
Chapter 11
Medical Resources Order and Shipment
in Community Health Service Centers

Medical resources scheduling affects the medical institution’s operation cost, cus-
tomer satisfaction andmedical service quality. Therefore, a lean arrangement ofmed-
ical resources order and shipment is quite necessary and important. In this chapter, we
propose two optimal models for medical resources order and shipment in community
health service centers (CHSCs), with a dual emphasis on minimizing the total opera-
tion cost and improving the operation level in practice. The first planning model is a
deterministic planning model (DM). Systematically, it considers constraints includ-
ing the lead time of the suppliers, the storage capacity of the medical institutions,
and the integrated shipment planning in the dimensions of time and space. The prob-
lem is a multi-commodities flow problem and is formulated as a mixed 0–1 integer
programming model. Considering the stochastic demand, the second model is con-
structed as a stochastic programmingmodel (SM). A solution procedure is developed
to solve the two models and a simulation-based evaluation method is presented to
compare the performances of the proposed models. The main contributions of this
study include the following two aspects: (1) most research on medical resources
allocation studies a static problem taking no consideration of the time evolution and
the time-varying demand. In this study, time-space network technique is adopted to
depict the logistics situation in CHSCs from both time and space dimensions. (2) The
logistics plans in response to the deterministic demand and the time-varying demand
are constructed as a 0–1 mixed integer programming model and a stochastic integer
programming model, respectively. The optimal solutions can not only minimize the
total operation cost, but also improve the order and shipment operation in practice.
Generally, medical resources in CHSCs are purchased by telephone or e-mail. The
important parameters in decision making, i.e., order/shipment frequency and order
quantity, are manually determined by the decision maker based upon his/her experi-
ence. The planned schedules may not be efficient or feasible to satisfy all demands
since a large portion of customer requests are uncertain and time-varying. The pro-
posed methods in this chapter could be effective in solving the problems in actual
operations.
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11.1 Introduction

In 2014, we conducted a research on medicine supply chain situation in CHSCs in
Nanjing, China, by using the questionnaire survey method. The result shows that
most CHSCs currently in this city do not use any electronic purchase systems or
decision support systems to help optimize the ordering and schedulingwork.Medical
resources are always purchased by telephone or e-mail. The important parameters
in decision making, i.e., order/shipment frequency and order quantity, are manually
determinedby the decisionmaker basedonhis/her experience.Theplanned schedules
may not be efficient, ormay not be feasible to satisfy all demands since a large portion
of customer service requests in CHSCs are uncertain and time-varying [1]. The result
of the questionnaire survey motivates us to improve the situation and to develop a
systematic planning approach that takes all these factors into consideration.

In line with our survey, CHSC purchases medical resources from its upstream
authorities, the District Center for Disease Control and Prevention (DCDC), and
DCDC imports medical resources from the pharmaceutical companies (the sup-
pliers). A lead time is required for the supplier, to produce the required medical
resources. Similarly, a lead time is required for the DCDC to check the quality of
medical resources. Generally, a compacted scheduling of medical resources order
and shipment can not only efficiently reduce the operation cost, but also promote the
medical service quality. However, to the best of our knowledge, although many stud-
ies have focused on medical resources scheduling, few of them consider the problem
of medical resources scheduling problem in CHSCs with uncertain demands, lead
time, as well as capacity constraint.

In this chapter, we consider the medical resources scheduling problem in CHSCs
with time-varying demand, the lead time of supplier, the capacity constraint. Mean-
while, the scheduling problem integrates the shipment planning in the dimensions of
time and space.

11.2 Literature Review

Numerous studies have focused onmedical resources scheduling, includingmedicine
ordering, shipment and medical resources allocation. We briefly introduce them in
the following paragraphs.

Initially, a most related empirical study is provided by Dib et al. [2]. They investi-
gated 58 community health centers and surveyed 372 residents randomly about their
satisfaction towards these centers in Dalian, China. They suggested that the medicine
supply chain for the community health centers should be improved and the superior
departments support to the community health centers should be augmented.

In the second place, theory researchwith the topic ofmedical resources scheduling
have been conducted by many experts. For example, Tebbens et al. [3] proposed
a mathematical framework for determining the optimal management of a vaccine
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stockpile over time. Sun et al. [4] built mathematical models to optimize the patients’
allocation considering two objectives related to patients’ cost of access to healthcare
services: (1) minimizing the total travel distance to hospitals; and (2) minimizing
the maximum distance a patient travels to a hospital. Moreover, the models can help
decisionmakers to predict a resources shortageduring apandemic influenzaoutbreak.
Savachkin and Uribe [5] presented a simulation optimization model to generate
dynamic strategies for distribution of limited mitigation resources, such as vaccines
and antivirals, over a network of regional outbreaks. The model can redistribute the
resources remaining fromprevious allocations in response to changes in the pandemic
progress. Jerić and Figueira [6] addressed the issue of scheduling medical treatments
for resident patients in a hospital as a multi-objective binary integer programming
(BIP) model and three types of heuristics were proposed and implemented to solve it.
Rottkemper et al. [7] designed a mixed-integer programming model for distribution
and inventory relocation under uncertainty in humanitarian operations. Rachaniotis
et al. [8] presented a resources scheduling model in epidemic control with limited
resources. The objective is to minimize the total amount of the infected people in
a certain time horizon by relocating the available resources over several regions.
Dasaklis et al. [9] suggested several future research directions and defined the roles
of logistics operations and their management may play in assisting the control of
epidemic outbreaks.

Thirdly, as to the variability and uncertainty characteristics of the demand, Holte
and Mannino [10] presented that a major difficulty in medical resources allocation
stems from the fact that such an allocation must be established several months in
advance, and the exact number of patients for each specialty is an uncertain parameter.
They modeled the uncertain problem as adjustable robust scheduling problem and
developed a row and column generation algorithm to solve it. Beraldi et al. [11]
considered the inherent uncertainty in emergency medical services and developed a
stochastic programming model with probabilistic constraints, which aims to decide
the location of the service sites and the amount of emergency vehicles to be assigned
to each site. Zhang and Jiang [12] presented a bi-objective robust program to design
a cost-responsiveness efficient emergency medical services (EMS) system under
uncertainty. The proposed model simultaneously determined the location of EMS
stations, the assignment of demand areas to EMS stations, and the number of EMS
vehicles at each station to balance cost and responsiveness. Nikakhtar and Hsiang
[13] considered uncertain situations such as epidemic diseases that could affect the
patient flow in a healthcare system by developing a discrete-event simulation model
for a local community health clinic in Lubbock, Texas. To tackle the uncertain nature
of emergency department and improve the resourcesmanagement, Xu et al. [14] used
self-organizing map, k-means, and hierarchical methods to group patients based on
their medical procedures, and then discussed how the resulting patient groups can
be used to enhance the emergency department resources planning.

In summary, the time-varying demand in CHSCs, withmultiplemedical resources
types and the optimal scheduling of ordering and shipment are highly correlated with
each other. It is difficult to use the traditional integer programming techniques to
formulate and efficiently solve this type of problem.On the other hand, the time-space
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network method has been popularly employed to solve scheduling problems, which
provides a natural and efficient way to represent multiple conveyance routings with
multiple commodities in the dimensions of time and space. Although the resulting
model scale is generally enlarged due to the extension in the dimension of time,
complicated time-related constraints can normally be easily modeled for realistic
problems, particularly in comparison with the space network models [15]. Coupled
with the development of efficient algorithms, the time-space networkmodels (usually
formulated as multiple commodity network flow problems) can be effectively and
efficiently solved [16–19]. Therefore, time-space network technique could be suitable
to solve the medical resources scheduling problem in CHSCs.

11.3 Modeling Approach

In this section, we discuss the network structure and mathematical formulation for
the planning of logistical support in CHSCs. A time-space network framework is
employed to denote the medical resources order and shipment scheduling. Based on
the time-space network, a deterministic planningmodel (DM) is developed to address
the issue of knowing the demand in CHSCs in advance. A stochastic planning model
(SM) is then presented to address the issue of stochastic demand in actual operations.
Inwhat follows, wewill first introduce the time-space network that serves as the basis
for our mathematical formulations.

11.3.1 Network Structure

The time-space network of logistical support in CHSCs denotes the potential order
and shipment of the medical resources within a certain period and space locations,
as shown in Fig. 11.1. The vertical axis represents the supplier, the district center
for disease control and prevention (DCDC) and the CHSCs, while the horizontal
axis stands for the duration of time. Each node denotes the different department at a
specific time. The shorter the time interval is, the more accurate the decision-making
is. Three types of arcs are defined below.

(1) Ordering arc

An ordering arc (see (a–b) in Fig. 11.1) represents an order from the DCDC to the
supplier, or an order from the CHSC to the DCDC. While an ordering arc exists,
an ordering cost is incurred no matter when the order takes place, and how many
medical resources are purchased. Note that order operation is always completed by
telephone or e-mail in practice, thus there is no physical flow on the ordering arc.
The arc flow, which is a binary variable, denotes whether an order is placed or not.
The arc flow’s upper bound is one, indicating that an order takes place. Intuitively,
the arc flow’s low bound is zero.
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Fig. 11.1 Time-space network of medical resources flows

(2) Shipment arc

A shipment arc (see (c–d) in Fig. 11.1) represents medical resources are delivered
from the supplier to the DCDC or from the DCDC to the CHSC. The cost for the
shipment arc is also comprised of two parts, which are the constant cost that is
incurred whenever the shipment takes place and regardless of the quantity of medical
resources, and a variable cost represented by travel distance, carry hours used, meals
etc., which is in proportion to the quantity of medical resources shipped. Since the
shipment arc connects different depots, the arc flow’s upper bound is the capacity of
the DCDC or the CHSC, and the arc flow’s low bound is zero.

(3) Holding arc

A holding arc (see (e–f) in Fig. 11.1) represents the holding of medical resources at
DCDCor CHSC. The arc cost denotes the inventory cost incurred by holdingmedical
resources, which is in proportion to the stored quantity of medical resources on the
arc. Therefore, the arc flow’s upper bound is also the capacity of the node (DCDC
or CHSC), and the arc flow’s low bound is zero.

11.3.2 The Deterministic Planning Model (DM)

Before introducing the model’s formulation, the notations and symbols are listed
below:

Sets

Ak Set of all arcs in the kth layer of the time-space network.
Nk Set of all nodes in the kth layer of the time-space network.
K Set of the kth layer of the time-space network.
H Set of all holding arcs in the time-space network.
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Parameters

ck
i j

Arc (i, j) cost in the kth layer of the time-space network; if the arc is a
ordering arc, the arc cost is the ordering cost; if the arc is a shipment arc, the
arc cost is the shipment cost; if the arc is a holding arc, the arc cost is the
inventory cost incurred by holding the medical resources.

uki j Arc (i, j) flow’s upper bound in the kth layer of the time-space network.
lki j Arc (i, j) flow’s lower bound in the kth layer of the time-space network.
umi j Storage capacity (DCDC or CHSC) for the holding arc (i, j) flow.
aki The supply or demand of medical resources at node i in the kth layer of the

time-space network; if aki ≥ 0, the supply of medical resources; if aki < 0,
the demand of medical resources; at the time slot for beginning dispatching,
the supply at the DCDC and the CHSC equals to its storage capacity.

Decision variables

xki j Arc (i, j) flow in the kth layer of the time-space network.

Based on the notations, the mathematical formulation of DM can be formulated
as follows:

Min: Z =
∑

k∈K

∑

i j∈A

cki j x
k
i j , (11.1)

s.t.:
∑

j∈Nk

xki j −
∑

l∈Nk

xkli = aki , ∀i ∈ Nk, k ∈ K , (11.2)

∑

k∈K
xki j ≤ umi j , ∀i j ∈ H, (11.3)

lki j ≤ xki j ≤ uki j , ∀i j ∈ Ak, k ∈ K , (11.4)

xki j ∈ I, ∀i j ∈ Ak, k ∈ K . (11.5)

The objective function (11.1) minimizes the sum of the operation cost, including
the ordering cost, the shipment cost and the holding cost. Constraint (11.2) is the flow
conservation constraint for each node in the time-space network. Constraint (11.3)
is the capacity constraints. Constraint (11.4) guarantees that all arc flows are within
their bounds. Constraint (11.5) ensures that all flow variables are integers.

Since all constraints and cost functions in this optimization model are linear,
the proposed multi-commodity flow problem is formulated as a mixed 0–1 integer
programming model. The optimal result can be put to practical use if we can identify
the demand at each node in the time-space network in advance. However, a large part
of the demand for medical resources are stochastic and are difficult to be accurately
forecasted, which make the planned medicine scheduling unable to satisfy all those
demands that suddenly pop up. Therefore, we need to improve the model to make it
more realistic and practical.
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11.3.3 The Stochastic Planning Model (SM)

The network structure of the SM is the same to the network of the DM, except
that the demand at each node in the time-space network is uncertain. It is worth
mentioning that only the normal stochastic demand is considered in this work. Large-
scale disruption of the demand which may be caused by some unexpected public
health incidents (i.e., SARS) goes beyond our research scope. To formulate the SM,
we set more notations and symbols as follows in addition to those already introduced.

Set

� The set of stochastic situations.

Parameters

aki (ω) The stochastic supply or demand for medical resources at node i in the kth
layer of the time-space network; if aki ≥ 0, the stochastic supply of medical
resources; if aki < 0, the stochastic demand of medical resources; at the time
slot for beginning dispatching, the stochastic supply at the DCDC and the
CHSC is still set to be its storage capacity.

E() Excepted cost of the logistics arcs with the stochastic demand.

Decision variables

xki j (ω) Arc (i, j) flow in the kth layer of the time-space network with the stochastic
situation ω.

Based on the notations, the SM can be formulated as follows:

Min: Z = E

⎛

⎝
∑

k∈K

∑

i j∈A

cki j x
k
i j (ω)

⎞

⎠, (11.6)

s.t.:
∑

j∈Nk

xki j (ω) −
∑

l∈Nk

xkli (ω) = aki (ω), ∀i ∈ Nk, k ∈ K , ω ∈ �, (11.7)

∑

k∈K
xki j (ω) ≤ umi j , ∀i j ∈ H, ω ∈ �, (11.8)

lki j ≤ xki j (ω) ≤ uki j , ∀i j ∈ Ak, k ∈ K , ω ∈ �, (11.9)

xki j (ω) ∈ I, ∀i j ∈ Ak, k ∈ K , ω ∈ �. (11.10)

Similarly, the objective function (11.6) minimizes the excepted value of the oper-
ation cost. Constraint (11.7) is the flow conservation constraint for each node in
the time-space network. Constraint (11.8) is the capacity constraint with stochastic
demand. Constraint (11.9) guarantees that all arc flows with stochastic demand are
within their bounds. Constraint (11.10) ensures that all flow variables with stochastic
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demand are integers. Since all decision variables are time-varying with the stochastic
demand, the proposed problem can be processed as a stochastic integer programming
model. The optimal result would be more realistic and practical.

11.4 Solution Procedure and Evaluation Method

In this section, we will discuss how to solve the proposedmodels and how to evaluate
them based on a simulation method.

11.4.1 Solution Procedure

TheDMis formulated as amixed0–1 integer programmingmodel and it can be solved
within a reasonable time, by using themathematical toolMATLAB, coupled with the
optimal software CPLEX12.4. The SM is formulated to depict the stochastic demand
at each time point, and the model is constructed as a stochastic integer programming
model. Given the demand for each node in the time-space network, the SM can be
solved as a deterministic planning model. Therefore, the solution procedure for the
SM is described as follows:

Procedure for the SM: 

Input: Initial parameters in the SM and the distribution function of demand. 

Output: The optimal scheduling and the operation cost of the medical resources order and 

shipment for the DCDCs and the CHSCs.

Begin

Initialization, set C as the number of simulation times, 1,2,...,c n= ; 

c←1; 

while (not termination condition) do

1. Randomly generate the demand for each CHSC in the time-space network 

according to the distribution function; 

2. Solve the mixed 0-1 integer programming model by using the MATLAB compiler, 

coupled with CPLEX 12.4 ;

3. Record the optimal schedules and the operation cost.

  c←c+1;

end

4. Calculate the average operation cost as the final result.

5. Output optimal scheduling and the operation cost.  

End
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11.4.2 Evaluation Method

In practice, a classic order strategy, the (t, S) strategy, has always been adopted to
manage the medicine inventory in both CHSC and DCDC. That means, the CHSC
and the DCDCwill import medical resources with a fixed time interval. The purpose
of the order is to keep the stock of medical resources at a certain level. Herein, we
address it as the actual operations of medical resources scheduling and we abbreviate
it as AOM. Similarly in the SM, demand for each node in the time-space network is
randomly generated. The first difference between the AOM and the SM is the order
quantity, which is equal to the capacity of the node minus the available quantity of
medical resources when decision making. The second difference between these two
models is the fixed time interval, which is set to be two weeks. Similarly, the AOM
can be solved by using the above solution procedure.

The performances of theDM, the SM, and theAOMare evaluated via a simulation
test. We first use the average demand of the historical demand data to complete the
DM calculation. Next we randomly generate the stochastic demand data based on
the average demand with a certain standard deviation, and input them into the SM
and then solve it. After that, we fix the ordering time interval and adopt the (t, S)
strategy to complete the AOM calculation. Finally, we compare the DM, the SM and
the AOM with statistical results.

11.5 Numerical Tests

To test how well the models may be applied in the real world, we perform numerical
tests using operating data from 5 CHSCs in Nanjing, China, with reasonable sim-
plifications. The tests are performed on a personal computer equipped with a Intel
(R) Core (TM) 3.10 GHz CPU and 4.0 Gb of RAM in the environment of Microsoft
Windows 7.

11.5.1 Parameters Setting

This numerical example focuses on the scheduling of logistical support for medical
resources order and shipment in CHSCs. The planning period is set to be half a year
(26 weeks). Lead time of the supplier is set to be 2 weeks, and lead time of the
DCDC is 1 week. Each layer of the time-space network, which represents a kind of
the medicine, involves 1 supplier, 1 DCDC and 5 CHSCs. The historical data of the
order quantity for each kind of vaccines in the past years, from January 2011 to June
2013, was collected when we conducted the questionnaire survey in the CHSCs in
Nanjing, China. For example, the historical data of influenza vaccine during these
years in a CHSC is shown in Fig. 11.2. According to the historical data, we can
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Fig. 11.2 Historical data of influenza vaccine

calculate the average demand for each kind of vaccines at each week. The standard
deviation of the stochastic demand is set to be 10. In practice, the decision makers
can adjust these parameters according to the actual situation.

11.5.2 Test Results

As introduced above, we use the AOM to simulate the actual operation of themedical
resources order and shipment, and we present two other methods, the DM and the
SM, to address with different demand situations. DM is designed to deal with the
scheduling when demand at each time point is preset in advance, and SM is proposed
to complete the planning when demand is uncertain. The performances of these three
methods are shown in Table 11.1. The objective value of the SM (638,087.2) is the
smallest one, which is 35.4% lower than the operation cost of the AOM (987,950.1).
Similarly, the objective value of the DM is 643,167.5, which is 34.8% lower than the
cost of the AOM and only 0.78% lower than the value of the SM. It can be observed
that both of the two proposed methods are superior to the empirical operations in

Table 11.1 Comparison of different methods

Planning method DM SM AOM

Average objective value 643,167.5 638,087.2 987,950.1*

Average solution time (s) 834.44 314.38 N/A

Gap (%)

Difference in the total cost between other methods and
the AOM

34.8 35.4 0.0
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actual operations, and the performance of the DM is a little inferior to the SM. This
result is quite suitable and meaningful for the actual operations.

It is worth mentioning that out-of-stock situation occurred during the AOM test
(we use the symbol * to label it). A shortage of the third kind ofmedical resourceswas
appeared at the 7th week and the 25th week, with a quantity of 3 and 6, respectively.
However, this phenomenon does not occur in both the DM and the SM. The reason
is that both the order time and order quantity in these two models are decision
variables and would be systematically optimized, while both the order time and order
quantity in AOMare pre-set. As introduced in Sect. 11.1, if the important parameters,
such as order/shipment frequency and order quantity, are manually determined by
the decision maker based on his/her experience, the planned schedules may not be
efficient, or may not be at all feasible to satisfy all demands since a large portion of
customer service requests in CHSCs are uncertain and tine-varying.

11.5.3 Sensitivity Analysis

To understand the influence of stochastic demand on the solution, we perform sensi-
tivity analysis of the change of demand to the operation cost. The proposed models
in Sect. 11.3 provide several key parameters that may affect the final result, i.e., the
average demand of medical resources in each planning week, the standard deviation
setting, and the capacity of DCDC and CHSC, etc. The sensitivity analyses of these
parameters are shown as follows.

To detect the influence of the average demand on the final solution, the value of it is
adjusted with four different values (−20,−10, 10 and 20%). The results are shown in
Table 11.2. The total operation cost is increasing alongwith the growth of the average
demand, regardless of which planning method is used as a basis (from −24.00 to
24.41%, from −24.58 to 24.67%, and from −13.73 to 10.79%, respectively). This
suggests us that the higher the average demand of medical resources, the higher the
operation cost. If the decision makers can find a way to reduce the average demand,
i.e., informing people to prevent the epidemic by using internet, radio and television,
and thus reduce the actual demand of medical resources, the total operation cost can
be reduced.

It can also be observed that the difference between the DM and the SM is negli-
gible, no matter what the average demand is. However, difference between the DM
and the AOM decreases from 42.64 to 26.89%, and it varies from 43.53 to 27.32%
when it is compared between the SM and the AOM. This result suggests that the
proposed two methods produce better planned results, especially when the average
demand is lower.

To investigate the influence of standard deviation on the final solution, we test
four values of the standard deviation (8, 9, 11 and 12). As the standard deviation
increases, the stochastic demand can be generated in a larger range. The results
are shown in Table 11.3. The operation cost is increasing along with the standard
deviation, whatever in SM or AOM. The difference in the operation cost between
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Table 11.2 Sensitivity analysis with the change of average demand

Ratios (%) −20 −10 +10 +20

DM

Objective value 488,835.5 566,242.5 721,369 800,174.5

Solution time (s) 273.16 630.48 406.02 120.80

Gap (%)

Before versus after −24.00 −11.96 12.16 24.41

SM

Objective value 481,252.5 588,244 748,945.5 795,494

Solution time (s) 617.25 130.23 157.19 69.33

Gap (%)

Before versus after −24.58 −7.81 17.37 24.67

AOM

Objective value 852,267 917,423.5 1,043,610* 1,094,520*

Solution time (s) N/A N/A N/A N/A

Gap (%)

Before versus after −13.73 −7.14 5.63 10.79

Gap (%)

DM versus AOM 42.64 38.28 30.88 26.89

SM versus AOM 43.53 35.88 28.24 27.32

Table 11.3 Sensitivity analysis of the standard deviation

Value 8 9 11 12

SM

Objective value 640,302 644,415 657,644.5 668,352

Solution time (s) 329.98 535.19 720.34 987.69

Gap (%)

Before versus after 0.35 0.99 3.06 4.74

AOM

Objective value 985,927.5 985,668 993,108 1,001,154*

Solution time (s) N/A N/A N/A N/A

Gap (%)

Before versus after −0.20 −0.23 0.52 1.34

Gap (%)

Difference in the total cost between SM and
AOM

35.06 34.62 33.78 33.24
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the SM and the AOM decreases from 35.06 to 33.24% as the standard deviation
increases. Although there are only small differences among these objective values
(from 0.35 to 4.74% and from −0.20 to 1.34%, respectively), more time is required
to solve the problem as the standard deviation increases (from 329.98 to 987.69 s in
SM). This suggests that the more stable of the demand, the lower of the operation
cost and the better of the solution performance.

To investigate the influence of the capacity of the organizations on the perfor-
mances of the three different methods, we test four values of the parameters. As
shown in Table 11.4, the operation cost decreases about 0.3% when the capacity of
DCDC and CHSCs respectively increases 10%, whatever in DM or SM. It can also
be found that only small differences among these objective values. However, 5%
of the operation cost increases when the capacity of DCDC and CHSC respectively
increases 10% in the AOM. Moreover, difference between the DM and the AOM
raises from 39.01 to 47.00% as the value of ratio increases. Similarly, difference
between the SM and the AOM is varied from 38.91 to 46.91%. This suggests us that
the capacity of the medical institutions can strongly influence the total operation cost
in our actual operations. However, when the proposed two methods are applied, such
influence decreases greatly.

Table 11.4 Sensitivity analysis of the change ratio of capacity

Ratios (%) +10 +20 +30 +40

DM

Objective value 640,790.5 639,078 637,305 635,431

Solution time (s) 110.81 484.59 880.84 476.53

Gap (%)

Before versus after −0.37 −0.64 −0.91 −1.20

SM

Objective value 641,843 639,906 638,134.5 636,508.5

Solution time (s) 1034.36 524.64 145.02 442.52

Gap (%)

Before versus after 0.59 0.29 0.01 −0.25

AOM

Objective value 1,050,569 1,099,984 1,149,399 1,198,814

Solution time (s) N/A N/A N/A N/A

Gap (%)

Before versus after 6.34 11.34 16.34 21.34

Gap (%)

DM versus AOM 39.01 41.90 44.55 47.00

SM versus AOM 38.91 41.83 44.48 46.91



228 11 Medical Resources Order and Shipment in Community Health …

11.6 Conclusions

In this study, a time-space network technique is applied to formulate the medical
resources order and shipment scheduling in community health service centers. A
deterministic planning model is presented to depict medical resources order and
shipment with a pre-ascertained demand. A stochastic planning model is then devel-
oped to respond to the uncertain demand. A solution procedure is developed to
efficiently solve the proposed models and a simulation-based evaluation method is
also developed to compare the performances of the models. Numerical tests, relating
to some health service departments’ operations, are performed to evaluate the pro-
posed models and the actual operations. The main contributions of this work to the
literature are as follows:

(1) While most research on medical resources optimization studies a static problem
taking no consideration of the time evolution and especially the dynamic demand
for such resources [20, 21], the proposed models in our work integrate time-
space network technique, which can find the optimal scheduling of logistical
support for medical resources order and shipment in CHSCs effectively.

(2) The logistics plans in response to the deterministic demand and the time-varying
demand are constructed as a 0–1 mixed integer programming model and a
stochastic integer programming model, respectively. The optimal solutions not
only minimize the operation cost of the logistics system, but also can improve
the order and shipment operation in practice.

Future research would be useful in the following directions. Initially, although
it is reasonable to assume that the government can ensure the adequate supply of
the needed medical resources, out-of-stock situation could be a meaningful topic
of future research. Secondly, we did not consider shipment routing in this work.
Actually, it would be more useful in application if the model considers these two
aspects. Certainly, the development of other models using other methods for solving
this type of problem and comparing the results with those of our model could also
be a direction of future research.
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