency need to be traded off. To efficiently solve this
problem, we develop a heuristic algorithm, with the assistance of the mathematical
programming solver, CPLEX. The procedure is described as follows:

Step I: Initialization. Set parameters of the model, including simulation rounds, the
storage capacity, the safety inventory, the initial inventory, cost data and other related
data.

Step 2: Set t = 1. Solve the model for the first round.

Step 3: Use MATLAB function normrnd() to generate N groups of demands for
medical resource at each time interval.

Step 4: Call function cplexmilp() to solve the model and obtain the scheduling results
of the whole scheduling cycle. The results from the previous decision period will be
taken as the input data for the current decision period.

Step 5: Continue generating demands of the remaining time intervals. Solve and get
the rest of scheduling results.

Step 6: Repeat step 4 and 5, until obtaining the scheduling results at the last time
interval of the scheduling cycle. If r = 26, then go to Step 7; otherwise, t =t + 1,
and return to Step 4.

Step 7: Record the optimal schedules and the total operation costs.

12.2.4 Numerical Tests

To test how well the proposed model may be applied in the real world, we perform
several numerical tests using historical operating data of a certain kind of medical
resource from a hospital in Nanjing, China, with reasonable simplifications. The
tests were performed on a personal computer equipped with a Intel (R) Core (TM)
2.13 GHz CPU and 2.00 GB of RAM in the environment of Microsoft Window 7.

(1) Case data

This kind of medical resource has only one supplier. There is one warehouse and five
departments in the hospital. The scheduling cycle is 26 weeks. The time interval is
one week. We set the demands to obey a normal distribution, and use MATLAB to
generate the demands of 26 weeks. The averages of each department’s demand are
10, 11, 12, 8 and 13 respectively, and the standard deviations are 2, 2, 2, 1 and 1,
respectively. According to the hospital’s practical operations in Nanjing, the related
cost data and inventory bounds are set as in Tables 12.1 and 12.2.

Table 12.1 Parameter settings

PSw SWD fi f2 hy hq
20 8 50 15 0.7 1.4




246 12 Three Short Time-Space Network Models for Medicine Management

Table 12.2 Inventory bounds settings

‘Warehouse Dept. 1 Dept. 2 Dept. 3 Dept. 4 Dept. 5
LD 250 12 13 15 10 15
UD 750 36 40 50 30 45

(2) Test results

As shown in Fig. 12.9, we get the total operation costs from one scheduling cycle.
The horizontal axis represents the week that is scheduled; the vertical axis represents
the objective value at each week. In different rounds of programming, the objective
value decreases weekly until it equals zero as the dynamic decision-making procedure
continuously proceeds. The objective values are the results during decision period
and reference period. In the early decision period, most of supply and distribution arcs
are idle, the number of variables in the model is large, and the scope of scheduling
is the whole scheduling cycle (26 weeks), so the objective value is high. As time
advances, the reference period of dynamic decision framework gets shorter, and the
number of variables declines, so the objective value reduces.

Besides, we test the scheduling model for five times and get five groups of objective
value data, from whom we select five sets of results of the 1st, 6th, 12th, 18th, 24th
week to compare the changes of objective values at the same scheduling interval. As
shown in Fig. 12.10, in the vertical direction, the 5 sets of objective values all decrease
as the model continues to be implemented, which is in line with the characteristic
of the objective value’s changes in each scheduling cycle shown in Fig. 12.9. On
the other hand, horizontally, the objective value at the same week is fluctuant for
the reason that the demands data are generated randomly by MATLAB function
normrnd(). But the amplitude of fluctuation is small (the largest rate of change from
the 5 sets of results above is 10.70%), which reveals that the randomly generated
demands would not influence the objective value, and then proves the stability of the
model.
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Fig. 12.9 Changes of objective value in one scheduling cycle
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Fig. 12.10 Comparison of objective values at the same scheduling interval in different scheduling
cycles

(3) Sensitivity analysis

To understand the influence of the related parameters on the proposed model, several
sensitivity analyses are performed here, which could be taken as references for ware-
house managers. In consideration of emergencies (e.g., number of patients increases,
or overdue supplying), safety inventory is necessary to be set accurately. So we per-
formed the sensitivity analysis on safety inventory of the warehouse to understand
its influence on the total operating costs. We tested five situations, 60, 80, 100, 120
and 140% of the original safety inventory. The results are shown in Fig. 12.11. The
results show that the objective value grows with the increase of safety inventory.
When the safety inventory rises from 60 to 140% of the original, the growth rates of
objective value are 4.6, 4.5, 4.4 and 4.3% respectively, from which we can see that
the growth is trending down. When the warehouse’s safety inventory increases, the
hospital manager would order more medical resource for each time, so the inventory
cost increases. But the ordering frequency declines, so the ordering cost declines.
The inventory cost and ordering cost would finally achieve a balance and then the
objective value would level off and approach a certain constant value. However, in

Sensitivity Analysis on Safety Inventory
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Fig. 12.11 Sensitivity analysis on safety inventory
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Sensitivity Analysis on Holding Cost
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Fig. 12.12 Sensitivity analysis on unit holding cost

actual operations, managers should not reduce safety inventory level without limit
to obtain less operation costs. An adequate safety inventory level is indispensable
to mitigate risk of stock-outs due to uncertainties in supply and demand, and permit
operational activities to proceed according to their plans.

In order to test whether the holding cost is properly set, we performed the sen-
sitivity analysis on it. We tested five situations, 60, 80, 100, 120 and 140% of the
original safety inventory. The results are shown in Fig. 12.12. The results show that
the objective value grows with the increase of unit holding cost. When the holding
costrises from 60 to 140% of the original, the growth rates of objective value are 4.0,
3.8, 3.6 and 3.5% respectively. So we can conjecture that the objective value would
reach to a certain constant value if the unit holding cost keeps increasing. As the unit
holding cost increases, the manager would order less medical resource for each time
to reduce the total holding cost, but the frequency of ordering gets relatively high, and
which increases the ordering cost. When the unit holding cost continues increasing,
the ordering cost and total holding cost would be balanced until the objective value
reaches to a certain fixed value.

In general, every supplier has different ordering fees and price standards, and
the hospital should make a trade-off among them and select a supplier modestly. So
there is a need to perform a sensitivity analysis on the shipment cost to understand
the influence of different ordering costs on total costs. We tested five situations, 60,
80, 100, 120 and 140% of the original ordering cost. As we can see on Fig. 12.13, the
objective value increases as the ordering cost increases. When the constant ordering
cost rises from 60 to 140% of the original, the growth rates of objective value are
0.2863, 0.2855,0.2738 and 0.2603 % respectively. With the increasing of the constant
ordering cost, the hospital manager would order more medical resource for each time
to reduce the ordering frequency, and then to reduce the ordering cost. When the
ordering cost keeps rising, it would finally balance with the ordering cost until the
objective value reaches to a certain fixed value. Hence, the hospital should select a
right supplier for a right ordering fee.
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Sensitivity Analysis on Constant Ordering Cost
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Fig. 12.13 Sensitivity analysis on constant ordering cost

12.2.5 Conclusion

In this work, we creatively take the ordering cost into consideration, and employ the
ideas of time-space network and dynamic decision framework to describe the order
and distribution of medical resource in a hospital. The problem is formulated as a
mixed 0-1 integer programming model. Then a heuristic algorithm is developed to
solve it. The test results show the good performance and practicability of the model.

Future research would be useful in at least the following directions. First, since
we assume the demands are known and the lead time is certain, the problem to be
solved is how to optimize the total cost of medical resource order and distribution
under stochastic conditions. Second, only one kind of medical resource is considered
in the model, hence it would be more practical and useful to consider multi-variety
problem.

12.3 Model III: A Chance-Constrained Programming
Model Based on Time-Space Network

12.3.1 Introduction

High operating cost has been a thorny problem for most hospitals in China all the
time. Aside of institutional reasons, management method in purchase and inventory
should also be responsible for it. Although most major hospitals have adopted electric
purchasing management information systems, parameters inside them are often set
according to staff’s experience. This could give rise to inaccurate decisions due to
lack of systematic analysis and overdependence on staff’s subjective judgments.

To the best of our knowledge, many studies have focused on the hospital medical
resources order and distribution scheduling problem. Lapierre and Ruiz presented an
inventory cost oriented model and a balanced schedule model, and used a tabu search
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metaheuristic to solve them. The supply schedules generated by this method were
efficient and well balanced [22]. Chang et al. [23] established an optimal purchase
model to minimize a hospital’s drug inventory management cost, and obtained the
optimal quantity and frequency to order medicine. Liao and Chang [24] established
a simulation model for the supply chain of the hospital logistics system based on the
dynamic Taguchi method, and proposed an optimal approach to obtain an optimal
robust design in achieving optimal multi-performance. Uthayakumar and Priyan
[25] presented an inventory model that considers multiple pharmaceutical products,
variable lead time, permissible payment delays, constraints on space availability, and
the customer service level (CSL) designed to achieve hospital CSL targets with a
minimum total cost for the supply chain. Then they put this problem in a fuzzy-
stochastic environment and extended the model [26].

Particularly, Liao [5] and Cao [6] applied the time-space network concept to
medical resources order and distribution scheduling, and constructed a deterministic
model and a stochastic model respectively. Zhang and Liu [27] developed a mixed
0-1 integer programming model based on time-space network with the assumptions
that the demand is known and the supplier can completely meet the market demand.

In this study, we discuss the order and distribution under uncertainty, where the
departments’ demands are stochastic, and cannot be completely met by the supplier,
which may cause a penalty cost due to stock shortage. With time-space network and
stochastic programming, a chance-constrained programming model is constructed
with the objective to help a hospital to plan the order and distribution of one certain
kind of medical resources. Generic algorithm is applied to solve the proposed model.

12.3.2 Model Formulation

(1) Basic assumptions
To facilitate the model formulation, some assumptions are set as follows:

1. Demand for medical resources of every week is stochastic, and obeys a Gaussian
distribution.

2. The weekly supply quantity of the supplier is a known value, and the supplier
might not completely meet the hospital’s demand.

3. The whole scheduling cycle is 52 weeks; the lead time of order and distribution
are both one week.

4. The safety stock and stock capacity of the warehouse and departments are known
and fixed.

5. Thereis acertain known amount of initial stock in the warehouse and departments
at the beginning of the scheduling cycle.

(2) Time-space network

A time-space network is established to describe the supply of medical resources
as shown in Fig. 12.14. The horizontal axis represents the supplier, the hospital
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Fig. 12.14 Time-space network for medical resources ordering and distribution

warehouse and departments. The vertical axis stands for the duration of scheduling.
The time interval is one week. The time-space network contains two basic elements:
node and arc.

1. Node

A node represents the supplier, the hospital warehouse or a department at a specific
time. There are 4 types of nodes in this network: (1) Supplier node: It supplies
medical resources to the hospital. (2) Warehouse node: It delivers the resources to
departments. (3) Department node: They receive the resources from the warehouse
node. (4) Collection node: It maintains the flow conservation of the network. All
unused medical resources would assemble at this node at the end of the scheduling
cycle.

2. Arc

An arc denotes the activity of medical resources distribution in different time and
space. The arc flows express the flow of medical resources in the network. There are 4
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types of arcs: (1) Supply arc: It represents that the supplier delivers medical resources
to the hospital. The arc cost is the unit purchase price of medical resources plus a
fixed ordering cost. The arc flow’s upper bound is the warehouse’s stock capacity,
and the lower bound is zero. (2) Distribution arc: It represents that the warehouse
delivers medical resources to the departments. The arc cost is the unit distribution
cost. The arc flow’s upper bound is each department’s stock capacity, and the lower
bound is zero. (3) Holding arc: It represents the holding of medical resources in the
warehouse or departments. The arc cost is the unit stock holding cost. The arc flow’s
upper bound is their stock capacity, and the lower bound is their safety stock. (4)
Collection arc: It connects the supplier node, the warehouse node and department
nodes to the collection node, and ensures the flow conservation of this network. The
arc cost is zero. The supplier collection arc flow’s upper bound is infinity, and the
lower bound is zero. The warehouse and departments collection arc flow’s upper
bound is their stock capacity, and the lower bound is their safety stock.

(3) Notations used in the model formulation
Parameters:

AM, NM The set of all arcs and nodes respectively;

SW The set of all arcs between the supplier and hospital warehouses;
WD The set of all arcs between the hospital warehouses and departments;
HA The set of all holding arcs in the network;

RM The set of all arcs except H A;

D The set of all department nodes;

p Unit purchase price;

d Unit distribution cost from the warehouse to departments;

h Unit stock holding cost in the warehouse and departments;

c Fixed cost incurred by every ordering;

t Unit shortage cost;

lijluij The lower/upper bound of the arc (i, j)’s flow;

a;j The demand quantity of the node i;

o, B, A The confidence levels of the corresponding chance constraints.

Decision variables:

x;j The flow of arc (i, j);

yi The shortage quantity of node i, and y; = maxqa; — Z Xji, O}, ieNM.

8ij A binary variable that indicates whether the hospitajlegll:]lces an order to the
supplier. When §;; = 1, x;; > 0; when §;; =0, x;; = 0.

(4) The mathematic model

Based on the notations, the scheduling model can be formulated as follows:

Min f (12.21)
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Pri > (pxij+ 08+ Y dxij+ Y hxy+ Y yit<fpza (1222)

ijeSw ijewD ijeHA ieD
Pr Z xij&vj — Z Xkl = a; ¢ > ﬁ, Vie NM (12.23)
jeENM keNM
Pr{l <xj;} =%, Vije HA (12.24)
Xij = Uij, Vije HA (12.25)
l,’j = Xij = Uijj, Vij € RM (12.26)
xijj€l, Vije AM (12.27)
8i;€0,1 Vij e AM (12.28)

The objective function (12.21) denotes the minimization of total costs of medical
resources order and distribution. Constraint (12.22) means the model obtains the
optimal solution under the confidence level . Constraint (12.23) indicates the flow
conservation in this network under the confidence level 8. Constraint (12.24) ensures
all holding arc flows exceed the corresponding safety stock under the confidence level
. Constraints (12.25) and (12.26) set bounds for all arc flows. Constraints (12.27)
and (12.28) guarantee all variables are binary numbers or integers.

12.3.3 The Solution Procedure

The model is formulated as a chance-constrained stochastic programming problem
with NP-hard complexity. Considering the scale of the problem, it is almost impos-
sible to solve it with general enumeration method. Practices have proven that genetic
algorithm can solve NP-hard problems effectively by virtue of its superior global
optimization search strategy, and is regarded as one of the best tools to find the sat-
isfactory solution. Therefore, genetic algorithm is applied to solve the mathematic
model.

12.3.4 Numerical Tests

To test how well the model may be applied in the real world, we performed numerical
tests based on operating data of a certain kind of medical resources from a major hos-
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pital in Nanjing, China, with reasonable simplifications. We used MATLAB R2012a
to build the model and to solve the problems. The tests were performed on a PC
equipped with an Intel (R) Core (TM) 2.13 GHz CPU and 2.00 GB of RAM in the
environment of Microsoft Windows 7.

(1) Input data

We consider 1 supplier, 1 hospital warehouse and 3 departments in the test case.
The input data of the computer program conclude: demand of each department,
unit purchase price, fixed ordering cost, unit distribution cost (in hospital), unit stock
holding cost, unit shortage cost, safety stock and stock capacity of the warehouse and
each departments, and the three confidence levels «, 8, A. As for genetic algorithm
parameters, we set population size = 50, maximum evolutional generations = 200,
crossover probability = 60%, and mutation probability = 30%.

(2) Test results

After running the program in the MATLAB environment, we get the scheduling
results. As shown in Fig. 12.15, with genetic algorithm “selecting the superior and
eliminating the inferior” generation by generation, the objective value decreases until
itbecomes a fixed value at about 120th generation, which is the model’s optimal value.

Also, we get the order and distribution scheduling results of 52 weeks, including
warehouse order quantity and distribution quantity of every department, as shown in
Fig. 12.16. We can find that there are some weeks when the hospital doesn’t order
medical resources. Because of the fixed ordering cost for every purchase order, the
hospital can neither place an order every week, nor order all the needed medical
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Fig. 12.15 The objective value for every evolutional generation
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Fig. 12.16 Scheduling results of weekly order and distribution quantity

resources for the whole year at the first week, which could result in huge stock
holding cost. The model keeps a good balance between fixed ordering cost and stock
holding cost, and obtains the minimum total operating cost.

(3) Sensitivity analyses

With different parameter settings, the scheduling model may get different scheduling
results and performance. In order to understand the parameters’ influence on the
proposed model, several sensitivity analyses are performed in this section. For each
rate of change, we run the program 20 times, and take the mean of these 20 objective
values as the observation value.

1. Sensitivity analysis on average demand

With other parameters being constant, we change the average of the demand from
80 to 120%. The planning results are shown in Fig. 12.17. As the rate increases, the
mean objective value goes up. The reason could be that when the demand rises, the
hospital must purchase more medicaL resources as inventory reserves in response to
random disturbances in actual operations.

2. Sensitivity analysis on standard deviation

We change the standard deviation from 80 to 120%. As we can see in Fig. 12.18,
the mean objective value grows up as the rate increases. That the RATE of change for
standard deviation rises suggests the stochastic disturbances increase. So when the
variation range of the demand for every week increases, it leads to the advance of
the objective value. Therefore, the more the demand is disturbed in real operations,
the more operating cost the hospital will pay.
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Fig. 12.18 Sensitivity analysis on standard deviation

3. Sensitivity analysis on fixed ordering cost

We change the fixed ordering cost from 50 to 150%. The test results are shown in
Fig. 12.19. With the rate increasing, the mean objective value descends until 100%
at first, and then goes up. So we can get the optimal objective value with the original
fixed ordering cost, which demonstrates the importance of a proper fixed ordering
cost.

12.3.5 Conclusions

In this work, we study the order and distribution of medical resources in an environ-
ment characterized by stochastic demand and limited supply. A chance-constrained
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Fig. 12.19 Sensitivity analysis on fixed ordering cost

programming model is constructed based on time-space network. Generic algorithm
is applied to solve the model. The test results show the good performance of the
proposed model.

Future research would be useful in at least the following directions. First, since
we discuss only one kind of medical resources, future work could study multiple
kinds of medical resources. Second, the lead time in this model is certain, so it would
be more practical and useful to consider an uncertain lead time.
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