
Epidemic-logistics 
Modeling: A New 
Perspective on 
Operations Research

Ming Liu
Jie Cao
Jing Liang
MingJun Chen



Epidemic-logistics Modeling: A New Perspective
on Operations Research



Ming Liu • Jie Cao • Jing Liang •

MingJun Chen

Epidemic-logistics Modeling:
A New Perspective
on Operations Research

123



Ming Liu
School of Economics and Management
Nanjing University of Science
and Technology
Nanjing, Jiangsu, China

Jie Cao
Xuzhou University of Technology
Xuzhou, Jiangsu, China

Jing Liang
Nanjing Polytechnic Institute
Nanjing, Jiangsu, China

MingJun Chen
Affiliated Hospital of Jiangsu University
Zhenjiang, Jiangsu, China

ISBN 978-981-13-9352-5 ISBN 978-981-13-9353-2 (eBook)
https://doi.org/10.1007/978-981-13-9353-2

Jointly published with Science Press
The print edition is not for sale in China. Customers from China please order the print book from:
Science Press.

ISBN of the China Mainland edition: 978-7-03-062587-8

© Science Press and Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publishers, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publishers nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publishers remain neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-9353-2


Preface

Infectious disease outbreaks have unfortunately been very real threats to the general
population and economic development in the past decades whether they are caused
by nature or bioterrorism. A typical example was the H1N1 outbreak in 2009,
which spread quickly around the world and ultimately affected millions of people in
214 countries, including 128,033 confirmed cases in China. In 2010, more than
600,000 infected cases were reported, and 8000 lives were lost because of the
cholera outbreak in Haiti. A more recent example of an epidemic outbreak was the
2014–2015 Ebola pandemic in West Africa, which infected approximately 28,610
individuals, and approximately 11,300 lives were lost in Guinea, Liberia, and Sierra
Leone. Therefore, it can be observed that the global burden of epidemics has
tremendously increased in recent years.

To our knowledge, many countries have drafted emergency response plans and
operational frameworks for immediately implementing the related strategies within
24 hours after the severity of an unexpected pandemic is confirmed. In China, a
certain amount of emergency budget will be allocated for quick response according
to the severity level of the unexpected epidemic. Emergency medical center will
designate several local hospitals to treat infected individuals. Usually, this means a
certain section of the appointed hospital will be isolated for quarantining and
treating the infectious patients, but not the entire hospital. However, determining
the optimal resource allocation to control an unexpected epidemic is a complex
optimization problem. On the one hand, managers should understand how the
disease propagates and how to model the epidemic dynamics. On the other hand,
managers need to know how to bridge the gap between epidemic dynamics and
resource allocation. Therefore, an integrated model for epidemic control should
foresee the impacts of different resource allocation scenarios on epidemic devel-
opment, simultaneously and interactively. This is the focus and main contribution
of our book. The objective of this book is to develop a general optimization
modeling framework to help decision makers minimize infections and death due to
an epidemic. The model provides information on the spread dynamics of infections,
and where and when to allocate limited resources. To facilitate readers under-
standing of this book, we briefly introduce all contents as follows:
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In Chap. 1, we introduce the basic concept of epidemic-logistics, including the
basic knowledge of epidemic dynamics, literature review of epidemics control and
logistics operations, and several future directions for epidemic-logistics research.

In Chap. 2, we present epidemic dynamics modeling and analysis, including
epidemic dynamics in anti-bioterrorism system, epidemic dynamics modeling for
influenza, and epidemic dynamics considering population migration.

In Chap. 3, we design a mixed distribution mode for emergency resources in
anti-bioterrorism system, which can find a trade-off between the point-to-point
delivery mode and the multi-depot, multiple traveling salesmen delivery systems.

In Chaps. 4 and 5, we propose a discrete time–space network model for allo-
cating medical resource following an epidemic outbreak. It couples a forecasting
mechanism for dynamic demand of medical resource based on an epidemic diffu-
sion model and a multistage programming model for optimal allocation and
transport of such resource. In Chap. 4, we consider the scenario of that emergency
medical resource is enough. While in Chap. 5, we conduct the scenario of that
emergency medical resource is limited.

In Chaps. 6 and 7, we research the integrated optimization models for
epidemic-logistics network. With the consideration of emergency resources allo-
cated to the epidemic areas in the early rescue cycles will affect the demand in the
following periods, we construct two integrated and dynamic optimization model
with time-varying demand based on the epidemic diffusion rule.

In Chap. 8, we present a novel FPEA model for medical resources allocation in
epidemic control. It couples a forecasting mechanism, constructed for the demand
of medicine in the course of such epidemic diffusion and a logistics planning system
to satisfy the forecasted demand and minimize the total cost. The model is built as a
closed-loop cycle, comprising forecast phase, planning phase, execution phase, and
adjustment phase.

In Chap. 9, we modify the proposed epidemics-logistics model in Büyüktahtakın
et al. (2018) by changing capacity constraint and then apply it to control the 2009
H1N1 outbreak in China. We formulate the problem to be a mixed-integer non-
linear programming model and simultaneously determine when to open the newly
isolated wards and when to close the unused isolated wards.

In Chap. 10, we conduct the logistics planning for hospital pharmacy trusteeship
under a hybrid of uncertainties. We present two medicine logistics planning models
by using a time–space network approach, one with deterministic variables and the
other with stochastic variables.

In Chap. 11, we propose two optimal models for medical resources order and
shipment in community health service centers, with a dual emphasis on minimizing
the total operation cost and improving the operation level in practice. The first
planning model is a deterministic planning model. It considers constraints including
the lead time of the suppliers, the storage capacity of the medical institutions, and
the integrated shipment planning in the dimensions of time and space. Considering
the stochastic demand, the second model is constructed as a stochastic programming
model.
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In Chap. 12, we continuously use time–space network technologies to conduct
the problem of medical resources order and shipment. The optimization models are
mixed 0-1 integer programming model and chance-constrained programming
model, respectively.

In Chap. 13, we present two optimization models for optimizing the
epidemic-logistics network. In the first one, we formulate the problem of emergency
materials distribution with time windows to be a multiple traveling salesman
problem. While in the second one, we propose an improved location allocation
model with an emphasis on maximizing the emergency service level.

Although there are only three names on the cover of this book, we want to thank
all contributors for their excellent contributions without which this book is
impossible. Specifically, we would like to thank Prof. Lindu Zhao from Southeast
University (China), Prof. Ding Zhang from State University of New York, Oswego
(USA), Prof. Jennifer Shang from University of Pittsburgh (USA), and Prof.
Hans-Jürgen Sebastian from RWTH Aachen University (Germany). We thank them
for their suggestions and comments when we write the initial manuscripts. Of
course, we would like to acknowledge the support of National Natural Science
Foundation of China (No. 71771120), National Social Science Foundation of China
(No. 16ZDA054), MOE (Ministry of Education) Project of Humanities and Social
Sciences (No. 17YJA630058), and Six Major Talents Peak Project of Jiangsu
Province (XYDXXJS-CXTD-005). Without financial support, this book cannot be
published. Finally, we wish to thank the staff at Science Press and Springer Press
for their support, encouragement, and assistance.

There is an old Chinese saying that states “May you live in interesting times.” For
both academics and practitioners of emergency management, those times are now,
and we should take full advantage of the opportunity, and enjoy it while doing so!

Nanjing, China Ming Liu
Xuzhou, China Jie Cao
Nanjing, China Jing Liang
Zhenjiang, China MingJun Chen
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Chapter 1
Basic Concept of Epidemic-Logistics

The goal of this book is to introduce a part of research directions on epidemic
dynamics investigated by our research group and our main results during the past
several years. Before this, some basic knowledge on epidemic dynamics will be
introduced which may be helpful to those readers who are not familiar with the
mathematical modeling on epidemiology.

1.1 Basic Knowledge of Epidemic Dynamics

Epidemic dynamics is an important method for studying the spread of infectious
disease, either qualitatively or quantitatively. It is based on the specific property of
population growth, the spread rules of infectious diseases, and the related social
factors, etc., to construct mathematical models reflecting the dynamic properties of
infectious diseases, to analyze the dynamical behavior and to do some simulations.
The research results are helpful to predict the developing tendency of the infectious
disease, to determine the key factors of the spread of infectious disease and to seek the
optimum strategies of preventing and controlling the spread of infectious diseases.
In contrast with classic biometrics, dynamical methods can show the transmission
rules of infectious diseases from the mechanism of transmission of the disease, so
that people may know some global dynamic behaviors of the transmission process.
Combining statisticsmethods and computer simulationswith dynamicmethods could
make modeling and the original analysis more realistic and more reliable.

The popular epidemic dynamic models are compartmental models which were
constructed by Kermack and Mckendrick [1] and were developed by many other
bio-mathematicians. In the classic K-M model, the population is divided into three
compartments: susceptible compartment (S), in which all individuals are susceptible
to the disease; infected compartment (I), in which all individuals are infected by the
disease and have infectivity; removed compartment (R), in which all the individuals
recovered from the compartment (I) and have permanent immunity. There are three
assumptions for the proposed SIR model:
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2 1 Basic Concept of Epidemic-Logistics

(1) The disease spreads in a closed environment, no emigration and immigration,
and no birth and death in population, so the total population remains a constant
k, i.e. S(t) + I(t) + R(t) ≡ k.

(2) The infective rate of an infected individual is proportional to the number of
susceptible individuals, and the coefficient of the proportion is a constant β, so
that the total number of new infected people at time t is βS(t)I(t).

(3) The recovered rate is proportional to the number of infected individuals and the
coefficient of proportion is a constant γ . So, the recovered rate at time t is γ I(t).

According to the three assumptions above, it is easy to establish the epidemic
model as follows

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= −βSI

d I

dt
= βSI − γ I

d R

dt
= γ I

, S(t) + I (t) + R(t) ≡ k (1.1)

In what follows, let us explain some basic concepts on epidemiological dynamics.

1.1.1 Adequate Contact Rate and Incidence

It is well-known that the infections are transmitted through the contact. The number
of times an infective individual contacts the other members in unit time is defined
as contact rate, which often depends on the number N of individuals in the total
population, and is denoted by function U (N ). If the individuals contacted by an
infected individual who are susceptible, then they may be infected. Assume that
the probability of infection by every time contact is β0, then function β0U (N ) is
called the adequate contact rate, which shows the ability of an infected individual
infecting others (depending on the environment, the toxicity of the virus or bacterium,
etc.). Except the susceptible individuals, the individuals in other compartments of
the population can’t be infected when they contact with the infective, and the fraction
of the susceptible in total population is S/N, so the mean adequate contact rate of an
infective person to the susceptible individuals is β0U (N )S/N , which is called the
infection rate. Further, the number of new infected individuals yielding in unit time
at time t is β0U (N )S(t)I (t)/N (t), which is called the incidence of the disease.

When U (N ) = kN , that is, the contact rate is proportional to the size of total
population, the incidence is β0kN S(t)I (t)/N (t) = βS(t)I (t)(where β = β0k is
defined as the transmission coefficient), which is called bilinear incidence or simple
mass-action incidence. WhenU (N ) = k ′, that is, the contact rate is a constant, and
the incidence is β0k ′S(t)I (t)/N (t) = βS(t)I (t)/N (t) (where β = β0k ′) which
is called standard incidence. For instance, the incidence formulating the sexually
transmitted disease is often of standard type. Two types of incidence mentioned
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above are often used, but they are special for the real cases. In recent years, some
contact rates with saturate feature between them are proposed, such as U (N ) =
αN/(1+ωN ) [2],U (N ) = αN/(1+bN +√

1 + 2bN ) [3]. In general, the saturate
contact rate U (N ) satisfies the following conditions:

U (0) = 0,U ′(N ) ≥ 0, (U (N )/N )′ ≤ 0, lim
n→∞U (N ) = U0 (1.2)

Moreover, some incidences, which are much more plausible for some special
cases, are also introduced, such as βSq I q [4] and βSq I q/N [5].

1.1.1.1 Basic Reproduction Number

Basic reproduction number, denoted by R0, represents the average number of sec-
ondary infectious infected by an individual of infective duringwhosewhole course of
disease in the case that all the members of the population are susceptible. According
to this definition, it is easy to understand that if R0 < 1 then all the infective individ-
uals will decrease so that the disease will go to extinction; otherwise, if R0 > 1 then
all the infective individuals will increase so that the disease can not be eliminated
and usually develop into an endemic.

From themathematical perspective, when R0 < 1, themodel has only disease free
equilibrium E0(S0, 0) in the SOI plane, and E0 is globally asymptotically stable;
when R0 > 1, the equilibrium becomes unstable and usually a positive equilibrium
E∗(S∗, I ∗) appears. E∗ is called an endemic equilibrium and in this case it is
stable. Hence, if all the members of a population are susceptible in the beginning,
then R0 = 1 is usually a threshold whether the disease go to extinction or go to an
endemic. For example, considering the following model:

(M1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= � − βSI − bS

d I

dt
= βSI − bI − γ I

d R

dt
= γ I − bR

(1.3)

where b is the natural death rate, γ is the recovered rate, � is recruitment. Let
�/b = k, consider the first two equations we have:

(M
′
1)

⎧
⎪⎨

⎪⎩

dS

dt
= bk − βSI − bS

d I

dt
= βSI − (b + γ )I

(1.4)

Let R0 = βk
b+γ

, it is easy to see that when R0 < 1, the system has only one disease
free equilibrium E0(k, 0) and it is stable; when R0 > 1, besides E0 there is a positive
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equilibrium E∗( b+γ

β
,
b[βk−(b+γ )]

β(b+γ )
). In this case, E0 is unstable, E∗ is stable, and the

endemic appears.
From model (M

′
1) we can see that:

dN

dt
= b(k − N ), N (t) = S(t) + I (t) + R(t) (1.5)

Hence, the total number of the population is k, and βk should be the number of
secondary infectious infected by an individual of infective per unit time when the
number of susceptible is k. From the second equation of the system (M

′
1), we can

see that 1/(b+ γ ) is the average course of the disease. Therefore, R0 = βk/(b+ γ )

is the average secondary infectious infected by an individual of the infective during
whose whole course of disease, which is just the reproduction number. It is worth
mentioning that the reproduction number is not always equivalent to the threshold
mentioned above.

1.2 Epidemics Control and Logistics Operations

According toDasaklis et al. [6], governmental agencies and health institutions should
be prepared in advance for the control of epidemic outbreaks. This means that they
should have in place robust contingency plans addressing issues like the availability
of emergency medical stocks and well-trained personnel, their appropriate deploy-
ment, the availability of different types of vehicles for the transportation of essential
medical supplies and commodities etc. Generally, it remains very difficult to define
whether the needs for producing and distributing vaccines in the case of e.g. a possible
pandemic influenza outbreak can be met [7, 8] by existing capacities. Consequently,
any attempt to contain an epidemic outbreak demands real-time solutions that should
ensure the effective management of all the logistics activities taking place, since
sometimes these activities may become a real nightmare if not managed properly
[9]. In the sequence, an inventory of all the logistics operations taking place during
the various phases of an epidemic’s containment effort is provided. Generally, these
phases could be classified as follows [10, 11]:

• Preparedness
• Outbreak investigation
• Response
• Evaluation.
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1.2.1 Preparedness

Many organizations around the world have established preparedness plans in the case
of epidemic or pandemic outbreaks. Such plans range from community to national
level and they include all the measures required for the successful containment of an
outbreak. The World Health Organization has published several pandemic prepared-
ness guidelines since 1999 and it updates them in the light of new developments
regarding increased understanding of past pandemics, strengthened outbreak com-
munications, greater insight on disease spread etc. [12].

Epidemic preparedness aims at maintaining a certain level of available resources
so as to reduce morbidity and mortality when an epidemic outbreak occurs. This
means that pharmaceuticals and supplies should remain accessible or kept in large
quantities [13] in order to assist a prompt response, if necessary. Procurement of
vaccines and medical supplies and their exact storing location play a crucial role for
the outcome of any containment effort. For instance, the Strategic National Stockpile
(SNS) program in the United States is an indicative preparedness program with the
objective tomaintain large quantities ofmedicine andmedical supplies and to provide
these materials to states and communities within twelve hours in the event of a large-
scale public health emergency [14]. In addition, a certain amount of vaccines should
be available for the immunization of control teams and health-care workers. This is
of great importance as medical personnel will treat the very first infected persons and
should be protected against the disease that causes the outbreak. Among the most
important logistics operations taking place and relevant logistics-oriented decisions
to be made during the phase of preparedness are the following [10–12]:

• Identification of sources for the procurement of medical supplies and relevant
commodities.

• Contract management for all the materials procured.
• Inventory management for all the essential medical supplies (vaccines, antibiotics,
antiretroviral drugs) and supplementarymedical commodities (personal protective
supplies) kept.

• Periodical review and updating of medical supplies.
• Facility location and capacity determination for stockpiling centers.
• Network design for transportation/distribution activities and selection of appro-
priate means for transportation/distribution activities.

• Selection of appropriate vaccination facilities/health care systems and their capac-
ity (size, availability of rooms and designated areas, availability and scheduling
of personnel etc.).

• Availability of funds.
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1.2.2 Outbreak Investigation

Outbreak investigation consists of the detection of any suspected outbreak and its
confirmation through laboratory testing. In order to detect and confirm a suspected
outbreak, surveillance systems must be put in place in order to provide the decision
makers of the health agencies in charge with the essential information regarding
any unexplained infection increases seen over a period of time through the system-
atic analysis of data collected. Surveillance systems provide adequate information
that facilitates the development of an initial response framework where the type and
magnitude of the containment effort could be determined once epidemic thresholds
have been reached. The term epidemic threshold refers to the level of disease above
which an urgent response is required. It is specific for each disease and depends
on the infectiousness, other determinants of transmission and local endemicity
levels [11].

Leadingworld health organizations have developed surveillance systems covering
cases like pandemic outbreaks [15], epidemic outbreaks following natural disasters
[11] or even possible disease outbreaks during mass gatherings [12]. Additionally,
surveillance systems have been developed by the scientific community [16–18] and
many researchers have studied relevant issues arising during the detection and con-
firmation of diseases outbreaks attributed to bioterrorist attacks [19–22] or epidemic
outbreaks related to specific agents [23, 24]. It is worth mentioning that the develop-
ment of a surveillance system to detect epidemic outbreaks that occur during emer-
gency situations (like a humanitarian crisis)may necessitate taking into consideration
some context-specific features like the target population, the political context, the
poor infrastructure and, finally, the presence of multiple partners in the field. Among
the logistics activities that support the detection and confirmation mechanisms of a
suspected outbreak are [11, 25]:

• The provision of all the appropriate materials like report sheets to hospitals, emer-
gency medical services and local public health departments that will be used for
the collection of primary data regarding initial cases.

• The training of clinical workers to recognize unexpected patterns of the occurrence
of specific diseases and to promptly identify and report suspected cases using
standard definitions.

• The provision of all the necessary commodities and resources to the outbreak
response team that will facilitate and ensure its operational deployment.

• The collection of specimens and their labeling.
• The secure transportation of specimens to the appropriate laboratory (using cold
boxes and coolant blocks).

• The appropriate storage of specimens in the laboratory (kept within a specific
temperature range).

• The procurement, handling, storing and distribution of laboratory commodities,
their classification, their quality assurance and quality control etc.

It is clear that any successful attempt to contain an epidemic outbreak is closely
related to the services provided by laboratories. These services rely on a huge number
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of materials and commodities that laboratories utilize and they necessitate increased
inventory management capabilities. Additionally, during epidemic outbreaks labora-
tories must ensure that they have the capacity to cope with increased testing demands
[26]. A good reference regarding laboratory logistics can be found in U.S. Agency
for International Development [25].

1.2.3 Response

Once leading health agencies have confirmed an epidemic outbreak, measures and
control strategies must be implemented as soon as possible at a regional or national
level. Treatment centers should be established and available resources such asmedical
supplies and personnel should be deployed rapidly in order to contain the epidemic
before it reaches uncontrollable proportions. Vaccination of susceptible groups or
isolation and quarantine of those infected are considered standard interventions for
the containment of an epidemic. All measures taken must be based on a clear under-
standing of the agent’s nature triggering the outbreak as some diseases necessitate
specific control protocols to be followed [11]. This in turn calls for the availability
of additional infrastructure and medical supplies within health care premises such
as isolation rooms with good ventilation systems, respiratory equipment etc. The
logistics operations and relevant decisions to be made during the phase of response
to a confirmed outbreak refer to [10, 12]:

• The selection of facilities to serve as PODs.
• The periodical review and updating of supplies and commodities needed.
• The transportation/distribution of supplies and commodities from central ware-
houses to local POD.

• The procurement of supplies/resources once depleted.
• The dispensing of medical supplies, supplementary materials and commodities to
the public.

• The establishment of a cold supply chain for the provision of essential medical
supplies like vaccines.

• The daily/weekly capacity of available personnel to perform mass vaccination
campaigns (for example the maximum number of people that can vaccinate per
day).

• The scheduling of available vehicles to be used for transportation and distribution
purposes.

• Adjustments to the capacity of health care facilities to hospitalize infected people.
• The management of patients in triage centers (clinical flow logistics).

During the phase of response laboratory logistics activities take place as it is
very important for the parties involved to have a clear understanding of how the
epidemic evolves over space and time (rate of spread among subpopulations). This
will allow them to proceed to the necessary adjustments or modifications of the
measures initially adopted in order for the newmeasures to be compliantwith the data
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analysis from laboratories tests [11]. Other logistics-oriented activities necessitated
during this phase may be the safe disposal of body fuels or even the handling of dead
bodies, the presence of troops to keep order etc.

1.2.4 Evaluation

After the epidemic has been contained, decision makers and public health policy
makers engaged in the control efforts should proceed to evaluate all the measures
undertaken during the previous phases. Generally, the evaluation phase is very useful
as it provides strong insights towards a series of modifications that need to be made
in order to increase the resilience of the control mechanisms in future epidemic out-
breaks. Despite the fact that the evaluation phase entails limited physical movement
of medical supplies and complementary commodities, it remains important from
a logistical point of view. Many useful conclusions can be drawn with respect to
logistics control operations such as [10]:

• The identification and assessment of possible bottlenecks or delays that hindered
the deployment of the available medical supplies.

• The evaluation of the timeliness that should have been respected during the control
of the epidemic.

• The follow-up and monitoring of patients for antibiotic effectiveness or vaccine
immunoresponse.

• The identification of patients requiring dose modification or alternative treatment
regimen due to adverse effects.

• The development of indicators regarding the performance of the logistics control
operations.

• The assessment of coordination issues risen among the parties involved.
• The establishment and operation of rehabilitation procedures in the case of epi-
demic outbreaks in the aftermath of natural disasters.

All the above should lead to clear conclusions and, therefore, recommendations
that will enhance the capabilities of the parties involved and will reduce vulnera-
bilities of the control mechanisms. Finally, the dissemination of knowledge and the
lessons learned should take place among all the parties involved, from public health
policy makers and health agencies to local communities.

1.3 Future Directions for Epidemic-Logistics Research

An effective epidemic management requires the combination of managerial deci-
sions such as planning and resource allocation. Epidemiologic modeling provides
useful insights for planning and mitigating against a possible disaster. However, the



1.3 Future Directions for Epidemic-Logistics Research 9

absence of any significant academic contribution to disaster planning and implemen-
tation issues for the suggested control policies and intervention strategies remains a
major gap in the literature. It is therefore the purpose of this book to emphasize the
importance of logistics decisions at every stage of disaster management. As to the
literature review of epidemic logistics, authors can go to Dasaklis et al. [6] and Adi-
var and Selen [27]. Despite the fact that some logistical considerations have already
been incorporated into epidemics control approaches, the area of epidemics control
supply chain still remains a promising research area. Following the insights provided
in Dasaklis et al. [6], the authors proposed many opportunities for future research
efforts, which include:

(1) Multidisciplinary synergies
(2) End-to-End approaches
(3) More realistic assumptions for epidemic control logistics modeling
(4) Inventory replenishment policies
(5) Evaluation of models and large scale exercises
(6) Development of harmonized approaches
(7) Stochasticity
(8) Quantification of contingency plans
(9) Reverse logistics
(10) Performance metrics
(11) Responding to complex emergencies
(12) Cross-functional drivers
(13) Coordination issues.

Different from these directions, Adivar and Selen [27] considered the following
decisions related to epidemic logistics: capacity planning for treatment or isolation
facilities, bed capacities, resource allocation, including workforce and health care
service, medical supply planning and corresponding make or buy decisions, the
distribution and administration of drugs and vaccines, disaster information and com-
munication management, and finally critical inventory management under turbulent
disaster environment, i.e. for deteriorating items such as vaccines.

The chemical nature of vaccines and some drugs make their storage challeng-
ing. In addition, the handling, location and relocation of large quantities of medical
supplies are associated with high costs which might cause inefficiency in overall
aftermath effort. On the other hand, it is quite possible that medical resources will
be limited at the very beginning of an epidemic. Timely and accurate distribution
of medical supplies and health care services is essential in times of disaster. One
practical example would be the prioritization of vaccine distribution among the pop-
ulation. This decision addresses cost minimization issues as well as issues that relate
to maximizing the effectiveness of control policy. Some research indirectly engages
with such logistical considerations whereas other considerations are addressed in
more direct ways.

Vaccine production is also a critical issue due to its socio-economic importance.
Especially for smallpox, vaccine production depends on international agreements
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and relations. It is also important that vaccine is produced under governmental con-
trol to ensure the cost is equal and affordable for the whole population. Increased
globalization and a growing number of transportation routes mean that re-emerging
infectious diseases could have a serious impact on any country. Therefore, authorities
in both developed and developing countries should ensure preparedness for a possi-
ble epidemic by promoting academic research. In spite of this need, as pointed out
in our review, only a limited number of countries are investing in epidemic disaster
surveillance.

It is well known that demographic and cultural factors significantly affect dis-
persion of an epidemic among population. Infection rates for elderly and young are
different formanydiseases.Countrieswith a younger, and thereforemore socially and
economically active population such as Turkey, aremore prone to faster epidemic dis-
persion than, for example, western European countries where the population growth
rate is lower and populations are older. Therefore, it is necessary to develop epi-
demiological models differentiating population by age and immunity level, and to
prioritize the population for health care service delivery. Unfortunately, there is no
mention of population differentiation in the models of any of the research articles
reviewed.

In addition, Chen et al. [28] also proposed several directions for future research.
From a view of disease, first, lots of models failed to combine some factors which can
impact the number of casualties, such as the different periods in which the patients
transfer into the current disease stage. Second, not all the papers studying the response
to the diseases were based on real cases and the real emergency management plans.
For example, most of the authors assume the recovery rate remains the same for
the patients in the same stage while in reality, the recovery rate will decrease when
the patients stay in the stage longer. Third, the number of infected individuals will
affect the adopted response policy. If the development of the disease follows differ-
ent disease development probability functions, the number of infected individuals
will change. But many authors failed to consider about how disease development
probability functions affect the medical interventions.

From a view of disease prevention and control plans, first, the side effect of the
medical interventions are neglected by most of the authors. For example, the side
effect of the mass vaccination of smallpox has often been neglected. Second, some
key important logistics factors, such as the distribution capacity, are not taken into
account. Themedical intervention canworkwell onlywhen themedical resources can
be delivered in timewith the right amount. Though somepapers take, into account, the
limitation of the medical treatment capacity, they do not address logistics questions
like the number and the size of the antibiotic distribution centers. Moreover, most
of the papers consider only one factor, which may affect the medical intervention,
such as the vaccination coverage rate, but neglect the national stockpile. However,
the sudden occurrence of epidemic may be more transmissible than we predicted and
more people will be infected. So the national stockpile may be exhausted and a lot
of individuals cannot get the medical help in time. In other words, the vaccination
coverage policy cannot be executed well without enough medical resources. So, how
to dispense medical resources sparingly to avoid exhausting the stockpile should be
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studied as well. Third, some individuals, such as the old and the young, have the
high possibilities to be infected and need special help. But most of the authors focus
their attention on the general population, and neglected them who need the special
help. Fourth, it can be found that most of the papers study the vaccination policy
because vaccination is one of the most effective ways to prevent and control disease.
However, the quarantine policy and isolation policy should also get enough attention.
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Chapter 2
Epidemic Dynamics Modeling
and Analysis

Disastrous epidemic such as SARS, H1N1, or smallpox released by some terrorists
can significantly affect people’s life. The outbreak of infections in Europe in 2011
is another example. The infection, from a strain of Escherichia coli, can lead to
kidney failure and death and is difficult to treat with antibiotics. A recent example
of epidemic outbreak was the 2014–2015 Ebola pandemic in West Africa, which
infected approximately 28,610 individuals and approximately 11,300 lives were lost
in Guinea, Liberia, and Sierra Leone. It is now widely recognized that a large-
scale epidemic diffusion can conceivably cause many deaths and more people of
permanent sequela, which presents a severe challenge to the local or regional health-
care systems. When an epidemic outbreaks, public officials face with many critical
and complex issues, the most important of which is to make certain how the epidemic
diffuses. This is the focus of this chapter.

2.1 Epidemic Dynamics in Anti-bioterrorism System

2.1.1 Introduction

Bioterrorism is the intentional use of harmful biological substances or germs to cause
widespread illness and fear. It is designed to cause immediate damage and release
dangerous substances into the air and surrounding environment. Because it would
not usually be signaled by an explosion or other obvious cause, a biological attack
may not be recognized immediately and may take local health care workers time to
discover that a disease is spreading in a particular area.

Over the past few years, the world has been growing increasingly concerned
about the threat that bioterrorists pose to societies, especially after the September
11 attacks and the fatal delivery of anthrax via the US Mail in 2001. Henderson
[1] pointed out that the two most feared biological agents in a terrorist attack were
smallpox and anthrax. Radosavljević and Jakovljević [2] proposed that biological
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attacks can cause an epidemic of infectious disease. Thus, epidemiological triangle
chainmodels can be used to present these types of epidemic. Bouzianas [3] presented
that the deliberate dissemination of Bacillus anthracis spores via the US mail system
in 2001 confirms their potential use as a biologicalweapon formass human casualties.
This dramatically highlights the need for specific medical countermeasures to enable
the authorities to protect individuals from a future bioterrorism attack.

Actually, many recent research efforts have been devoted to understanding the
prevention and control of epidemics, such as those of Wein et al. [4], Wein et al. [5],
Craft et al. [6], Kaplan et al. [7, 8], Mu and Shen [9], Hiroyuki et al. [10], Tadahiro
et al. [11], Michael et al. [12]. Various mathematical models have been proposed to
analyze and study the general characteristics of each epidemic, such as SI, SIR, SIS,
SIRS, SEI, SEIR, and others. It is worth mentioning that the major purpose of these
articles is to compare the performance of the following two strategies, the traced
vaccination (TV) strategy and the mass vaccination (MV) strategy. Furthermore, the
epidemic diffusion models which they adopted are based on the traditional compart-
ment model, while the complex topological structure of the social contact network
is not considered.

As is well known, a class of network with a topology interpolating between that of
lattices and random graphs is proposed byWatts and Strogatz [13]. In these models, a
fraction of the links of the lattice is randomized by connecting nodes, with probability
p, with any other node. For a range of p the network exhibits ‘small world’ behavior,
where a local neighborhood (as in lattices) coexists with a short average path length
(as in randomgraphs). Analysis of real networks reveals the existence of small worlds
in many interaction networks, including networks of social contacts [14]. Recently,
attention has been focused on the impact of network topology on the dynamics of the
processes running on it with emphasis on the spreading of infectious diseases. For
many infectious diseases, a small-world network on an underlying regular lattice is
a suitable simplified model for the contact structure of the host population. It is well
known that the contact network plays an important role in both the short term and
the long term dynamics of epidemic spread [15]. Thus, one of the major motivations
for studying the complex network in this work is to better understand the structure of
social contact network, because there is a natural link between the epidemiological
modeling and the science of complex network.

Jari and Kimmo [16] propose an SIR model for modeling the spreading process
of randomly contagious diseases, such as influenza, based on a dynamic small-world
network. A study by Masuda and Konno [17] presents a multi-state epidemic pro-
cess based on a complex network. They analyze the steady states of various multi-
state disease propagation models with heterogeneous contact rates. In many models,
heterogeneity simply decreases epidemic thresholds. Xu et al. [18] present a mod-
ified SIS model based on complex networks, small-world and scale-free, to study
the spread of an epidemic by considering the effect of time delay. Based on two-
dimension small-world networks, a susceptible-infected (SI) model with epidemic
alert is proposed by Han [19]. This model indicates that the broadcasting of a timely
epidemic alert is helpful and necessary in the control of epidemic spreading, and is
in agreement with the general view of epidemic alert. Shi et al. [20] propose a new
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susceptible-infected-susceptible (SIS) model with infective medium. The dynamic
behaviors of the model on a homogeneous network and on a heterogeneous scale-
free network are considered respectively. Furthermore, it is shown that the immune
density of nodes depends not only on the infectivity between individual persons, but
also on the infectivity between persons and mosquitoes. Zhang and Fu [21] study the
spreading of epidemics on scale-free networks with infectivity which is nonlinear in
the connectivity of nodes. The result shows that nonlinear infectivity is more appro-
priate than a constant or a linear one. With unit recovery rate and nonlinear irrational
infectivity, the epidemic threshold is always positive.

As mentioned in Craft et al. [6], deterrence is not a reliable strategy to against the
terrorists, and it is difficult to get the biological agents out of the hands of terrorists
before they attack. Our security against a biological attack rests largely on conse-
quence management, i.e., how to ensure the availability and supply of emergency
resource so that the loss of life can be minimized and the efficiency of each rescue
can be maximized? Considering the relationship between an unexpected bioterror
attack and the associated emergency logistics decisions, Liu and Zhao [22] focus on
how to deliver emergency resources to the epidemic areas when a bioterror attack
is suffered, and propose a mixed-collaborative distribution model for the emergency
resources distribution based on the epidemic diffusion rule. A very recent research
effort byWang et al. [23] constructs a multi-objective stochastic programmingmodel
with time-varying demand for the emergency logistics network based on epidemic
diffusion rule. It is worth mentioning that majority of the existing studies relies on
different kinds of differential equations. For instance, first-order partial differential
equations are used to integrate the age structures; second-order partial differential
equations are suitable when a diffusion term exists; and integral differential equa-
tions or differential equations are often used when time delay or delay factors are
considered.

2.1.2 SIQRS Epidemic Diffusion Model

(1) Modeling assumptions and notations specification

To facilitate the model formulation in the following section, three assumptions
are specified as follows:

(1) Once a bioterror attack is suffered, the epidemic area can be isolated from other
areas to avoid the spread of the disease.

(2) Natural birth and death coefficient of the population in the epidemic area are
not considered.

(3) Epidemic diffusion will not be disrupted by itself, which means the infection
rate is a constant.

In this section, we consider the situation that epidemic diffusion without incuba-
tion period.Notations used in the followingmodel are specified as follows (Table 2.1).
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Table 2.1 Parameters specification

Parameters Specification

N The whole nodes in the affected area

S(t) Susceptible nodes in the affected area which may become infected.
s(t) = S(t)/N represents its density

I (t) Infected nodes in the affected area which are infective with strong infectivity, but
have not yet been quarantined. i(t) = I (t)/N represents its density

Q(t) Quarantined nodes in the affected area which have been infected, and have been
quarantined. q(t) = Q(t)/N represents its density

R(t) Recovered nodes in the affected area which have recovered from the disease.
r(t) = R(t)/N represents its density

<k> Average degree distribution of the network

β Infection rate of the biological epidemic

γ Rate of the recovered nodes transform to the susceptible nodes

δ Rate of the infective nodes which will be found and quarantined

μ Rate of quarantined nodes transform to the recovered nodes

d1 Death rate of the infective nodes

d2 Death rate of the quarantined nodes

Furthermore, S(t) + I (t) + Q(t) + R(t) = N , s(t) + i(t) + q(t) + r(t) = 1.

(2) Model formulation

Since quarantine is a common response measure when an epidemic outbreaks,
here we divide people in the epidemic area into four groups: susceptible people (S),
infected people (I), quarantined people (Q) and recovered people (R). The survey by
Tham [24] shows that some of the recovered people who are discharged from the
emergency department will be re-infected again. Thus, epidemic diffusion model in
this section can be illustrated as Fig. 2.1.

For epidemic diffusion, models based on a small-world network match the actual
social network much better. A great deal of attention has been paid to studying these
models. Therefore, based on the mean-filed theory [25], the time-based parameter
s(t) meets the following equation from time t to t + �t :

s(t + �t) − s(t) = −β<k>s(t)i(t)�t + γ r(t)�t. (2.1)

Fig. 2.1 Framework of
SIQRS model

δI

d2Q d1I

β<k>SI

γR

S I Q R 
μQ
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Thus, we get:

ds(t)

dt
= −β<k>s(t)i(t) + γ r(t). (2.2)

Similarly, we have the other three ordinary differential equations as follows:

di(t)

dt
= β<k>s(t)i(t) − d1i(t) − δi(t). (2.3)

dq(t)

dt
= δi(t) − d2q(t) − μq(t). (2.4)

dr(t)

dt
= μq(t) − γ r(t). (2.5)

Thus, the following SIQRS epidemic diffusion model can be formulated:

⎧
⎪⎪⎨

⎪⎪⎩

ds(t)
dt = −β<k>s(t)i(t) + γ r(t)

di(t)
dt = β<k>s(t)i(t) − d1i(t) − δi(t)

dq(t)
dt = δi(t) − d2q(t) − μq(t)

dr(t)
dt = μq(t) − γ r(t)

. (2.6)

Here, β, <k>, γ , δ, μ, d1, d2 > 0. Initial conditions for this epidemic diffusion
model are demonstrated as follows:

i(0) = i0 � 1, s(0) = s0 = 1 − i0, q(0) = r(0) = 0.

(3) Analysis of the epidemic diffusion model

As is well known, i(0) = i0 � 1 and s(0) = s0 = 1 − i0, are initial percentage
of infected people and susceptible people in the population, respectively. Obviously,
when wide spread of the epidemic takes place, the following condition should be
satisfied:

di(t)

dt

∣
∣
∣
∣
t=0

> 0. (2.7)

Considering Eq. (2.3), we have:

s0 >
d1 + δ

β<k>
. (2.8)

Equation (2.8) means that epidemic diffusion will take place when s0 meets the
above condition. Generally, it is difficult to get the analytic solution for Eq. (2.6).
Thus, we consider the stable state of Eq. (2.6). As s(t)+ i(t)+ q(t)+ r(t) = 1, and
considering Eqs. (2.2), (2.3) and (2.4), then we have:
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⎧
⎨

⎩

ds(t)
dt = −β<k>s(t)i(t) + γ [1 − s(t) − i(t) − q(t)]

di(t)
dt = β<k>s(t)i(t) − (d1 + δ)i(t)

dq(t)
dt = δi(t) − (d2 + μ)q(t)

. (2.9)

Let ds(t)
dt = 0, di(t)

dt = 0 and dq(t)
dt = 0, we can get an obvious equilibrium point

for the epidemic diffusion model I as follows:

P1 = (s, i, q) = (1, 0, 0). (2.10)

Equation (2.10) shows that both the number of infected people and the number of
quarantined people are equal to zero, which indicates that epidemic diffusion in the
disaster area does not happen. All people in the area are susceptible at last. Thus, we
refer to this as the disease-free equilibrium point.

Furthermore, according to Eq. (2.9), we can get another equilibrium point for the
epidemic diffusion system as follows:

P2 = (s, i, q)

=
(
d1 + δ

β<k>
,

γ [β<k> − (d1 + δ)](d2 + μ)

β<k>[(d1 + δ + γ )(d2 + μ) + γ δ] ,
γ δ[β<k> − (d1 + δ)]

β<k>[(d1 + δ + γ )(d2 + μ) + γ δ]
)

. (2.11)

Equation (2.11) shows that when the epidemic diffusion system is stable, a certain
amount of infected people and a certain amount of quarantined people exist in the
epidemic area. Thus, we refer to this as the endemic equilibrium point.

Lemma 2.1 Disease-free equilibrium point P1 in the epidemic diffusion network is
stable when β < d1+δ

<k> .

Proof Considering P1 = (s, i, q) = (1, 0, 0), we can obtain the Jacobi matrix of
Eq. (2.9) as follows:

JP1 =
⎡

⎢
⎣

∂P11
∂s

∂P11
∂i

∂P11
∂q

∂P12
∂s

∂P12
∂i

∂P12
∂q

∂P13
∂s

∂P13
∂i

∂P13
∂q

⎤

⎥
⎦ =

⎡

⎣
−γ −β<k> − γ −γ

0 β<k> − (d1 + δ) 0
0 δ −(d2 + μ)

⎤

⎦. (2.12)

Here P11, P12 and P13 represent the three differential equations in Eq. (2.9),
respectively. Thus, it is easy to get the secular equation for the Jacobi matrix as
follows:

(λ + γ )(λ − β<k> + d1 + δ)(λ + d2 + μ) = 0. (2.13)

Obviously, three characteristic roots for this secular equation are −γ , β<k> −
d1−δ, and−d2−μ. Based on Routh-Hurwiz stability criterion, when β < d1+δ

<k> , real
parts of these three characteristic roots will be negative at the same time. Thus, the
disease-free equilibrium point P1 = (s, i, q) = (1, 0, 0) is stable when β < d1+δ

<k> .
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Lemma 2.2 Endemic equilibrium point P2 in the epidemic diffusion network is sta-
ble when β > d1+δ

<k> .

Proof Similarly as Lemma 2.1, coupling with Eq. (2.11), we can get the Jacobi
matrix of Eq. (2.9) again as follows:

JP2 =
⎡

⎢
⎣

− γ [β<k>−(d1+δ)](d2+μ)

[(d1+δ+γ )(d2+μ)+γ δ] − γ −(d1 + δ) − γ −γ
γ [β<k>−(d1+δ)](d2+μ)

[(d1+δ+γ )(d2+μ)+γ δ] 0 0

0 δ −(d2 + μ)

⎤

⎥
⎦. (2.14)

Then, the secular equation for Eq. (2.14) is

a0λ
3 + a1λ

2 + a2λ + a3 = 0. (2.15)

Here, a0 = 1, a1 = (d2 +μ)+ (A+ γ ), a2 = (d2 +μ)(A+ γ )+ (d1 + δ + γ )A,
a3 = (d2 + μ)(d1 + δ + γ )A + γ δA, and A = γ [β<k>−(d1+δ)](d2+μ)

[(d1+δ+γ )(d2+μ)+γ δ] .
Obviously, when β > d1+δ

<k> , we have A > 0. Then, we have a1 > 0, a2 > 0, a3 >

0. Therefore,

a1a2 − a0a3 = (d2 + μ)(A + γ )(d2 + μ + A + γ )

+ (d1 + δ + γ )A2 + γ A(d1 + γ ) > 0

According to Routh-Hurwiz stability criterion, Eq. (2.11) contains three charac-
teristic roots with negative real part. Thus, the endemic equilibrium point P2 is stable
when β > d1+δ

<k> .

Remark 2.1 From Lemmas 2.1 and 2.2, we have the first conclusion: without con-
sideration of incubation period, threshold of the epidemic diffusion not only depends
on topological structure of the small-world network (<k>), but also relies on other
two key parameters, the quarantined rate (δ) and the death rate of infected people
(d1).

2.1.3 SEIQRS Epidemic Diffusion Model

(1) Model formulation

In this section, we consider the situation that epidemic diffusion with incubation
period, and thus, we divide people in the epidemic area into five groups: susceptible
people (S), exposed people (E), infected people (I), quarantined people (Q) and
recovered people (R). Similarly, epidemic diffusion model in this section can be
illustrated as Fig. 2.2.
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β<k>S(t-τ)I(t-τ) δI

d2Q d1I

β<k>SI

γR

S I Q R 
μQ

E

Fig. 2.2 Framework of SEIQRS model

Likewise, the SEIQRS epidemic diffusion model can be formulated as follow:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ds(t)
dt = −β<k>s(t)i(t) + γ r(t)

de(t)
dt = β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ)

di(t)
dt = β<k>s(t − τ)i(t − τ) − d1i(t) − δi(t)

dq(t)
dt = δi(t) − d2q(t) − μq(t)

dr(t)
dt = μq(t) − γ r(t)

. (2.16)

Here, E(t) stands for the number of exposed people. e(t) = E(t)/N . s(t)+e(t)+
i(t) + q(t) + r(t) = 1. Moreover, β, <k>, γ , δ, μ, d1, d2,τ > 0. Initial conditions
for the epidemic diffusion model are demonstrated as follows:

i(0) = i0 � 1, e(0) = <k>i(0), s(0) = 1 − e0 − i0, q(0) = r(0) = 0.

(2) Analysis of the epidemic diffusion model

Likewise, it is also difficult to get the analytic solution for Eq. (2.16). Thus,
we consider the stable state of Eq. (2.16). When the epidemic diffusion system is
stable, that means the number of people in each group is unchanged. Then, we have
s(t) = s(t − τ), i(t) = i(t − τ) and

de(t)

dt
= β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ) = 0. (2.17)

Equation (2.17) means that the number of exposed people is a constant when the
epidemic diffusion system is stable. As s(t) + e(t) + i(t) + q(t) + r(t) = 1, and
considering Eq. (2.16), we have:

⎧
⎨

⎩

ds(t)
dt = −β<k>s(t)i(t) + γ [1 − s(t) − e(t) − i(t) − q(t)]

di(t)
dt = β<k>s(t − τ)i(t − τ) − (d1 + δ)i(t)

dq(t)
dt = δi(t) − (d2 + μ)q(t)

. (2.18)

Let ds(t)
dt = 0, di(t)

dt = 0 and dq(t)
dt = 0, we get the following two equilibrium

points for the SEIQRS epidemic diffusion model:
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P3 = (s, i, q) = (1 − e, 0, 0). (2.19)

P4 = (s, i, q) =
(
d1 + δ

β<k>
, B,

δ

d2 + μ
B

)

. (2.20)

Here, B = γ [β<k>(1−e)−(d1+δ)](d2+μ)

β<k>[(d1+δ+γ )(d2+μ)+γ δ] . Similarly, P3 is the disease-free equilibrium
point and P4 is the endemic equilibrium point.

Lemma 2.3 Disease-free equilibrium point P3 is stable when β < d1+δ
<k>(1−e) .

Lemma 2.4 Endemic equilibrium point P4 is stable when β > d1+δ
<k>(1−e) .

The proof process of Lemmas 2.3 and 2.4 are similar as introduced in Sect. 2.1.2.
Thus, it is trivial to prove Lemmas 2.3 and 2.4.

Remark 2.2 From Lemmas 2.3 and 2.4, we get the second conclusion: with the
consideration of incubation period, threshold of the epidemic diffusion not only
depends on key parameters <k>, δ and d1, but also relies on the number of exposed
people when the system is stable.

2.1.4 Computational Experiments and Result Analysis

To test how well the model may be applied in a real world, we exhibit a case study
to demonstrate the efficiency of the proposed two different models. To facilitate the
calculation process, we assume that a bioterror attack is suffered. The initial values
of the parameters in these two epidemic diffusion models are given as follows:
β = 10−6, <k> = 6, γ = 2 × 10−4, δ = 0.3, μ = 0.1, d1 = 5 × 10−3,
d2 = 1 × 10−3, τ = 5, N = 105 and i(0) = 2 × 10−4. We use the MATLAB
7.0 mathematical programming solver to simulate these two models. The tests are
performed on an Intel(R) Core(TM) 2 CPU 1.66 GHz with 1.5 GB RAM under
MicrosoftWindowsXP. Figure 2.3 is the numerical simulation of these two epidemic
models. The curves respectively represent the different groups of people over time.

From Fig. 2.3, we observe that threshold of the epidemic diffusion exists in both
Model I and Model II. Comparing these two Figures, we find the peak of I(t) in
Model II appears later than it in Model I. It is worth mentioning that the largest
number of infected people in Model II is also smaller than it in Model I. This result
is reasonable, because the incubation period is considered in Model II. Thus, the
number of infected people in Model II would be divided into two parts. On the other
hand, it confirms that incubation time plays an important role in epidemic diffusion
network.

During an actual emergency rescue process, the time-based parameter I (t), which
represents the number of infected people, is much more concerned. Thus, a short
sensitivity analysis of the three key parameters (β, <k> and δ) is conducted in the
following.
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(a) Model I (b) Model II

Fig. 2.3 Diffusion profile of the biological epidemic models

Holding all the other parameters fixed as in the numerical example given above,
except that β takes on four different values ranging from 10−6 to 4 × 10−6 with an
increment of 10−6. Figure 2.4 shows that the number of infected people is changed
over time. From this figure, we observe that no matter in Model I or Model II,
there almost get no distinguish among these curves in the first 40 days. However,
distinguish is obvious in the followingdays. The larger the initial size ofβ is, the faster
the increments speed is. Note that though initial size of β is varied, peaks of different
curves in Model I appear almost at the same time. However, situation in Model II is
different. The larger β is, the later the peak appears. This phenomenon enlightens us
again that the incubation time is an important factor in an anti-bioterrorism system.

Holding all the other parameters fixed as in the numerical example given above,
except that<k> takes on four different values ranging from4 to 10with an increment
of 2. Figure 2.5 shows that the number of infected people is changed as time goes by.
As before, no matter in Model I and Model II, there almost get no distinguish among
these curves in the first 40 days. After then, the number of infected people shows
a positive proportional to parameter <k>. From Fig. 2.5, we get a conclusion that

(a) Model I (b) Model II 

Fig. 2.4 Regularity of the infected nodes with different initial size of β
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(a) Model I (b) Model II 

Fig. 2.5 Regularity of the infected nodes with different initial size of <k>

self-quarantine is an effective strategy for controlling the epidemic diffusion. And
this is why Chinese government implements a series of strict quarantine measures
when SARS outbreaks. Note that peaks of different curves appear almost at the same
time in Model II. This is different from Fig. 2.4b.

Similarly, holding all the other parameters fixed as in the numerical example given
above, except that δ takes on four different values ranging from 0.2 to 0.5 with an
increment of 0.1. Figure 2.6 shows that the number of infected people is changed over
time. Exactly same as our expected, we get the similar conclusion as the former two
parameters. Moreover, we get the delay phenomenon again as Fig. 2.4b. Figure 2.6
means that to quarantine the infected people as early as possible is also very important
during an actual emergency rescue process.

(a) Model I (b) Model II 

Fig. 2.6 Regularity of the infected nodes with different initial size of δ
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2.2 Epidemic Dynamics Modeling for Influenza

2.2.1 Introduction

The first mathematical model that could be used to describe an influenza epidemic
was developed early in the 20th century by Kermack and McKendrick [26]. This
model is known as the Susceptible-Infectious-Recovered (SIR)model. To simulate an
influenza epidemic, the model is analyzed on a computer and one infected individual
(I) is introduced into a closed population where everyone is susceptible (S). Each
infected individual (I) transmits influenza, with probability β, to each susceptible
individual (S) they encounter. The number of susceptible individuals decreases as
the incidence (i.e., the number of individuals infected per unit time) increases. At a
certain point the epidemic curve peaks, and subsequently declines, because infected
individuals recover and cease to transmit the virus. Only a single influenza epidemic
can occur in a closed population because there is no inflow of susceptible individuals.
The severity of the epidemic and the initial rate of increase depend upon the value
of the Basic Reproduction Number (R0). R0 is defined as the average number of new
infections that one case generates, in an entirely susceptible population, during the
time they are infectious. IfR0 >1 an epidemicwill occur and ifR0 <1 the outbreakwill
die out. The value of R0 for any specific epidemic can be estimated by fitting the SIR
model to incidence data collected during the initial exponential growth phase. The
value of R0 may also be calculated retroactively from the final size of the epidemic.
If the SIR model is used, R0 for influenza is equal to the infectivity/transmissibility
of the strain (β) multiplied by the duration of the infectious period. Therefore once
the value of R0 has been obtained, the value of β can be determined.

The SIR model has been used as a basis for all subsequent influenza models.
The simplest extension to the SIR model includes demographics; specifically, inflow
and outflow of individuals into the population. Analysis of this demographic model
shows that influenza epidemics can be expected to cycle, with damped oscillations,
and reach a stable endemic level [27]. By modifying the basic SIR model in a variety
of ways (e.g., by including seasonality [28, 29]) influenza epidemics can be shown to
have sustained cycles. The SIR model has also been extended so that it can be used
to represent and/or predict the spatial dynamics of an influenza epidemic. The first
spatial-temporalmodel of influenzawas developed in the late 1960s byRvachev [30].
He connected a series of SIR models in order to construct a network model of linked
epidemics. He then modeled the geographic spread of influenza in the former Soviet
Union by using travel data to estimate the degree of linkage between epidemics in
major cities. In the 1980s, he and his colleagues Baroyan and Longini extended his
network model and evaluated the effect of air travel on influenza pandemics [31, 32].
Since then other modeling studies have quantified the importance of air travel on
geographic spread [33, 34]. For example, a recent study has modeled the potential
for influenza epidemics to move through nine European cities: Amsterdam, Berlin,
Budapest, Copenhagen, London, Madrid, Milan, Paris, and Stockholm. The authors
estimate that, due to a high degree of connectedness through air travel, it would take
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less than a month for an epidemic beginning in any one of these cities to spread to
the other eight [33]. Network models have also been use to understand the temporal
and spatial synchrony of influenza epidemics within the United States (US) [35].

In this section, SEIRS model based on small-world network is formulated for
depicting the spread of infectious diseases. The existence and global stability of the
disease-free equilibrium and the endemic equilibrium for the epidemic system is
proved by differential equations knowledge and Routh-Hurwiz theory. A numerical
example, which includes key parameters analysis and critical topic discussion (e.g.
medicine resources demand forecasting) is presented to test how well the proposed
model may be applied in practice.

2.2.2 SEIRS Model with Small World Network

(1) Basic introduction

For the compartment model of epidemic diffusion is a mature theory, herein
we omit the verbose introduction of the framework process. In this section, we
consider the situation that infected person will not be quarantined, and divide people
in epidemic area into four groups: susceptible people (S), exposedpeople (E), infected
people (I) and recovered people (R). A survey by Tham [24] shows that part of
recovered people who are discharged from the healthcare department will be re-
infected again. Thus, considering the small world network of the social contact,
the structure of Susceptible–Exposure–Infective–Recovered–Susceptible (SEIRS)
model is shown as Fig. 2.7.

Notations used in following sections are specified as follows:

N Population size in epidemic area.
S(t) Number of susceptible people, s(t) = S(t)/N .
E(t) Number of exposed people,e(t) = E(t)/N .
I (t) Number of infected people, i(t) = I (t)/N .
R(t) Number of recovered people, r(t) = R(t)/N .
<k> Average degree distribution of small world network.
β Propagation coefficient of the epidemic.
γ Re-infected rate of recovered people.

S E I R 

Fig. 2.7 Framework of SEIRS model
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μ Recovered rate.
τ Incubation period of the epidemic.
d Death rate of infected people.

Intuitively, we have the first two equations:

S(t) + E(t) + I (t) + R(t) = N (2.21)

s(t) + e(i) + i(t) + r(t) = 1 (2.22)

Based on mean-filed theory, the time-based parameter s(t) meets the following
equation from time t to t + �t :

s(t + �t) − s(t) = −β<k>s(t)i(t)�t + γ r(t)�t. (2.23)

Thus, we get:

s(t + �t) − s(t)

�t
= −β<k>s(t)i(t) + γ r(t). (2.24)

It can be rewritten as:

ds(t)

dt
= −β<k>s(t)i(t) + γ r(t). (2.25)

Similarly, we have the other three ordinary differential equations as follows:

de(t)

dt
= β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ) (2.26)

di(t)

dt
= β<k>s(t − τ)i(t − τ) − di(t) − μi(t) (2.27)

dr(t)

dt
= μi(t) − γ r(t) (2.28)

Thus, the SEIRS epidemic diffusion model which considers small world network
effect can be formulated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ds(t)
dt = −β<k>s(t)i(t) + γ r(t)

de(t)
dt = β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ)

di(t)
dt = β<k>s(t − τ)i(t − τ) − di(t) − μi(t)

dr(t)
dt = μi(t) − γ r(t)

. (2.29)

Here, β,<k>, γ ,μ, d, τ > 0. Initial conditions for this epidemic diffusion model
are demonstrated as follows:
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⎧
⎪⎪⎨

⎪⎪⎩

i(0) = i0 � 1
e(0) = <k>i(0)
s(0) = 1 − e0 − i0
r(0) = 0

(2.30)

(2) Analysis of the SEIRS model

As to SEIRS model, while such an epidemic diffusion system is stable, number
of people in different groups will be unchanged. Hence, we have s(t) = s(t − τ),
i(t) = i(t − τ), and we get:

de(t)

dt
= β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ) = 0. (2.31)

di(t)

dt
= β<k>s(t)i(t) − di(t) − μi(t) (2.32)

Equation (2.31)means that number of exposed people is a constantwhen epidemic
diffusion system is stable. As we all know, if an epidemic is wide spread, it should
satisfy the following condition:

di(t)

dt

∣
∣
∣
∣
t=0

> 0. (2.33)

Together this equation with Eq. (2.32), we can get:

s0 >
d + μ

β<k>
. (2.33)

Equation (2.33) shows that the spread of epidemic outbreaks only when s0 meets
the above condition. As s(t) + e(t) + i(t) + r(t) = 1, and combine with Eq. (2.29),
we get:

{ ds(t)
dt = −β<k>s(t)i(t) + γ (1 − s(t) − e(t) − i(t))

di(t)
dt = β<k>s(t)i(t) − di(t) − μi(t)

. (2.34)

Let ds(t)
dt = 0 and di(t)

dt = 0, we can get an obvious equilibrium point for such an
epidemic diffusion model as follows:

P1 = (s, i) = (1, 0). (2.35)

As Eq. (2.35) shows, number of infected people is zero, which indicates that
spread of epidemic in such an area does not happened. All people are susceptible
individuals. Herein, we refer to such a point as the disease-free equilibrium point.

On the other side, according to Eq. (2.31), number of exposed people is a constant.
Thus, combine with Eq. (2.34), we can get another equilibrium result as follows:
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P2 = (s, i) =
(
d + μ

β<k>
,
γ [β<k>(1 − e) − (d + μ)]

β<k>(γ + d + μ)

)

(2.36)

Such a result shows that when epidemic diffusion system is stable, a certain
amount of infected people exist in disaster area. Herein, we refer it as the endemic
equilibrium point.

Lemma 2.5 Disease-free equilibrium point P1 is stable only when β <
d+μ

<k> .

Proof As P1 = (s, i) = (1, 0), we can obtain the Jacobi matrix of Eq. (2.34) as
follows:

JP1 =
[

∂	1
∂s

∂	1
∂i

∂	2
∂s

∂	2
∂i

]

=
[−γ −β<k> − γ

0 β<k> − d − μ

]

. (2.37)

Here, 	1 and 	2 are the two differential equations in Eq. (2.34). The secular
equation for the Jacobi matrix is:

(λ + γ )(λ − β<k> + d + μ) = 0. (2.38)

It is easy to get the two characteristic roots for this secular equation, which are−γ

and β<k>−d −μ. Based on Routh-Hurwiz stability criterion, when β <
d+μ

<k> , real
parts of the two characteristic roots are negative. Thus, the disease-free equilibrium
point P1 = (s, i) = (1, 0) is stable only when β <

d+μ

<k> .

Lemma 2.6 Endemic equilibrium point P2 is stable only when β >
d+μ

<k>(1−e) .

Proof Similarly as Lemma 2.1, coupling with Eq. (2.31), the Jacobi matrix of
Eq. (2.29) can be rewritten as follow:

JP2 =
[

γ [−β<k>(1−e)−γ ]
(γ+d+μ)

−d − μ − γ
γ [β<k>(1−e)−(d+μ)]

(γ+d+μ)
0

]

. (2.39)

The secular equation for Eq. (2.39) can be expressed as follows:

aλ2 + bλ + c = 0. (2.40)

Herein, a = 1, b = γ [β<k>(1−e)+γ ]
(γ+d+μ)

and c = γ [β<k>(1 − e) − (d + μ)]. Based
on the quadratic equation theory, such a secular equation contains two characteristic
roots λ1 and λ2, and satisfies:

λ1 + λ2 = −b

a
= −γ [β<k>(1 − e) + γ ]

(γ + d + μ)
< 0. (2.41)
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λ1 · λ2 = c

a
= γ [β<k>(1 − e) − (d + μ)]. (2.42)

According to Routh-Hurwiz stability criterion, if we want to get two negative
characteristic roots λ1 and λ2 again, the Eq. (2.42) should be constant greater than
zero, whichmeans, β >

d+μ

<k>(1−e) should be satisfied. Thus, onlywhen β >
d+μ

<k>(1−e) ,
the endemic equilibrium point P2 is stable.

Remark 2.3 From these two lemmas, we can get the first conclusion that threshold
of the epidemic diffusion depends on some key parameters, such as average degree
distribution of the small world network<k>, recovered rateμ, death rate of infected
people d, also number of exposed people when the system is stable.

2.2.3 Emergency Demand Base on Epidemic Diffusion Model

In this section, we are going to discuss how to forecast the time-varying demand in
disaster area. Let D(t) represents demand for medicine resources in disaster area at
time t. Obviously, the more people infected, the more resources demanded. Thus, it
can be rewritten as:

D(t) ∝ f [I (t)]. (2.43)

We assume that each infected person should be cured for a certain time (the
cure cycle), e.g. 10 days, and during these days he/she needs for medicine presents
a law of decreasing. Hence, the total demand of medicine resources for each
infected/quarantined person is:

ψ =
c∫

0

ϕ(t)dt, (2.44)

where ϕ(t) is a decreasing function in the First Quartile. c is the cure cycle. To the
SEIRSmodel, the average demand formedicine resources in time t can be formulated
as follows:

DI (t) = I (t) · ψ

c
= N

c

c∫

0

ϕ(t)dt

t∫

0

β<k>s(t − τ)i(t − τ) − di(t) − μi(t)dt.

(2.45)

Hence we get that:
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dDI (t)

dt
= �[β<k>s(t − τ)i(t − τ) − di(t) − μi(t)], (2.46)

where � is a constant.

2.2.4 Numerical Test

In this section, we take a numerical simulation to test how well the proposed model
may be applied in practice. The initial values of relative parameters in the proposed
epidemic diffusion models are given as follows: β = 2 × 10−5, <k> = 6, γ =
2 × 10−4, δ = 0.3, μ = 0.2, d = d1 = 5 × 10−3, d2 = 1 × 10−3, τ = 5 (day),
N = 104 and i(0) = 1 × 10−3. We use MATLAB 7.0 mathematical solver together
with Runge-Kutta method to simulate the propose model. The tests are performed on
an Intel(R) Core(TM) i3 CPU 2.4 GHz with 2 GB RAM under Microsoft Windows
XP. Figure 2.8 is the numerical simulation of the smallpox epidemic models. The
curves respectively represent the different groups of people over time.

From this Figure we can find that there is a threshold value of epidemic diffusion.
The rush of the infected curve in such a Model is around on the 32–33 day. Based
on the above theory analysis, we find that some factors, such as β and <k>, are
key parameters in epidemic diffusion system. Herein, we present a short sensitivity
analysis for them. Holding all the other parameters fixed as in the numerical example
given above, except thatβ takes on four different values ranging fromβ = 2×10−5 to

Fig. 2.8 Numerical simulation for SEIRS model
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8×10−5 with an increment of 2×10−5, Fig. 2.9 shows that number of infected people
changed over time. From this figure, we observe that there almost get no distinguish
among these curves in the first 15–20 days. However, distinguish is obvious in the
following days. The larger initial size of β is, the faster increments speed is. From
this figure we know that propagation coefficient controlling is a very important and
effective method to prevent the smallpox epidemic diffusion.

Holding all the other parameters fixed as in the numerical example given above,
except that<k> takes on four different values ranging from4 to 10with an increment
of 2. Figure 2.10 shows that number of infected people is changed as time goes
by. As before, number of infected people shows a positive proportional to such a
parameter <k>. From this figure, we know that self-quarantine and decreasing the
contact with people around is an effective strategy for controlling epidemic diffusion.
Hence, during the SARS period, governments implement a series of strict quarantine
measures.

To facilitate the process in the following section, here we given that � = 1
directly. Such an operation will not affect the final compare result. According to
Eq. (2.27), holding all the parameters fixed as in the above numerical example, we
can get the demand for medicine resources by the proposed model, which are shown
in Fig. 2.11.

Form this figure, we can decompose the entire smallpox emergency rescue process
into three mutually correlated stages, and we present three corresponding controlling
strategies for them.

Fig. 2.9 Number of I(t) with different β
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Fig. 2.10 Number of I(t) with different <k>

Fig. 2.11 Demand for medicine resources
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(1) At the first stage (e.g. 0–15 days), epidemic has just outbreak, and it has not yet
caused a widespread diffusion. Such a period is the best emergency rescue time.
The demand formedicine resources during this period keeps in low level. Hence,
medicine resources inventory in local health departments should be distributed
to the infected people’s hands as quickly as possible.

(2) Ifwemiss the opportunities in the first stage, epidemicwould cause awidespread
diffusion, which makes us face to the second stage. In such a stage (e.g.
15–70days), demand formedicine resources is dynamic and time-varying. Thus,
resources distribution program in such a stage should also be varied over time.

(3) At the third stage (e.g. 70-more days), epidemic diffusion goes to be stable, and
demand for medicine resources shows decreasing. Hence, we can replenish the
inventory of medicine resources for these local health departments, and allocate
some other medicine resources to the remaining infected areas, simultaneously.

2.3 Epidemic Dynamics Considering Population Migration

2.3.1 Introduction

As mentioned in Rachaniotis et al. [36], a serious epidemic is a problem that tests
the ability of a nation to effectively protect its population, to reduce human loss and
to rapidly recover. Sometime such a problem may acquire worldwide dimensions.
For example, during the period from November 2002 to August 2003, 8422 people
in 29 countries were infected with SARS, 916 of them were dead at last for the
effective medical resources appeared late. Other diseases, such as HIV, H1N1 can
also cause significant numbers of direct infectious disease deaths. Epidemic diffusion
is a typical complex dynamic system problem in Gao et al. [37], for we don’t know
what kind of epidemic outbreaks, when it outbreaks, and how it diffuses. Generally,
after an epidemic outbreak, public officials are faced with many critical and complex
issues, the most important of which is to make certain how the epidemic diffuses so
that the rescue operation efficiency maximized.

Traditionally, analytical works on epidemic diffusion are concentrated on the
compartmental epidemic models of ordinary differential equations [38–42]. In these
models, the total population is divided into several independence classes and each
class of individuals is closed into a compartment. The sizes of the compartments
are large enough and the mixing of members is homogeneous. In other words, the
models based on the differential equations are always under the assumption of both
homogeneous infectivity and homogeneous connectivity of each individual. How-
ever, the traditional models do not consider the populationmigration among different
compartments.

The other stream of related research to our work is on the epidemic diffusion
with population migration. For instance, Hethcote [43] proposed that deterministic
communicable disease models were initial value problems for a system of ordinary
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differential equations, and thus he considered the asymptotic stability for the equi-
librium points for models involving temporary immunity, disease-related fatalities,
carriers, migration, dissimilar interacting groups, and transmission by vectors. In
his work, both susceptible individuals and infected individuals in each population
could migrate (only equal rates were considered), which led to different equilib-
riums. Another model that considers two interacting populations undergoing SIS
dynamics was presented in Kribs-Zaleta and Velasco-Hernandex [44]. The authors
considered that the two groups may have different values for model parameters espe-
cially those dealing with vaccination. Liebovitch and Schwartz [45] proposed that
classical disease models always use a mass action term as the interaction between
infected and susceptible people in separate patches and they derived the equations
when this interaction is a migration of people between patches. Sani and Kroese [46]
formulated various mathematical control problems for HIV spread in mobile het-
erosexual populations. They applied the cross-entropy method to solve these highly
multi-modal and non-linear optimization problems, and demonstrated the effective-
ness of the method via a range of experiments and illustrated how the form of the
optimal control function depends on themathematicalmodel used for theHIV spread.
Yang et al. [47] considered SIR and SIS epidemic models with bilinear incidence
and migration between two patches, where infected individuals cannot migrate from
one patch to another due to medical screening. They found the thresholds classify-
ing the global dynamics of the models in terms of the model parameters, and they
obtained the global asymptotical stability of the disease free and the disease endemic
equilibrium. Wolkewitz and Schumacher [48] pointed out that the main limitation of
the compartmental models is that several parameters are based on uncertain expert
guesses (default values) and are not estimated from the study data. Lee et al. [49]
extended the SEIR model to incorporate population migration between cities and
investigated the effectiveness of travel restrictions as a control against the spread of
influenza.

As a continued work, this section presents an SIS epidemicmodel with population
migration between two cities. We consider unequal migration rates for these two
populations and only susceptible individuals can migrate, which is different from the
whole existing works.

2.3.2 Epidemic Model with Population Migration

As the compartment model of epidemic diffusion is a mature theory, herein we omit
the verbose introduction of the framework process. In this section,we divide people in
epidemic areas into two groups: susceptible individuals (S) and infected individuals
(I). The transfer diagram of individuals in the epidemic areas can be illustrated as
Fig. 2.12.

To smooth the formulation progress of the SIS epidemic diffusion model in the
following subsections, some assumptions and parameters are specified as follows:
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S1 I1 
bN1 

dS1 dI1 

γI1 

S2 I2 
bN2 

dS2 dI2 

γI2 

βS1I1 βS2I2 

Fig. 2.12 The transfer diagram of SIS model with population migration

(1) The susceptible individuals and the infected individuals in city i at time t are
denoted as Si (t) and Ii (t), respectively. Thus, the total individuals in city i is
Ni (t) = Si (t) + Ii (t), i = 1, 2.

(2) b and d are the natural birth rate and the natural death rate, respectively. γ is
the recovery rate. β is the propagation coefficient. To facilitate the process in
the following sections, we assume that b = d. Moreover, disease-related death
rate is not considered in this work.

(3) Only the susceptible individuals can migrate in this paper. ai represents the
migrating-out rate of susceptible individuals in city i (ai > 0 for i = 1, 2 and
a1 �= a2).

(4) Using the notation N to represent the total number of the population in these
two cities N = N1 + N2. Note that N is a constant.

Hence, the ordinary differential equations for the SIS epidemic diffusion model
can be formulated as:

⎧
⎪⎪⎨

⎪⎪⎩

dS1
dt = bN1 − a1S1 + a2S2 − dS1 − βS1 I1 + γ I1
d I1
dt = βS1 I1 − γ I1 − d I1
dS2
dt = bN2 + a1S1 − a2S2 − dS2 − βS2 I2 + γ I2
d I2
dt = βS2 I2 − γ I2 − d I2

. (2.47)

ODE (2.47) describes the following dynamics of epidemic diffusion among the
population groups. (1) The change rate of the susceptible population in both city
1 and city 2 are determined by the entry population, the exiting population, and
the losing population who actually gets exposed to the disease and thus is counted
towards the class of infected population. The last one is in proportion to the prop-
agation coefficient β, and both of the current mass of the susceptible individuals
and the current mass of the infected individuals. (2) The change rate of the infected
population is determined by the difference between the entering population, those
of the susceptible population who get sick, the exiting population, and the losing
population. All parameters β, b, γ, a1, a2 are positive and initial conditions for
the model are demonstrated as follows:
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I1(0) = i01 � N , I2(0) = i02 � N , S1(0) = s01 , S2(0) = N − s01 − i01 − i02 .
(2.48)

2.3.3 Model Analysis

(1) Condition of the epidemic diffusion

As shown in above, I1(0) = i01 � N , I2(0) = i02 � N , S1(0) = s01 and
S2(0) = N − s01 − i01 − i02 are initial conditions for the proposed model, which
symbolize the initial number of susceptible and infected individuals. Then, it is
easy to obtain the initial condition for epidemic diffusion, which should satisfy the
following premise:

d I1
dt

|t=0 > 0 or
d I2
dt

|t=0 > 0. (2.49)

Taking it into Eq. (2.47), we can obtain the initial condition of the susceptible
individuals in city 1 and city 2:

s01 >
b + γ

β
or s02 < N − i01 − i02 − b + γ

β
. (2.50)

Equation (2.50) shows that the spread of epidemic only when s01 and s02 meet the
above initial conditions.

(2) Existence of the system equilibrium solution

Generally, it is difficult to obtain the analytic solution of the Eq. (2.47). To analyze
the epidemic diffusion, we consider the stable state of Eq. (2.47). Considering that
b = d and expunging S2, Eq. (2.47) can be rewritten as:

⎧
⎨

⎩

dS1
dt = −a1S1 + a2(N − S1 − I1 − I2) − βS1 I1 + (b + γ )I1
d I1
dt = βS1 I1 − (b + γ )I1
d I2
dt = β(N − S1 − I1 − I2)I2 − (b + γ )I2

. (2.51)

Let d I1
dt = 0, we can get I1 = 0 or S1 = b+γ

β
. Similarly, let d I2

dt = 0, we can obtain

I2 = 0 or S1 + I1 + I2 = N − b+γ

β
. With the partial derivative dS1

dt = 0, d I1
dt = 0 and

d I2
dt = 0, we can obtain one equilibrium point of the SIS epidemic diffusion system
intuitively when I1 = 0 and I2 = 0:

P1 = (S1, I1, I2) =
(

a2
a1 + a2

N , 0, 0

)

). (2.52)
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From Eq. (2.52) we can see that both number of infected individuals in city 1 and
city 2 are zero, which indicate that epidemic diffusion in these two cities does not
happened, and all the individuals in these two cities are susceptible individuals at
last. Herein, we call it disease-free equilibrium point.

When I1 = 0 and S1 + I1 + I2 = N − b+γ

β
, we can obtain the second equilibrium

point of the SIS epidemic diffusion system:

P2 = (S1, I1, I2) =
(
a2
a1

· b + γ

β
, 0, N − a1 + a2

a1
· b + γ

β

)

. (2.53)

From Eq. (2.53), when the SIS epidemic diffusion system is stable, the number
of infected individuals in city 1 is zero, and some infected individuals in city 2 still
exist. In this condition, we call it the endemic equilibrium point.

Likewise, when S1 = b+γ

β
and I2 = 0, we can obtain the third equilibrium point

of the SIS epidemic diffusion system:

P3 = (S1, I1, I2) =
(
b + γ

β
, N − a1 + a2

a2
· b + γ

β
, 0

)

. (2.54)

In line with the above work, when the SIS epidemic diffusion system is stable,
the number of infected individuals in city 2 is zero, and some infected individuals in
city 1 still exist. So it is called endemic equilibrium point as well.

It is worth mentioning that when S1 = b+γ

β
and S1 + I1 + I2 = N − b+γ

β
, there

is dS1
dt = (a2 − a1) · b+γ

β
�= 0 for that a1 �= a2. That means, under the conditions of

S1 = b+γ

β
and S1 + I1 + I2 = N − b+γ

β
, there is no solution for the simultaneous

Equations dS1
dt = 0, d I1

dt = 0 and d I2
dt = 0.

(3) Stability of the system equilibrium solution

Lemma 2.7 Disease-free equilibrium point P1 in the SIS epidemic diffusion system
is stable only when β < min{ (a1+a2)(b+γ )

a1N
,

(a1+a2)(b+γ )

a2N
}.

Proof Let P = dS1
dt , Q = d I1

dt and R = d I2
dt , the Jacobi matrix of Eq. (2.51) can be

obtained as follows:

J =
⎛

⎜
⎝

∂P
∂S1

∂P
∂ I1

∂P
∂ I2

∂Q
∂S1

∂Q
∂ I1

∂Q
∂ I2

∂R
∂S1

∂R
∂ I1

∂R
∂ I2

⎞

⎟
⎠

=
⎛

⎝
−a1 − a2 − β I1 b + γ − a2 − βS1 −a2

β I1 βS1 − (b + γ ) 0
−β I2 −β I2 β(N − S1 − I1 − 2I2) − (b + γ )

⎞

⎠.

(2.55)
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For P1 = (S1, I1, I2) =
(

a2
a1+a2

N , 0, 0
)
, the Jacobi matrix J can be rewritten

as follows:

JP1 =
⎛

⎜
⎝

−a1 − a2 b + γ − a2 − a2N
a1+a2

β −a2
0 a2N

a1+a2
β − (b + γ ) 0

0 0 a1N
a1+a2

β − (b + γ )

⎞

⎟
⎠.

According to the Jacobi matrix JP1 , it is easy to obtain the secular equation of
Eq. (2.51):

(λ + a1 + a2)(λ + b + γ − a2N

a1 + a2
β)(λ + b + γ − a1N

a1 + a2
β) = 0. (2.56)

The three latent roots of this secular equation are −a1 − a2,
a2N
a1+a2

β − b − γ

and a1N
a1+a2

β − b − γ . Based on Routh-Hurwiz stability criterion, only when β <
(a1+a2)(b+γ )

a1N
andβ <

(a1+a2)(b+γ )

a2N
, three latent roots of the secular equationwould have

negative real part, simultaneously, and then P1 = (S1, I1, I2) =
(

a2
a1+a2

N , 0, 0
)

is the stable solution of the differential equations.

Lemma 2.8 Endemic equilibrium point P2 in the SIS epidemic diffusion system is
stable only when a2 < a1 and β >

(a1+a2)(b+γ )

a1N
.

Proof As far as we concerned, if the endemic equilibrium point P2 = (S1, I1, I2) =(
a2
a1

· b+γ

β
, 0, N − a1+a2

a1
· b+γ

β

)
exists, it should satisfy condition I2 > 0 firstly.

Namely, the propagation coefficient β should satisfy β >
(a1+a2)(b+γ )

a1N
. Then, similar

as Lemma 2.7, we can obtain the Jacobi matrix for P2 as follows:

JP2 =
⎛

⎜
⎝

−a1 − a2 b + γ − a2 − a2
a1

(b + γ ) −a2
0 a2

a1
(b + γ ) − (b + γ ) 0

a1+a2
a1

(b + γ ) − βN a1+a2
a1

(b + γ ) − βN a1+a2
a1

(b + γ ) − βN

⎞

⎟
⎠.

According to the Jacobimatrix JP2 ,we canobtain the secular equationofEq. (2.51)
again:

[λ + b + γ − a2
a1

(b + γ )](λ2 + A1λ + A0) = 0. (2.57)

where A0 = a1[βN − a1+a2
a1

(b + γ )] and A1 = a1 + a2 + βN − a1+a2
a1

(b + γ ).
Obviously, one of the latent roots of Eq. (2.57) is λ∗

1 = a2−a1
a1

(b + γ ). Only when

a2 < a1, the latent root λ∗
1 is negative. On the other hand, when β >

(a1+a2)(b+γ )

a1N
,

there is A0 > 0 and A1 > 0. Based on Routh-Hurwiz stability criterion, the other
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two latent roots of Eq. (2.57) will be with negative real part. Therefore, P2 is the
stable solution of the simultaneous differential equations only when a2 < a1 and
β >

(a1+a2)(b+γ )

a1N
.

Lemma 2.9 Endemic equilibrium point P3 in the SIS epidemic diffusion system is
stable only when a1 < a2 and β >

(a1+a2)(b+γ )

a2N
.

Proof Similarly as Lemma 2.8, if the endemic equilibrium point P3 = (S1, I1, I2) =(
b+γ

β
, N − a1+a2

a2
· b+γ

β
, 0

)
is exist, it should satisfy condition I1 > 0. That is, the

propagation coefficient β should satisfy β >
(a1+a2)(b+γ )

a2N
. Then, we can obtain the

Jacobi matrix for P3 as follows:

JP3 =
⎛

⎜
⎝

−a1 − a2 − βN + a1+a2
a2

(b + γ ) −a2 −a2
βN − a1+a2

a2
(b + γ ) 0 0

0 0 a1−a2
a2

(b + γ )

⎞

⎟
⎠.

Again, according to the Jacobi matrix JP3 , we can obtain the secular equation of
Eq. (2.51):

[λ − a1 − a2
a2

(b + γ )](λ2 + B1λ + B0) = 0. (2.58)

where B0 = a2[βN − a1+a2
a2

(b + γ )] and B1 = a1 + a2 + βN − a1+a2
a2

(b + γ ).
Obviously, one of the latent roots of Eq. (2.58) is λ∗

1 = a1−a2
a2

(b + γ ). Only when

a1 < a2, the latent root λ∗
1 is negative. On the other hand, when β >

(a1+a2)(b+γ )

a2N
,

there is B0 > 0 and B1 > 0. Based on Routh-Hurwiz stability criterion, the other
two latent roots of Eq. (2.58) will be with negative real part. Therefore, P3 is the
stable solution of the simultaneous differential equations only when a1 < a2 and
β >

(a1+a2)(b+γ )

a2N
.

Remark 2.4 From Lemmas 2.7, 2.8 and 2.9, we can draw a conclusion that the
diffusion threshold of the SIS epidemic diffusion model relies on the migrating-out
coefficients of susceptible individuals of the two cities ai (i = 1, 2), also depends
on the three key parameters: the total individuals of the two cities N, the birth rate b
and the recovery rate γ .

2.3.4 Numerical Test

In this section, we take a numerical simulation to test how well the proposed model
may be applied in practice. The initial values of parameters in the proposed epidemic
diffusion model are listed as follows: β = 8 × 10−6, b = 2 × 10−4, γ = 0.4,
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Fig. 2.13 Evolution trajectories of the SIS epidemic model

a1 = 0.02, a2 = 0.01, N = 105, S1(0) = 0.7 × 105, I1(0) = 600 and I2(0) = 400.
We use MATLAB 7.0 mathematical solver together with Runge-Kutta method to
simulate the epidemic model. The test is performed on an Intel(R) Core(TM) i3 CPU
2.4 GHz with 2 GB RAM under Microsoft Windows XP. Figure 2.13 is the evolution
trajectories of the epidemic model. The curves respectively represent the different
groups of people over time in these two cities.

From Fig. 2.13, one can see that the evolution trajectories of the SIS epidemic
model with population migration between two cities are complicated. The number of
susceptible individuals in city 1 decreases gradually with time increasing, while the
number of susceptible individuals in city 2 increases at first and then decreases. On
the other hand, the number of infected individuals in city 1 increases at first and then
decreases; while the number of infected individuals in city 2 increases gradually with
time increasing. However, all the susceptible individuals and infected individuals in
city 1 and city 2 tend to the fixed values when time is long enough (t > 300).
Meanwhile, the limit value of the SIS epidemic diffusion model with population
migration between two cities is Q1 = (S1, S2, I1, I2) = (2.5013 × 104, 5.0025 ×
104, 0, 2.4961 × 104).

In line with the initial values we defined above, we have a2 < a1 and β >
(a1+a2)(b+γ )

a1N
. According to Lemma 2.8, one can get that the number of susceptible

and infected individuals will be converged at Q2 = (S∗
1 , S

∗
2 , I

∗
1 , I ∗

2 ) = (2.50125 ×
104, 5.00245×104, 0, 2.4963×104). One can see that Q1 is very close to Q2,which
is not a surprise, as it is consistent with the analytical conclusion in the last section.
Once an epidemic outbreak, we are more concerned with the change regularity of
the infected individuals in practice. Therefore, in the following subsections, we will
discuss the relationship between the key parameters and the number of the infected
individuals.
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Fig. 2.14 Number of the infected individuals versus different β

Figure 2.14 demonstrates the change of the number of the infected individuals in
both cities with different propagation coefficient. It is easy to know that the evolution
trajectories of infected individuals in city 1 are different from that in city 2 for any
certain propagation coefficient β. From Fig. 2.14a, we can see that in the first some
days, the larger β is, the faster spread of the epidemic in city 1 is. However, from
Fig. 2.14b, we can’t get the similar conclusion. Number of infected individuals in city
2 is not in direct proportion to the propagation coefficient β. It is worth mentioning
that when the number of infected individuals in city 1 reach zero, the number of
infected individuals in the other city is still positive when the epidemic diffusion
system is stable. This is consistent with the Lemma 2.8. Similarly, if the initial
conditions changed, we can also test and verify the other lemmas.

Figure 2.15 demonstrates the change of the number of the infected individuals in
both cities with different recovery rate γ . As shown in Fig. 2.15a, when γ = 0.2, the
maximum number of infected individual in city 1 is about 3.3×104. When γ = 0.3,
the number is about 1.5 × 104. When γ = 0.4, the maximum number of infected
individual in city 1 is less than 0.5 × 104. It informs us that the larger the recovery
rate constant is, the smaller of the maximum number of infected individuals in city 1
is. Similar phenomenon can also be observed from Fig. 2.15b in city 2. Such figure
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Fig. 2.15 Number of the infected individuals versus different γ
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(a) City1 (b) City 2

Fig. 2.16 Number of the infected individuals versus different a1 and a2

informs us it is important to improve the recovery rate as much as possible when in
controlling an epidemic spread.

Figure 2.16 shows the change of the number of infected individuals in both
cities with different migrating-out coefficients a1 and a2. According to Fig. 2.16,
one can observe that no matter in city 1 or in city 2, the evolution trajectories
of the infected individuals may generate a serious change when the migrating-
out coefficient of susceptible individuals changed. For example, in city 1, when
a2 < a1(a1 = 0.02, a2 = 0.01 and a1 = 0.02, a2 = 0.015), the number of infected
individual tends to be zero. However, when a1 < a2 (a1 = 0.02, a2 = 0.025 and
a1 = 0.02, a2 = 0.03), the number of infected individuals tends to be a positive con-
stant above 1× 104. In other words, with the increment of migrating-out coefficient
in city 2, the limit number of infected individuals in city 1 may become positive from
zero. The larger the migrating-out coefficient in city 2 is, the larger the limit number
of infected individuals in city 1 is. Opposite to city 1, when a2 < a1, the number of
infected individuals in city 2 tends to be a positive constant above 1 × 104. When
a1 < a2, the number of infected individuals is very small and tends to be zero at
last. It informs us that with the increment of migrating-out coefficient in city 2, the
limit number of infected individuals in city 2 may become zero from a positive value.
The larger the migrating-out coefficient in city 2 is, the smaller the limit number of
infected individuals in city 2 is. To summarize, decreasing the migration population
in only one city is not as effective as improving the recovery rate for controlling
the epidemic diffusion. However, we can find a trade-off between the migrating-out
coefficients in these two cities, and hence can control the infected individuals in both
cities at last.
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Chapter 3
Mixed Distribution Mode for Emergency
Resources in Anti-bioterrorism System

In this chapter, we construct a unique forecastingmodel for the demand of emergency
resources based on the epidemic diffusion rule when suffering a bioterror attack. In
what follows, we focus on how to deliver emergency resources to the epidemic
areas. We find that both the pure point-to-point delivery mode and the pure multi-
depot, multiple traveling salesmen delivery system are difficult to operate in an actual
emergency situation. Thus, we propose a mixed-collaborative distribution mode,
which can equilibrate the contradiction between these two pure modes. A special
time window for the mixed-collaborative mode is designed. A genetic algorithm is
adopted to solve the optimization model. To verify the validity and the feasibility of
the mixed-collaborative mode, we compare it with these two pure distribution modes
from both aspects of total distance and timeliness.

3.1 Introduction

The threat of bioterrorism, which is the deliberate use of viruses, bacteria, toxins,
or even insects to harm civilian populations. Over the past few years, a number of
bioterror events have been witnessed by the world, e.g. the attempt to disseminate
anthrax in Japan in 1993, the frequent occurrence of bioterrorist hoaxes, revelations
about the bio-weapon programs in the former Soviet Union and Iraq, and the anthrax-
related exposures in Florida, New York City, and Washington, DC [1]. As such,
bioterrorism has become one of the strongest enemies, threatening human health and
life, and the well-being of national economics. Henderson [2] points out that the two
most feared biological agents in a terrorist attack are smallpox and anthrax. Of these
two, anthrax does not spread from person to person, and we focus on analyzing the
response to a smallpox attack in a large city, with an eye towards how to deliver
emergency resources to the epidemic areas.

After a bioterror attack occurs, public officials are faced with many critical issues,
themost important ofwhich is how to ensure the availability and supply of emergency
resources so that the loss of life can be minimized and the efficiency of each rescue
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operation can be maximized [3]. As mentioned in Craft et al. [4], deterrence is not a
reliable strategy against terrorists, and because it is difficult to get biological agents
out of the hands of terrorists before they attack, our security against a biological attack
rests largely on consequence management, i.e., what can be done following a bioter-
ror attack. The particularity of the problem opens up a wide range of applications
of Operations Research/Management Science techniques. Actually, many recent
research efforts have been devoted to applying Operations Research/Management
Science techniques in emergency decision-making. For example, Altay and Green
[5] offer a summary of literature survey that identifies potential research directions
in disaster operations which make use of Operations Research/Management Science
techniques. Moreover, a survey of operation research models and applications in
homeland security is proposed by Wright et al. [6]. However, only a limited amount
of Operations Research/Management Science techniques is adopted in the context
of anti-bioterrorism.

Generally, emergency distribution in an anti-bioterrorism system ismore complex,
and differs from business logistics. Liu and Zhao [7] divide the emergency distribu-
tion problem in an anti-bioterrorism system into three stages. At the first stage, the
disaster area has just suffered a bioterror attack, and the bio-virus (smallpox) has not
yet caused a widespread diffusion. Thus, emergency resources from the local health
department should be delivered to the epidemic area as quickly as possible. However,
the following two important problems must be solved before the emergency distri-
bution: (1) How should demand for emergency resources in the epidemic area be
forecasted? It is often very difficult to predict the actual demand based on historical
data (and for many disasters, historical data may not even exist). (2) What kind of
distribution mode should be adopted to deliver the emergency resources?

So far, emergency distribution planning in China has traditionally been done
manually and individually, based on the decision makers’ experience. The following
twodistributionmodes are frequently used: the pure point-to-point deliverymode (we
refer to this as PTPmode), and themulti-depot, multiple traveling salesmen shipment
system (we refer to this as MMTSmode). However, research on this topic shows that
both of these two pure delivery modes are difficult to operate in an actual emergency
situation. Thus, we propose a mixed-collaborative mode, which allows both of these
two pure shipment systems to coexist. Furthermore, asmentioned before, the demand
for emergency resources in an anti-bioterrorism system is different from that in other
disasters (e.g. flood, typhoon and earthquake). It is closely related to the epidemic
diffusion rule when a bioterror attack is suffered. Thus, we propose a unique forecast
mechanism to predict the demand in the epidemic area. Themodel is expected to be an
effective decision-making tool that can help to improve the efficiency of emergency
distribution when a bioterror attack has taken place.
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3.2 Literature Review

Considering the relationship between an unexpected bioterror attack and the asso-
ciated emergency distribution decisions, we review two aspects of recent research
efforts here: one is focused on the modeling methods for prevention and control of
epidemics, and the other is related to emergency distribution.

3.2.1 Literature Related to Epidemic Prevention and Control

Many recent research efforts have been devoted to understanding the prevention and
control of epidemics, such as those of Wein et al. [8, 9], Craft et al. [4], Kaplan
et al. [10, 11], Kaplan and Wein [12]. Various mathematical models have been pro-
posed to analyze and study the general characteristics of each epidemic, such as SI,
SIR, susceptible–infected–susceptible (SIS), SIRS, SEI, SEIR and so on. It is worth
mentioning that the major purpose of these articles is to compare the performance
of the following two strategies, the traced vaccination (TV) strategy and the mass
vaccination (MV) strategy, but not to focus on how to deliver emergency resources
to the epidemic areas. Furthermore, the epidemic models which they addressed are
based on the traditional compartment model, and the complex topological structure
of the real world is not considered.

Jari and Kimmo [13] present a SIR model for modeling the spreading process of
randomly contagious diseases, such as influenza, based on a dynamic small-world
network. A study by Masuda and Konno [14] presents a multi-state epidemic pro-
cess based on a complex network. They analyze the steady states of various multi-
state disease propagation models with heterogeneous contact rates. In many models,
heterogeneity simply decreases epidemic thresholds. Xu et al. [15] present a mod-
ified SIS model based on complex networks, small-world and scale-free, to study
the spread of an epidemic by considering the effect of time delay. Based on two-
dimension small-world networks, a susceptible-infected (SI) model with epidemic
alert is proposed by Han [16]. This model indicates that the broadcasting of a timely
epidemic alert is helpful and necessary in the control of epidemic spreading, and is
in agreement with the general view of epidemic alert. Shi et al. [17] propose a new
susceptible-infected-susceptible (SIS) model with infective medium. The dynamic
behaviors of the model on a homogeneous network and on a heterogenous scale-
free network are considered respectively. Furthermore, it is shown that the immune
density of nodes depends not only on the infectivity between individual persons, but
also on the infectivity between persons and mosquitoes. Zhang and Fu [18] study the
spreading of epidemics on scale-free networks with infectivity which is nonlinear in
the connectivity of nodes. The result shows that nonlinear infectivity is more appro-
priate than a constant or a linear one. With unit recovery rate and nonlinear irrational
infectivity, the epidemic threshold is always positive.
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It is worth mentioning that the majority of the previous work relies on different
kinds of differential equations. For instance, first-order partial differential equations
are used to integrate the age structures; second-order partial differential equations are
suitablewhen a diffusion termexists; and integral differential equations or differential
equations are often used when a time delay or delay factors are considered [3].
Although the epidemic diffusion rule is not the emphasis of our research, it is a
necessary component when depicting the emergency demand.

3.2.2 Literature Related to Emergency Distribution

As mentioned before, PTP mode and MMTS mode are the two frequently used
distribution modes in reality. Thus, there exists a great deal of research on emergency
distribution that uses these two distribution modes. However, only a limited amount
of the literature is dedicated to the mixed-collaborative shipment system. We shall
now give a brief review of the existing studies.

Kemball-Cook and Stephenson [19] were among the first group of scholars to
point out that logistics management is needed to improve transportation efficiency
when rescue materials are being transported. Since then, a lot of articles pertinent
to emergency distribution have been published. Some typical literature about the
emergency distribution in the recent years are shown as follows: Yi and Kumar
[20] present a meta-heuristic of ant colony optimization for solving the logistics
problem arising in disaster relief activities. The logistics planning involves the fol-
lowing two aspects: to distribute emergency resources to the distribution centers in
the affected areas and to evacuate the wounded people to medical centers. Tzeng
et al. [21] construct a relief-distribution model using the multi-objective program-
ming method for designing relief delivery systems in a real case. The model features
three objectives: minimizing the total cost, minimizing the total travel time, and
maximizing the minimal satisfaction during the planning period. Chang et al. [22]
develop a decision-making tool that can be used by government agencies in planning
for flood emergency logistics. In this article, the flood emergency resources distribu-
tion problem is formulated as two stochastic programming models. A study by Sheu
[23] presents a hybrid fuzzy clustering-optimization approach to the operation of an
emergency resources distribution in response to the time-varying demand during the
crucial rescue period. Yan and Shih [24] consider how to minimize the length of time
required for emergency roadway repair and relief distribution, as well as the related
operating constraints. The weighting method is adopted and a heuristic algorithm is
developed to solve the actual emergency relief problem, such as the Chi-Chi earth-
quake in Taiwan. For more recent results on this topic, we refer readers to Laurent
and Hao [25].

It is worth mentioning that all the previous works are not in the context of anti-
bioterrorism. In order to optimize the process of materials distribution in an anti-
bioterrorism system, and to improve the emergency relief timeliness, the emergency
materials distribution problem in a system of anti-bioterrorism is constructed as
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a multiple traveling salesman problem with time window in Liu and Zhao [7]. A
very recent research effort by Wang et al. [3] constructs a multi-objective stochastic
programming model with time-varying demand for the emergency logistics network
based on the epidemic diffusion rule. The genetic algorithm coupled with Monte
Carlo simulation is adopted to solve the optimization model.

Though a great deal of literature on emergency distribution has been published,
only little attention has been paid to the mixed-collaborative shipment system. Liu
et al. [26] propose a heuristic algorithm for scheduling vehicles in a mixed truck
delivery system with both hub-and-spoke and direct shipment delivery modes. The
experiment’s results show that the mixed system can save around 10% of total trav-
eling distance on average as compared with either of the two pure systems. The
focus of Grünert and Sebastian [27] is on models for long-haul transportation in
postal and package delivery systems, and a mixed network, which combines both
direct flights and hub flights, is applied. However, these works were not carried out
under emergency conditions. To the best of our knowledge, there has not yet been any
researchwhich has used amixed-collaborative shipment system to deliver emergency
resources in the context of anti-bioterrorism.

Therefore, in this chapter, we construct a unique forecasting model of the demand
for emergency resources based on the epidemic diffusion rule when a bioterror attack
is suffered. Then we propose three different distribution models based on different
constraints. A special time window for the mixed-collaborative model is designed.
A genetic algorithm is adopted to solve the optimization model.

3.3 Demand Forecasting Based on Epidemic Dynamics

3.3.1 SEIQRS Model Based on Small-World Network

Most epidemics divide people into five classes: susceptible people (S), people during
the incubation period (E), infected people (I), quarantined people (Q) and recovered
people (R). The survey by Tham [28] shows that some of the recovered people who
are discharged from the emergency department will be re-infected. Thus, as Fig. 3.1

β<k>S(t-τ)I(t-τ) δI 

d2Q d1I

β<k>SI

γR
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μQ 
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Fig. 3.1 SEIQRS model based on small-world network
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shows, without consideration of the population migration, we can use a SEIQRS
model based on small-world network to describe the developing epidemic process.

For epidemic diffusion models based on small-world network match the actual
social network much better, a great deal of attention has been paid to studying these
models. Therefore, the following SEIQRS model [7] is adopted in this chapter:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = −β <k> S(t)I (t) + γ R(t)
dE
dt = β <k> S(t)I (t) − β <k> S(t − τ)I (t − τ)
d I
dt = β <k> S(t − τ)I (t − τ) − (d1 + δ)I (t)
dQ
dt = δ I (t) − (d2 + μ)Q(t)
dR
dt = μQ(t) − γ R(t)

. (3.1)

In such an epidemic diffusion model, the time-based parameters S(t), E(t), I (t),
Q(t) and R(t), represent the number of susceptible people, the number of people dur-
ing the incubation period, the number of infected people, the number of quarantined
people and the number of recovered people, respectively. Other parameters include:
<k> is the average degree distribution of the small-world network; β is the propaga-
tion coefficient of the bio-virus (smallpox); γ represents the rate of the recovered peo-
ple who will be re-infected; δ is the quarantined rate of the infected people; d1 is the
death rate of the infected people caused by the disease; d2 is the death rate of the quar-
antined people caused by the disease; μ is the recovered rate of the infected people;
τ stands for the incubation period. Furthermore, <k>, β, γ, δ, d1, d2, μ, τ > 0.

From Eq. (3.1), we can see that I (t) and Q(t), which denote the number of
infected people and the number of quarantined people, can be calculated by solving
the ordinary differential equations when the initial values of S(t), E(t), I (t), Q(t)
and R(t) are given. It is desired that these two parameters stay at a value as low as
possible, which implies that the situation is stable and the spread of the epidemic is
under control.

3.3.2 Demand for Emergency Resources

Demand for emergency resources has been devoted to variety of forms in the previous
literature, such as a time-varying value [23], or obeying some stochastic distribution
[24]. These forecasting models are not suitable when a bioterror attack is suffered.
As mentioned above, demand for emergency resources is closely related to the epi-
demic diffusion rule. Intuitively, the more people infected by the bio-virus, the more
emergency resources will be demanded. To facilitate the calculation process in the
following sections, and based on Eq. (3.1), demand for emergency resources can be
formulated as follows:

dt = <k> I (t) + Q(t), (3.2)
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where dt represents demand for emergency resources in the epidemic area at time t.
Thus, with the partial derivative of dt , we get

dd

dt
= <k>[β <k> S(t − τ)I (t − τ)]

− [<k> (d1 + δ) − 1]I (t) − (d2 + μ)Q(t). (3.3)

According to the above formulas, demand for emergency resources in the epidemic
area can be forecasted when the initial values of relative parameters are given. In
what follows, we will propose the three different distribution models based on the
forecasting demand.

3.4 Model Formulations

3.4.1 Point-to-Point Distribution Mode with no Vehicle
Constraints

Intuitively, PTP mode with no vehicle constraints would result in the best delivery
efficiency, because each demand node obtains the replenishment directly. If all emer-
gency resources are distributed by PTP mode, then the problem is simple and can be
formulated as a linear programming model as follows.

Suppose the emergency distribution network can be constructed as a digraph
G(O, V, E, ω), where O = {1, 2, · · · ,m} represents the emergency stock-
pile depots, and V = {1, 2, · · · , n} stands for the emergency demand nodes.
E = {ei j |i ∈ O, j ∈ V } represents the distribution arcs, where ei j is the arc from
the stockpile depot i to the emergency demand node j. ωi j is characterized as the
Euclidean distance from stockpile depot i to emergency demand node j. EQi {i ∈ O}
means the original inventory of emergency resources in stockpile depot i. I j and
Q j { j ∈ V } stand for the number of infected people and the number of quarantined
people in the demand node j, respectively. d j { j ∈ V } is the demand for emergency
resources in node j and can be calculated by Eq. (3.2). And last, the decision vari-
able zi j = 1 if the demand node j will be serviced by stockpile depot i; otherwise,
zi j = 0. Suppose that capacity of the vehicle is large enough for each demand node
to be satisfied in one trip. Thus, it is easy to formulate the linear programming model
for the PTP mode with no vehicle constraints as follows (M1):

(M1) min
∑

i∈O

∑

j∈V
2ωi j zi j (3.4)

s.t.
n∑

j=1

d j zi j ≤ EQi , ∀i ∈ O (3.5)
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m∑

i=1

EQi zi j ≥ d j , ∀ j ∈ V (3.6)

m∑

i=1

zi j ≥ 1, ∀ j ∈ V (3.7)

ωi j =
√

(xi − x j )2 + (yi − y j )2, ∀i ∈ O, j ∈ V (3.8)

d j = <k> I j + Q j , ∀ j ∈ V (3.9)

zi j = 0 or 1, ∀i ∈ O, j ∈ V . (3.10)

Here, Eq. (3.4) is the objective function, searching for the minimum total delivery
distance. Equations (3.5) and (3.6) are constraints for flowconservation andguarantee
that there are enough emergency resources. Equation (3.7) ensures that all demand
nodes would be supplied. Equation (3.8) is the Euclidean distance from stockpile
depot i to emergency demand node j, where x and y represent the X-coordinate
and Y-coordinate, respectively. Equation (3.9) denotes the demand for emergency
resources in demand node j (as introduced in the Sect. 3.3.2). And last, Eq. (3.10) is
the decision variable. The above model is a simple 0–1 integer programming model,
and can be solved by some programming tools (e.g. Matlab, Lingo) directly.

Due to various constraints (such as the number of vehicles is limited, etc.), such
a pure point-to-point distribution mode may be infeasible in an actual emergency
rescue situation. In reality the delivery mode of the emergency resources is much
more complex and difficult. For making a comparison between different emergency
distribution modes, we propose a relative evaluation function as follows.

Supposing that the speed of the vehicle is a constant v, we can obtain theminimum
waiting time set T PT P

wait = {t PT P
1 , t PT P

2 , · · · , t PT P
n } for all demand nodes in the pure

PTP mode based on the optimal solution of (M1). We define the relative timeliness
of all demand nodes in this mode as equal to the standard value 1. Meanwhile, we
define φelse

j as representing the timeliness of demand node j in other distribution
modes as follows:

φelse
j = t PT P

j

t elsej

, ∀ j ∈ V . (3.11)

Herein, t elsej is the minimum waiting time of the demand node j in other shipment
systemsbefore it gets the emergency replenishment. Therefore, the relative evaluation
function of the timeliness in other distribution modes can be formulated as follows:

�else = 1

n

∑

j∈V
φelse
j , ∀ j ∈ V . (3.12)
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3.4.2 The Multi-depot, Multiple Traveling Salesmen
Distribution Mode with Vehicle Constraints

In this section, we analyze the problem from another point of view. We assume that
both the capacity and the number of vehicles are limited. Thus, an inevitable problem
for distribution in such a situation is scheduling for all the demand nodes. Under the
assumption that each demand point would be satisfied after one replenishment, the
problemcan be transformed to amulti-depot,multiple traveling salesmen distribution
problem, which is characterized as a NP-hard problem.

Suppose that the shipment system can be constructed as a digraph G(O ∪
V, E, ω), where O = {1, 2, · · · ,m} represents the emergency stockpile depots,
and V = {m + 1,m + 2, · · · ,m + n} stands for the emergency demand nodes.
E = {ei j |i, j ∈ O ∪ V, i �= j } represents the distribution arcs, where ei j is the arc
from point i to j in the network (if i ∈ O, j ∈ V , that means from the stockpile
depot i to the demand node j; if i ∈ V, j ∈ O , that means from the demand node i
back to the stockpile depot j; if i, j ∈ V, i �= j , that means from the demand node
i to the demand node j; And last, if i, j ∈ O, i �= j , that means from the stockpile
depot i to the stockpile depot j). ωi j is the Euclidean distance from point i to point j.
Specially, in order to depict that there is no distribution arc between any two stock-
pile depots, ωi j is defined as a large number while i, j ∈ O, i �= j . R represents
the feasible path set, and rl stands for the feasible path in R. EQk{k ∈ O} means
the original inventory of the emergency resource in stockpile depot k. Sk(k ∈ O)

means the demand nodes set that is supplied by stockpile depot k, and it meets the
constraint

⋃
k∈O Sk = V . I j and Q j { j ∈ V } stand for the number of people who

are infected, and the number of people who are quarantined, respectively. d j { j ∈ V }
is the demand for emergency resources in node j. Nk(k ∈ O) is the least number
of vehicles we needed in depot k, and Qcap represents the capacity of the vehicle.
And last, the decision variable, zi j = 1 if the vehicle travels from point i to point j;
otherwise, zi j = 0. Thus, the multi-depot, multiple traveling salesmen distribution
problem can be formulated as follows (M2):

(M2) min
∑

i∈O∪V

∑

j∈O∪V,i �= j

ωi j zi j (3.13)

s.t.
∑

i∈O∪V
xi j = 1,∀ j ∈ V, i �= j (3.14)

∑

j∈O∪V
xi j = 1,∀i ∈ V, i �= j (3.15)

∑

i∈O

∑

j∈V
zi j =

∑

i∈V

∑

j∈O
zi j (3.16)

∑

j∈Sk
d j ≤ EQk,∀k ∈ O (3.17)
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∑

j∈rl
d j ≤ Qcap,∀rl ∈ R (3.18)

∑

i /∈S

∑

j∈S
zi j ≥ 1,∀S ⊆ V, |S| ≥ 2 (3.19)

Nk =
⎡

⎢
⎢
⎢
⎢

∑

j∈Sk
d j

Qcap

⎤

⎥
⎥
⎥
⎥

,∀k ∈ O (3.20)

ωi j =
√

(xi − x j )2 + (yi − y j )2,
∀i ∈ O, j ∈ V,

or i ∈ V, j ∈ O,

or i, j ∈ V, i �= j
(3.21)

ωi j = M, ∀i, j ∈ O, i �= j (3.22)

d j = <k> I j + Q j , ∀ j ∈ V (3.23)

zi j = 0 or 1, ∀i, j ∈ O ∪ V, i �= j (3.24)

Herein, Eq. (3.13) is the objective function, searching for the minimum total dis-
tribution distance. Equations (3.14) and (3.15) ensure that each demand node would
be supplied once. Equation (3.16) means all vehicles leaving the stockpile depots
must return to them afterwards. Equation (3.17) means there are enough emergency
resources for the demand nodes. Equation (3.18) is a constraint for the feasible path,
which warrants that the total emergency requirement on the feasible path does not
exceed the capacity of the vehicle. Equation (3.19) ensures that there is no sub-loop
in the optimal solution. Equation (3.20) is used for calculating the number of vehi-
cles required in each depot. Equations (3.21) and (3.22) are the distance constraints.
Equation (3.23) is used for forecasting the demand for emergency resources in each
demand node. Finally, Eq. (3.24) is the variable constraint. The above model is a
typical NP problem, and would thus be difficult to optimally solve, especially for
realistically large-scale problems. Therefore, we should design an algorithm to get
the approximate optimal solution.

3.4.3 The Mixed-Collaborative Distribution Mode

In the above two Sects. (3.4.1) and (3.4.2), we discussed the problem from two differ-
ent directions. In fact, both of these two pure distribution modes may be infeasible in
an actual situation. On the one hand, we may have not enough vehicles to implement
all the emergency services by PTP mode. On the other hand, if we adopt the MMTS
mode, some of the vehicles may be unused, which reduces the emergency timeli-
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ness. Thus, a mixed-collaborative mode, which allows both of these two distribution
modes to coexist, is proposed in the following, with the objective of equilibrating
the total rescue distance and timeliness. Similarly as before, this problem can also
be depicted as follows.

at j represents the time when the distribution vehicle arrives at the demand node
j { j ∈ V }. [e j , l j ] represents the time window for demand node j { j ∈ V }, where e j
means the earliest arrival time (result of the PTP mode), and l j is the latest arrival
time (result of the MMTS mode). Here, we design a special time window for such
a mixed-collaborative mode using the computational results of the former two pure
modes, which guarantee that the outcome of the mixed-collaborative mode will be
maintained at a high level. Ni , i ∈ O means the number of vehicles in stockpile depot
i. Suppose that the speed of the vehicle is an invariable constant, then ti j = ωi j/v,
∀i, j ∈ O ∪V would be the time consumed from point i to point j. Other parameters
are specified in the same way as MMTS mode.

Such a mixed system can be understood as a MMTS mode which allows some
requirements to be delivered directly when the constraints are much stricter. Thus,
combined with Eq. (3.12) in Sect. 3.4.1, the mixed distribution problem can be
formulated as follows (M3):

(M3) max
∑

i∈O
�i (3.25)

s.t.
∑

i∈O∪V
xi j = 1,∀ j ∈ V, i �= j (3.26)

∑

j∈O∪V
xi j = 1,∀i ∈ V, i �= j (3.27)

∑

j∈V
zi j = Ni ,∀i ∈ O (3.28)

∑

i∈V
zi j = N j ,∀ j ∈ O (3.29)

∑

j∈Sk
d j ≤ EQk,∀k ∈ O (3.30)

∑

j∈rl
d j ≤ Qcap,∀rl ∈ R (3.31)

∑

i /∈S

∑

j∈S
xi j ≥ 1,∀S ⊆ V, |S| ≥ 2 (3.32)

ωi j =
√

(xi − x j )2 + (yi − y j )2,
∀i ∈ O, j ∈ V
or i ∈ V, j ∈ O
or i, j ∈ V, i �= j

(3.33)

ωi j = M, ∀i, j ∈ O, i �= j (3.34)
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d j = <k> I j + Q j , ∀ j ∈ V (3.35)

e j ≤ at j ≤ l j ,∀ j ∈ V (3.36)

ati + ti j + (1 − zi j )T ≤ at j ,∀i ∈ O ∪ V, j ∈ V, i �= j (3.37)

ati = 0,∀i ∈ O (3.38)

at j > 0, e j > 0, l j > 0,∀ j ∈ V (3.39)

ti j > 0,∀i ∈ O ∪ V, j ∈ V, i �= j (3.40)

zi j = 0 or 1, ∀i, j ∈ O ∪ V, i �= j. (3.41)

Equation (3.25) is the objective function, searching for the maximizing timeli-
ness. Equations (3.28) and (3.29) mean that all vehicles leaving from the stockpile
depot must finally return to the depot. Equations (3.35)–(3.39) are the time window
constraints, T means a large enough number. Other constraints are defined in the
same way as in Sect. 3.4.2.

3.5 Solution Procedures

The ‘dde23 function’ in MATLAB coupled with Eqs. (3.2) and (3.3) is adopted to
calculate the demand in Eqs. (3.9), (3.23) and (3.35). The linear programming tool
in MATLAB is implemented to solve the first model (M1). Thus, in this section, we
focus on the solution methodology for the following two models (M2) and (M3).
Since the available techniques for solving the mixed integer programming problems
are still limited, and a genetic algorithm is commonly used, we adopt a genetic
algorithm to solve the two models. Liu and Zhao [7] have designed a modified GA
for such a problem, the major difference from Carter and Ragsdale [29] being that
the former have designed a special set order operator, a crossover operator and a
mutation operator. Based on this previous work, we make a further improvement to
the GA in order to meet the requirements of the models in this chapter.
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3.5.1 Operating Instructions for Genetic Algorithms

3.5.1.1 Chromosome Coding

The first step, which is also characteristic of the new “genetic algorithms”, is to define
the chromosome coding as follows.

Figure 3.2 presents the three-part chromosome in this chapter (for example, 3
emergency stockpile depots, 27 demand nodes, n = 9 and m = 3). The first part of
the chromosome represents the serial number of the emergency stockpile depot. The
second part means the demand nodes which are supplied by the stockpile depot in
the first part. The third part stands for the number of demand nodes to which each
vehicle will be assigned. This part should meet the following two constraints: (i)
Each element in this part should be a positive integer; (ii) The sum of all elements
in this part should be equal to the length of the second part.

3.5.1.2 Other Steps

The fitness of each individual is obtained by computing the objective function. The
selection process is based on the rule ‘the best one copy strategy’. Order crossover is
selected for the second part because it is commonly used by TSP operator. The third
part of the chromosome uses an asexual crossover method. We mutate the individual
use of the custommutation operator in Liu andZhao [7]. Aswe cannot get the optimal
result exactly for a NP-Hard problem, a max iteration is given for the termination.

Emergency demand nodes
Emergency 
stockpile depots

Vehicle 1 Vehicle 2
Vehicle 3

2 3 4 23 22 7 10 12 14 15 3 3 3 

3 5 8 17 18 19 20 21 26 27 2 3 4 

1 24 25 6 9 11 13 16 4 2 3 1 2 

Number of demand nodes that
each vehicle is assigned to

Fig. 3.2 The three-part chromosome
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3.5.2 The Solution Procedure

We present the solution procedure in Table 3.1.
Asmentioned before, themixed-collaborativemode can be understood as a special

case of MMTS mode. Thus, a solution algorithm of this kind can also be similarly
applied for solving themodel (M3)with suitablemodifications as follows (Table 3.2).

Table 3.1 The solution procedure for model (M2)

Step 1 Initialize the population according to the chromosome coding rule and the related
constraints (M2)

Step 2 Evaluation. Calculate fitness values of all the chromosomes

Step 3 Selection. Execute selection operation according to the selection rule

Step 4 Crossover. Execute crossover operation according to the crossover operator, 70%
probability

Step 5 Verify validity of the two children’s chromosomes using constraints in (M2), if true,
compare the two children’s chromosomes and the two parents’ chromosomes, and
reserve the best two of them

Step 6 Mutation. Execute mutation operation according to the mutation operator, 1%
probability

Step 7 Verify validity of the children’s chromosome using constraints in (M2), if true,
compare the children’s chromosome and the parents’ chromosome, and reserve the
better one

Step 8 Gen = gen + 1, if the termination condition is satisfied, end the GA program and
output the optimal result, and then go to the next step. otherwise, go back to Step 2

Step 9 Output the results

Table 3.2 The solution procedure for model (M3)

Step 1 Initialize the population according to the chromosome coding rule and the related
constraints (M3)

Step 2 Evaluation. Calculate fitness values of all the chromosomes (Evaluation function
changed)

Step 5 Verify validity of the two children’s chromosomes using constraints in (M3), if true,
compare the two children’s chromosomes and the two parents’ chromosomes, and
reserve the best two of them

Step 7 Verify validity of the children’s chromosome using constraints in (M3), if true,
compare the children’s chromosome and the parents’ chromosome, and reserve the
better one
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3.6 Computational Experiments and Result Analysis

To test how well the model may be applied in the real world, we exhibit a case study
to demonstrate the efficiency of the proposed three different distribution models. To
facilitate the calculation process, we assume that a city is suffering from a smallpox
attack. There are 3 stockpile depots and 27 demand nodes (27 epidemic areas) in
the city. The coordinates of these points are randomly selected from the Solomon
benchmark data set. To further verify the validity and the feasibility of the solution
procedure, we repeat this work 3 times, respectively for the 3 different kinds of the
data R, C and RC subset in the Solomon benchmark problem.

The first step in the solution procedure is to forecast the demand for emergency
resources in each demand node. We assume that each infected area can be isolated
from the other areas to avoid the spread of the disease. The values of the parameters
in the epidemic diffusion model are given as follows. β = 1 × 10−5, <k> = 6,
d1 = 5×10−3, d2 = 1×10−3, γ = 2×10−3, δ = 0.3,μ = 0.1, τ = 5. Asmentioned
in Sect. 3.3.1, the number of infected people and the number of quarantined people,
can be calculated by solving the ordinary differential equationswhen the initial values
of S(t), E(t), I (t), Q(t) and R(t) are given. Taking the first demand node as an
example, we assume that S(0) = 9940, E(0) = 50, I (0) = 10, Q(0) = R(0) = 0,
and that Fig. 3.3 is a numerical simulation of the epidemic diffusion model for this
epidemic area. The five curves respectively represent the five groups of people (S, E,
I, Q, R) over time. Thus, demand of the emergency resources in such node is shown
in Fig. 3.4.

After getting the demand in each epidemic node by repeating the above work 27
times, in what follows, we will compare the mixed-collaborative mode with the two
pure distribution modes, from both aspects of total distance and timeliness.

Fig. 3.3 An example of the
SEIQRS epidemic diffusion
model
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Fig. 3.4 An example of the
demand for emergency
resources

3.6.1 Comparison and Analysis for Each Stockpile Depot

As mentioned in Sect. 3.4, this chapter focuses on the first stage of responding to a
bioterror attack, thus we take the distribution results at time t = 3 as our example.
Furthermore, we assume that the emergency rescue cost is directly proportional to
the total distance.

Comparing the two Figs. 3.5 and 3.6 (for detailed information about Figs. 3.5 and
3.6, please go to Appendix A in the end of this book), although we declare that the
PTP mode often results in the best delivery efficiency, we also observe that the total
distance in this mode is the largest one, whether in C, R, or RC subset. Thus, the total
emergency rescue cost in this mode will also be the largest one. As to MMTS mode,
we can observe that the total distance in this mode is always the minimum one when
compared with the other two modes, whether to C, R, or RC subset. Although the
total emergency rescue cost in this mode is the lowest one, it is worth mentioning
that timeliness in MMTS mode is also the minimal one too, compared with the other
two modes.

Thus, we reach the conclusion that both of these two pure distribution modes are
difficult to operate in an actual situation. For the pure point-to-point delivery mode,
there is a risk of raising the total rescue cost (Fig. 3.5), while themulti-depot, multiple
traveling salesmen delivery system holds the risk of decreasing the total timeliness
(Fig. 3.6), whether to C, R, or RC subset.

From these two Figs. 3.5 and 3.6, we also observe that the efficiency of the mixed-
collaborative mode is always situated between these two pure modes. In the mixed-
collaborative mode, we utilize the PTP mode to deliver the emergency resources to
the demand nodewhen the timewindow is very strict. For the demand nodewith loose
timewindow, theMMTSmode is adopted. Thus, the contradiction between these two
pure modes can be equilibrated. For example, when the mixed-collaborative mode
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Fig. 3.5 Total distance of each depot

is adopted, the total distance of the three depots in C subset is respectively increased
by 19, 7 and 18.5%, as opposed to MMTSmode (Fig. 3.5a). However, timeliness for
those three depots is respectively improved by 8.3, 6.4 and 19%, too (Fig. 3.6a).
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Fig. 3.6 Timeliness of each depot

3.6.2 Comparison and Analysis for Total Distance
and Timeliness

In this section, we compare and analyze the three distribution models from the per-
spectives of total distance and timeliness. The results are shown as the following two
tables.

From these two tables, we reach a similar conclusion as before: the PTP mode
results in the best delivery efficiency and the largest distance, while theMMTSmode
results in theworst delivery efficiency and the lowest distance.Andfinally, the contra-
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Table 3.3 Total distance for
the three modes

C subset R subset RC subset

PTP mode 848.393 986.365 654.8171

MMTS mode 352.8543 581.8270 311.9578

Mixed mode 477.8886 665.5658 395.03989

Table 3.4 Total timeliness
for the three modes

C subset R subset RC subset

PTP mode 1 1 1

MMTS mode 0.8264 0.6310 0.8602

Mixed mode 0.9393 0.8478 0.9188

diction between these two pure modes can be equilibrated in the mixed-collaborative
mode. For instance, the total average of the timeliness in the MMTS mode is merely
77.3%. To the three subsets C, R and RC, when the mixed-collaborative mode is
adopted, the total distance is respectively increased by 14.7, 8.49 and 12.7%, as
compared to the MMTS mode (Table 3.3). However, the total timeliness is respec-
tively improved by 11.29, 21.68 and 5.86% (Table 3.4), which makes the total aver-
age of the timeliness in the mixed-collaborative mode 90.2%, and achieves a 12.9%
improvement compared to the MMTS mode. This will be a much more appropriate
solution for the actual relief activities.

As introduced inSect. 3.3.1, emergency distribution in an anti-bioterrorism system
ismore complex, and differs from business logistics. Computational experiments and
result analysis in this section show that the mixed-collaborative distribution model is
expected to be an effective decision-making tool when a bioterror attack is suffered.
Both of the two problems have been solved by such a mixed-collaborative method.
Therefore, this method can be adopted by the emergency command center, and the
traditional emergency distribution planning based on the decisionmakers’ experience
would be improved.

3.7 Conclusions

In this chapter, we focus on how to deliver emergency resources to epidemic areas
as fast as possible after a bioterror attack, and we propose three different distribution
models, each based on different constraints. The main differences that distinguish
this chapter from the past literature are presented as follows:

(1) We construct a unique forecastmechanism to predict the demand in the epidemic
area, which has just suffered a bioterror attack, based on epidemic diffusion rule.
This is one of the basic constraints in the following three models, and a method
of this kind is different from all past reports.
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(2) As both of these two pure distribution modes may be infeasible in a real-life
situation, we propose a mixed-collaborative mode, which can equilibrate the
contradiction between these two pure modes. To verify the validity and the
feasibility of the mixed-collaborative mode, we compare it with the two pure
distribution modes from both aspects of distance and timeliness.

(3) To facilitate the comparison process, we propose a relative measure method of
timeliness for the different distribution modes.

Besides, we offer a newly modified GA for solving the problems. To obtain more
accurate results, we can increase the number of generations and the population size
so as to expand the coding scale and search the optimization solution in a larger
space.

It’s also necessary to point out some limitations of this research. First of all, the
programmingmodels in this chapter are discrete, and do not consider that emergency
resources distributed at an earlier stage will affect the demand later. Second, only
homogeneous vehicle and hard time windows are considered in this chapter, which
limits the practical implications of the method. Third, we assume that the infected
area can be isolated from other areas to avoid the spread of the disease. Actually,
this is very difficult. All these areas of improvement represent our future research
directions.
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Chapter 4
Epidemic Logistics with Demand
Information Updating Model I: Medical
Resource Is Enough

In this chapter, we present a discrete time-space network model for allocating med-
ical resource following an epidemic outbreak. It couples a forecasting mechanism
for dynamic demand of medical resource based on an epidemic diffusion model
and a multi-stage programming model for optimal allocation and transport of such
resource. In this chapter, we present a discrete time-space network model for allo-
cating medical resource following an epidemic outbreak. It couples a forecasting
mechanism for dynamic demand of medical resource based on an epidemic diffusion
model and a multi-stage programming model for optimal allocation and transport of
such resource. At each stage, the linear programming solves for a cost minimizing
resource allocation solution subject to a time-varying demand that is forecasted by
a recursion model. The rationale that the medical resource allocated in early periods
will take effect in subduing the spread of epidemic and thus impact the demand in
later periods has been incorporated in such recursion model. We compare the pro-
posed medical resource allocation mode with other operation modes in practice, and
find that our model is superior to any of them in less waste of resource and less logis-
tic cost. The results may provide some practical guidelines for a decision-maker who
is in charge of medical resource allocation in an epidemics control effort.

4.1 Introduction

Over the past few years, the world has grown increasingly concerned about the
threat of different epidemics. Disastrous epidemic events such as SARS and H1N1
significantly impacted people’s life. The outbreak of infections in Europe is another
recent example. The infection, from a strain of Escherichia coli, can lead to kidney
failure and death and is difficult to treat with antibiotics. It is now widely recognized
that a large-scale epidemic diffusion can conceivably cause many deaths and more
people of permanent sequela, which presents a severe challenge to local or regional
health-care systems.
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After an epidemic outbreak, public officials are faced with many critical issues,
the most important of which being how to ensure the availability and supply of
medical resource so that the loss of life may be minimized and the rescue operation
efficiency maximized. The medicine logistics in an epidemics controlling system
is often complex and difficult. Hu et al. [1] compared public-health management
mechanisms in both US and China from the following three aspects: organizational
structure, management system and logistics network, and pointed out some defi-
cient areas in the Chinese public-health management mechanism. To date, medicine
logistics operation in epidemic control activities in China has traditionally been done
unsystematically and separately, based on the decision-makers’ experience and dis-
regarding the interrelationship between the time-varying demand and the logistics
operation planning from a systematic perspective. Thus, this paramount life-saving
and costly logistics problem opens up a wide range of applications of Operations
Research/Management Science techniques and has motivated many recent research
works.

In this chapter, a time-space network model for the medical resource alloca-
tion problem in controlling epidemic diffusion is proposed. It couples a forecast-
ing mechanism for the dynamic demand of the medical resource based on the epi-
demic diffusion pattern of susceptible-exposed-infected-recovered (SEIR) model [2]
and a multi-stage programming model for optimal allocation and transport of such
resource. The two dynamic processes are woven together and interactively proceed
to model the epidemic diffusion and the medical resource allocation. Particularly,
given the dynamic demand for the medical resource at each stage predicted by the
forecasting mechanism, the linear programming problem solves the cost minimizing
resource allocation pattern subject to related operating constraints. The optimal solu-
tion of the resource allocation will then determine their availability at each emergent
district hospital, upon which the efficiency of rescuing effort is conditioned (assum-
ing the other needed health care technologies and human resource are guaranteed).
The efficiency of the rescuing effort will determine the recovering rate of the infected
population, which, in turn, will generate the new forecast of the demand for medi-
cal resource by updating the SEIR diffusion model. The above described model is
expected to be an effective decision-making tool that can help improve the efficiency
of medicine logistics when an epidemic outbreaks.

4.2 Literature Review

Considering the relationship between the epidemic diffusion and the associatedmed-
ical resource allocation, we review two streams of recent research efforts here: one is
focused on the epidemic diffusion modeling, and the other is related to the medical
resource allocation modeling.
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4.2.1 Epidemic Diffusion Modeling

Most analytical works on epidemic diffusion are concentrated on the compartmental
epidemicmodels described by ordinary differential equations [3–5]. In these models,
the total population is divided into several classes and each class of people is closed
into a compartment. The sizes of the compartments are assumed to be large enough
and the mixing of members to be homogeneous.

The second streamof research is on the development of epidemic diffusionmodels
by applying complex network theory to the traditional compartment models [6–8].
Jung et al. [9] extended the previous studies on the prevention of the pandemic
influenza to evaluate time-dependent optimal prevention policies, and they found that
the quarantine policy was very important, and more effective than the elimination
policy, during the disease spread period.Wang et al. [10] presented some suggestions
for the epidemic prevention and infection control in the Wenchuan earthquake areas,
Sichuan Province, China.

The third stream of research is on the development of epidemic diffusion mod-
els by applying simulation methods, including computer simulation and numerical
computation [11–13]. For example, Samsuzzoha et al. [14] used a diffusive epidemic
model to describe the transmission of influenza. The equations were solved numeri-
cally by using the splitting method under different initial distribution of population
density. Further, Samsuzzoha et al. [15] presented a vaccinated diffusive compart-
mental epidemic model to explore the impact of vaccination as well as diffusion on
the transmission dynamics of influenza.

Recently and importantly, a robust data-driven fault detection approach is pro-
posed with application to a wind turbine benchmark [16, 17]. The main challenges
of the wind turbine fault detection lie in its nonlinearity, unknown disturbances as
well as significant measurement noise. Sometimes the relative data may be missed
[18, 19]. These works are constructive and helpful to understand and model the
epidemic diffusion process in a very different way.

The abovementioned works represent some of the research on various differential
equation models for epidemic diffusion and control. Although the emphasis of this
chapter is on the efficient allocation of medical resource, a basic component of our
model, the forecasting mechanism for their dynamic demand utilizes one of such
epidemic diffusion models.

4.2.2 Medical Resource Allocation Modeling

To the best of our knowledge, a great deal of researches has been published with
the topic on optimal allocation of medical resource [20–24]. To optimize the process
of materials distribution in an epidemic diffusion system and to improve the distri-
bution timeliness, Liu and Zhao [25] modeled the emergency materials distribution
problem as a multiple traveling salesman problem with time window. Wang et al.
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[26] constructed a multi-objective stochastic programming model with time-varying
demand for the emergency logistics network based on the epidemic diffusion rule.
A genetic algorithm coupled with Monte Carlo simulation was adopted to solve
the optimization model. Qiang and Nagurney [27] proposed a humanitarian logistic
model for supply/distribution of critical needs in a disruption caused by a natural dis-
aster. They considered a general network structure and disruptions that may have an
impact on both network link capacities and product demand. The problemwas studied
in a bi-criteria system optimization framework for network performance. Recently,
Rachaniotis et al. [28] presented a deterministic resource scheduling model in epi-
demic control. In their work, a deterministicmodel, appropriate for large populations,
where random interactions could be averaged out, was used for the epidemic’s rate
of spread. Besides, a case of the mass vaccination against H1N1 influenza in the
Attica region, Greece and a comparative study of the model’s performance versus
the applied random practice were presented.

To deal with the complexity and difficulty in solving the medical resource alloca-
tion problem, we observe a trend in solution methodologies, that is, decomposing the
original problem, which can be a multi-commodity, -modal, or -period model, into
severalmutually correlated sub-problems, and then solve themsystematically in same
decision scheme. For instance, Barbarosoglu et al. [29] proposed a bi-level hierarchi-
cal decomposition approach for helicopter mission planning during a disaster relief
operation. The top-level model was formulated to deal with the tactical decisions,
covering the issues of helicopter fleet management, crew assignment, and the num-
ber of tours undertaken by each helicopter. The base-level model aimed to address
the corresponding operational decisions, including routing, loading/unloading and
re-fueling scheduling. Yan and Shih [30] was more recent work following this line.

Furthermore, we note that most of the previous works were carried out under the
assumption that the relief demand is not time sensitive. While in reality, the demand
for medical resource is dynamic, and the medical resource allocated in early cycles
will affect the demand in later periods. In this chapter, we will use a discrete time-
space network to model the medical resource allocation problem when an epidemic
outbreaks. In each decision cycle, the problem is constructed as a linear programming
model to solve for the cost minimizing allocation solution subject to the time-varying
demand that is predicted by the epidemic diffusion rule. As such, this study attempts
to bridge the two streams of literature, the epidemic diffusion and the medicine
logistics, which were studied separately in existing literature.

4.3 The Mathematical Model

Epidemic diffusion process can be divided according to its development into three
stages [31]. The first stage is the inception of the epidemic in very limited population,
which if noticed in time and treated properly can be controlled effectively without
causing a wide spread. In the second stage, the epidemic has broken out into a
widespread diffusion. An important part of epidemic control and rescue campaign is
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to ensure the timely delivery of the neededmedical resource according to the dynamic
demand as determined by the progress of the epidemic spread. In the third stage,
the epidemic diffusion has been controlled and the demand for medical resource
has significantly declined. Liu et al. [32] proposed a model for studying medical
resource distribution in the first stage. In this study, we will concentrate on the
logistics problem of medical resource allocation in the second stage. Particularly,
we will study how the Area Distribution Centers (ADC) should supply the District
Distribution Centers (DDC), and how the DDCs should deliver the needed medical
resource to the Emergency Designated Hospitals (EDH) in the most efficient and
cost- effective way. Here we assume there are several ADCs in the epidemic spread
area, which can be divided into several municipal districts or towns. Each district
will have one or more DDCs which supply the needed medical resource to the EDHs
in that district.

Since demand from each EDH is determined by the number of patients hospital-
ized there and varies according to the progress of epidemic diffusion, the allocation
of medical resource need to chase the demand over time. Figure 4.1 gives a diagram
of operations outlining the execution of the proposed model. The sequential opera-
tional routine continues until the epidemic diffusion gets under control. As Fig. 4.1
shows, medical resource allocation process is decomposed into n decision-making
cycles. Each decision-making cycle includes three phases: epidemic diffusion anal-
ysis, demand forecasting, and medical resource allocation. These three phases are
executed iteratively. The effect of the medical resource allocation is analyzed, and
the number of infected people is updated at each cycle during the entire distribution
process.

In the sequel, we will introduce SIERS model, a well-recognized epidemic dif-
fusion model, in Sect. 4.3.1. Then we propose a forecasting model for the dynamic

No

Initialize, decompose the 
problem into n cycles

Forecast the time-varying 
demand in this cycle 

t=0

Allocate medical resources to the 
epidemic area

Teminate t>n

Output the result

Analyze the effect of the 
allocation and update the 

number of infected people
t=t+1

Yes

Analyze the epidemic 
diffusion rule

?

Fig. 4.1 Operational procedure of the dynamic medicine logistics network
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demand for the medical resource during the epidemic diffusion in Sect. 4.3.2, and
a linear programming model for distribution of medical resource according to the
forecasted dynamic demand.

4.3.1 SEIRS Epidemic Diffusion Model

The SEIRmodel has beenwidely adopted by researchers to study epidemic diffusion.
It is based on small-world network theory and provides a good match to the actual
social network. Generally, the total population is divided into four classes, suscep-
tible people (S), exposed people (E), infected people (I), recovered people (R), and
each class of people is closed into a compartment. Tham [33] showed that some
of the recovered people who were discharged from hospitals might be re-infected.
Figure 4.2 shows, without consideration of migration, the natural birth rate and death
rate of the population, the epidemic process can be described by a SEIRSmodel based
on a small-world network.

The dynamic system for the SEIRS diffusion model can be rewritten by the fol-
lowing ordinary differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = −βkS(t)I (t) + γ R(t)
dE
dt = βkS(t)I (t) − βkS(t − τ)I (t − τ)
d I
dt = βkS(t − τ)I (t − τ) − (α + δ)I (t)
dR
dt = δ I (t) − γ R(t).

(4.1)

In the above system of equations, S(t), E(t), I (t) and R(t) represent respectively
the number of susceptible people, the number of exposed people, the number of
infected people, and the number of recovered people. k is the average degree of
distribution for this small-world network, which can be interpreted as the average
contact number of susceptible people of each infected person; β is the propagation
coefficient of the epidemic; γ is the rate of the recovered people who are not immune
and thus may be re-infected; δ is the recovery rate; α is the death rate; τ represents
the incubation period of the disease. k, β, γ, δ, α, τ > 0.

ODE (4.1) states the following: (i) The growth rate of the susceptible population
is determined by the returning population who are recovered but not immune and

βkS(t-τ)I(t-τ) δI 

αI

βkSI

γR

S I R E

Fig. 4.2 SEIRS model based on a small-world network
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the losing population who actually get exposed to the disease and thus are counted
towards the class of E(t). The latter is in proportion to the propagation coefficient
β, the average contact number of susceptible people of each infected person, k, and
both of the current mass of the susceptible population and the current mass of the
infected population. (ii) The growth rate of the exposed population is determined
by the difference between the entering population, those of susceptible people who
actually get exposed to the disease, and the exiting population, those of exposed
population who get sick after the incubation period of the disease; (iii) The growth
rate of the infected population is determined by the difference between the entering
population, those of exposed population who get sick, and the exiting population
who are either recovered or dead; And, finally (iv) the growth rate of the recovered
population is determined by the difference between the joining population of the
newly recovered and the losing population of the re-infected people.

Particularly, as we noted in (iii), the number of infected people, I (t), is determined
by the population of the recovered people and the onset exposed people at the end
of the incubation period. Hence, improving the recovery rate, δ, and reducing the
propagation coefficient, β, are the two effective measures to take in suppressing the
growth of I (t). In the context of epidemic controlling operation, that means sufficient
medical resource should be allocated to the emergent designated hospitals (EDH).

4.3.2 The Forecasting Model for the Time-Varying Demand

Demand for medical resource has been studied in a variety of forms in the literature,
such as a time-varying value [34], or obeying some stochastic distribution [30].
However, the impact of earlier resource allocation to the demand in later periods has
basically been ignored in these approaches.

To address this deficiency, we propose the following linear relationship between
the demand for medical resource and the number of infected people at time t based
on the SEIRS epidemic diffusion model:

dt = aI (t), (4.2)

where dt refers to the demand formedical resource at time t, and a is the proportional-
ity coefficient. In our interviews with the public health care administrative personnel
about controlling the epidemic spread, we found this linear forecasting function is
the one they commonly adopted. Here we define it as the traditional demand (TD).
However, a lag effect of earlier medicine allocation should be taken into account
in the current demand forecast. As shown in Fig. 4.3, the horizontal axis represents
the decision-making cycle, and the vertical axis stands for demand in an epidemic
area. The dotted line is a trajectory of Eq. (4.2), and the solid curve is the expected
demand (ED). For instance, if the demand for medical resource at cycle t is d∗

t , and
according to Eq. (4.2), the demand at cycle t + 1 would have been d∗

t+1. However, a
certain amount of medical resource, pt , had been allocated to the disaster area during
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Fig. 4.3 Diagrammatic
sketch of the time-varying
demand

Time

Demand
TD

ED

cycle t, and it would be taking effect in cycle t + 1 in curing the infected patients in
hospitals and thus subduing the diffusion. Hence, the expected demand for medical
resource at cycle t + 1 should be dt+1, instead of d∗

t+1.
The following growth factor is introduced by the above observation to account

for the lag effect.

ηt = (d∗
t+1 − d∗

t )
/
d∗
t
. (4.3)

Herein, the growth factor ηt can be either positive (increasing demand) or negative
(decreasing demand), and may vary in different cycles for the different demand d∗

t .
As mentioned before, part of the recovered people who are discharged from the
healthcare department may be re-infected. Thus, we define the effective cure rate as
θ as the percent of recovered people who are not re-infected. Considering that each
infected person needs a period of time to receive treatment and get cured, herein we
denote the treatment cycle as 	 and we assume it to be an integral multiple of the
decision cycle. Then, the commuted effective cure rate in each decision cycle can be
obtained as θ

	
. Such an assumption would be feasible if the decision cycle is small

enough, e.g. one day. Hence, it helps us get the following recursion formulas:

When t = 1, d1 = (1 + η0)

(

1 − θ

	

)

d0; (4.4)

When t = 2 d2 = (1 + η1)

(

1 − θ

	

)

d1 = (1 + η0)(1 + η1)

(

1 − θ

	

)2

d0; (4.5)

. . .

When t = n dn =
n−1∏

i=0

(1 + ηi )

(

1 − θ

	

)n

d0. (4.6)
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Herein,
∏n−1

i=0 (1 + ηi ) = (1 + η0)(1 + η1) . . . (1 + ηn−1). d0 = aI (0) is the
initial demand for medical resource in the epidemic area, and I (0) is the initial
number of infected people in the epidemic area. Recursion formulas (4.4)–(4.6) are
our prescribed forecast model for the demand of medical resource. In what follows,
wewill propose amedicine logistics operationmodel to minimize the total allocation
cost based on the forecasting model.

4.3.3 Time-Space Network of the Medicine Logistics

In this subsection, a multi-stage programming model for cost minimizing allocation
of themedical resource is built upon a time-space network. Figure 4.4 is the schematic
diagram of the network. The vertical axis represents the time duration. The horizontal
axis represents the Area Distribution Center (ADC), the District Distribution Center
(DDC), and the Emergency Designated Hospital (EDH), respectively. The allocation
arcs are defined as follows: (a) represents that medical resource is transported from
ADC to DDC; (b) stands for that medical resource is allocated from DDC to EDH in
the same district; (c) refers to that medical resource is allocated from DDC to EDH
in the other district; (d)–(f) are time duration arcs for different departments.

Fig. 4.4 Time-space network of medical resource allocation
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(1) Assumptions

The following assumptions are needed to facilitate the model formulation in the
following sections:

(i) In the event of an epidemic outbreak, it is paramount for the government and the
entire society to control the spread and rescue the infected. Thus it is reasonable
to assume that the government can ensure the adequate supply of the needed
medical resource either from domestic pharmaceutical companies or imported.
Hence, there is enough medical resource in ADCs during the entire operation
process.

(ii) Once an epidemic outbreak, the government will take strict control measures
so that each epidemic area can be isolated from other areas to avoid the cross
spread of the disease. In each epidemic area, the government will appoint
a hospital to be the EDH, to be responsible for the rescue work in such an
isolated area.

(iii) Medical resource in this study is an assembled product, which may includes
water, vaccine, antibiotic, etc.

(2) Notations

Notations used in the following programming model are specified as follows:

cci j : Unit transportation cost of medical resource from ADC i to DDC j .
cri j : Unit transportation cost of medical resource from DDC i to EDH j .
esit : The available quantity of medical resource in ADC i in decision cycle t .
zrit : Quantity of medical resource allocated to DDC i in decision cycle t .
xi j t : Medical resource transported from ADC i to DDC j in decision cycle t .
yi j t : Medical resource transported from DDC i to EDH j in decision cycle t .
dit : Demand for medical resource in EDH i in decision cycle t .
T : Set of decision cycles.
C : Set of ADCs.
R: Set of DDCs.
H : Set of EDHs.

(3) Model formulation

Let F(x, y) be the objective function of the total cost of medical resource allocation.
Based on the above assumptions and descriptions, the proposed problem can be
formulated as follows:

Min F(x, y) =
∑

t∈T

∑

i∈C

∑

j∈R

xi j t cci j+
∑

t∈T

∑

i∈R

∑

j∈H
yi jt cri j (4.7)

s.t.
∑

i∈C
xi j t = zr jt , ∀ j ∈ R, t ∈ T (4.8)

∑

j∈R

xi j t ≤ esit , ∀i ∈ C, t ∈ T (4.9)
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∑

i∈R

yi j t = d jt , ∀ j ∈ H, t ∈ T (4.10)

∑

j∈H
yi jt ≤ zrit , ∀i ∈ R, t ∈ T (4.11)

di0 = aIi (0), ∀i ∈ H (4.12)

dit =
t−1∏

t=0

(1 + ηi t )

(

1 − θ

	

)t

di0, ∀i ∈ H, t ∈ {T, t �= 0} (4.13)

xi j t ≥ 0, ∀i ∈ C, j ∈ R, t ∈ T (4.14)

yi j t ≥ 0, ∀i ∈ R, j ∈ H, t ∈ T (4.15)

In this optimization model, xi j t and yi j t are the decision variables. The objective
function (4.7) is to minimize the total cost of medical resource allocation, which is
the transportation cost for delivering the medical resource from ADCs to DDCs and
from DDCs to EDHs. Constraints (4.8)–(4.11) are the flow conservation equations.
Particularly, constraint (4.8) suggests that each DDC can obtain medical resource
from all ADCs. Constraint (4.9) ensures that the total shipments from any ADC
cannot exceed the available amount of the resource in this ADC. Constraint (4.10)
states that the period demand generated by the forecasting model in Sect. 4.3.2 at
each EDH must be satisfied. That is, the shipments from all DDCs to each EDH
must be equal to the demand at this EDH. Constraint (4.11) implies that the total
shipments from any DDC cannot exceed the available stock in this DDC. Constraints
(4.12) and (4.13) are forecasting model for the time-varying demand (Sect. 4.3.2).
Herein, ηi t is the growth factor (can be either positive or negative) of the demand
for medical resource in EDH i in decision cycle t . Finally, (4.14) and (4.15) are the
non-negativity of the flows. Such model is a dynamic and multi-stage programming
model.

4.4 Solution Methodology

To solve the above optimization model, Eqs. (4.12)–(4.14) are adopted to calculate
the time-varying demand firstly. After that, to ∀t ∈ T , the research model can be
converted as a two-stage linear programming model. The feature of such a two-stage
programming problem is that both the input quantity and the output quantity of the
medical resource in the DDCs are unknown. There are many available techniques for
solving such a problem, and a genetic algorithm is commonly used. Hence, a genetic
algorithm coupled with MATLAB 7.0 mathematical programming solver is adopted
to solve the model.
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(1) Chromosome coding and population initializing

Thefirst step of a genetic algorithm is to define the codingmethodof the chromosome.
As is well known, the real number coding is superior to the binary coding in both
aspects of quality and efficiency of the solution. Besides, the real number coding
is closer to the actual problem findings and easier to interpret in the real world
problem. Herein, the real number coding is adopted. For ∀t ∈ T , each chromosome
contains R bit gene, where R is the number of DDC. The value of each bit refers to
the available amount of medical resource in each DDC, which is also the quantity of
medical resource replenished from all ADCs. Each individual in the initial population
is generated by a random method, subject to the related resource constraints in the
programming model.

(2) Fitness definition

The fitness of each individual is obtained by computing the objective function

F(x, y) =
∑

t∈T

∑

i∈C

∑

j∈R

xi j t cci j+
∑

t∈T

∑

i∈R

∑

j∈H
yi jt cri j .

Herein, the fitness function contains two parts. The first part is the total trans-
portation cost between ADCs and DDCs. The second part is the total transportation
cost between DDCs and EDHs. Obviously, the lower the total cost is, the better the
fitness of the individual is.

(3) Selection operator

The best individual copy strategy is adopted in selection section. That means, each
time when selection operator is iterated, the worst chromosome in the population
will be replaced by the best one.

(4) Crossover operator

A crossover operator is one of the most important operators in a genetic algo-
rithm. Different crossover operators are suitable for different kinds of chromosomes.
According to the real number coding in this study, an arithmetic crossover is adopted.
Let P1 and P2 represent the two parent chromosomes, and Pc1 and Pc2 stand for the
two children chromosomes, respectively. The linear relationship between the parent
and the children chromosomes can be formulated as:

{
Pc1 = μP1 + (1 − μ)P2
Pc2 = (1 − μ)P1 + μP2

.

Herein,μ = U (0, 1) is a uniform random number between 0 and 1. Note that both
of these two children chromosomes automatically satisfy the resource constraints in
the multi-stage programming model. The range of the crossover probability pc is
0.2–0.8.
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(5) Mutation operator

A mutation operator is intended to simulate genetic mutation during biological evo-
lution. Mutation is operated on some bits of individuals at a probability of pm . This
probability is generally very small and is set in the range of 0.001 ≤ pm ≤ 0.1.
When mutating, we exchange a pair of genes in the individual.

(6) Termination condition

As the optimal result is unpredictable, a max iteration is given for the termination.

4.5 Numerical Tests

4.5.1 A Numerical Example

We present a numerical example to illustrate the efficiency of the proposed model.
Assume there is a smallpox outbreak in a city, which has two ADCs and four DDCs.
Two hospitals are designated in each district, and each EDH can service a certain
amount of patients. The values of the parameters in the epidemic diffusion model
are given in Table 4.1.

Figure 4.5 depicts a numerical simulation of the epidemic model at EDH1 in this
effected region. The four curves respectively represent the number of four groups
of people (S, E, I, R) over time. As mentioned in Sect. 4.3, the process of epidemic
diffusion is divided into three stages and our work in this study is focus on the second
stage. According to Fig. 4.5, such a stage can be ranged from the 10th day (decision-
making cycle t = 0) to the 40th day (decision-making cycle t = 30). Of course, when
different emergency outbreak, the result can be adjusted correspondingly.

Table 4.1 Values of parameters in the SEIRS model

ADC1 ADC2

DDC1 DDC2 DDC3 DDC4

EDH1 EDH2 EDH3 EDH4 EDH5 EDH6 EDH7 EDH8

S(0) 5 × 103 4.5 × 103 5.5 × 103 5 × 103 6 × 103 4.8 × 103 5.2 × 103 4 × 103

E(0) 30 35 30 40 25 40 50 45

I (0) 5 6 7 8 4 7 9 10

R(0) 0

β 5 × 10−5

< k > 6

δ 0.3

d 1 × 10−3

γ 1 × 10−3

τ 5
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Fig. 4.5 Solution of the
SEIRS epidemic diffusion
model (EDH1)

To facilitate the calculate process in the following sections, the decision-making
cycle is assumed to be one day. Let a = 1,MATLAB 7.0mathematical programming
solver coupled with Eqs. (4.1) and (4.2) are adopted to calculate the TD for medical
resource in each EDH. Furthermore, given that θ = 90% and 	 = 15 (days), the
growth factor ηi t in each decision-making cycle can be obtained. Then, the ED for
medical resource in each EDH in each decision cycle can be forecasted according to
Eqs. (4.12) and (4.13). Taking EDH1 as an example, the demand formedical resource
in each decision-making cycle by these two different methods is compared as shown
in Fig. 4.6.

One can observe inFig. 4.6 that ED iswaybelowTD, suggesting that the allocation
of medical resource in the early periods will significantly reduce the demand in the
following periods. The second observation is that both curves exhibit similar trends,

Fig. 4.6 Demand in EDH1
by the two different methods
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namely, the demand will first increase along with the spreading the epidemic, and
then will decrease after the epidemic is brought under control.

We now proceed to illustrate the optimal allocation of the resource at each EDH.
Table 4.2 shows the unit operation cost of medicine between two different depart-
ments.

Let n = 200, pc = 0.75 and pm = 0.01. The algorithm is set to terminate in
200 generations. Taking the allocation at cycle t = 0 as the initial example, we solve
the above programming model (4.7)–(4.15) according to the solution procedure. The
convergent allocation scheme is reported in Table 4.3 and the total operation cost is
2663.22.

To test the accuracy and stability of the algorithm, the computation process has
been repeated for six times independently. As shown in Table 4.4, the convergent
results in these six times are very close and the deviation is less than 0.065%. This
proves the proposed algorithm is stable and accurate. We execute the solution proce-
dure (Table 4.1) to find the dynamic allocation result of medical resource and show
in Fig. 4.7 the total cost at each decision-making cycle.

Comparing Fig. 4.7 with Fig. 4.6, one can find that the curve of the total operation
cost matches well with the demand curves in their variation pattern, suggesting
that the cost of medical resource allocation mainly depends on the demand. The
characteristics also reflect the hysteresis effect in an epidemic controlling system
that medicine logistics lags behind the epidemic diffusion.

In next subsection, we will compare the proposed model with the two traditional
allocation measurements that have been used in practice.

4.5.2 Model Comparison

Based on our interviews with the public healthcare administrative personnels in
China, there are two traditional measurements in practice to predict the demand for
medical resource in case of an epidemic outbreak. Both of them utilize Eq. (4.2)
as the basic forecasting method. In the first traditional measurement, referred as
Traditional 1, the medical resource will only be allocated through administrative
distribution. That is, an ADC will only service the DDCs in its own area, and a DDC
will only service the EDHs in its own district. For instance, as Table 4.1 shows,
ADC1 will only service DDC1 and DDC2, and DDC1 will only replenish medical
resource to EDH1 and EDH2. The second traditional measurement, referred here
as Traditional 2, is based on the same forecasting method of Eq. (4.2), but allows
cross-area distribution. The total costs of these three different models are compared
and illustrated in Fig. 4.8.

Several interesting observations can be drawn from Fig. 4.8. First, the total oper-
ation costs by model Traditional 2 are all time lower than those by Traditional 1,
although the difference is not large, suggesting that cross area distribution has a
definite advantage in saving allocation cost, which is of course not surprising from
an optimization perspective. Secondly, the two cost curves by Traditional 1 and
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Table 4.3 Medical resource allocation result at decision-making cycle t = 0 (Unit: $)

DDC1 DDC2 DDC3 DDC4

ADC1 0 186.6901 0 163.759

ADC2 188.8323 0 191.9134 0

EDH1 EDH2 EDH3 EDH4 EDH5 EDH6 EDH7 EDH8

DDC1 67.1588 43.0695 0 31.1464 0 0 0 47.4576

DDC2 0 23.5330 82.9355 22.1931 0 0 31.4635 26.5650

DDC3 0 0 0 38.6671 74.9403 0 78.3061 0

DDC4 0 0 28.1169 14.6546 0 86.9697 18.6328 15.3849

Table 4.4 Total cost in cycle t = 0 (Unit: $)

Run 1 2 3 4 5 6

Total cost 2664.97 2663.22 2663.22 2663.22 2664.97 2663.22

Fig. 4.7 Total cost in each
decision-making cycle (Unit:
$)

Traditional 2 behave consistently in their rising and falling trend and arrive at their
maximum at the exact same time t = 26. This is because these two traditional models
are based on the same demand forecasting mechanism for the medical resource, and
the allocation cost is mainly determined by the allocation volume, i.e., the demand.
Thirdly, the cost curve generated by our time-space network model is the all time
minimum andmuch lower than that by the two traditional measurements. The alloca-
tion cost generated by our model is obvious less than the traditional methods in most
of the time. We attribute this significant cost reduction to our proactive forecasting
that takes into account the positive impact of the early allocation of medical resource
to the demand in following periods. Finally and most importantly, one can notice
that the cost curve by our model reaches its maximum at t = 24.5, comparing the
two traditional measurements at t = 26. This suggests that by using our proposed
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Fig. 4.8 Total cost in three
different patterns (Unit: $)

model we can get control of the epidemic spread earlier, which stands for an invalu-
able social merit on top of the economic savings. To conclude our findings in this
example, the cross area distribution that features our proposed model and Traditional
2 can reduce the logistic part of the allocation cost. The proactive forecasting model
coupled with our time-space optimal allocation programming proposed in this study
can subdue the epidemic diffusion and thus significantly reduce the demand for the
medical resource, resulting greater saving in the total operation cost.

4.5.3 Sensitivity Analysis

In this section, a sensitivity analysis of the three key parameters (η, θ and 	) in the
time-varying demand forecast model is conducted. According to the definition in
Sect. 4.3.2, the parameter η is closely related to the decision-making cycle. In this
study, the decision-making cycle is set to be one day (24 h), so we get a total of 240
η and 7680 arcs in the experiment. Figure 4.9 shows the relationship between the
scale of the problem and the decision-making cycle (unit: h).

In practice, the decision-maker can choose the decision-making cycle according
to the actual situation. Generally speaking, the shorter the cycle is, the better the
forecast accuracy, but the larger the scale of the problem and its complexity. On the
other hand, if the decision-making cycle is set too short to let the actual distribution
operations un-complete, then the accuracy of the model might be adversely affected.
Therefore, the decision-making cycle should be selected appropriately in a practical
problem.

As total cost of the proposed medicine logistics network mainly depends on the
demand for medical resource, these two variables get a similar variation tendency.
Thus, taking EDH1 as an example, we can hold all the parameters fixed, as in the
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Fig. 4.9 Relationship
between the scale of problem
and decision-making cycle

numerical example given in Sect. 4.5.1, and let θ and 	 take on five different values,
respectively. The demand for medical resource in each decision-making cycle is
shown in Figs. 4.10 and 4.11.

As Fig. 4.10 shows, θ takes onfive values ranging from60 to 100%.The larger θ is,
the lower the demand is. Accordingly, the lower the total cost would be. As Fig. 4.11
shows, 	 takes on five values ranging from 10 to 20. The shorter 	 is, the lower the
demand is, and thus the lower the total cost would be. The above analysis confirms
that both of these two key parameters play important roles in medical resource allo-
cation decisions. For a small change of θ and 	, the final allocation decisions and
the total operation costs in each cycle can change significantly. Unfortunately, the
precise values for these two parameters in an epidemic control are difficult to get.
As the accuracy of these two parameters is vital to the success of medicine logis-
tics operation, it calls for more research work to scientifically estimate these two
parameters for different epidemics.

Fig. 4.10 Demand in EDH1
with different value of θ
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Fig. 4.11 Demand in EDH1
with different value of 	

4.6 Conclusions

In this chapter, we develop a discrete time-space network model to study the medical
resource allocation problem in an epidemic outbreak. In each decision-making cycle,
the allocation of medical resource across the region from ADCs through DDCs to
EDHs is determined by a linear programming model with the dynamic demand that
is forecasted by an epidemic diffusion rule. The novelty of our model against the
existing works in literature is characterized by the following three aspects:

(i) While most research on medical resource allocation studies a static problem
which takes no consideration of the time evolution and dynamic nature of the
demand, the model proposed in this study addresses a time-series demand that
is forecasted in match of the course of an epidemic diffusion.

(ii) The model couples a multi-stage linear programming for optimal allocation of
medical resource with a proactive forecasting mechanism cultivated from the
epidemic diffusion dynamics. The two dynamic processes are woven together
and interactively proceed to model the epidemic diffusion and the medical
resource allocation. The rationale that the medical resource allocated in early
periods will take effect in subduing the spread of the epidemic spread and thus
impact the demand in later periods has been for the first time incorporated into
our model.

(iii) The computational results show that the proposed model remarkably outper-
forms the traditional measurements in both terms of cost reduction and epi-
demic control. Our model can significantly reduce the total operation cost of
the medical resource allocation and may get the epidemic diffusion in control
earlier than the traditional measurements.

Furthermore, the medicine logistics operation problem has been decomposed into
several mutually correlated sub-problems, and then be solved systematically in the
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same decision scheme. Thus, the result will be much more suitable for a real opera-
tion. As the limitation of themodel, it is developed for themedical resource allocation
in a geographic area where an epidemic disease has been spreading and it does not
consider possible cross area diffusion between two or more geographic areas. We
assume that once an epidemic outbreak, the government has effective means to sepa-
rate the epidemic areas so that cross-area spread can be basically prevented. However,
this cannot always be guaranteed in reality.
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Chapter 5
Epidemic Logistics with Demand
Information Updating Model II: Medical
Resource Is Limited

This chapter is a continuous work of Chap. 4. In this chapter, we develop a unique
time-varying forecasting model for dynamic demand of medical resources based on
a susceptible-exposed-infected-recovered (SEIR) influenza diffusion model. In this
forecasting mechanism, medical resources allocated in the early period will take
effect in subduing the spread of influenza and thus impact the demand in the later
period. We adopt a discrete time-space network to describe the medical resources
allocation process following a hypothetical influenza outbreak in a region. The entire
medical resources allocation process is constructed as a multi-stage integer program-
ming problem. At each stage, we solve a cost minimization sub-problem subject to
the time-varying demand. The corresponding optimal allocation result is then used
as an input to the control process of influenza spread, which in turn determines
the demand for the next stage. In addition, we present a comparison between the
proposed model and an empirical model.

5.1 Introduction

A serious influenza can test the ability of a nation to effectively protect its popula-
tion, to reduce human loss and to rapidly recover. Meanwhile, it can also cause a
great economic loss. For example, during the period from 1997 to 2002, more than
3,400,000 chickens were killed in Hong Kong, to prevent the avian influenza trans-
fers from animals to human. Generally, it is difficult to predict when an unexpected
influenza outbreaks, and our security measures to against such problem rest largely
on consequence management, i.e., what can be done after the influenza outbreak
occurs? How to ensure the supply of medical resources so that the efficiency of
medical care can be maximized? Unfortunately, the available medical resources in
the control of influenza are usually limited. Therefore, government decision makers
must understand how the influenza spreads and then determine how to allocate the
limited medical resources.
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Mostmathematicmodels for influenza diffusion analysis are compartmental mod-
els [1–5]. In these models, the total population is divided into several classes and
each class of individuals is closed into a compartment. The mixing of members is
homogeneous, meaning these models are constructed with the assumption of both
homogeneous infectivity and homogeneous connectivity of each individual. Another
stream of research is focused on the development of influenza diffusion models by
applying simulation methods, including computer simulation and numerical compu-
tation [6–11] proposed an agent-based simulation model that treated each individual
as unique, with non-homogeneous transmission and infection rates correlated to
demographic information and behavior. Kim et al. [12] described the transmission
of avian influenza among birds and humans. Liu and Zhang [13] presented a SEIRS
epidemic model based on the scale-free networks, where the active contact number
of each vertex was assumed to be either constant or proportional to its degree in
their model. Samsuzzoha et al. [14] used a diffusive epidemic model to describe
the transmission of influenza. The equations were solved numerically by using the
splitting method under different initial distribution of population density. Further,
Samsuzzoha et al. [15] presented a vaccinated diffusive compartmental epidemic
model to explore the impact of vaccination as well as diffusion on the transmission
dynamics of influenza. The above mentioned works provide numerous and signif-
icant references to research the influenza diffusion. Although the emphasis of this
study is focused on how to allocate the limited medical resources, a basic component
of our model, the forecasting mechanism for the dynamic demand, utilizes one of
such epidemic diffusion models.

So far, influenza vaccination policy is one of the most effective strategies to
prevent a wide spread influenza occurs. However, the level of influenza vaccination
coverage in all age groups is suboptimal, even in the majority of developed countries.
There are several reasons for this phenomenon, where mismatch between the vaccine
supply and the demand side of is one of them. Recently, some significant studies on
the subject are focused on the coordination of the influenza vaccine supply chain.
For example, Adida et al. [16] considered how a central policy-maker can induce
socially optimal vaccine coverage through the use of incentives to both consumers
and vaccine manufacturer in a monopoly market for an imperfect vaccine. The result
shows that a fixed two-part subsidy is unable to coordinate the market. Deo and
Corbett [17] examined the interaction between yield uncertainty of influenza vaccine
and firms’ strategic behavior and found that yield uncertainty can contribute to a high
degree of concentration in an industry and a reduction in the industry output and the
expected consumer surplus in equilibrium. Arifoğlu et al. [18] studied the impact
of yield uncertainty (supply side) and self-interested consumers (demand side) on
the inefficiency in the influenza vaccine supply chain. The result shows that the
equilibrium demand can be greater than the socially optimal demand after accounting
for the limited supply due to yield uncertainty and manufacturer’s incentives, which
is contrast to the previous economic studies. To break the negative feedback loop
between the retailer and the manufacturer in influenza vaccine industry, Dai et al.
[19] introduced two coordinating contracts, the Delivery-time-dependent Quantity
Flexibility (D-QF) contract and the Buyback-and-Late-Rebate (BLR) contract, and
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connected them to those used in practice. Furthermore, Yamin and Gavious [20]
built a theoretical epidemiological game model to find the optimal incentive for
vaccination and the corresponding expected level of vaccination coverage.

Motivated by the supply chain coordination concept, we study an interactive coor-
dination problem between influenza diffusion and medical resources allocation. This
paramount life-saving and costly logistics problem opens up a wide range of appli-
cations of OR/MS techniques and has motivated much research works in the past
decades [21–25]. These models, however, are not applicable to epidemics with dis-
crete rates of growth and are restricted by several assumptions like the number of
interventions or independence of populations. Recent mathematical approaches for
healthcare resources allocation, on the other hand, suggest advanced models of dis-
ease prevalence among several populations, and consider more general forms of cost
function for the prevention programs [26–30] designed amixed-integer programming
model for distribution and inventory relocation under uncertainty in humanitarian
operations. Rachaniotis et al. [31] presented a resources scheduling model in epi-
demic control with limited resources. The objective is to minimize the total infected
people in a certain time horizon under consideration by effectively relocating the
available resources over several regions. Sun et al. [32] built a mathematical model
to optimize the patient allocation considering two objectives: to minimize the total
travel distance by patients to hospitals, and the maximum distance a patient travels to
a hospital. In addition, it is worth mentioning that a concise survey of OR/MS contri-
bution to epidemics control can be found in Brandeau [33]. The popular techniques
that have been used for resources allocation in epidemics control are linear and inte-
ger programming models, numerical analysis procedures, cost-effectiveness anal-
ysis, simulation, non-linear optimization and control theory techniques. Recently,
Dasaklis et al. [34] focused on defining the role of logistics operations and their
management that may assist the control of epidemic outbreaks. They reviewed the
literature and pointed out the research gaps critically.

In summary, this section does not aim to be an exhaustive review of the litera-
ture; rather, we introduce an illustrative subset of existing models. In our previous
work [35], we divided influenza diffusion process into three stages. The first stage
is the inception of influenza in very limited population. If the infectious disease is
noticed in time and treated properly, the epidemic can be controlled without causing
a wide spread. Otherwise, influenza diffusion develops into the second widespread
diffusion stage. The third stage is the recovery stage that influenza diffusion is
under controlled. In this study, we attempt to model the interactive coordination
process between influenza diffusion and medical resources allocation in the second
response stage. The model couples a forecasting mechanism for dynamic demand
of medical resources based on the classical SEIR epidemic model [36]. As shown in
Fig. 5.1, we decompose the whole interactive coordination process into n correlated
sub-problems (n decision-making cycles). Each sub-problem includes three phases,
which are influenza diffusion analysis, demand forecasting and medical resources
allocation. We briefly introduce the connections among these three phases as below.
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Fig. 5.1 The dynamic operational procedure of medical resources allocation

(i) Initially, we employ a SEIR model to depict the dynamic epidemic diffusion
process. The model will give us a forecast of the growing (or decreasing)
number of the infected population in the course of the epidemic diffusion,
which will be embedded in the following demand forecasting model.

(ii) Secondly, we define a difference factor to illustrate the change in the number of
infected population. Coupling with this factor andmedical resources allocation
result in the current decision cycle, we can get the demand of medical resources
for the next decision cycle.

(iii) Based on the forecasting demand for the next decision cycle,we solve an integer
programming problem for the optimized allocation of medical resources in a
supportive logistics system to meet the dynamic demand.

The latter two phases are executed iteratively. The details of the demand forecast-
ing model are presented in Sect. 5.2.2. It is worth mentioning that medical resources
allocated in current period will take effect in subduing the spread of influenza and
thus impact the demand in the next period. To the best of our knowledge, such an
operational procedure is different from any existing influenza response operations,
which have always been carried out under the assumption that demand is deter-
ministic or stochastic. While the proposed method is adopted, we can take a fixed
time interval (i.e. one day) as the decision-making cycle and then update the alloca-
tion result for each epidemic area periodically. Moreover, we believe the proposed
model should serve for the benefit of a centralized decision maker, usually a local
or regional governmental agent, in control of the influenza diffusion, who needs an
analytic model to plan for the logistics and to revise and update such plan in the
actual implementation.
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5.2 Epidemic Diffusion Analysis and Demand Forecasting

5.2.1 Influenza Diffusion Analysis

In 1927, W. O. Kermack and A. G. McKendrick created the first SIR model in which
they considered a fixed population with only three compartments, the susceptible, the
infected, and the removed [37]. S(t) is used to represent the number of individuals
not yet infected with the disease at time t. I (t) denotes the number of individuals who
have been infected with the disease and are capable of spreading the disease to those
in the susceptible category. R(t) is the compartment used for those individuals who
have been recovered from the disease, either due to immunization or due to death.
Since that time, theoretical epidemiology haswitness numerous developments. Some
of the recent studies can be found in [38, 39].

Although the deterministic SIR model is successful in predicting the behavior
of outbreaks very similar to that observed in many recorded epidemics [36], the
SIR model discussed above takes into account only those diseases which cause an
individual to be able to infect others immediately upon their infection. In fact, many
diseases, such as influenza, have what is termed a latent or exposed phase, during
which the individual is said to be infected but not infectious. Therefore, the host
populationN should be broken into four compartments: the susceptible, the exposed,
the infectious, and the recovered, with the numbers of individuals in a compartment,
or their densities denoted respectively by S(t), E(t), I (t) and R(t). That means,
N = S(t) + E(t) + I (t) + R(t). The SEIR model is proved to be a more suitable
model to match the influenza diffusion.

Even though people travel across regions and the population of any region is of
a fluid nature, it is reasonable to believe that the population size does not change
significantly over a short period of time without a social economic reason. There-
fore, during the course of influenza spread-to-control, which usually lasts no longer
than three months, there should not be significant difference between the in-flow and
out-flow number of people. We note that this is the basic rationale based on which
most SEIR literature assumes a constant population size as is in this study. For future
research, the basic framework proposed here can be extended to incorporate such fac-
tors as people’s hesitation to visit the epidemic outbreak region and/or government’s
quarantining policy in controlling people from traveling out of the region.

Therefore, without considering the natural birth rate and death rate of the popu-
lation, we can use a simple deterministic compartmental model (SEIR) to describe
the influenza spread process, which is described by the following system of ordinary
differential equations (ODE).

⎧
⎪⎪⎨

⎪⎪⎩

S′(t) = −βS(t)I (t)
E ′(t) = βS(t)I (t) − βS(t − τ)I (t − τ)

I ′(t) = βS(t − τ)I (t − τ) − (α + δ)I (t)
R′(t) = δ I (t)

. (5.1)
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InODE(5.1), S(t), E(t), I (t) and R(t) represent the number of susceptible people,
the number of exposed people, the number of infected people, and the number of
recovered people, respectively. β is the propagation coefficient of the influenza; δ

is the recovery rate; α is the loss rate; and τ represents the incubation period of
the disease. β, δ, α, τ > 0. ODE (5.1) states the following: (i) The decrease rate
of the susceptible population is in proportion to the propagation coefficient, β, and
both of the current mass of the susceptible population and the current mass of the
infected population. (ii) The growth rate of the exposed population is determined
by the difference between the entering population, those of susceptible people who
actually get exposed to the disease, and the exiting population, those of exposed
population who get sick after the incubation period of the disease; (iii) The growth
rate of the infected population is determined by the difference between the entering
population, those of exposed populationwho get sick, and the exiting populationwho
are either recovered or dead; Finally (iv) the growth rate of the recovered population
is determined by the joining population of the newly recovered.

According to ODE (5.1), improving the recovery rate, δ, and reducing the propa-
gation coefficient, β, are two effective measures to take in suppressing the growth of
I (t). That means, on one hand, local government should execute some quarantining
policies in controlling people from traveling in (or out) of the region. Meanwhile,
self-quarantine and decreasing the contact with people around are also effective
strategies for controlling influenza diffusion. On the other hand, a sufficient medical
resources supply should be allocated to the emergent designated hospitals (EDH), to
guarantee or improve the recovery rate of infected persons.

5.2.2 Demand Forecasting

Generally, demand forecasting for medical resources in epidemic area is formulated
as a linear or non-linear function with the number of infected people, which can be
illustrated as follows:

d∗
t = f [I (t)]. (5.2)

Herein, we refer it as the demand forecasting mode I (DFM-I). It is obvious that
the demand has some functional relationship with the number of infected people.
The deficiency is that it ignores the interactive effect between the influenza spread
and medical resources allocation. Actually, the demand is discrete and independent.
We use a schematic diagram to illustrate the evolution trajectory of the time-varying
demand (see Fig. 5.2). Herein, we refer it as the demand forecasting mode II (DFM-
II). In this figure, the horizontal axis represents the decision-making cycle, and the
vertical axis stands the demand for medical resources. The dotted curve depicts
the forecasting demand which is obtained by using Eq. (5.2), and the solid curve
represents the actual time-varying demand. For example, we get the results d∗

t and
d∗
t+1 respectively for the two difference decision cycles t and t + 1, when we use
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Fig. 5.2 Schematic diagram
of the demand forecasting

Time

Demand DFM-I 

DFM-II

t+1t

Eq. (5.2) to predict the demand. However, a certain amount of medical resources, pt ,
would have been allocated to the disaster area during decision cycle t. These medical
resources would affect in curing infected patients in hospitals and thus subduing
influenza diffusion on decision cycle t + 1. Therefore, instead of d∗

t+1, the expected
demand on decision cycle t + 1 is dt+1. To reflect the dynamic property of the time-
varying demand, we define a difference factor to depict the change in demand for
each decision-making cycle, which is formulated as:

ηt = (d∗
t+1 − d∗

t )
/
d∗
t
. (5.3)

The linear factor ηt can be either positive (increasing demand) or negative
(decreasing demand), and may vary in the different cycles. To facilitate the model
formulation in the following sections, herein we define the decision making cycle as
λ, and we suppose that each infected person needs ω units of medical resources in
each decision making cycle. Considering that each infected person needs a period
of time to get cured, herein we denote the treatment cycle as 	. Generally, to guar-
antee the efficiency of decision-making, decision cycle is always set to be a small
time interval, e.g., one day. The shorter the time interval is, the more accurate the
decision-making is. In another side, treatment cycle in actual practice is always a
long time. It may be several weeks or more. Suppose that a certain amount of medi-
cal resources pt is allocated to the epidemic area during cycle t, thus the commuted
recovery rate at decision cycle t can be formulated as λpt/ωΓ . Thus, we have the
following recursion formulas:

When t = 1, d1 = (1 + η0)

(

d0 − λp0
ωΓ

)

. (5.4)

When t = 2, d2 = (1 + η1)

(

d1 − λp1
ωΓ

)

. (5.5)

. . .

When t = n, dn = (1 + ηn−1)

(

dn−1 − λpn−1

ωΓ

)

. (5.6)
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The recursion formulas (5.4)–(5.6) are our prescribed demand forecasting model.
Specially, d0 = ω · I (0) is the initial demand for medical resources, and p0 is the
best allocation result on decision cycle t = 0, which can be obtained by solving
the programming model in the following Sect. 5.3. After that, we can forecast the
demand for medical resources on decision cycle t = 1 by using Eq. (5.4). Similar
works are executed iteratively to obtain the demand information for each decision
cycle during the entire medical resources allocation process.

5.3 The Dynamic Medical Resources Allocation Model

5.3.1 Model Specification

Time-space network approach has been popularly employed to solve schedul-
ing/routing problems, as it is efficient to represent the result in dimensions of time
and space [40–42]. To depict the dynamic process of medical resources allocation,
we employ such network flow technique to develop a dynamic and multi-stage pro-
gramming model, with the objective of cost minimization subject to some related
operating constraints.

Figure 5.3 describes the time-space network of medical resources allocation.
The vertical axis stands for time duration. The horizontal axis represents medical
resources suppliers, distribution centers (DC) and local designated hospitals (H).
There are several suppliers, i = 1, 2, . . . , I , who can produce and ship the medi-
cal resources to the epidemic area. Surely, each supplier has a production capacity.
Also, there are several distribution centers, j = 1, . . . , J , and many local hospi-
tals, k = 1, 2, . . . , K , geographically located in the area that are designated to host
and treat the infected people. Allocation arcs are defined as follows: (a) represents
that medical resources are delivered from supplier to DC; (b) stands for that medical
resources are allocated fromDC to the designated hospitals; (c)–(e) are time duration
arcs. The distribution centers transship the medical resources and distribute them to
the local hospitals based on the forecasting demand. As mentioned in Sect. 5.1, the
local government or an agent designated by the government would take the role of
centralized decision making and control the relevant resources in a burst of influenza
spread. The objective of the decision making is to minimize the total logistics cost
in terms of medicine supply and distribution. To minimize it, medicine distribution
scheduling should be coordinated, forming a just-in-time mechanism for the two-
echelon medicine supply chain. Therefore, inventory level in the DCs and the local
hospitals should be as lower as possible and thus inventory costs in both DCs and
local hospitals can be ignored in our model.
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Fig. 5.3 Time-space network of medical resources allocation

5.3.2 Notation

Before introducing the model’s formulation, the notation and symbols are listed
below:

Sets

T : Set of decision cycle.
S: Set of supplier.
D: Set of DC.
H : Set of hospital.

Parameters

ci j : Unit transportation cost for medical resources from supplier i to DC j .
r jk : Unit transportation cost for medical resources from DC j to local hospital k.
ait : The production capacity of supplier i on decision cycle t .
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z jt : The available quantity of medical resources in DC j on decision cycle t .
dkt : Demand for medical resources in hospital k on decision cycle t .

Decision variables

xi j t : Quantity of medical resources transported from supplier i to DC j on decision
cycle t .
y jkt : Quantity of medical resources transported from DC j to hospital k on decision
cycle t .

5.3.3 Model Formulation

Let F(x, y) be the objective function, the dynamic medical resources allocation
model can be formulated as follows:

Min F(x, y) =
∑

t∈T

∑

i∈S

∑

j∈D
xi jt ci j+

∑

t∈T

∑

j∈D

∑

k∈H
y jktr jk (5.7)

s.t. z jt =
{

z j (t−1) +
∑

i∈S
xi j t −

∑

k∈H
y jkt

}+
, ∀ j ∈ D, t ∈ T (5.8)

∑

j∈D
xi jt ≤ ait , ∀i ∈ S, t ∈ T (5.9)

∑

j∈D
y jkt ≤ dkt , ∀k ∈ H, t ∈ T (5.10)

∑

j∈D

∑

k∈H
y jkt = min

{
∑

k∈H
dkt ,

∑

i∈S
ait

}

, ∀t ∈ T (5.11)

dkt = (1 + ηk(t−1))

(

dk(t−1) − λ
∑

j∈D y jk(t−1)

ωΓ

)

, ∀k ∈ H, t ∈ T (5.12)

xi j t , y jkt ∈ I,∀i ∈ S, j ∈ D, k ∈ H, t ∈ T (5.13)

The objective function in Eq. (5.7) minimizes the total logistics cost of medical
resources allocation. Constraint (5.8) is the flow conservation constraint. Constraint
(5.9) is the production capacity constraint. Constraints (5.10)–(5.12) are the demand
constraints. At last, constraint (5.13) ensures that all decision variables are integers.
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5.3.4 Solution Procedure

For any t ∈ T , the proposed model is a standard transshipment programming prob-
lem. The feature of such programming problem is that both the input quantity and
output quantity of medical resources in each DC are unknown. Hence, we design a
heuristic algorithm to solve the proposed model, which is presented as follows:

Procedure
Input: parameters of the SEIR model, ci j , ri j and ait .
Output: the final optimal allocation result.
Begin

Solve the ODE and decompose the problem into n correlated sub-problems
(n decision-making cycles);
t ← 0;
while (not termination condition) do
Forecast the demand dkt ;
Solve the programming model on decision cycle t;
Obtain the allocation result pt ;
t ← t+1;

end
Output themedical resources allocation result and the cost for each decision-
making cycle.

End

5.4 Numerical Example and Discussion

5.4.1 Numerical Example

In this section, we rely on a numerical example to demonstrate the efficiency of the
proposed method. The tests are performed on a personal computer equipped with
a Intel (R) Core (TM) 3.10 GHz CPU and 4.0 Gb of RAM in the environment of
Microsoft Window 7. Since the proposed programming model is formulated as a
multi-stage integer programming model, we can solve it by MATLAB coupled with
the optimal software CPLEX 12.4.

An area, with 2 medicine suppliers that supply the medicine for the influenza, 4
distribution centers (DC) that store and distribute the medicine to the local hospitals
based on their demand, and 8 local hospitals (H) that are designated to host and treat
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the infected individuals, is assumed to be the hypothetical influenza outbreaks area.
Initial values of the related parameters for the SEIR model are given in Table 5.1.

Taking region 1 as our example, Fig. 5.4 depicts the numerical simulation result
if no medical resources could be allocated. The computation time to solve the ODE
is less than 10 s. The four curves respectively represent the number of four groups of
people (S, E, I, R) over time. As a numerical test, we extract the time interval from
the 15th day (decision-making cycle t = 0) to the 45th day (decision-making cycle
t = 30) to be the second response stage of the influenza diffusion process according
to our previous works [13, 35]. Of course, the time range for the response stage can
be adjusted correspondingly when different influenza outbreak occurs.

Let λ = 1 and ω = 1, there are 30 iterations for the test and we can rewrite
the demand for medical resources as d∗

t = I (t), t ∈ T . Meanwhile, we can obtain
the difference factor ηt for each decision cycle. Moreover, let 	 = 15 (days) and
suppose the production capacity of each supplier is 2000 units of medical resources

Table 5.1 Initial values of the relative parameters

Hospital(H) Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8

S(0) (person) 5 × 103 4.5 × 103 5.5 × 103 5 × 103 6 × 103 4.8 × 103 5.2 × 103 4 × 103

E(0)
(person)

30 35 30 40 25 40 50 45

I (0) (person) 5 6 7 8 4 7 9 10

R(0)
(person)

0

β 4 × 10−5

δ 0.3

α 1 × 10−3

τ (day) 5
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Fig. 5.4 Numerical simulation of the SEIR model
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daily. Therefore, with the given coefficient matrix of transportation cost between the
different nodes (i.e. the suppliers, the DCs and the local hospitals), we can obtain
the medical resources allocation result for the first decision cycle. Coupling with the
result, we can forecast the demand for the second decision cycle by using Eq. (5.5).
After that, we can solve the programming model for the second decision cycle and
acquire the medical resources allocation result p2. Such phase is executed iteratively
and the computation time to get the final optimal solution of thewhole test is 457.81 s.

Figure 5.5 shows the changes in demand for medical resources during the entire
testing response stage. While DFM-I is adopted to forecast the demand, medical
resources supply is not enough from the 24th day to the 38th day. To avoid the
stock-out situation, the suppliers should either improve their production capacity or
replenish medical resources from other emergency suppliers. Whatever, the effect
that medical resources allocated in early periods takes effect in subduing the spread
of influenza and thus impact the demand in the later period is ignored. While DFM-
II is adopted, the above stock-out problem is no longer a problem. That means, the
assumption that each supplier has a production capacity of 2000 is feasible for the
entire process. The secondobservation fromFig. 5.5 is that both curves exhibit similar
trends, namely, the demand will first increase along with the spread of influenza, and
then decrease after it is under control. However, it is magnified while DFM-I is
adopted to predict the demand, and the proposed DFM-II is superior to the first one
in less waste of medical resources.

5.4.2 Comparison and Discussion

It is easy to obtain the global optimal solution of the programming model in the
above test, since medical resources are provided enough. Herein, we refer it as ‘the
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global allocation mode’. An obvious question is that what will happen when the
production capacity is limited? For example, if each supplier can only provide 1000
units of medical resources in each decision cycle, does the global allocation mode
still efficient to assign the medical resources? Moreover, based on our interviews
with the public healthcare administrative personnel in China, an empirical method
has always been adopted in practice. In such manual method, if medical resources
supply is adequate, the demand in each hospital would be satisfied. Otherwise, while
medical resources are limited, they would be allocated to each hospital according to
the proportion of its demand in the total demand. Herein, we call it “the equilibrium
allocation mode”, which can be formulated as follows.

pkt =

⎧
⎪⎨

⎪⎩

dkt , i f
∑

k∈H
dkt ≤ ∑

i∈S
ait

dkt
∑

i∈S
ait

∑
k∈H dkt

i f
∑

k∈H dkt >
∑

i∈S
ait

,∀k ∈ H, t ∈ T . (5.17)

Holding all the other parameters fixed as in numerical example given in Sect. 5.4.1,
except that production capacity of each supplier, which is limited as 1000 for each
decision cycle. We calculate the whole test again and obtain the new final allocation
results for each decision cycle. The comparison of supply and demand matching
between these two methods is shown in Fig. 5.6. Both allocation modes cannot avoid
the problem of stock-out, and medical resources supply is not enough from the 22th
day to the 34th day.

To make a clear comparison between these two allocation results, we extract the
final result on the decision cycle t= 14 (the 29th day) as our example. The comparison
result is shown in Fig. 5.7. While we adopt the global allocation mode to assign the
restricted medical resources, hospitals 1, 5 and 8 are supplied adequately, and the
others are provided partially (see Fig. 5.7a). The total allocation cost on this decision
cycle is 6475 RMB. However, while we implement the equilibrium allocation mode
to assign themedical resources, significant gaps between supply and demand for each
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Fig. 5.7 Supply and demand on decision cycle t = 14 (the 29th day)

EDH are presented (see Fig. 5.7b). The reason is that medical resources are allocated
to each hospital according to the proportion of its demand in the total demand. The
larger the demand is, the larger the shortage is. The total allocation cost for this mode
is 6642 RMB. Therefore, it can be concluded that the equilibrium allocation mode,
which is always adopted as an empirical method in practice, is uneconomical.

In addition, we calculate the difference between the two total costs for these two
modes. We also present the cumulative deficit for the cost difference. The results
are shown in Fig. 5.8. Superficially, it is difficult to distinguish which mode is the
better one; but on the whole, the total allocation cost by using equilibrium alloca-
tion mode is the higher one. The second observation from Fig. 5.8 is that the total
quantity of medical resources allocated by using the equilibrium allocation mode is
44,741 units, and the total allocation cost is 150,076 RMB for the whole 30 decision
cycles. However, these two values in global allocation mode are 44,760 units and
149,615 RMB, respectively. It can be concluded that the global allocation mode is
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more efficient, because it assigns more medical resources within less cost during the
same time interval.

5.4.3 A Short Sensitivity Analysis

In this section, we present a short sensitivity analysis of the parameter 	 in time-
varying demand forecasting model. Holding all the other parameters fixed as in
numerical example given in Sect. 5.4.1, except that 	 takes on five different values
(10, 12, 15, 18 and 20), respectively. The total allocation cost on each decision cycle
is shown in Fig. 5.9. As Fig. 5.9 shows, the shorter 	 is, the lower allocation cost is.
It is worth mentioning that such a phenomenon only appears whenmedical resources
are supplied adequately. The second observation fromFig. 5.9 is that occurrence time
and duration time of the stock-out are earlier and longer respectively as the growth
of 	. The reason is that more medical resources would be required to treat the
infected people if the treatment cycle is extended. Therefore, the total allocation cost
would be increased and the duration time of stock-out would be extended. The above
analysis confirms that such parameter plays an important role in medical resources
allocation decisions. For a small change of 	, the final allocation decisions and the
total operation cost will be changed significantly.

15 20 25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

7000

time t

co
st

Г=10
Г=12
Г=15
Г=18
Г=20

Fig. 5.9 Total cost with different value of 	



5.5 Conclusions 105

5.5 Conclusions

In this study, we rely on a discrete time-space network to describe medical resources
allocation problem when an unexpected influenza is outbreak. We formulate the
problem as a multi-stage integer programming model with time-varying demand
based on SEIR diffusion rule. The three main differences that distinguish this work
from the past literature are presented as follows.

Firstly, the model proposed in this study addresses a time-series demand that
is forecasted in match of the course of influenza diffusion. The model couples a
multi-stage integer programming for optimal allocation of medical resources with a
proactive forecasting mechanism cultivated from influenza diffusion dynamics. The
rationale that medical resources allocated in early periods take effect in subduing the
spread of influenza and thus impact demand in later periods has been for the first
time incorporated into our model.

Secondly, the computational results based on a numerical example show that the
proposed model is superior to the general measures in both terms of cost reduction
and medical resources control. Our model can reduce the total operation cost of
medical resources allocation and may get influenza diffusion in control earlier than
general measures.

Last but not least, medical resources allocation problem has always been formu-
lated as vehicle routing problem (VRP), or vehicle routing problem with time win-
dows (VRPTW) in precious literatures, which includes many sub-tour constraints
and is difficult to solve. In this study, we decompose medical resources allocation
problem into several mutually correlated sub-problems, and solve them systemati-
cally in the same decision scheme subsequently. Therefore, the proposed method is
more suitable for an actual decision-making support.

The next research steps of this study incorporate a more realistic influenza dif-
fusion model including features such as subdivision of the population by risk group
and disease stage. It can also include the cross area diffusion between two or more
geographic areas, and the incorporation of purchase lead time of medical resources.
In addition, the utilization of multiple resources in model is another important topic
for the further research.
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Chapter 6
Integrated Optimization Model
for Two-Level Epidemic-Logistics
Network

As mentioned in the above chapters, the demand of emergency resource is usually
uncertain and varies quickly in anti-bioterrorism system. With the consideration of
emergency resources allocated to the epidemic areas in the early rescue cycles will
affect the demand in the following periods, we construct an integrated and dynamic
optimization model with time-varying demand for the emergency logistics network
based on the epidemic diffusion rule. The heuristic algorithm coupled with ‘DDE23
tool’ in MATLAB is adopted to solve the optimization model, and the application of
the model as well as a short sensitivity analysis of the key parameters in the time-
varying demand forecast model is presented by a numerical example. The win-win
emergency rescue effect is achieved by such an optimization model. Thus, it can
provides some guidelines for decision makers when coping with emergency rescue
problem with uncertain demand, and offers an excellent reference when issues are
pertinent to bioterrorism.

6.1 Introduction

Bioterrorism is the intentional use of harmful biological substances or germs to cause
widespread illness and fear. It is designed to cause immediate damage and release
dangerous substances into the air and surrounding environment. Because it would
not usually be signaled by an explosion or other obvious cause, a biological attack
may not be recognized immediately and may take local health care workers time to
discover that a disease is spreading in a particular area.

Over the past few years, the world has grown increasingly concerned about the
threat bioterrorists pose to the societies, especially after the September 11 attacks
and the fatal delivery of anthrax via the US Mail in 2001. Henderson [1] points
out that the two most feared biological agents in a terrorist attack are smallpox
and anthrax. Radosavljević and Jakovljević [2] propose that biological attacks can
cause an epidemic of infectious disease, thus, epidemiological triangle chain models
can be used to present these types of epidemic. Bouzianas [3] presents that the
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deliberate dissemination of Bacillus anthracis spores via the US mail system in
2001 confirm their potential use as a biological weapon for mass human casualties.
This dramatically highlights the need for specific medical countermeasures to enable
the authorities to protect individuals from a future bioterrorism attack.

Generally, emergency logistics in anti-bioterrorism system is more complex and
difficult, and differs from business logistics in the following aspects. First of all, a
bioterror attack usually happens suddenly and causes a surge of demand for a partic-
ular medicine during a very short period of time. Hence, emergency resources must
be allocated to the epidemic areas as quickly as possible. Second, the demand infor-
mation is quite limited and varies rapidly with time. It is often very difficult to predict
the actual demand based on historical data [4]. Third, unlike logistics management
in which all the activities are triggered based on customer orders, emergency logis-
tics network in the anti-bioterrorism system is derived from the epidemic diffusion
network.

Considering the relationship between an unexpected bioterror attack and the asso-
ciated emergency logistics decisions, Liu and Zhao [5, 6] focus on how to control
the emergency resources and divide the whole emergency rescue process into three
stages. In the first stage, for the disaster area is just suffered from a bioterror attack,
and the bio-virus (such as smallpox, Bacillus anthracis and so on) hasn’t cause a
widespread diffusion, thus, we should deliver the existing emergency resources in
the local health departments to the disaster areas as quickly as possible. Then, objec-
tive of the second stage is that emergency resources can be allocated to the disaster
areas along with the spreading of the bio-virus, continually. Thus in this study, we
focus on the third rescue stage, and the following problem should be answered:
how to replenish emergency resources to the local health departments, and simulta-
neously, how to allocate emergency resource to the infected areas? To accomplish
such objective, we employ network flow techniques to develop an integrated and
dynamic optimization model, with the objective of minimizing the total rescue cost
and subject to related operating constraints. The model is expected to be an effective
decision-making tool that can help improve the efficiency of emergency rescue when
suffered from a bioterror attack.

6.2 Problem Description

As mentioned before, we have divided the entire emergency rescue process into
three stages in Liu and Zhao [5], and this study focuses on the optimization of the
emergency logistics network in the third rescue stage. In such stage, situation of the
epidemic diffusion tends to be stable and the spread of the epidemic goes to under
control. Thus, optimization goal in such stage is to construct an integrated, dynamic
and multi-level emergency logistics network, which includes the national strategic
storages, the urban health departments and the epidemic areas. The research idea of
the third emergency rescue stage is shown in Fig. 6.1.
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Fig. 6.1 Research idea of the third emergency rescue stage

As Fig. 6.1 shows, the entire rescue process in the third emergency rescue stage is
decomposed into several mutually correlated sub-problems (i.e. n decision-making
cycles). To each decision-making cycle, there exist two sub-problems. In the upper
level, we consider the problem how to replenish emergency resources to the urban
health departments. Besides, we adjust the replenishment arcs by a heuristic algo-
rithm, and construct a mixed-collaborative delivery system. Thus, the total rescue
cost of the upper level sub-problem would be minimized. In the lower level, we
present the problem how to allocate emergency resources to the infected areas. We
propose a forecastingmodel for the time-varying demand in the epidemic areas based
on the epidemic diffusion rule. Such two phases are executed iteratively. Besides,
at the end of each rescue cycle, effect of emergency resources allocated is analyzed
and the number of infected people is updated. Such a sequential operational routine
is continued until the bio-virus diffusion is under control.

It isworthmentioning that the optimal result of the upper level sub-problemaffects
the result of the lower level sub-problem, directly; on the other side, the optimal
result of the lower level sub-problem will affect the result of the upper level sub-
problem in the next emergency rescue cycle. Therefore, this is different to the bi-level
programming method. In what follows, we will present the SEIR epidemic diffusion
model and the forecasting models for the time-varying demand and inventory.
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6.2.1 SEIR Epidemic Diffusion Model

Since most epidemics divide people into four classes: the susceptible people (S), the
people during the incubation period (E), the infected people (I), and the recovered
people (R). Thus, as Fig. 6.2 shows, without consideration of the population migra-
tion, and the natural birth and death rate of the population, we can use a SEIR model
based on small-world network to describe the developing epidemic process.

Therefore, the following SEIR model [6] is adopted in this study.

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = −β〈k〉S(t)I (t)
dE
dt = β〈k〉S(t)I (t) − β〈k〉S(t − τ)I (t − τ)
d I
dt = β〈k〉S(t − τ)I (t − τ) − (d + δ)I (t)
dR
dt = δ I (t)

(6.1)

In such epidemic diffusion model, the time-based parameters S(t), E(t), I (t)
and R(t), represent the number of susceptible people, the number of people during
the incubation period, the number of infected people, and the number of recovered
people, respectively. Other parameters include: 〈k〉 is the average degree distribution
of the small-world network; β is the propagation coefficient of the bio-virus (small-
pox); δ is the recovered rate of the infected people; d is the death rate caused by the
disease; τ stands for the incubation period. Furthermore, 〈k〉, β, δ, d, τ > 0.

From the Eq. (6.1), we can see that I (t), which denotes the number of infected
people, can be calculated by solving the ordinary differential equations when the
initial values of S(t), E(t), I (t) and R(t) are given. Actually, this parameter is one
of themost important concerns during the emergency rescue process, and it is desired
that I (t) stays at a value as low as possible, which implies that the situation is stable
and the spread of the epidemic is under control. Wang et al. [4] propose that the
change of I (t) mainly depends on the population of the recovered people and the
onset people at the end of the incubation period. And thus, we should improve the
recovered rate δ and reduce the propagation coefficient β, thereby decreasing the
value of I (t) effectively.

β<k>S(t-τ)I(t-τ) δI 

d1I

β<k>SI
S I R E

Fig. 6.2 SEIR epidemic diffusion model
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6.2.2 Forecasting Model for the Time-Varying Demand

As mentioned before, for both upper and lower sub-problems are existed in each
emergency rescue cycle, thus, the time-varying demand in each sub-problem should
be the forecasted respectively.

(1) Forecasting model for the time-varying demand in the epidemic area

As introduced in Sect. 6.1, the demand information is quite limited and varies rapidly
with timewhen suffered froma bioterror attack. Thus, it is often difficult to predict the
actual demand based on historical data. Xu et al. [7] propose that demand forecasting
after a disaster is especially important in emergency management, and present an
EMD-ARIMA(empiricalmodedecomposition and autoregressive integratedmoving
average) forecasting methodology to predict the agricultural products demand after
the 2008 Chinese winter storms. Other related works can be found in [8, 9]. Note
that emergency demand in the previous literature has always been formulated as a
stochastic or deterministic variable, while the effectiveness that emergency resource
allocated in the early rescue cycle will affect the demand in the later rescue cycle has
not been considered. Based on the previous works ([5]), the following forecasting
model for the time-varying demand in the epidemic area is adopted in this study.

d∗
t = aI (t), t ∈ 0, 1, 2, . . . , n (6.2)

ηt = (d∗
t+1 − d∗

t )
/
d∗
t
, t ∈ 0, 1, 2, . . . , n − 1 (6.3)

When t = 0, d0 = aI (0) (6.4)

When t = 1, d1 = (1 + η0)

(

1 − θ

�

)

d0 (6.5)

When t = 2, d2 = (1 + η1)

(

1 − θ

�

)

d1 = (1 + η0)

(

1 + η1)(1 − θ

�

)2

d0 (6.6)

. . .

When t = n, dn =
n−1∏

i=0

(1 + ηi )

(

1 − θ

�

)n

d0 (6.7)

Herein,
∏n−1

i=0 (1 + ηi ) = (1 + η0)(1 + η1) . . . (1 + ηn−1). Equation (6.2) is the
traditional forecasting model for the time-varying demand. d∗

t means demand of the
emergency resources in the epidemic area at time t, t ∈ 0, 1, 2, . . . , n. I (t) is the
number of infected people in the epidemic area at time t. a is the proportionality
coefficient. Equation (6.3) is used to calculate the linear scale factor of the change in
demand for each rescue cycle. Furthermore, ηt ≤ 0. d0 in the Eq. (6.4) is the initial
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demand of emergency resources in the epidemic area, and I (0) represents the initial
number of infected people in the epidemic area. d1, d2, . . . , dn in Eqs. (6.5)–(6.7)
represent the demand of emergency resources in emergency rescue cycle 1, 2, . . . , n.
Other parameter include: θ is the effective rescue rate in each cycle;� is the treatment
cycle for each infected person. To facilitate the calculation process in the following
sections, we assume that � is an integral multiple of the rescue cycle.

According to the above recursion formulas, the change of emergency demand
mainly depends on these two important parameters. Thus, in the context of emergency
rescue, there should be enough emergency resources to cure the infected people, so
that the effective rescue rate θ can be improved and the treatment cycle Γ can be
reduced, thereby, decreasing the total emergency rescue cost.

(2) Forecasting model for the time-varying demand in urban health depart-
ment

As introduced before, in the upper level sub-problem, we consider the problem
how to replenish emergency resources to the urban health departments. Thus, the
urban health departments, which are the emergency suppliers in the lower level sub-
problem, have been changed to be the demand nodes in the upper level replenishment
network. Note that time-varying demand in the urban health department mainly
depends on the unsatisfied capacity. Hence, to facilitate the calculation process in
the following sections, we assume that the initial inventory in each urban health
department is equal to zero. Besides, we suppose that capacity of each urban health
department is equal to Vcap. Supposing that dv

t represents the demand of emergency
resources in urban health department at rescue cycle t, Pt represents the total supply
of the emergency resources in urban health department at rescue cycle t (Such value
is obtained by solving the lower level sub-problem in the previous rescue cycle).
Thus, the forecasting model for time-varying demand in urban health department
can be formulated as follows.

dv
t =

{
Vcap, t = 0
Pt−1, t = 1, 2, . . . , n

(6.8)

6.2.2.1 Forecasting Model for the Time-Varying Inventory

Asmentioned in Sect. 6.1, the focus of this study is placed on replenishing emergency
resources to the urban health departments and distributing them to the epidemic areas,
simultaneously. Thus, the urban health departments play the role of the link in the
multi-level emergency logistics network. Intuitively, inventory of the emergency
resources in the urban health department should also be changed as time goes by.
Supposing that Vt is the inventory of the emergency resources in the urban health
department at rescue cycle t, and we can get the following equation.
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Vt =
{

0, t = 0
Vcap − Pt−1, t = 1, 2, . . . , n

(6.9)

6.3 Optimization Model and Solution Methodology

6.3.1 The Integrated Optimization Model

To facilitate the model formulation in the following section, we make the following
four assumptions.

(1) Once suffered from a bioterror attack, each epidemic area can be isolated from
other areas to avoid the spread of the disease.

(2) The locations of the national strategic storages, and urban health departments
are known. Practically, the number of storage places to be used can be preset
by a national disaster plan.

(3) Holding cost of the emergency resources is not considered.
(4) Capacity of the national strategic storage is large enough, and in each rescue

cycle, each one of them can supply a certain amount of emergency resources.

Notations used in the following integrated and dynamic optimization model are
specified as follows.

nci j : Unit replenishment cost of the emergency resource from the nation strategic
storage i to the urban health department j .
ce jk : Unit distribution cost of the emergency resource from the urban health depart-
ment j to the epidemic area k.
nsi : The certain amount of emergency resources that can be supplied by the nation
strategic storage i in each rescue cycle.
Vcap: Capacity of the urban health department.
dkt : Demand of the emergency resources in epidemic area k at rescue cycle t .
dv
j t : Demand of the emergency resources in urban health department j at rescue cycle

t .
Pjt : Total supply of the emergency resources in urban health department j at rescue
cycle t.
Vjt : Inventory of the emergency resources in the urban health department j at rescue
cycle t.
xi j t : Amount of the emergency resources that transport from the national strategic
storage i to the urban health department j at rescue cycle t.
y jkt : Amount of the emergency resources that transport from the urban health depart-
ment j to the epidemic area k at rescue cycle t .
TC : Total cost of the multi-level emergency logistics network.
N : Set of the national strategic storages.
C : Set of the urban health departments.
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E : Set of the epidemic areas.
T : Set of the decision-making cycles.

According to the above explanation and assumptions, the integrated and dynamic
optimization model for the multi-level emergency logistics network can be formu-
lated as follows:

Min TC = ∑

t∈T

∑

i∈N

∑

j∈C
xi j t nci j+ ∑

t∈T

∑

j∈C

∑

k∈E
y jkt ce jk (6.10)

s.t.
∑

j∈C
xi j t ≤ nsi , ∀i ∈ N , t ∈ T (6.11)

∑

i∈N
xi j t = dv

j t , ∀ j ∈ C, t ∈ T (6.12)

dv
j t = Vcap, ∀ j ∈ C, t = 0 (6.13)

dv
j t = Pjt−1, ∀ j ∈ C, t = 1, 2, . . . , T (6.14)

Pjt =
∑

k∈E
y jkt , ∀ j ∈ C, t ∈ T (6.15)

∑

k∈E
y jkt ≤ Vcap, ∀ j ∈ C, t ∈ T (6.16)

∑

j∈C
y jkt = dkt , ∀k ∈ E, t ∈ T (6.17)

dkt = aIk(t), ∀k ∈ E, t = 0 (6.18)

dkt =
t−1∏

i=0

(1 + ηki )

(

1 − θ

Γ

)t

dk0, ∀k ∈ E, t = 1, 2, . . . , T (6.19)

t−1∏

i=0

(1 + ηki ) = (1 + ηk0)(1 + ηk1) . . . (1 + ηk(t−1)),∀k ∈ E, t = 1, 2, . . . , T

(6.20)

xi j t ≥ 0, ∀i ∈ N , j ∈ C, t ∈ T (6.21)

y jkt ≥ 0, ∀ j ∈ C, k ∈ E, t ∈ T (6.22)

Herein, the objective function in Eq. (6.10) is to minimize the total cost of the
multi-level emergency logistics network. Equations (6.11) and (6.12) are constraints
for flow conservation in the upper level sub-problem. Equations (6.13)–(6.15) are
the time-varying demand models in the upper level sub-problem. Equations (6.16)
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and (6.17) are constraints for flow conservation in the lower level sub-problem.
Equations (6.18)–(6.20) are the time-varying demand models in the lower level sub-
problem. At last, Eqs. (6.21) and (6.22) ensure all the arc flows in the emergency
logistics network within their bounds.

Our model is formulated as an integrated, dynamic and multi-stage program-
ming model, and could thus be difficult to solve directly, especially for realistically
large-scale problems. Therefore, as mentioned in Sect. 6.2, we should decompose
the problem into several mutually correlated sub-problems, and then solve them sys-
tematically in the same decision scheme. In what follows, we will develop a heuristic
algorithm to efficiently solve the problem.

6.3.2 Solution Methodology

(1) Solution procedure for the optimization model

As introduced before, we decompose the entire emergency process in the third rescue
stage into n sub-problems (i.e. n decision-making cycles or n rescue cycles). Thus, to
each rescue cycle, the research problem has been become a two correlated program-
ming problems and simple to solve. The ‘DDE23’ tool in MATLAB coupled with
the forecasting model for the time-varying demand (As introduced in Sect. 6.2.2)
is adopted to calculate the dynamic demand. Then, the solution procedure can be
presented as follows.

Step 1. Preset the decision-making cycle, and decompose the entire emergency pro-
cess in the third rescue stage into n decision-making cycles.
Step 2. Let t = 0, and initialize parameters in the SEIR epidemic diffusion model.
Step 3. Analyze the epidemic diffusion rule, and calculate the initial demand of the
emergency resources in each epidemic area according to the Eq. (6.18).
Step 4. Solve the two correlated programming problems in rescue cycle t = 0 and
obtain the initial solution.
Step 5. Improve the initial solution by heuristic algorithm (Detail about the heuristic
algorithm is introduced in Sect. 6.3.2).
Step 6. Get the final solution of the emergency allocation in such rescue cycle.
Step 7. Set t = t + 1, if the termination condition for the rescue cycle is not satisfied,
update the demand in each epidemic area and urban health department, and update
the inventory level of the emergency resources in each urban health department, go
back to Step 3. Else, go to the next step.
Step 8. End the programme and output the final result.

(2) Heuristic algorithm for improving the initial solution

It is not difficult to find that only two types of distribution arcs (type (a) and (c)
in Fig. 6.1) have been optimized in the above model, while the collaborative arcs
(type (b) in Fig. 6.1) have not been considered. In other words, the collaborative
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effect among the national strategic storages has not been considered. Zhao and Sun
[10] propose that emergency rescue system with a supply source can results in better
performance in both aspects of operational efficiency and operating cost. Thus, to
improve the performance of the emergency rescue system without supply source, as
Fig. 6.3 shows, we can select an adjacent national strategic storage in the network as
the HUB location, and then take the national strategic storages which are at some dis-
tance from the epidemic area as the supply sources. As a result, a mixed-collaborative
replenishment system is constructed.

Obviously, such mixed-collaborative replenishment system allows both hub-and-
spoke and direct shipment (we call it point to point mode) deliverymodes. Thus, both
advantages of the economies of scale in hub-and-spoke system and the effectiveness
in direct shipment system can be taken account. It is worth mentioning that some
previous works are related (e.g. [11, 12]), and the experiment results in these works
show that the mixed system can save total traveling distance or delivery cost as
compared with either of the two pure systems. Therefore, such mixed-collaborative
system can improve the initial solution in the last section. Besides, the heuristic
algorithm in Liu et al. [12] can be applied in this study with suitable modified as
follows (The flowchart of the procedure is also given in the Fig. 6.4).

Step 1. Solve the pure point to point replenishment mode, and let the distribution
arc set be Dd . By solving the objective Eq. (6.10), we can get the total emergency
replenishment cost at rescue cycle t. Let TCd = ∑

i∈N
∑

j∈C xi j t nci j .
Step 2. Solve the pure hub-and-spoke problem. This is done as follows: select a
national strategic storage h(h ∈ N ) which is adjacent to the epidemic areas as the
HUB location, and then, solve a programming problem with the depot located at h

National strategic 
storage 1 

Urban health 
department 1

Urban health 
department 2

Urban health 
department j

National strategic 
storage2 

Urban health 
department 3

Epidemic 

National strategic 
storage 3 

National strategic 
storage i

Fig. 6.3 Mixed-collaborative replenishment system
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Fig. 6.4 The flowchart of the solution procedure
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to collect the emergency resources from all the other storages and to distribute the
emergency resources to the urban health departments. Let the distribution arc set
be Dh . qih represents amount of emergency resources that transport from national
strategic storage i to the HUB, and the unit transportation cost is nzih . Thus, TCh =∑

i∈N\h zihqih + ∑
h∈N

∑

j∈C
xhjt nchj is the total emergency replenishment cost at

rescue cycle t.
Step 3. Compare TCd and TCh , if TCd < TCh , let Dd = D, Dh = ∅, record it as
the case 1; else if TCd ≥ TCh , let Dh = D, Dd = ∅ and record it as the case 2.
Let TCs = min{T d , T h} and TCm ← TCs .
Step 4. Adjust the distribute arc according to the following two situations.

Step 4.1. If case 1 appears, then for every replenishment arc (Ni ,C j ) ∈ Dd ,
compute Sdhi j , which is an estimate of the improvement in the solution value if
the replenishment arc is transferred from Dd to Dh . Transfer all those pairs with
positive Sdhi j from direct shipment delivery to hub-and-spoke delivery, and set
Dd ← Dd\{(Ni ,C j )|Sdhi j ≥ 0}, Dh ← Dh ∪ {(Ni ,C j )|Sdhi j ≥ 0}.
Step 4.2. If case 2 appears, then for every replenishment arc (Ni ,C j ) ∈ Dh ,
compute Shdi j , which is an estimate of the improvement in the solution value if
the replenishment arc is transferred from Dh to Dd . Transfer all those pairs with
positive Shdi j from direct shipment delivery to hub-and-spoke delivery, and set
Dh ← Dh\{(Ni ,C j )|Shdi j > 0}, Dd ← Dd ∪ {(Ni ,C j )|Shdi j > 0}.

Step 5. Solve the mixed-collaborative delivery problem with demand partition
{Dd , Dh}, and record the total emergency rescue cost as TC ′.
Step 6. Compare the TCs and TC ′, if TC ′ < TCs , let TCs ← TC ′ and record the
partition {Dd , Dh}. Thus, TCs is the value of the best solution obtained so far, if
TCs < TCm , let TCm ← TCs .
Step 7. Let j = j + 1, go back to the Step 4, if top limit of j is satisfied, go to the
next step.
Step 8. Let i = i + 1, go back to the Step 4, if top limit of i is satisfied, go to the
next step.
Step 9. End the programme and output the optimal result.

Since Sdhi j or Shdi j are updated at every iteration and for more results on this topic,
we refer readers to Liu et al. [12]. In what follows, we will test how well the model
may be applied in the real world.
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6.4 A Numerical Example and Implications

6.4.1 A Numerical Example

In this section, we rely on a numerical analysis to demonstrate the efficiency of the
proposed method for the multi-level emergency logistics network when suffered a
bioterror attack. Since the focus of this study is placed on the third emergency rescue
stage, and goal of the optimization model is to better control the total emergency
rescue cost and the inventory level in the local health departments, thus, the subse-
quent numerical example will be focused on the analysis of these two objectives.
We assume that a region is suffered from a smallpox attack. There are 8 epidemic
areas, 6 urban health departments and 3 national strategic storages in such region.
The values of the parameters in the epidemic diffusion model are given in Table 6.1.

Taking the epidemic area 1 as the example, Fig. 6.5 is the numerical simulation of
the epidemic model in this disaster area. The four curves respectively represent the

Table 6.1 Values of the parameters in SEIR epidemic diffusion model

Area 1 2 3 4 5 6 7 8

S(0) 5 × 103 4.5 × 103 5.5 × 103 5 × 103 6 × 103 4.8 × 103 5.2 × 103 4 × 103

E(0) 30 35 30 40 25 40 50 45

I (0) 5 6 7 8 4 7 9 10

R(0) 0

β 4 × 10−5

〈k〉 6

δ 0.3

d 1 × 10−3

τ 5

Fig. 6.5 Solution of the
SEIR epidemic diffusion
model (epidemic area 1)
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number of four groups of people (S, E, I, R) as time goes by. As this study focuses
the third emergency rescue, we assume that it runs from the 45th day (rescue cycle t
= 0) to the 55th day (rescue cycle t = 10). Meanwhile, the rescue cycle is set to be
one day. Thus, a total of 8640 arcs are generated and used in the experiment).

Let a = 1, θ = 90% and � = 15 (days), the ‘DDE23 tool’ in MATLAB coupled
with Eqs. (6.18)–(6.20) are adopted to forecast the time-varying demand for each
epidemic area from time t = 0 to t = 10. As before, taking the epidemic area 1 as
the example, demand of the emergency resources at each rescue cycle by both of the
time-varying and traditional forecast models are shown in the Fig. 6.6.

As Fig. 6.6 shows, the forecasting model for time-varying demand can reflect
the effectiveness that emergency resources allocated in the early rescue cycle will
affect the demand in the following periods efficiently. The time-varying demand
of emergency resources is reduced obviously when compared with the traditional
demand in the following periods. It is worth to mentioning that both these two
curves get a similar variation tendency, which represents the epidemic is going to
be controlled. After getting demand of emergency resources in each rescue cycle, in
what follows, we will focus on how to allocate emergency resources to the epidemic
areas, and at the same time, how to replenish emergency resources to each urban
health department, with the objective of minimizing the total emergency rescue cost.
Table 6.2 shows the unit transportation cost from the supply point to the demand
point in the emergency logistics network (Suppose that national strategic storage 1
is preset as the HUB location).

As mentioned before, we assume that each national strategic storage can supply a
certain amount of emergency resources in each rescue cycle. Let they be 400, 420 and
450, and let the capacity of the urban health department be 210. Take the emergency
allocation result at time t = 0 as the example, we can solve the programming model
according to the solution procedure (As introduced in Sect. 6.4). The initial solution
is reported in Table 6.3 (Total cost 6576.24). Then, the heuristic algorithm is adopted

Fig. 6.6 Demand of the
emergency resources in
epidemic area 1
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Table 6.2 Unit transportation cost between two different points

Cost N1 C1 C2 C3 C4 C5 C6

N1 – 2 9 1 3 10 2

N2 4 7 2 10 8 9 8

N3 5 10 8 2 9 2 8

E1 E2 E3 E4 E5 E6 E7 E8

C1 6 2 6 7 4 2 5 9

C2 4 9 5 3 8 5 8 2

C3 5 2 1 9 7 4 3 3

C4 7 6 7 3 9 2 7 1

C5 2 3 9 5 7 2 6 5

C6 5 5 2 2 8 1 4 3

Table 6.3 Solution of the optimization model at time t = 0

Amount N1 C1 C2 C3 C4 C5 C6

Before the adjustment N1 – 106 – – 94 – 200

N2 – 104 210 – 106 – –

N3 – – – 210 10 210 10

After the adjustment N1 – 210 – – 210 – 210

N2 210 – 210 – – – –

N3 20 – – 210 – 210 –

E1 E2 E3 E4 E5 E6 E7 E8

C1 – 81.8 – – 128.2 – – –

C2 29.3 – – 117.5 – – – 12.8

C3 – 114.3 55.8 – – – 39.9 –

C4 – – – – – 35.4 – 174.6

C5 173.4 36.6 – – – – – –

C6 – – 38.2 – – 124.7 47 –

to adjust and improve the solution, and thus, the final solution is obtained (Total cost
6346.24).

As Table 6.3 shows, while the replenishment arcs (N2,C1) ∈ Dd , (N2,C4) ∈ Dd ,
(N3,C4) ∈ Dd and (N3,C6) ∈ Dd are transferred from the direct shipment delivery
system to the hub-and-spoke delivery system, the total rescue cost can be reduced.
Our test on the selected problem instance shows that the mixed-collaborative system
can save 5.9% of the rescue cost compared with the cost before the adjustment. And
at last, a mixed-collaborative replenishment system is conducted for the upper level
sub-problem. Actually, to better control the total emergency rescue cost, the decision
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maker can adjust and improve the initial solution of the lower level sub-problem as
similar to the above way.

In a similar way, we can complete the whole operations according to the solution
procedure (Fig. 6.4), then we can obtain the optimal initial solution for each rescue
cycle. Then, the heuristic algorithm is adopted to adjust and improve the solution for
each cycle. Replenishment arcs which need to be transferred in each cycle are shown
in Table 6.4. At last, the final solution and the total emergency rescue cost for each
cycle can be obtained.

Figure 6.7 shows the change in total rescue cost as time goes by. From this figure,
we can get the following two conclusions: (1) Coupled with Fig. 6.6, we can see
that demand of emergency resources becomes less and less, which implies that the
epidemic diffusion situation is going to be stable and the spread of the epidemic is
going to be under control. (2) Coupled with Table 6.4, we can see that the total rescue
cost can be reduced by the proposed heuristic algorithm in a certain degree. It is worth
mentioning that there is no adjustment after the rescue cycle t = 4, that’s because the
national strategic storages which are adjacent to the epidemic areas will have stored

Table 6.4 Transferred arcs in each cycle

Cycle Arcs need to be transferred Cycle Arcs need to be transferred

Before After Before After

t = 0 N2 → C1
N2 → C4
N3 → C4
N3 → C6

N2 → N1 → C1
N2 → N1 → C4
N3 → N1 → C4
N3 → N1 → C6

t = 1 N2 → C1
N2 → C4

N2 → N1 → C1
N2 → N1 → C4

t = 2 N2 → C1
N2 → C4

N2 → N1 → C1
N2 → N1 → C4

t = 3 N2 → C1
N2 → C4

N2 → N1 → C1
N2 → N1 → C4

Note There is no adjustment when t = 4, 5, 6, 7, 8, 9, 10

Fig. 6.7 Total rescue cost
for each rescue cycle
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Fig. 6.8 Inventory level in
different urban health
departments as time goes by

enough emergency resources at that time, and thus, the emergency logistics network
will be simplified greatly by then.

As mentioned before, the other control target of the optimization model is to
better control the inventory level of the local urban health departments. Figure 6.8
implies that inventory level in each urban health department has been improved and
raised as time goes by. Therefore, with the application of the integrated and dynamic
optimization model, the total emergency rescue cost can be controlled effectively,
and meanwhile, inventory level in each urban health department can be restored
and raised gradually. Thus, such optimization model achieves a win-win emergency
rescue effect in anti-bioterrorism system.

6.4.2 A Short Sensitivity Analysis

From the previous analysis we can see that the change in total rescue cost mainly
depends on the change in demand. In this section, a short sensitivity analysis of the
key parameters (θ and �) in the forecasting model for the time-varying demand is
conducted.

Taking the total rescue cost at time t = 10 as the example, holding all the other
parameters fixed as in the numerical example given in Sect. 6.4.1, except that θ and
Γ take on five different values, respectively. The changes in total rescue cost are
shown in Figs. 6.9 and 6.10. As Fig. 6.9 shows, θ takes on five values ranging from
60% to 100% with an increment of 10%, we can obtain the following conclusion:
the larger the θ is, the higher of the actual effective rescue rate in each cycle is, thus,
the less of demand is, and finally, the lower of the total rescue cost is. Similarly, as
Fig. 6.10 shows, � takes on five values ranging from 9 to 21 with an increment of
3. Conversely, the larger of � is, the longer of the treatment cycle is, thus, the larger
of the demand of emergency resources is, and finally, the higher of the total rescue
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Fig. 6.9 Change in total
rescue cost with different
value of θ (t = 10)

Fig. 6.10 Change in total
rescue cost with different
value of G (t = 10)

cost is. The above analysis confirms that both of the two key parameters play an
important role in the emergency decisions. For a small change of θ and �, the total
rescue cost at each cycle can change significantly. Unfortunately, precise value of
these two parameters for an epidemic is difficult to get. As the accuracy of these two
parameters is vital to the success of emergency rescue, a great deal of effort needs to
be devoted to scientifically estimating these two parameters of different epidemics.

Overall, to enhance the emergency rescue effectiveness in the anti-bioterrorism
system, we should improve our rescue work from the following aspects:

(1) Once suffered from a bioterror attack, the epidemic area should be isolated from
other areas to avoid the spread of the disease as far as possible.
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(2) Demand of the emergency resources in the epidemic area should be forecasted
quickly and precisely, for medicine in such emergency period is precious and
should not be wasted.

(3) An effective, integrated and dynamic optimization model should be conducted
for the emergency logistics network so that a win-win emergency rescue effect
will be achieved.

(4) There should be enough emergency resources to cure the patients so that the
actual effective rescue rate and the treatment time for each infected person can
be improved, and then, the epidemic diffusion can be controlled effectively.

6.5 Conclusions

In this chapter, the optimal decision of the multi-level emergency logistics network
with uncertain demand is investigated. An integrated and dynamic optimization
model is developed, and an effective solution procedure is designed. To verify the
validity and the feasibility of the solution procedure, we have presented a numeri-
cal example and an accurate result is obtained in a short amount of time. The main
differences distinguish this study to the past literature are presented as follows.

(1) With the consideration of that emergency resources allocated in the early rescue
cycle will affect the demand in the following periods, a unique forecast mecha-
nism to predict the demand in the epidemic area is proposed. Furthermore, we
construct two forecasting models for the time-varying demand and inventory
level in urban health department.

(2) A win-win emergency rescue effect is achieved by the integrated and dynamic
optimization model. The total emergency rescue cost is controlled effectively,
and meanwhile, inventory level in each urban health department is restored and
raised gradually.

(3) Emergency planning has always been formulated as vehicle routing problem
(VRP), or vehicle routing problemwith timewindows (VRPTW) in the precious
literature, which includes many sub-tour constraints and is difficult to solve.
Furthermore, time duration factor is not incorporated into the decision, resulting
in incomplete decisions in real operations. In this study, the emergency problem
has been decomposed into several mutually correlated sub-problems, and then
be solved systematically in the same decision scheme. Thus, the result will be
suitable to the real operations much better.

To summarize, in this study, emergency logistics network in the anti-bioterrorism
systemhas been optimized from the perspective of integration. Andwe have achieved
the win-win rescue goal. However, it’s also necessary to point out some limitations of
this research. First of all, we assume that once suffered from a bioterror attack, each
epidemic area can be isolated from other areas to avoid the spread of the disease.
Second, emergency resources in the anti-bioterrorism system may include vaccine,



128 6 Integrated Optimization Model for Two-Level Epidemic …

antibiotics,masks and so on, thus, the emergency logistics problem should be amulti-
commodity problem. Third, to facilitate the calculation process, initial inventory
and capacity of the urban health departments are assumed ideally. The situations in
actual operations would be much more complex. All these areas represent our future
research directions.
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Chapter 7
Integrated Optimization Model
for Three-Level Epidemic-Logistics
Network

This chapter is a continuous work of Chap. 6. In this chapter, a three-level and
dynamic linear programming model for allocating medical resources based on epi-
demic diffusionmodel is proposed. The epidemic diffusionmodel is used to construct
the forecastingmechanism for dynamic demand ofmedical resources.Heuristic algo-
rithm coupled with MATLABmathematical programming solver is adopted to solve
the model. A numerical example is presented for testing the model’s practical appli-
cability. The main contribution of the present study is that a discrete time-space
network model to study the medical resources allocation problem when an epidemic
outbreak is formulated. It takes consideration of the time evolution and dynamic
nature of the demand, which is different from most existing researches on medical
resources allocation. In our model, the medicine logistics operation problem has
been decomposed into several mutually correlated sub-problems, and then be solved
systematically in the same decision scheme. Thus, the result will be much more
suitable for real operations. Moreover, in our model, the rationale that the medical
resources allocated in early periods will take effect in subduing the spread of the
epidemic spread and thus impact the demand in later periods has been for the first
time incorporated. A win-win emergency rescue effect is achieved by the integrated
and dynamic optimization model. The total rescue cost is controlled effectively, and
meanwhile, inventory level in each urban health departments is restored and raised
gradually.

7.1 Introduction

As mentioned in Rachaniotis et al. [1], a serious epidemic is a problem that tests
the ability of a nation to effectively protect its population, to reduce human loss and
to rapidly recover. Sometime such a problem may acquire worldwide dimensions.
For example, during the period from November 2002 to August 2003, 8422 people
in 29 countries were infected with SARS, 916 of them were dead at last for the
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effective medical resources appeared late. Other diseases, such as HIV, H1N1 also
cause significant numbers of direct infectious disease deaths.

Actually, many recent research efforts have been devoted to understanding the
prevention and control of epidemics, such as Wein et al. [2], Craft et al. [3] and
Kaplan et al. [4]. The major purpose of these articles is to compare the performance
of the following two strategies, the traced vaccination (TV) strategy and the mass
vaccination (MV) strategy, but not address how to optimize the allocation of medical
resources.

Another stream of research is on the development of epidemic diffusion mod-
els by applying complex network theory to traditional compartment models. For
example, Saramäki and Kaski [5] proposed a susceptible-infected-recovered (SIR)
model for the spreading of randomly contagious diseases, such as influenza, based
on a dynamic small-world network. Xu et al. [6] presented a modified susceptible-
infected-susceptible (SIS)model based on complex networks, small-world and scale-
free, to study the spread of an epidemic by considering the effect of time delay. Based
on two-dimensional small-world networks, a susceptible-infected (SI) model with
epidemic alert is proposed in [7]. This model indicates that to broadcast an epidemic
alert timely is helpful and necessary in the control of epidemic spreading. Jung et al.
[8] extended the previous studies on the prevention of the pandemic influenza to eval-
uate the time-dependent optimal prevention policies, and they found that the quar-
antine policy is very important, and more effective than the elimination policy. After
determining the epidemiologic features of an Escherichia coli O157:H7 outbreak in
Xuzhou, Jiangsu Province, China, Zhu et al. [9] provided a scientific approach for
establishing prevention and control strategies in local areas. These above mentioned
works represent some of the research on various differential equation models for
epidemic diffusion and control.

However, after an epidemic outbreak, public officials are faced with many critical
issues, one of the most important of which being how to ensure the availability and
supply of medical resources so that the loss of life may be minimized and the res-
cue operation efficiency maximized. Sheu [10] presented a hybrid fuzzy clustering-
optimization approach to the operation of medical resources allocation in response to
the time-varying demand during the crucial rescue period. Yan and Shih [11] consid-
ered how to minimize the length of time required for emergency roadway repair and
relief distribution, as well as the related operating constraints. The weighting method
is adopted, and a heuristic algorithm is developed to solve a real emergency relief
problem, the Chi-Chi earthquake in Taiwan. To optimize the process of materials
distribution in an epidemic diffusion system and to improve the distribution time-
liness, Liu and Zhao [12] modeled the emergency materials distribution problem
as a multiple traveling salesman problem with time window. Wang et al. [13] con-
structed a multi-objective stochastic programming model with time-varying demand
for the emergency logistics network based on the epidemic diffusion rule. A genetic
algorithm coupled with Monte Carlo simulation is adopted to solve the optimization
model. Qiang and Nagurney [14] proposed a humanitarian logistic model for sup-
ply/distribution of critical needs in a disruption caused by a nature disaster. They
consider a general network structure and disruptions that may have an impact to both
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network link capacities and product demand. The problem is studied in a bi-criteria
system optimization framework for network performance.

In this study, a three-level and dynamic linear programming model for allocating
medical resources based on epidemic diffusion model is proposed. The epidemic
diffusion model introduced here is to construct the forecasting mechanism for the
dynamic demand of medical resources. Heuristic algorithm coupled with MATLAB
mathematical programming solver is adopted to solve the model.

7.2 Problem Description

7.2.1 The Research Ideas and Way to Achieve

As work in Liu and Zhao [15], this study focus on the recovered stage of epidemic
rescue. In such a stage, epidemic diffusion tends to be stable. Thus, optimization
goal in such stage is to construct an integrated, dynamic and multi-level emergency
logistics network, which includes the national strategic storages (NSS), the urban
health departments (UHD), the area disease prevention and control centers (ADPC),
and the emergency designated hospitals (EDH). Herein, we introduce a time-space
network to depict the network structure relationship of these elements, which is
shown as Fig. 7.1. In such figure, the vertical axis represents the time duration, and
the horizontal axis represents different emergency departments.

The entire recovered stage of epidemic rescue process is decomposed into several
mutually correlated sub-problems (i.e. n decision-making cycles). To each decision-
making cycle, there exist two sub-problems. In the upper level, we consider the
problem how to replenish medical resources to the UHDs. Besides, we adjust the
replenishment arcs among these NSSs by a heuristic algorithm, and construct a
mixed-collaborative delivery system. Thus, the total rescue cost of the upper level

Fig. 7.1 Time-space network of medical resources allocation
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Fig. 7.2 Operational procedure of the dynamic medicine logistics network

sub-problem would be minimized. In the lower level, we present the problem how
to distribute medical resources to the ADPCs and then allocate medical resources
to EDHs. We propose a forecasting model for the time-varying demand in EDHs
based on a SEIR epidemic diffusion model. Such two phases are executed iteratively.
Besides, at the end of each rescue cycle, effect of medical resources allocated is
analyzed and the number of infected people is updated. The research idea of such
rescue stage is shown in Fig. 7.2.

7.2.2 Time-Varying Forecasting Method for the Dynamic
Demand

In this study, we divide people into four classes: the susceptible people (S), the
exposed people (E), the infected people (I), and the recovered people (R). The fol-
lowing SEIR epidemic diffusion model in Liu and Zhao [16] is adopted to depict the
epidemic diffusion rule.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −β〈k〉S(t)I (t)

dE

dt
= β〈k〉S(t)I (t) − β〈k〉S(t − τ)I (t − τ)

d I

dt
= β〈k〉S(t − τ)I (t − τ) − (d + δ)I (t)

dR

dt
= δ I (t)

(7.1)



7.2 Problem Description 133

Herein, 〈k〉 is the average degree distribution of the small-world network; β is
the propagation coefficient; δ is the recovered rate of the infected people; d is the
death rate caused by the disease; τ stands for the incubation period. Furthermore,
〈k〉, β, δ, d, τ > 0. Traditionally, a simple linear function is used to formulated the
demand for medical resources as follows:

d∗
t = aI (t), t ∈ 0, 1, 2, . . . , n (7.2)

Herein, I (t) is the number of infected people in the epidemic area at time t. a is
the proportionality coefficient. Note that emergency demand for medical resources
is closely related to the number of infected people, and medical resources allocated
in the early rescue cycle will affect the demand later, here we propose a time-varying
forecasting method for the demand in each EDH as follows:

ηt = (d∗
t+1 − d∗

t )/d
∗
t , t ∈ 0, 1, 2, . . . , n − 1 (7.3)

When t = 0, d0 = aI (0) (7.4)

When t = 1, d1 = (1 + η0)

(

1 − θ

�

)

d0 (7.5)

When t = 2, d2 = (1 + η1)

(

1 − θ

�

)

d1 = (1 + η0)(1 + η1)

(

1 − θ

�

)2

d0 (7.6)

When t = n, dn =
n−1∏

i=0

(1 + ηi )

(

1 − θ

�

)n

d0 (7.7)

Herein,
∏n−1

i=0 (1 + ηi ) = (1+η0)(1+η1) · · · (1+ηn−1). θ is the effective rescue
rate; � is the treatment cycle for each infected person. To facilitate the calculation
process in the following sections, we assume that � to be an integral multiple of
rescue cycle. Equation (7.3) is used to calculate the linear scale factor of the change in
demand. Equation (7.4) is the initial demand in the epidemic area, and I (0) represents
the initial number of infected people in the epidemic area. Equations (7.5)–(7.7)
represent demand for medical resources in rescue cycle 1, 2, . . . , n, respectively.

7.2.3 Dynamic Demand and Inventory for the UHD

To facilitate the calculation process in the following sections, we assume that ini-
tial inventory of medical resources in each UHD is zero. Besides, we suppose that
capacity of each UHD is Vcap. dv

t represents demand for medical resources in UHD
in rescue cycle t. Pt represents the total output of medical resources in UHD in rescue
cycle t. Thus, the forecasting model for dynamic demand in UHD can be formulated
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as follows:

dv
t =

{
Vcap, t = 0
Pt−1, t = 1, 2, . . . , n

(7.8)

Correspondingly, suppose that Vt is inventory of medical resources in UHD in
rescue cycle t, we can get the following equation:

Vt =
{
0, t = 0
Vcap − Pt−1, t = 1, 2, . . . , n

(7.9)

7.3 Optimization Model and Solution Procedure

7.3.1 Optimization Model

The following assumptions are needed to facilitate the model formulation in the
following sections:

(1) Once an epidemic outbreak, each EDH can be isolated from other areas to avoid
the spread of the disease.

(2) It is reasonable to assume that the government can ensure the adequate supply
of the needed medicines either from domestic pharmaceutical companies or
imported. Hence, there are enoughmedical resources during the entire operation
process.

(3) Holding cost of medical resources is not considered in this study.
(4) Medical resources in this section are an assembled product, which may includes

water, vaccine, antibiotic, etc.

Notations used in the following optimization model are specified as follows.

nci j Unit replenishment cost of medical resources from NSS i to UHD j .
ce jk Unit distribution cost of medical resources from UHD j to ADPC k.
ehkl Unit distribution cost of medical resources from ADPC k to EDH l.
nsi Amount of medical resources supplied by NSS i in each rescue cycle.
Vcap Capacity of UHD.
dlt Demand for medical resources in EDH l in rescue cycle t .
dv
j t Demand for medical resources in UHD j in rescue cycle t .

Pjt Total output of medical resources in UHD j in rescue cycle t .
Vjt Inventory of medical resources in UHD j in rescue cycle t .
xi j t Amount of medical resources that will be transported from NSS i to UHD j

in rescue cycle t .
y jkt Amount of medical resources that will be transported from UHD j to ADPC

k in rescue cycle t .
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zklt Amount of medical resources that will be transported from ADPC k to EDH
l in rescue cycle t .

TC Total rescue cost of the three-level medical logistics network.
N Set of NSSs.
C Set of UHDs.
E Set of ADPCs.
H Set of EDHs.
T Set of decision-making cycles.

According to the above explanations and assumptions, the three-level and dynamic
linear programming model for allocating medical resources based on epidemic dif-
fusion model can be formulated as follows:

Min TC =
∑

t∈T

∑

i∈N

∑

j∈C
xi j t nci j +

∑

t∈T

∑

j∈C

∑

k∈E
y jkt ce jk +

∑

t∈T

∑

k∈E

∑

l∈H
zklt ehkl

(7.10)

s.t.
∑

j∈C
xi j t ≤ nsi , ∀i ∈ N , t ∈ T (7.11)

∑

i∈N
xi j t = dv

j t , ∀ j ∈ C, t ∈ T (7.12)

dv
j t = Vcap, ∀ j ∈ C, t = 0 (7.13)

dv
j t = Pjt−1, ∀ j ∈ C, t = 1, 2, · · · , T (7.14)

Pjt =
∑

k∈E
y jkt , ∀ j ∈ C, t ∈ T (7.15)

∑

k∈E
y jkt ≤ Vcap, ∀ j ∈ C, t ∈ T (7.16)

∑

j∈C

∑

k∈E
y jkt =

∑

k∈E

∑

l∈H
zklt , ∀t ∈ T (7.17)

∑

k∈E
zklt = dlt , ∀l ∈ H, t ∈ T (7.18)

dlt = aIl(t), ∀l ∈ H, t = 0 (7.19)

dlt =
t−1∏

i=0

(1 + ηli )

(

1 − θ

�

)t

dl0, ∀l ∈ H, t = 1, 2, . . . , T (7.20)
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t−1∏

i=0

(1 + ηli ) = (1 + ηl0)(1 + ηl1) · · · (1 + ηlt−1), ∀l ∈ H, t = 1, 2, . . . , T

(7.21)

xi j t ≥ 0, ∀i ∈ N , j ∈ C, t ∈ T (7.22)

y jkt ≥ 0, ∀ j ∈ C, k ∈ E, t ∈ T (7.23)

zklt ≥ 0, ∀k ∈ E, l ∈ H, t ∈ T (7.24)

Herein, the objective function in Eq. (7.10) is to minimize the total res-
cue cost of the three-level medical distribution network. Equations (7.11) and
(7.12) are constraints for flow conservation in the upper level sub-problem. Equa-
tions (7.13)–(7.15) are the dynamic demand models in the upper level sub-problem.
Equations (7.16)–(7.18) are constraints for flow conservation in the lower level sub-
problem. Equations (7.19)–(7.21) are the time-varying demand models in the lower
level sub-problem. At last, Eqs. (7.21)–(7.23) ensure all the arc flows in the time-
space network within their bounds.

7.3.2 Solution Procedure

As Fig. 7.2 shows, the solution procedure for the proposed optimization model is
presented as follows:

Step 1. Decompose the entire recovered stage of epidemic rescue process into n
decision-making cycles.
Step 2. Let t = 0, and initialize parameters in the SEIR epidemic diffusion model.
Step 3. Analyze the epidemic diffusion rule, and calculate the initial demand for
medical resources in each EDH according to Eqs. (7.3)–(7.7).
Step 4. Solve the programming model in rescue cycle t = 0 and obtain the initial
solution.
Step 5. Improve the initial solution by heuristic algorithm. Detail about the heuristic
algorithm, please go to Liu et al. [17].
Step 6. Get the final solution for medical resources allocation in this rescue cycle.
Step 7. Let t = t + 1, if the termination condition for the rescue cycle has not been
satisfied, update the demand in each EDH, and update the inventory level of medical
resources in each UDH, go back to Step 3. Else, go to the next step.
Step 8. End the program and output the final result.
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7.4 Numerical Example

To test how well the proposed model may be applied in an actual event, we present a
numerical example to illustrate its efficiency. Assume there is a smallpox outbreak in
a city, which has 3 NSSs, 4 UHDs, 6 ADPCs and 8 EDHs. The values of parameters
in SEIR epidemic diffusion model are given in Table 7.1.

Figure 7.3 depicts a numerical simulation of the epidemic model at EDH 1 in this
effected region. The four curves respectively represent the number of four groups
of people (S, E, I, R) over time. As mentioned in Liu and Zhao [16], the process
of epidemic diffusion is divided into three stages and our research focus on the
recovered one. According to the above figure, we assume that such stage range from
the 45th day (decision-making cycle t = 0) to the 55th day (decision-making cycle
t = 10). For simplicity, the decision-making cycle is assumed to be one day. A total

Table 7.1 Values of parameters in SEIR epidemic diffusion model

EDH1 EDH2 EDH3 EDH4 EDH5 EDH6 EDH7 EDH8

S(0) 5 × 103 4.5×103 5.5×103 5 × 103 6 × 103 4.8×103 5.2×103 4 × 103

E(0) 30 35 30 40 25 40 50 45

I(0) 5 6 7 8 4 7 9 10

R(0) 0

β 4 × 10−5

〈k〉 6

δ 0.3

d 1 × 10−3

τ 5

Fig. 7.3 Solution of the
SEIRS epidemic diffusion
model (EDH 1)
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of 138,240 variations are generated in the experiment. During an actual epidemic
activity, decisionmakers can adjust these parameters according to the actual situation.

Let a = 1, θ = 90% and � = 15, the MATLAB mathematic solver coupled
with Eqs. (7.2)–(7.7) is adopted to forecast the time-varying demand for each EDH.
Taking the EDH 1 as an example, the demand for medical resources in each rescue
cycle is shown in Fig. 7.4. One can observe in Fig. 7.4 that time-varying demand is
way below traditional demand, suggesting that the allocation of medical resources in
the early periods will significantly reduce the demand in the following periods. The
second observation is that both curves exhibit similar trends, namely, the demand
will decrease after the epidemic is brought under control.

After getting the demand for medical resources in each rescue cycle, in what
follows, we are going to discuss how to allocate these medical resources to the
epidemic areas, and at the same time, how to replenish medical resources to each
UHD, with the objective of minimizing the total rescue cost. Table 7.2 shows the
unit cost from the supply points to the demand points (Here, we suppose that NSS 1
has been preset as the HUB location).

Assume that three NSS can supply 400, 420 and 450 unit of medical resources
in each rescue cycle, and suppose that capacity of each UHD is 320. Let us take the
allocation result at cycle t = 0 as example, we can solve the programming model
according to the solution procedure. The initial solution is reported in Table 7.3.

Then, we can improve the initial solution by heuristic algorithm in Liu et al. [17].
As Table 7.3 shows, when replenishment arcs (N2,C1) ∈ Dd and (N3,C1) ∈ Dd are
transferred from the direct shipment delivery system to the hub-and-spoke delivery
system, such as N2 → N1 → C1 and N3 → N1 → C1, the total rescue cost will
be reduced 10.75% when compared with the cost before adjustment (4090/3650).
Similarly, we can complete the whole operations according to the solution procedure.
Replenishment arcs that need to be transferred in each cycle are shown in Table 7.4.
Total rescue cost at each cycle is presented in Fig. 7.5.

Fig. 7.4 Demand in EDH 1
by the two different methods
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Table 7.2 Unit cost of medical resources between two different departments

Cost N1 C1 C2 C3 C4

N1 – 2 2 1 3

N2 3 7 2 10 9

N3 4 8 9 2 10

E1 E2 E3 E4 E5 E6

C1 1 3 4 2 5 5

C2 2 1 2 3 5 4

C3 2 3 5 4 1 3

C4 4 4 1 2 3 2

H1 H2 H3 H4 H5 H6 H7 H8

E1 6 2 6 7 4 2 5 9

E2 4 9 5 3 8 5 8 2

E3 5 2 1 9 7 4 3 3

E4 7 6 7 3 9 2 7 1

E5 2 3 9 5 7 2 6 5

E6 5 5 2 2 8 1 4 3

Table 7.3 Solution of the optimization model at cycle t = 0

Amount C1 C2 C3 C4

Before adjustment N1 100 0 0 320

N2 110 320 0 0

N3 110 0 320 0

N1 C1 C2 C3 C4

After adjustment N1 – 320 0 0 320

N2 110 0 320 0 0

N3 110 0 0 320 0

Table 7.4 Transferred arcs in each rescue cycle

Cycle Arcs need to be transferred Cycle Arcs need to be transferred

Before After Before After

t = 0 N2 → C1
N3 → C1

N2 → N1 → C1
N3 → N1 → C1

t = 1 N2 → C1
N3 → C1

N2 → N1 → C1
N3 → N1 → C1

t = 2 N2 → C1 N2 → N1 → C1 t = 3 N2 → C1 N2 → N1 → C1

Note There is no adjustment when t = 4, 5, 6, 7, 8, 9, 10
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Fig. 7.5 Total rescue cost at
each rescue cycle

Figure 7.5 shows the change in total rescue cost over time. From this figure, we
can get the following two conclusions: (1) Coupled with Fig. 7.4, we can see that
demand for medical resource is decreasing, which implies that epidemic diffusion is
on the recovered stage. (2) Coupled with Table 7.4, we can see that the total rescue
cost can be reduced in a certain degree by using the proposed heuristic algorithm.
It is worth mentioning that there is no adjustment after rescue cycle t = 4, for that
NSSs and UHDs which are adjacent to the epidemic areas will have stored enough
resources at that time.

Figure 7.6 shows the inventory level in different UHDs. It shows that inventory
level in each UHD has been improved and raised as time goes by. Therefore, with
the application of the three-level and dynamic optimization model, the total rescue

Fig. 7.6 Inventory level in
different UHD over time
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cost can be controlled effectively, and meanwhile, inventory level in each UHD can
be restored and raised gradually. Thus, such optimization model achieves a win-win
rescue effect.

7.5 Conclusions

In this chapter, we develop a discrete time-space network model to study the medical
resources allocation problem in the recovered stage when an epidemic outbreak. In
each decision-making cycle, the allocation of medical resources across the region
from NSSs through UHDs and ADPCs to EDHs is determined by a linear program-
ming model with the dynamic demand that is forecasted by an epidemic diffusion
rule. The novelty of ourmodel against the existingworks in literature is characterized
by the following three aspects:

(1) While most research on medical resources allocation studies a static problem
taking no consideration of the time evolution and dynamic nature of the demand,
the model proposed in this chapter addresses a time-series demand that is fore-
casted in match of the course of an epidemic diffusion. The model couples
a multi-stage linear programming for optimal allocation of medical resources
with a proactive forecasting mechanism cultivated from the epidemic diffusion
dynamics. The rationale that the medical resources allocated in early periods
will take effect in subduing the spread of the epidemic spread and thus impact
the demand in later periods has been for the first time incorporated into our
model.

(2) A win-win emergency rescue effect is achieved by the integrated and dynamic
optimization model. The total rescue cost is controlled effectively, and mean-
while, inventory level in each UHD is restored and raised gradually.

(3) In this chapter, the medicine logistics operation problem has been decomposed
into severalmutually correlated sub-problems, and then be solved systematically
in the same decision scheme. Thus, the result will be much more suitable for
real operations.

As the limitation of the model, it is developed for the medical resources allocation
in a geographic area where an epidemic disease has been spreading and it does not
consider possible cross area diffusion between two or more geographic areas. We
assume that once an epidemic outbreaks, the government will have effective means
to separate the epidemic areas so that cross-area spread can be basically prevented.
However, this cannot always be guaranteed in reality.
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Chapter 8
A Novel FPEA Model for Medical
Resources Allocation in an Epidemic
Control

This chapter presents a dynamic logistics model for medical resources allocation that
can be used to control an epidemic diffusion. It couples a forecasting mechanism,
constructed for the demand of a medicine in the course of such epidemic diffusion,
and a logistics planning system to satisfy the forecasted demand and minimize the
total cost. The forecastingmechanism is a time discretized version of the SEIRmodel
that is widely employed in predicting the trajectory of an epidemic diffusion. The
logistics planning system is formulated as amixed 0–1 integer programming problem
characterizing the decision-making at various levels of hospitals, distribution centers,
pharmaceutical plants, and the transportation in between them. The model is built
as a closed-loop cycle, comprising forecast phase, planning phase, execution phase,
and adjustment phase. The parameters of the forecasting mechanism are adjusted
in reflection of the real data collected in the execution phase by solving a quadratic
programming problem. A numerical example is presented to verify efficiency of the
model.

8.1 Introduction

In the past two decades, the world has been aware of the threat of various epidemics.
According toWHO’s annual report in 2002, the world was confronted with an infec-
tious disease crisis of global proportions. A fact was that more than 4 million people
worldwide were infected with HIV in 2002 [1]. This number became 36.9 million
at the end of 2014. In that year, 2 million people became newly infected, and 1.2
million died of AIDS-related causes [2].

There are two separate streams of modeling work in the operations research and
management science discipline on the topic of epidemic spread and control that
will be briefly overviewed below. One of the compartmental models studies on the
diffusion dynamics and the other studies on medical resources allocation problems.
The intended contribution of this study is to bridge these two streams of research by
presenting a hybrid model that embeds a periodic forecast update of the epidemic
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spread, based on a SEIR compartmental model, into a dynamic logistics planning of
medical resources allocation anddistribution. Such endeavor is not solely of academic
challenge but also bring our modeling work in this subject one step closer to the real
world application.

The first stream of research studies epidemic diffusion dynamics. A great num-
ber of analytical works on epidemic diffusion have focused on the compartmental
epidemicmodels formulated as ordinary differential equations (cf. [3–6], and the ref-
erences therein). In these models, the total population is divided into several classes
and each class of people is closed into a compartment. The size of the compartment is
assumed to be large enough and themixing ofmembers is homogeneous. Themodels
are built upon differential equations and assume both homogeneous infectivity and
homogeneous connectivity of each individual. Recently, Kim et al. [7] described the
transmission of avian influenza between birds and humans. Liu and Zhang [8] pre-
sented a Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS) epidemic
model based on a scale-free network. Samsuzzoha et al. [9] proposed a diffusive
epidemic model to describe the transmission of influenza. The ordinary differen-
tial equations were solved numerically by the splitting method under different initial
distribution of population density. Further, Samsuzzoha et al. [10] developed a vacci-
nated diffusive compartmental epidemic model to explore the impact of vaccination
as well as diffusion on the transmission dynamics of influenza.

The second stream of the relevant research is on medical resources allocation or
stockpiling for emergent needs in the wake of a nature disaster, a terrorist attack, or in
a case of influenza prevalence (c.f., [11–14], and the references therein). The model-
ing work in these articles is characterized with a background of emergency that calls
for urgent actions. Zaric and Brandeau studied resource allocation problems in an
effort to control infectious diseases in multiple independent populations using cost-
effectiveness analysis and methods [15–17]. As indicated in the review of Brandeau
[18], cost-effectiveness analysis, linear integer programming, nonlinear optimiza-
tion, optimal control methods, simulation techniques and heuristic approaches were
adopted as modeling tools in studying such problems. More recent works in this
stream include Tebbens et al. [19] on vaccine stockpile policy, Rachaniotis et al. [20]
on optimal resource scheduling, and the review by Dasaklis et al. [21].

Although there aremany publications on the topic ofmedical resources allocation,
the interaction between the course of epidemic diffusion and the dynamic medical
resources allocation, has not been well addressed until recently. Liu et al. [22] pre-
sented a time-space network model for studying the dynamic impact of medical
resource allocation in controlling an epidemic spread. The medical resources allo-
cated in the early period would take effect in subduing the spread of influenza and
thus impact the medicine demand in the later period, and such impact was estimated
by a so-called linear growth factor in that study. However, the linear-growth factor
is artificially created but not real data justified as the forecast adjustment proposed
in that study. While the former is a simple and quick corrector, the latter is a data
supported adjustment and thus more scientific. The time-space network model of Liu
et al. [22] is also deficient in the logistic planning and does not addressmany practical
and important features of a logistic system that are explicitly modeled in this study
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such as lead times, order sizes, warehouse capacities, as well as the switch-on and
switch-off costs of the pharmaceutical plants.

In this study, we will present a dynamic logistics model for medical resources
allocation in reflection of the time varying demand that synchronizes with epidemic
spread. A four-phase closed loop model, comprised of a forecast phase, a planning
phase, an execution phase and an adjusted forecast phase (FPEA), is built to design
the logistics system formedical resources allocation to control an epidemic diffusion.
The framework of the FPEA model is introduced as follows.

(i) For the first forecast phase, we employ a time discretized version of the SEIR
model to forecast the growing (or decreasing) of the infected population in
the course of the epidemic diffusion, and thus give a forecast of the dynamic
demand for the needed resources in the next few days, which is termed as a
decision cycle.

(ii) According to the demand forecast for the next decision cycle, the second plan-
ning phase will solve a mixed 0–1 integer programming problem for the best
allocation of the medical resources in a supportive logistics system to meet
the dynamic demand. The logistics system is characterized with decision mak-
ing at three tiers, i.e., the local hospitals, the area distribution centers and the
pharmaceutical plants, and is incorporated with decision variables such as the
number of beds allocated in each hospital, the daily shipment pattern from the
DCs to the hospitals, the inventory levels at the DCs, order quantities and order
times of the DCs, and the production levels of the plants. Capacity constraints
are explicitly considered in this health care and medical logistics system.

(iii) The execution phase is designed as an exogenous part of the model where the
plan is implemented in the real world and the data is collected in practice.

(iv) The real world data will be utilized in the fourth phase to close the loop of the
decision cycle. In this phase, we adjust the parameters in the forecast model to
better reflect the diffusion course and control the effect by using the real data
collected in the implementation of phase three. For this purpose, the model will
solve a series of sub-problems to minimize the forecast error and update the
parameters for the forecast for the next decision cycle.

We believe the proposed model should serve for the benefit of a centralized deci-
sion making system, usually a local or regional governmental agent, in control of
the epidemic diffusion that needs an analytic model to plan for the logistics and to
revise and update such plan in the actual implementation. It also stands for the first
attempt to incorporate the well-studied epidemic diffusion model as a forecast in the
logistic planning.
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8.2 The Mathematical Model

As introduced above, the FPEA model is constructed as a closed loop of forecast,
planning, execution, and adjustment, as it proceeds in the endeavor of planning
medical resources to control the epidemic diffusion in an effective way.

There are two time notation in our model, one for the cycle serial number and the
other for the time within a cycle. Let T denote the length of a cycle, t = 1, . . . , T
denote a particular day in the cycle (in this study, “day” is a modeling term for
the basic time unit within a cycle, which can be two days to a week in actual time
depending on actual need), and s = 1, 2, . . . denote the cycle serial number. Each
cycle begins with the first phase of a forecast for the number of infected people in
each day of this cycle. This determines the need for medical resources in the second
phase of the cycle when the model plans for the best allocation of hospital beds, the
best distribution and transport of the medicine. The third phase (exogenous part of
the model) is the execution of the plan. In the fourth phase, we adjust the parameters
of the forecast model based on the actual result from the execution and solve an
optimization sub-problem to determine the best fit of the parameters for the forecast
phase in the next cycle. Therefore, the forecast in the next cycle has a reflection of
the actual happening in the execution of this cycle.

In the sequel, we describe and explain the technical details for each part of the
forecast-planning-execution-adjustment (FPEA) model.

8.2.1 Forecasting Phase

The forecast in the first phase utilizes a SEIR model. The SEIR model has been
widely used for epidemic diffusion in the literature, which is based on a compartment
theory and is proved to be a good match to the actual epidemic diffusion. In such
a model, people are divided into four classes: the susceptible individuals S, the
exposed individuals E , the infected individuals I , and the recovered individuals R.
As illustrated in Fig. 8.1, individuals enter the compartment through S(t) at rate λN
and exit the compartment at rate λ(S(t) + E(t) + I (t) + R(t)).

Although people travel across regions and the population of any region is of a fluid
nature, it is reasonable to believe that the population size does not change significantly
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Individuals 
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Entry
Infection

Transmission Removal
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Fig. 8.1 Schematic diagram of SEIR model
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over a short period of time without a social economic reason. Therefore, during
the course of an epidemic spread-to-control, which usually lasts no longer than six
months, there should not be significant difference between the in-flow and out-flow
number of people. We note that this is the basic rationale based on which most SEIR
literature assumes a constant population size as is in this study. For future research,
the basic framework proposed here can be extended to incorporate such factors
as people’s hesitation to visit the epidemic outbreak region and/or government’s
quarantining policy in controlling people from traveling out of the region. Hence,
without consideration of the natural birth rate and death rate of the population, we
can use a simple deterministic compartmental model to describe the epidemic spread
process, which can be described by the following system of ordinary differential
equations (ODE).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S′(t) = λN − βS(t)I (t) − λS(t)

E ′(t) = βS(t)I (t) − γ E(t) − λE(t)

I ′(t) = γ E(t) − λI (t) − δ I (t)

R′(t) = δ I (t) − λR(t)

N = S(t) + E(t) + I (t) + R(t)

. (8.1)

In the above system of equations, S(t), E(t), I (t) and R(t) represent respectively
the number of susceptible individuals, the number of exposed individuals, the number
of infected individuals, and the number of recovered individuals. β is the propagation
coefficient of the epidemic. γ is the transmission rate between the exposed subpop-
ulation and the infected subpopulation. δ is the rate of infected individuals who will
be recovered. λ is the entry or exit rate of the population. All the parameters, β, γ, δ

and λ, are greater than zero.
ODE (8.1) describes the following dynamics of epidemic diffusion among the

population groups. (i) The change rate of the susceptible population is determined
by the entering population, the exiting population, and the transitioning population
who actually get exposed to the disease and thus are counted towards the class
of E(t). The size of transitioning population is in proportion to the propagation
coefficient β, and both of the current number of the susceptible individuals and
the current number of the infected individuals. (ii) The change rate of the exposed
population is determined by the difference between the entering population, those of
susceptible people who actually get exposed to the disease, the exiting population,
and the transitioning population, those of exposed population who get sick after the
incubation period of the disease; (iii) The change rate of the infected population
is determined by the difference between the entering population, those of exposed
population who get sick, the exiting population, and the transitioning population
who are recovered; And, finally (iv) the change rate of the recovered population is
determined by the difference between the joining population of the newly recovered
and the exiting population of the recovered people.

When the parameters are determined and input to the ODE (8.1), the evolution
trajectories of S(t), E(t), I (t) and R(t) are determined. These trajectories can be
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approximated by time-discrete algorithm such as Runge-Kutta method (cf. e.g. [26,
27]). Usually, the shorter the time horizon is, the better the approximation of discrete-
time algorithm is. As noted above, let T be the cycle length, that is, the time horizon
for medical resources distribution and logistics planning, which in practice can be
one to two weeks depending on the emergency of the case. Then ODE (8.1) can
be time discretized into the following system of difference equations, for any t =
0, 1, . . . , T − 1:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S(t + 1) = S(t) + λN − βS(t)I (t) − λS(t)

E(t + 1) = E(t) + βS(t)I (t) − γ E(t) − λE(t)

I (t + 1) = I (t) + γ E(t) − λI (t) − δ I (t)

R(t + 1) = R(t) + δ I (t) − λR(t)

N = S(t + 1) + E(t + 1) + I (t + 1) + R(t + 1)

. (8.2)

The difference equations (8.2) can be used to forecast the number of sus-
ceptible, exposed, infected and recovered individuals given the initial values of
S(0), E(0), I (0), R(0). In fact, to forecast S(t), E(t), I (t), R(t) for the next cycle
s + 1, the initial condition of S(0), E(0), I (0), R(0) is set to be the actual observed
population size of the susceptible, exposed, infected and recovered individuals on
the last day of the current cycle s. For simplicity, we may denote the forecast of the
susceptible, exposed, infected, and recovered population on day t + 1, that is, the
right-hand sides of the difference equations (8.2) by

Ŝ(t)(β, λ) = S(t) + λN − βS(t)I (t) − λS(t) (8.3)

Ê(t)(β, γ, λ) = E(t) + βS(t)I (t) − γ E(t) − λE(t) (8.4)

Î (t)(γ, λ, δ) = I (t) + γ E(t) − λI (t) − δ I (t) (8.5)

R̂(t)(δ, λ) = R(t) + δ I (t) − λR(t) (8.6)

Therefore, the difference equations (8.2) can be rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S(t + 1) = Ŝ(t)(β, λ)

E(t + 1) = Ê(t)(β, γ, λ)

I (t + 1) = Î (t)(γ, λ, δ)

R(t + 1) = R̂(t)(δ, λ)

. (8.7)
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8.2.2 Planning Phase

In this subsection, we will describe the planning phase of our FPEA model and
present a 0–1 mixed integer programming problem for the optimal planning of hos-
pital resources and medicine distribution and transportation, based on the forecasted
number of infected individuals in the next cycle. Suppose that there are several
pharmaceutical plants, i = 1, 2, . . . , I , which can produce and ship the medicine
to the epidemic area. There are several distribution centers or district warehouses,
j = 1, . . . , J , in this area, and several hospitals, k = 1, 2, . . . , K , geographically
located in the area that are designated to host and treat the infected people. A critical
medicine is used on a daily basis in these hospitals as the main treatment for this
disease. This medicine can be obtained from any and all of the plants, which produce
and ship the ordered quantity to each of the distribution centers upon receiving an
order. The distribution centers will hold an inventory of the medicine and distribute it
to the local hospitals based on their demand, and will order from the plants a certain
amount to refill their inventory from time to time so that they maintain an adequate
supply for the need of the local hospitals. Theoretically, every distribution center can
send the medicine to any hospital upon request regardless whether the hospital is in
the same district or not, but the shipping cost varies with the location of the hospitals.

Assume that the local government or an agent designated by the government will
take the role of centralized decision making and control of the relevant resources in
a burst of epidemic spread. The objective of the decision making is to minimize the
total operation and logistics cost in terms of medicine supply and distribution and the
allocation of available hospital beds. In what follows, we will describe the logistics
part of our model in the tier of local hospitals, the tier of district distribution centers,
and the tier of pharmaceutical plants, as well as the decision variables, parameters,
and pertinent costs in each tier.

(1) Logistics part of hospital tier

Assume that prior to the epidemic burst the government has made a contingency plan
that describes which local hospitals may be designated for hosting infected patients
in case of any possible epidemic spread, and their designated capacity in terms of the
number of beds for the allocation and medical treatment of infected patients. Usually
this means a certain section of the hospital but not the entire hospital is dedicated
to the epidemic use, and this should be understood in our model when we refer to
the number of available beds in a designated hospital. Also, a designated hospital
can but not must be used at a certain time or in any time at all during the course of
epidemic spread and control, and when it is not in operation for this exclusive use,
it will be open to the general public. Thereafter a designated hospital is said to be in
operation at a certain time when it is used for epidemic treatment in that time. Thus,
for any designated hospital k, we can define a 0–1 variable αk(t), ∀t = 1, 2, . . . , T .

αk(t)

{= 1, if hospital k is in epidemic operation on time t
= 0, otherwise

.
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Wedefine xk(t) to be the number of beds assigned for epidemic patients in hospital
k at time t , which must be under the designated capacity Xk , i.e.,

xk(t) ≤ Xk, ∀k = 1, 2, . . . , K , t = 1, 2, . . . , T . (8.8)

Since no bed can be used to host any epidemic patient in a designated hospital
unless it is chosen to operate for that day, one has the following relationship

xk(t) ≤ αk(t)Xk . (8.9)

Various costs could occur at a designated hospital during the course of the epi-
demic control and treatment. First, there will be a fixed cost h1k that may account
for administrative manpower overhead, utilities, and other resources allocated. The
resources include patient rooms and facilities allocated exclusively for treating the
epidemic patients and thus not available for any other use. Such cost does not
change daily during the time when the hospital is in operation of epidemic treatment.
Secondly, there is a variable cost that is represented by doctor-hours, nurse-hours,
medicine cost (including medicine expense and medicine inventory cost) meals etc.,
which is in proportion to the number of patients hospitalized. Let h2k indicate the
rate of the variable cost in hospital k during epidemic operation, then the variable
cost for day t is h2k xk(t). Thirdly, when a designated hospital is opened for treat-
ing epidemic patients, there is a switch-on cost, including such costs for storing up
needed medicines, preparing of equipment, separating the ward, etc. Likewise, when
a hospital from operational in one period changes to non-operational in the follow-
ing period, there will be a switch-off cost related to such processes as sterilization.
Denote h3k the switch-on cost and h4k the switch-off cost for hospital k. We define
another set of auxiliary 0–1 variables φ01

k (t), φ10
k (t), ∀t = 1, 2, . . . , T .

φ01
k (t)

{= 1, if hospital k is non-operational on day t − 1 and operational on day t
= 0, otherwise

;

φ10
k (t)

{= 1, if hospital k is operational on day t − 1 and non-operational on day t
= 0, otherwise

;

The following relationships between the 0–1 variables αk(t),∀t = 1, 2, . . . , T
and the auxiliary 0–1 variables φ01

k (t), φ10
k (t), ∀t = 1, 2, . . . , T must hold in

accordance with the definitions:

φ01
k (t) ≤ αk(t); φ01

k (t) ≤ 1 − αk(t − 1); φ01
k (t) ≥ αk(t) − αk(t − 1); (8.10)

φ10
k (t) ≤ αk(t − 1); φ10

k (t) ≤ 1 − αk(t); φ10
k (t) ≥ αk(t − 1) − αk(t); (8.11)

As amatter of fact, the values of the 0–1 variables αk(t−1) and αk(t) together will
uniquely determine the values of φ01

k (t), φ10
k (t) by the inequalities of Eqs. (8.10)

and (8.11), and thus introducing the auxiliary variables φ01
k (t), φ10

k (t) does not
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actually increasing the computational complexity of our model. The aggregated cost
at hospital k on day t, hk(t), is given by

hk(t) = h2k xk(t) + h1kαk(t) + φ01
k (t)h3k + φ10

k (t)h4k,

∀t = 1, . . . , T, k = 1, . . . , K . (8.12)

Inventory cost at the hospital level is not explicitly addressed in our model but
reflected as a part of the variable cost h2k . The foremost reason is that, although
there is inventory cost for carrying the medicine at the hospital level, there is no
separate decision making at this level. The hospitals are not allowed to carry exces-
sive inventory during this special time because the medicine resource is critically
important and tightly controlled to prevent spoilage and waste. Holding an excessive
amount of medicine at one hospital may cause shortage at another hospital, which is
detrimental to the overall effort in treating the patients and controlling the epidemic.
On the other hand, no hospital wants to run any risk of medicine supply shortage in
exchange of carrying cost advantage. This assumption is made in contrast to most
inventory models dealing with consumer commodities. In practice, hospitals are sup-
plied a just-right amount of medicine according to the number of their inpatients for
their usage in a very short period of time (one to three days). Our model includes the
medicine inventory cost in the variable cost, which is in proportion to the number
of the inpatients, but does not model the ordering point and/or ordering quantity as
decision variables. Secondly, the time t in our model, although referred to a day in
a modeling term, can actually be two or three days in application as a decision time
within which some inventory holding cost is insignificant but the guarantee of supply
is paramount.

(2) Logistics part of distribution center tier

The district distribution centers (DCs) are used to store the medicine and distribute
them to the local hospitals based on their demand. Theoretically, we assume any
distribution center can send the needed amount of medicine to any hospital on any
day. Let y j

k (t) be the amount of medicine shipped from distribution center j to
hospital k on day t , v j (t) be the inventory of distribution center j on day t , Vj be
the storage capacity at DC j and vs

j be the safety stock at DC j . Then, DC j must
satisfy the upper bound and the lower bound on each day, i.e.,

vs
j ≤ v j (t) ≤ Vj , ∀t = 1, . . . , T, j = 1, . . . , J. (8.13)

Suppose that each distribution center has a fixed order size and it can order from
any of the medicine suppliers. Let v0

j be the order size of DC j and let Li be the lead
time of pharmaceutical plant i , and define the 0–1 variable:

εij (t)

{= 1, if DC j orders from supplier i on day t
= 0, otherwise

,
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then the orders received by DC j on day t is
∑I

i=1 εij (t − Li )+v0
j and it should hold

the following relationship between the ending inventories of two consecutive days
at DC j :

v j (t + 1) = v j (t) −
K∑

k=1

y j
k (t) +

I∑

i=1

εij (t − Li )+v0
j ,

∀t = 1, . . . , T, j = 1, . . . , J. (8.14)

Suppose that the inventory carrying cost rate (per day) is g2 j and the ordering cost
is g1 j at DC j . Then the total daily operation cost incurred at DC j is:

g j (t) = g2 jv j (t) + g1 j

I∑

i=1

εij (t), ∀t = 1, . . . , T . (8.15)

Meanwhile, we can relate the number of patients in hospital k on day t , xk(t),
with the medicine supplies that are distributed from the DCs to the hospital on day
t , y j

k (t), which are given as below:

mxk(t) =
J∑

j=1

y j
k (t), (8.16)

wherem is the average daily dose for a patient across the area in this epidemic spread.

(3) Logistics part of supplier tier

We now consider the pharmaceutical plants at the top tier of this medical supply
chain network. Since the plants are not necessarily located in the area and they need
a production plan to acquire the raw materials and reset the facilities to make this
medicine, we suppose each pharmaceutical plant has an independent and possibly
different lead time for the order of the distribution centers, namely Li , ∀i = 1, . . . , I .
Also, each supplier has a production capacity, Di , ∀i = 1, . . . , I . The operation cost
for supplier i, ∀i = 1, . . . , I , is comprised of two parts, as in most manufacturing
firms, a constant fixed cost f1i that is incurred whenever the production of this
medicine takes place and is regardless of the output level, and a variable cost that is
in proportion to the production output, with the unit cost being denoted by f2i . The
aggregated order that supplier i receives on day t is:

di (t) =
J∑

j=1

εij (t)v
0
j , (8.17)

which forms the dynamic demand for its production plan. We can get the following
constraint pertaining to production capacity and the aggregated orders:
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di (t) =
J∑

j=1

εij (t)v
0
j ≤ Di . (8.18)

The production cost for supplier i, ∀i = 1, . . . , I can be formulated as:

fi (t) = f1iωi (t) + f2i di (t), ∀t = 1, . . . , T . (8.19)

where ωi (t) is a 0–1 variable for plant i pertaining to its operation schedule on day
t and is defined as:

ωi (t)

{= 1, if supplier i runs its operation on time t
= 0, otherwise

.

Since any order from a distribution center will trigger the production operation of
the plant who receives the order, the following relationship between the 0–1 variables
of DC order schedule and the supplier operation schedule must be satisfied:

εij (t) ≤ ωi (t), ∀ j = 1, . . . , J, i = 1, . . . , I. (8.20)

Namely, ωi (t) cannot be zero unless all ε
i
j (t)’s are zero. On the other hand, since

the production cost Eq. (8.19) is eventually to be minimized, ωi (t)will be zero in the
optimal solution if all εij (t)’s are zero, although not directly implied by Eq. (8.20).
Note that Eqs. (8.19) and (8.20) imply a pull system in which the production system
will be turned on by any order received from a distribution center, which is not
unreasonable in an urgent rescue campaign such as an epidemic spread. One sees
that in Eq. (8.19), fi (t) is zero if and only if all ε

i
j (t),∀ j = 1, . . . , J are zero, i.e., no

order is received on day t , and that even a small size ordered by one DC will trigger
the production system to bear the fixed cost. Such a system may result in a higher
supplier cost. However, the problem is modeled as a centralized control system to
minimize the overall social cost, and therefore, all the costs regardless at which tier
they occur are equally accounted for in the minimization. Consequently, the 0–1
decision variables, εij (t),∀ j = 1, . . . , J , defined for the distribution centers tier will
eventually take into account of the production cost minimization too. That is, the
central agent shall consider coordinating the ordering times of various distribution
centers so that they will pool together a larger size of aggregated orders to trigger
the production system of a supplier. This can be observed in the numerical example.

(4) Transportation costs and objective function

We now turn to look at the shipments both between the supplier tier and the DC tier,
and between the DC tier and the location hospital tier. By the definition of εij (t) and
the lead time Li , the shipment from supplier i to arrive at DC j on day t is:

zij (t) = εij (t − Li )+v0
j , (8.21)
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which is zero if DC j didn’t place an order on day t − Li . Let our model employ
a general function for the transportation cost so that it can take a special form in a
particular application. Note that a line haul cost is themajor part of this transportation
cost because the suppliers in our model may be located outside of the area and thus
geographically far away from the distribution centers that are within the epidemic
spread area. Therefore, some types of consolidation in truck load can take effect in
reducing the transportation cost. For instance, shipments from the same supplier to
several DC’s in the area can be consolidated in transportation and result in significant
saving, or two close-by suppliers can also consolidate their shipments. Let ui (t)
denote the general transportation cost for supplier i on day t , which is a general
function of zi (t) = (zi1(t), . . . , z

i
J (t)) ∈ RJ+, namely

ui (t) = ui (zi (t)). (8.22)

Likewise, let w j (t) denote the general transportation cost for DC j on day t ,
which is a function of y j (t) = (y j

1 (t), . . . , y
j
K (t)) ∈ RK+ , namely

w j (t) = w j (y j (t)). (8.23)

The system optimization problem is tominimize the total cost of operations occur-
ring at the tier of local hospitals, district distribution centers, the pharmaceutical
plants as well as the transportation costs for shipping the medicine from the suppli-
ers to the distribution centers and shipping the medicine from the distribution centers
to the local hospitals. Let 
 denote the total cost, i.e.,


(x, y, α, ε, ω) =
T∑

t=1

⎛

⎝
K∑

k=1

hk(t) +
J∑

j=1

(g j (t) + w j (t)) +
I∑

i=1

( fi (t) + ui (t))

⎞

⎠.

(8.24)

Given the forecasted number of infected people in the next cycle I (t), t =
1, . . . , T provided by the forecast phase of the model, we can now define a fea-
sible region:

� =
{

(x, y, α, ε, ω) :
K∑

k=1

xk(t) = I (t),

and (9−11), (13−14), (16−18), (20−21) hold} (8.25)

Then, the optimal planning for hospital resource allocation, medicine distribution
and transport for the next cycle can be obtained by solving the following optimization
problem:

Min(x,y,δ,ε,ω)∈�
(x, y, α, ε, ω). (8.26)
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Since all the constraints in this optimization problem are linear, and the cost
functions defined in the model are linear, so the systemminimization problem (8.26)
is a mixed 0–1 linear integer programming problem. Such a problem can be solved
by some available optimization software such as CPLEX for an optimal solution.

8.2.3 Execution Phase

This phase is an exogenous part of the model that will implement the developed plan
in practice to allocate the hospital resources and medicine distribution. In terms of
hospital resources, even though our optimization problem (8.26) explicitly addresses
only the number of beds in each hospital in operation, other critical resources such as
patient rooms, examination facility hours, doctor-hours, nurse-hours, clinic material
items,meals etc., must all be included in the allocation planning, whichmostly can be
determined by the number of patients hospitalized. During the execution of the plan,
the actual number of infected individuals, recovered individuals, and deaths, will be
collected, recorded and analyzed. These numbers may not be equal to the forecasted
numbers in practice. Therefore, some adjustments must be made in reality during
the execution of the plan. What actual measures are to be taken for the adjustment
and how they are implemented go beyond of our research scope. Another part of the
exogenous decisionmaking involveswith the initial inventory stocking policy at each
DC for each decision cycle. We leave this part to the role of a central coordinator
(local government or its designated agent) outside of our model for the sake of
application flexibility. A common practice is to fill up the stock to a certain capacity
at the beginning of each cycle in order to prevent any possible stock-out during the
lead time when a new decision cycle begins. We call this preventive stocking policy
between cycles.

8.2.4 Loop Closed

To close the loop in phase four of our FPEA model, we will adjust the parameters of
the forecast model in reflection of the most recent data that are collected during the
execution of the current cycle regarding the population size of susceptible, exposed,
infected and recovered people. There are four parameters in the SEIR model. λ is
the entry and exit rate of the population, which may vary slightly over time. For the
individuals who enter S(t) at rate λN and exit at rate λ(S(t) + E(t) + I (t) + R(t)),
one sees that the total number of the compartment population is a constant. β is the
propagation coefficient of the epidemic, which is determined by medical studies
especially for a known epidemic type but can vary slightly over time accounting
for the climate change and other factors. γ is the transmission rate between the
exposed subpopulation and the infected subpopulation. It may vary slightly from
case to case even for a same epidemic type and is thus subject to update in our
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model. Finally δ is the rate of infected individuals who will recover. This parameter
will evolve in the course of the control and the treatment of the epidemic disease
over time when more cases are treated and experience is learned, as the hospitals
cumulating more observation and knowledge of the recovery pattern in an individual
case. To summarize, we will adjust the parameters β, γ, δ, λ in each cycle to update
our forecasting model in reflection of the most recently observed data so that we
can have the “best” forecast for the next cycle. The constraints of the optimization
sub-problem require β, γ, δ, λ (regarded now as the variables) to generate perfect
forecast for the last day when evaluated at the observed data, i.e.,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(T ) − [S(T − 1) + λN − βS(T − 1)I (T − 1) − λS(T − 1)] = 0

E(T ) − [E(T − 1) + βS(T − 1)I (T − 1) − γ E(T − 1) − λE(T − 1)] = 0

I (T ) − [I (T − 1) + γ E(T − 1) − (λ + δ)I (T − 1)] = 0

R(T ) − [R(T − 1) + δ I (T − 1) − λR(T − 1)] = 0

.

(8.27)

Note that Eq. (8.27) is a system of linear equations for β, γ, δ, λ where all
S(T ), E(T ), I (T ), R(T ), S(T − 1), E(T − 1), I (T − 1), R(T − 1) are observed
data. In light of Eqs. (8.3)–(8.7), the constraints (8.27) can be also be expressed by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S(T ) − Ŝ(T − 1)(β, λ) = 0

E(T ) − Ê(T − 1)(β, γ, λ) = 0

I (T ) − Î (T − 1)(γ, λ, δ) = 0

R(T ) − R̂(T − 1)(δ, λ) = 0

, (8.28)

The objective function of the optimization sub-problem is to minimize the
weighted forecast errors for all the days in the current cycle except the last day,
which has zero forecast error ensured by the constraints already, with a higher weight
assigned to a more recent day. That is, we want to find the β, γ, δ, λ satisfying con-
straints (8.28) and minimize

min
T−1∑

t=1

wt {[S(T − t) − Ŝ(T − t − 1)(β, λ)]2 + [E(T − t) − Ê(T − t − 1)(β, γ, λ)]2

+ [I (T − t) − Î (T − t − 1)(γ, λ, δ)]2 + [R(T − t) − R̂(T − t − 1)(δ, λ)]2}.
(8.29)

Herein, wt , t = 1, . . . , T − 1 are the weight coefficients satisfying

T−1∑

t=1

wt = 1, 0 < wT−1 < · · · < w1. (8.30)
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Sub-problem (8.28) and (8.29) are designed to be solved for the best parameters
β, γ, δ, λ so that they reflect the observed data collected in the current cycle in order
to generate accurate forecast for the next cycle. The objective function is in spirit of a
weighted moving average method, a widely used forecasting method in reflection of
a fundamental forecast principle that the more recent data are more reliable (cf. [23]).
Note that the rank of the coefficient matrix is equal to the rank of the augmented
matrix, and it is smaller than the number of variables (rA = r(A|B) = 3 < 4) in the
system of linear equations (8.28), therefore the existence of solutions for the system
of linear equations (8.28) can be ensured. The special structure (8.28) will yield a
feasible region, the set of the feasible solutions for the optimization sub-problem. By
solving the quadratic programming problem (8.28)–(8.29), we can find the optimal
β∗, γ ∗, δ∗, λ∗ for the next decision cycle. The loop is closed in our mathematical
model.

8.3 Numerical Example

In this section, we will present a numerical example to show the applicability of the
model and to demonstrate the performance and computational results of the proposed
FPEAmethod. The numerical example is constructed upon a hypothetical case of an
epidemic diffusion, and for this illustrative purpose, the number of infected people
over time is generated by a simulation of SEIR model. Such an approach is taken by
other researchers in studying and testing their relevant models when no actual data
is available (see, e.g., [20, 24–26]). This is particularly necessary for the adjustment
phase in ourmodel,which requires real time information about the number of infected
people by the end of each decision cycle to adjust the parameters. The computation
of this numerical example is conducted on a personal computer equipped with an
Intel (R) Core (TM) 3.10 GHz CPU and 4.0 Gb of RAM in the environment of
Microsoft Windows 7. The proposed FPEAmodel involves with a mixed 0–1 integer
programming problem and a quadratic programming problem, both can be solved
within a reasonable time, by using the MATLAB compiler coupled with commercial
software CPLEX 12.4.

8.3.1 Test for Forecasting Phase

In line with Arenas et al. [27] and Rachaniotis et al. [20], the initial value of the
parameters in the SEIR model are chosen as: S(0) = 9955, E(0) = 40, I (0) = 5,
R(0) = 0, N = 10, 000, β = 4 × 10−5, γ = 0.6, δ = 0.3, and λ = 1 × 10−3.
Figure 8.2 shows the number of infected people over time generated by the difference
equations (8.7) in Sect. 2.1 (the forecasting phase). Initially, the number of infected
individuals grows exponentially, reaching the maximum 250. However, there is a
turning point when more infected individuals depart the infected compartment than
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Fig. 8.2 Number of infected
individuals over time
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enter it. The epidemic endswhen the number of infected individuals drops to 0, which
often happens before all susceptible individuals in the populations are infected. The
entire course has 150 days and is divided into 5 closed loop decision cycles of 30 days
each cycle.

8.3.2 Test for Logistic Planning Phase

(1) Parameters setting

Supposing that in a hypothetical influenza outbreaks area, there are 3 pharmaceu-
tical plants (S) which supply a critical medicine for the epidemic, 4 distribution
centers (DC) that store and distribute the medicine, and 8 local hospitals (H) that are
designated to host and treat the infected individuals. Assume that all the transporta-
tion costs from the pharmaceutical plants to the DCs and from the DCs to the local
hospitals are linear. The coefficient matrix is given by Table 8.1.

Particularly, the transportation cost for S1 on day t is a linear function of the
shipment quantities from this pharmaceutical plant to the four DCs, namely

u1(t) = 2 · z11(t) + 4 · z12(t) + 6 · z13(t) + 8 · z14(t).

Table 8.1 Transportation cost between different departments (dollar)

S1 S2 S3 H1 H2 H3 H4 H5 H6 H7 H8

DC1 2 4 3 6 2 6 7 4 2 5 9

DC2 4 3 5 4 9 5 3 8 5 8 2

DC3 6 2 2 5 2 1 9 7 4 3 3

DC4 8 1 3 7 6 7 3 9 2 7 1
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For instance, the operation cost for the H3 on day t, is:

h3(t)=2.7 × x3(t) + 33 × α3(t) + 40 × φ01
3 (t) + 33 × φ10

k (t), ∀t = 1, . . . , T .

Since the number of patients that can be hosted by H3 on day cannot exceed its
capacity 40 and only when it is chosen to operate on day t , the following constraint
must hold

x3(t) ≤ α3(t) × 40

Table 8.2 describes the operation cost parameters of the local hospitals.
Table 8.3 summarizes the capacity, the operation cost parameters, and initial

inventory at each of the four distribution centers.
For example, the daily operation cost for the DC1 is:

g1(t) = 1.4 × v1(t) + 6 ×
3∑

i=1

εi1(t), ∀t = 1, . . . , T,

Table 8.2 Hospital parameters

Parameter
value
k =
1, 2, . . . , 8

Capacity Xk
(person)

Fixed cost
h1k
(dollar)

Variable cost
h2k
(dollar)

Switch-on
cost h3k
(dollar)

Switch-off
cost h4k
(dollar)

H1 40 35 2.5 40 35

H2 45 34 2.6 45 34

H3 40 33 2.7 40 33

H4 45 32 2.8 45 32

H5 40 31 2.9 40 31

H6 35 30 3.0 35 30

H7 35 29 3.1 35 29

H8 40 28 3.2 40 28

Table 8.3 DC parameters

Parameter
value
j =
1, 2, 3, 4

Capacity
Vj
(dose)

Initial
inventory
(dose)

Ordering
cost g1 j
(dollar)

Carrying
cost g2 j
(dollar)

Order size
v0j
(dose)

Safety
stock vsj
(dose)

DC1 120 70 6 1.4 40 10

DC2 150 70 6.5 1.3 30 10

DC3 120 80 7 1.2 40 10

DC4 150 80 7.5 1.1 30 10
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where
v1(1)=70 and v1(t + 1) = v1(t) − ∑8

k=1 y
1
k (t) + ∑3

i=1 εi1(t − Li )+ × 40, ∀t =
1, . . . , T .

The daily inventory in DC1 must not be less than the safety stock and must not
exceed its capacity, or mathematically expressed as:

10 ≤ v1(t) ≤ 120, ∀t = 1, . . . , T .

Table 8.4 gives the lead time, the production capacity, the fixed cost and the
variable cost for each of the three pharmaceutical plants.

For example, the production cost for S1 is:

f1(t) = 120 × ω1(t) + 6 × d1(t), ∀t = 1, . . . , T,

where the aggregated orders d1(t) should satisfy the production capacity constraint,

d1(t) =
4∑

j=1

ε1j (t) × v0
j ≤ 80.

Since any order from a distribution center will trigger the production operation
of the pharmaceutical plant S1, we have

ε1j (t) ≤ ω1(t), ∀ j = 1, . . . , 4.

(2) Test results

The computation results are summarized in following tables and figures. Initially,
Table 8.5 reports the cumulative number of the daily infected people, the maximum
daily infected people, and the computation time, in each of the five cycles.

Following the preventive stocking policy between cycles as discussed in Sect. 8.2,
Fig. 8.3 shows the inventory level over time in each of four DCs during the entire
150 days. They all begin with a certain stock for the lead time of the first order
as required by the policy and then are maintained at the minimum level (equal to
the safety stock) in most of the days in the cycle except for the necessary reorder
point. We accredit this low inventory-carrying performance to the merit of the model

Table 8.4 Parameters of pharmaceutical plants

Parameter value
i = 1, 2, 3

Lead time Li

(day)
Capacity Di
(dose)

Fixed cost f1i
(dollar)

Variable cost f2i
(dollar)

S1 1 80 120 6

S2 2 90 110 7

S3 1 100 115 6.5
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Table 8.5 Computation time and daily infected people

Decision cycle Cumulative daily
infected people

Maximum daily infected
people

Computation time (s)

Cycle 1 2233 142 17.0

Cycle 2 6506 250 47.5

Cycle 3 5151 241 24.1

Cycle 4 1465 91 6.9

Cycle 5 305 21 1.4
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Fig. 8.3 Inventory level in the DCs

that minimizes the inventory ordering and carrying cost while meeting the hospitals’
need.

Namely, in the first place, the DCs are deposited a certain level of initial inventory,
for ensuring supply to the hospitals during the lead time of their first order. In the
second place, they are operated to minimize the total logistics cost, therefore the
inventory level in the DCs should be as low as possible while coordinated with the
medicine order planning and the medicine distribution scheduling. The trajectory in
Fig. 8.3 illustrates an almost just-in-time mechanism in the medicine supply chain
of our model.

Figure 8.4 exhibits the daily production level of the three pharmaceutical plants
over time in the solution of our model. It can be seen that the production patterns
of all the suppliers are similar where the output levels are high in the second and
third cycle, but low in the first, fourth and fifth cycle. This is well expected because
in the first cycle when the epidemic just bursts, the infected population size is small
and the need for medicine is relatively low. In the second and third cycle when the
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epidemic diffusion is at its maximum scale, the number of infected people reaches
the peak and the demand for the medicine is at the highest level, thus so would be
the production level. In the fourth and fifty cycle, when the epidemic diffusion is
brought under control and the infected population diminishes, the medicine demand
decreases and the production slows down.

The solution of our model provides a dynamic assignment of patients at each
hospital over the entire 150 days in this numerical example. As a snapshot, Fig. 8.5
shows the number of patients assigned to each hospital on the 36th day. On this
particular day, Hospital 2, 3, 6 and 8 are operated at capacity, Hospital 4 is used to
treat the infected on that day but is not filled up, while Hospital 1, 5 and 7 are not in
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operation. Considering the cost structure of the hospitals, such assignment explains
for avoiding as much as possible the fixed cost, the turning on and turning off costs
in the optimal solution. It makes a common sense that it is not desired to have more
than one hospital operated under capacity in such a cost structure.

8.3.3 Test for Adjustment Phase

Epidemiological models are only as good as their parameter values. Therefore, an
accurate forecasting and understanding of influenza dynamics mainly depend on
finding and using the realistic epidemiological parameters in the forecasting equa-
tions [28]. As a hypothetical case, we adopt the mature Runge-Kutta method, which
has been widely used in simulating the evolution trajectories of S(t), E(t), I (t) and
R(t) (see, e.g., [26, 29, 30]), to simulate the epidemic diffusion and generate the
assumed actual number of infected people over time. In the adjustment phase, we
solve a quadratic programming problem for the best parameters β∗, γ ∗, δ∗, λ∗ to fit
in the assumed actual data and use them for forecasting the infected number in the
next cycle.

Table 8.6 shows the number of infected people by the end of each cycle respec-
tively of the assumed actual data (AA in the 2nd column), by difference Eq. (8.7)
without adjustment of the parameters (WO in the 3rd column), and by our FPEA
model (WA in the 5th column). The deviation of WO from AA in percentage is
reported in the 4th column and the deviation of WA from AA in percentage is
reported in the 6th column. It is apparent that our FPEA model with periodically
adjusted parameters matches much better to the assumed actual data than that of the
difference Eq. (8.7) without adjustment of the parameters.

In turn, Fig. 8.6 shows the absolute deviation of FPEA forecasted number of the
infected people off the assumed actual data, compared with the absolute deviation
of the difference Eq. (8.7) with original parameters (i.e., without adjustment) off the
assumed actual data, in the entire course of 150 days. It is not surprising that the
forecast with adjustment is much closer to the assumed actual data and serves for
the purpose of adjustment phase to be implemented in our FPEA model. In practice,

Table 8.6 Numerical comparison by using different methods

Time Assumed
actual (AA)

Without
adjustment
(WO)

WO versus
AA (%)

With
adjustment
(WA)

WA versus
AA (%)

30th day 142 138 −2.8 141 −0.7

60th day 244 250 2.4 243 −0.4

90th day 96 98 2.1 96 0.0

120th day 21 20 −4.7 20 −4.7

150th day 4 4 0.0 4 0.0
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Fig. 8.6 Comparison of the simulated results

this adjustment can help us to track the disease spread in a real world case and to
provide a more accurate forecast of the number of infected people.

8.4 Conclusions

In this chapter, a FPEAmodel is presented to study the dynamic allocation ofmedical
resources in the control of an epidemic diffusion. The model is constructed as a
closed loop consisting of a forecast phase, a planning phase, an execution phase and
an adjusted forecast phase, as it proceeds to control the epidemic spread and to plan
for medical resources allocation. The novelties of our model against the existing
works are characterized by the following aspects.

Firstly, while most research on medical resources allocation studies a static prob-
lem taking no consideration of the time evolution and especially the dynamic demand
for such resources, the proposed FPEA model integrates a forecast of a time-series
demand, in match of the course of an epidemic diffusion, with a dynamic logistics
planning for ordering, shipping, and allocating the needed resources.

In the second place, the forecasting mechanism is designed to simulate the epi-
demic diffusion dynamics, as a time-discretized version of the widely accepted SEIR
model, which provides a more suitable prediction of the demand for the resources,
and serves for a proactive purpose for the logistics planning.

Thirdly, the dynamic logistics planning for resources allocation and distribution
in response to the forecast is constructed as a 0–1 mixed linear integer programming
model, which characterizes the decision making at the local hospitals, the area dis-
tribution centers and the medicine suppliers. The optimal solution can minimize the
total operation cost of the whole medicine supply chain.
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In addition, to close the loop of our FPEA model and minimize the forecast
error, the parameters of the forecasting model are adjusted periodically, by solving a
quadratic programming sub-problem, which can reflect the most recent data that are
collected during the execution of the current cycle.

Last but not least, the computation results of a numerical example show that the
proposed model can be well applied to a real world problem of epidemic control for
a centralized system, with detailed operational implications for suppliers’ produc-
tion planning, distribution centers’ distribution and transportation, and hospital beds
allocation.

As for the limitation of the model, it has yet to consider possible cross area
diffusion between two or more geographic areas. Future studies may also address
other realistic concerns such as stock-out of the critical medicine and different exit
rates of the population groups.
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Chapter 9
Integrated Planning for Public Health
Emergencies: A Modified Model
for Controlling H1N1 Pandemic

Infectious disease outbreaks have occurred many times in the past decades and are
more likely to occur in the future. Recently, Büyüktahtakın et al. [1] proposed a
new epidemics-logistics model to control the 2014 Ebola outbreak in West Africa.
Considering that different diseases have dissimilar diffusion dynamics and can cause
different public health emergencies, we modify the proposed model by changing
capacity constraint, and then apply it to control the 2009 H1N1 outbreak in China.
We formulate the problem to be a mixed-integer non-linear programming model
(MINLP) and simultaneously determine when to open the new isolated wards and
when to close the unused isolated wards. The test results reveal that our model
could provide effective suggestions for controlling the H1N1 outbreak, including
the appropriate capacity setting and the minimum budget required with different
intervention start times.

9.1 Introduction

Infectious disease outbreaks have unfortunately been very real threats to the gen-
eral population and economic development in the past decades, whether they are
caused by nature or bioterrorism. A typical example was the H1N1 outbreak in
2009, which spread quickly around the world and ultimately affected millions of
people in 214 countries, including 128,033 confirmed cases in China [2]. In 2010,
more than 600,000 infected cases were reported and 8000 lives were lost because
of the cholera outbreak in Haiti [3]. A recent example of epidemic outbreak was the
2014–2015 Ebola pandemic in West Africa, which infected approximately 28,610
individuals and approximately 11,300 lives were lost in Guinea, Liberia, and Sierra
Leone [4]. Therefore, it can be observed that the global burden of epidemics has
tremendously increased in recent years.

To our knowledge, many countries have drafted emergency response plans and
operational frameworks for immediately implementing the related strategies within
24 h after the severity of an unexpected pandemic is confirmed [5]. In China, a
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certain amount of emergency budget will be allocated for quick response according
to the severity level of the unexpected epidemic. Emergency medical center (EMC)
will designate several local hospitals to treat the infected individuals. Usually, this
means a certain section of the appointed hospital will be isolated for quarantining
and treating the infectious patients, but not the entire hospital.

Determining the optimal budget allocation to control an unexpected epidemic is a
complex optimization problem. On the one hand, managers should understand how
the disease propagates and how tomodel the epidemic dynamics [6]. Conventionally,
epidemiology researchers use compartmental models to depict the dynamics of epi-
demic due to its ease of modeling and short computation time. However, they cannot
capture spatial and social heterogeneities and lack the ability to adapt to government
interventions. On the other hand, we need to know how to bridge the gap between
epidemic dynamics and budget allocation. An integrated model for epidemic control
should foresee the impacts of different resource-allocation scenarios on epidemic
development, simultaneously and interactively.

The model framework in this study is inspired by Büyüktahtakın et al. [1], which
proposed a new mixed-integer programming (MIP) model to determine the optimal
amount, timing and location of resources for controlling the Ebola outbreak in West
Africa. Since different infectious diseases have dissimilar epidemic dynamics and
can cause different degrees of public health emergencies, we modify the epidemic-
logistics model by changing the capacity constraint, and then we apply the modified
model to control the H1N1 outbreak in China. More precisely, we consider: (1) How
to allocate the limited emergency budget to the affected areas? (2)What is the impact
on epidemic dynamicswith different budget scale? (3)What is the amount of capacity
established at each period? (4) What is the amount of capacity reduced at each
period? (5) How does the intervention starting time impact the budget allocation?
The problems (1), (2), (3) and (5) have been conducted in Büyüktahtakın et al.
[1], while the problem (4) is new incorporated. Therefore, the modified model can
simultaneously determine when to open the new isolated wards and when to close
the unused isolated wards.

9.2 Literature Review

Although several studies try to combine medical response with emergency logistics
[7], only a few studies exist on emergency medical logistics for epidemic control,
despite its importance and particularity. The main body of this literature could be
classified into the following two main streams.

The first stream consists of disease transmission modeling approaches that are
utilized for depicting epidemic dynamics and assessing the possible effects of con-
trol interventions. Previous research includes a great number of analytical works on
epidemic diffusion [8–11]. In these models, the total population was divided into
several classes (susceptible, exposed, infected, treated, deceased, recovered, etc.)
and each class of people was placed in an enclosed compartment. For example, Tan
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et al. [12] used H1N1 epidemic data of Guangdong Province, China, in conjunction
with a susceptible-exposed-infectious-recovered model (SEIR) to estimate the basic
reproduction number of the epidemic. Saito et al. [13] proposed an extended SEIR
model to describe the immigration of infected people and validated it with the 2009
H1N1 pandemic in Japan. Samsuzzoha et al. [14, 15] proposed a vaccinated diffusive
compartmental epidemic model (SVEIR) to describe the transmission of influenza.
The ordinary differential equations were solved numerically by the splitting method
under different initial distributions of population density. González-Parra et al. [16]
proposed a nonlinear fractional order model to explain and understand the H1N1
outbreak based on the classical SEIR model. Note that the articles from this stream
incorporate novel features of biological interest, and most of them have been pub-
lished in epidemiologic/medical scientific journals. These mathematical models can
not only be used to depict the dynamics of different epidemics, but also be used to
facilitate demand forecasting for public health emergencies [17].

The second stream of relevant researches focused on medical resource allocation
for emergency response in the wake of a terrorist attack or in the case of a natu-
ral epidemic outbreak. For example, bioterror response logistics, a special case in
emergency medical logistics, was frequently discussed at the beginning of this cen-
tury [18–21]. Meanwhile, Zaric and Brandeau studied resource allocation problems
in an effort to control infectious diseases in multiple independent populations by
using the cost-effectiveness analysis method [22–24]. In recent years, this topic has
attracted more and more attention. The approaches involve compartmental model-
based simulation [25, 26], network model [27, 28], simulation optimization [29, 30],
and mathematical programming [31, 32]. By using different approaches, scholars
have evaluated the performance of different control measures for different infectious
diseases. A number of surveys regarding operations research and management sci-
ence contributions to epidemic and disaster control can be found in Dasaklis et al.
[33] and Dimitrov and Meyers [34].

In particular, several extremely relevant papers that study the integration of epi-
demic control and logistics planning are summarized as follows. Rachaniotis et al.
[35] proposed a deterministic resource scheduling model in H1N1 control. The prob-
lem of scheduling limited available resource for several areas was presented. A case
where a large-scale smallpox attack was considered in Dasaklis et al. [36]. A lin-
ear programming (LP) model for optimally distributing a predetermined vaccine
stockpile to several affected subpopulations was presented. Furthermore, given the
available number ofmobilemedical teams,Rachaniotis et al. [37] proposed an integer
programming (IP) model to minimize the total number of new infections. Ekici et al.
[38] developed a disease spread model to estimate the spread pattern of the disease,
and combined it with a facility location and resource allocation network model for
food distribution. Chen et al. [39] proposed amodel which linked the disease progres-
sion, the related medical intervention actions and the logistics deployment together
to help crisis managers extract crucial insights on emergency logistics management
from a strategic standpoint. Ren et al. [40] presented a multi-city resource allocation
model to distribute a limited amount of vaccine to minimize the total number of fatal-
ities due to a smallpox outbreak. He and Liu [41] proposed a time-varying forecasting
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model based on a modified SEIR model and used a linear programming model to
facilitate distribution decision-making for quick responses to public health emergen-
cies. Anparasan and Lejeune [42] proposed an integer linear programming model,
which determined the number, size, and location of treatment facilities, deployed
medical staff, located ambulances to triage points, and organized the transportation
of severely ill patients to treatment facilities. In 2012, Liu and Zhao [43] integrated
a SEIR epidemic model and an emergency optimization model to allocate the lim-
ited resources for an anti-bioterrorism problem. After that, Liu et al. [44] proposed
a time-space network model for studying the dynamic impact of medical resource
allocation in controlling the spread of an epidemic. Furthermore, Liu and Zhang
[45] presented a dynamic decision-making framework, which coupled a forecast-
ing mechanism based on the SEIR model and a logistics planning system to satisfy
the forecasted demand and minimize the total operation costs. Table 9.1 shows the
summary and comparison of the studies mentioned in this paragraph.

9.3 Model Formulation

9.3.1 Epidemic Compartmental Model

As shown in Fig. 9.1, we construct a compartment model for analyzing epidemic
dynamics based on the 2009 H1N1 pandemic. In each affected area j,∀ j ∈ J , indi-
viduals are classified as: susceptible (S), exposed (E), infected (I ), hospitalized (H ),
recovered (R), and asymptomatic and partially infectious (A). We call it SEIHR-A
model. In this model, each compartment represents the corresponding health status
of people with regard to theH1N1, while the connected arc shows epidemic transmis-
sion between two compartments. Note that deceased individuals are not considered
in our model, because H1N1 has become a seasonal flu with very low mortality rates
due to the advance in medical technologies.

There are several assumptions for the proposed SEIHR-Amodel. First, compared
to the traditional bilinear transfer rates among compartments S, E and I [14], the
single-linear transfer rate assumption, except the variable transfer rate from I to
H, is the foundation for modeling a mixed-integer linear programming (MIP) in
Büyüktahtakın et al. [1]. Otherwise, we cannot alleviate the non-linearity of epidemic
model and thus the integrated epidemic-logisticsmodel is always non-linear. Second,
we assume that individuals who are infected will go into a latent (exposed) stage,
during which they may have a low level of infectivity (we define a reduction factor
q for transmissibility of the exposed class in following paragraph). After that, some
proportion of the exposed individuals go into the infected compartment and then
to the recovered compartment through treatment. Meanwhile, some proportion of
the latent individuals never develop symptoms and go directly from the latent class
to the asymptomatic and partially infectious class and then to the recovered class
[12]. Whatever, we assume that individuals in the recovered class receive lifelong
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Susceptible (S) Exposed (E) Infected (I)

Asymptomatic (A)

ljα jlν

jβ

(1 )j jp δ−
2 jγ

1jγj jp δ
Hospitalized (H) Recovered (R)

Fig. 9.1 Framework of the epidemic compartment model

immunity. Third, similar toBüyüktahtakın et al. [1], we assume that transfer rate from
compartment I to H is a variable parameter, which is determined by the available
number of isolatedwards. Correspondingly, infected personswho are not quarantined
will continue to spread disease in the outside. Since the H1N1 outbreak only last
for several months, natural birth/death rates are excluded from the epidemic model
because they normally affect the dynamics of disease over several years.

To facilitate epidemic model formulation, we give the notations used as follows:

Parameters:

T Set of time, t = {0, 1, 2, . . . , T }.
J Set of affected areas, j = {1, 2, . . . , J }.
L Set of all surrounding affected regions of area j , l = {1, 2, . . . , J }\ j .
β j Transmission rate of the H1N1 in area j .
q j Reduction factor of infectiousness for the class E j .
p j Proportion of symptomatic infection in area j .
δ j Infected rate in area j .
γ1 j Recovery rate for infectious class in area j .
γ2 j Recovery rate for asymptomatic class in area j .
αl j Migration rate of susceptible individuals from surrounding areas to area j .
ν jl Migration rate of susceptible individuals from area j to surrounding areas.

State variables:

Sj (t) Number of susceptible individuals in area j at time t .
E j (t) Number of exposed individuals in area j at time t .
I j (t) Number of infected individuals in area j at time t .
Hj (t) Number of hospitalized individuals in area j at time t .
R j (t) Number of recovered individuals in area j at time t .
A j (t) Number of asymptomatic individuals in area j at time t .
S
∧

j (t) Number of susceptible individuals migrate into area j at time t .
S j (t) Number of susceptible individuals travel out from area j at time t .
I j (t) Number of patients that can be accepted for treatment in area j at time t .

Based on the above notations, we can use the following time discretized equations
to demonstrate the epidemic dynamics.
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Sj (t+1) = Sj (t) + S
∧

j (t) − S j (t) − β j [q j E j (t) + I j (t) + A j (t)],
∀ j ∈ J, t ∈ T . (9.1)

E j (t + 1) = E j (t) + β j [q j E j (t) + I j (t) + A j (t)] − δ j E j (t),

∀ j ∈ J, t ∈ T . (9.2)

I j (t+1) = I j (t) + p jδ j E j (t) − I j (t), ∀ j ∈ J, t ∈ T . (9.3)

Hj (t+1) = Hj (t)+I j (t) − γ1 j Hj (t), ∀ j ∈ J, t ∈ T . (9.4)

R j (t+1) = R j (t) + γ1 j Hj (t) + γ2 j A j (t), ∀ j ∈ J, t ∈ T . (9.5)

A j (t+1) = A j (t) + (1 − p j )δ j E j (t) − γ2 j A j (t), ∀ j ∈ J, t ∈ T . (9.6)

According to He and Liu [41], we assume that all individuals whomove in and out
of the area are susceptible. Therefore, following the formulation of Büyüktahtakιn
et al. [1], we useEq. (9.7) to define the immigration of susceptible individuals from all
surrounding regions to area j at time t , and use Eq. (9.8) to represent the outmigration
of susceptible individuals from area j to all surrounding areas at time t .

S
∧

j (t) =
∑

l∈L
αl j Sl(t), ∀ j ∈ J, t ∈ T . (9.7)

S j (t)=
∑

l∈L
ν jl S j (t), ∀ j ∈ J, t ∈ T . (9.8)

The above eight difference equations describe that the change rate of each com-
partment is determined by the entering and exiting population in the corresponding
compartment. For example, Eq. (9.6) shows that the number of asymptomatic indi-
viduals at time t + 1 is equal to the number of asymptomatic individuals on the
previous time plus the new individuals transferring from the exposed compartment,
andminus individuals who are recovered. These equations can be used to forecast the
number of susceptible, exposed, infected, hospitalized, asymptomatic and recovered
individuals by giving the initial values of each compartment and the corresponding
parameters. The only problem need to be determined is the state variable I j (t), which
means the number of infected individuals that can be accepted for treatment in area
j at time t .

As we all know, the quantity of how many infected individuals can be treated
depends on the scale of emergency budget. If emergency budget is enough, all
infected people can be hospitalized [44]. However, if emergency budget is limited,
policymakers must consider how to effectively use the limited budget to maximize
the emergency service level [45], to minimize the total number of infections and
fatalities [1], or to minimize the total unsatisfied demand [41]. With the different
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optimization objectives, the state variable I j (t) will be correspondingly changed.
Considering that H1N1 is now a seasonal flu with very low mortality rates, we use
the minimization of total unsatisfied demand as our optimization objective in this
study. The detail of the resource allocation model is introduced in the following
section.

9.3.2 Resource Allocation Model

Similar to Sect. 9.3.1, we give the notations that will be used to formulate the resource
allocation model as follows:

Parameters:

f j Fixed cost for establishing an isolated ward in area j .
f̄ j Fixed cost for closing an unused ward in area j .
g j Unit variable cost for treating a patient in area j .
� Total available budget.
C j (0) Initial number of isolated wards in area j.

State variables:

C j (t) Cumulative number of isolated wards in area j at time t .

Decision variables:

Cv
j (t) New increased number of isolated wards in area j at time t .

C
v

j (t) New closed number of isolated wards in area j at time t .

Following the convention of Büyüktahtakιn et al. [1], we formulate the resource
allocation model as follows:

Min
∑

t∈T

∑

j∈J

max{[I j (t) + Hj (t) − C j (t)], 0}. (9.9)

Subject to:
Equations (9.1)–(9.8);

∑

t∈T

∑

j∈J

[ f jCv
j (t) + f̄ jC

v

j (t) + g j Hj (t)] ≤ �; (9.10)

C j (t) =
t∑

r=0

Cv
j (r) −

t∑

r=0

C
v

j (r) + C j (0), ∀ j ∈ J, t ∈ T ; (9.11)

C j (t) ≥ C j (0), ∀ j ∈ J, t ∈ T ; (9.12)



176 9 Integrated Planning for Public Health Emergencies …

I j (t) = min{C j (t) − Hj (t), I j (t)}, ∀ j ∈ J, t ∈ T ; (9.13)

Sj (t), E j (t), I j (t), I j (t), Hj (t), R j (t), A j (t) ≥ 0, ∀ j ∈ J, t ∈ T ; (9.14)

Cv
j (t),C

v

j (t) ∈ Z+, ∀ j ∈ J, t ∈ T . (9.15)

The objective function in Eq. (9.9) is to minimize the total unsatisfied demand
in all affected areas over the finite planning horizon. In addition to the epidemic
dynamics constraints (Eqs. 9.1–9.8), the resource constraints are introduced as fol-
lows. Equation (9.10) provides a budget limitation on the sum of the fixed costs
for establishing and closing isolated wards and the variable cost for hospitalizing the
infected individuals over all affected areas. Obviously, we can not establish and close
the isolated wards at the same time. Therefore, if Cv

j (t) > 0, which means we need

to open several new isolated wards in area j at time t , we have C
v

j (t) = 0. Corre-

spondingly, if Cv
j (t)=0, we may have C

v

j (t) ≥ 0, which means we may close some
unused isolated wards or maintain the number of isolated wards unchanged. Equa-
tion (9.11) illustrates how to calculate the capacity (cumulative number of isolated
wards) in affected area j at time t . Equation (9.12) shows that the cumulative number
of isolated wards should not be less than its initial size C j (0) at any time. Similar to
Büyüktahtakın et al. [1], Eq. (9.13) provides the number of infected individuals that
can be hospitalized based on the number of available isolated wards in area j at time
t . Intuitively, if the number of infected individuals I j (t) is more than the remaining
capacity in affected area j at time t , then only C j (t) − Hj (t) of infected individu-
als can be accepted for treatment. Otherwise, if there are enough isolated wards in
affected area j at time t , all infected individuals I j (t) can be accepted for treatment.
Equation (9.14) requires that all state variables are non-negative. Finally, Eq. (9.15)
shows that both Cv

j (t) and C
v

j (t) are non-negative integer variables, corresponding
to the number of isolated wards to be opened or closed.

9.3.3 Model Solution

The proposedmodel is amixed-integer non-linear programming (MINLP)model due
to the non-linear term in the objective function (Eq. 9.9) and the available treatment
constraint (Eq. 9.13). Following the convention of Büyüktahtakιn et al. [1], we need
to transfer the MINLP model to be an equivalent MIP. By introducing a binary
variable z j (t) and two auxiliary variables (Uj (t) and Wj (t)), Büyüktahtakιn et al.
[1] provided several linear constraints to replace the non-linear constraint (9.13). In
their paper, z j (t) took a value of 1 when only C j (t) − Hj (t) of infected individuals
can be accepted for treatment, and zero when there were enough isolated wards
for all infected individuals I j (t). Since the detail of linearization could be found in
Büyüktahtakιn et al. [1], we omit it in this study.
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The second non-linear term in our model is the objective function. Similarly, we
can linearize it in the same way. Let NC j (t) = max{ [I j (t) + Hj (t) − C j (t)], 0} .
Then the objective function could be rewritten as:

Min
∑

t∈T

∑

j∈J

NC j (t) (9.16)

By introducing a binary variable ω j (t), NC j (t) could be reformulated as:

NC j (t) = [I j (t) + Hj (t) − C j (t)] · ω j (t) (9.17)

Herein, ω j (t) is a binary variable, which takes a value of 1 when the current
isolated wards are not enough and thus we need to establish new ones, and zero
when all infected individuals can be hospitalized. To ensure that the value of NC j (t)
is equal to the maximum one between [I j (t) + Hj (t) −C j (t)] and zero, we add the
following two constraints:

NC j (t) ≥ I j (t) + Hj (t) − C j (t), ∀ j ∈ J, t ∈ T (9.18)

NC j (t) ≥ 0, ∀ j ∈ J, t ∈ T (9.19)

Note that Eq. (9.17) is still nonlinear as it involves multiplication of two variables.
Let UBj and LBj be the upper and lower bounds for [I j (t) + Hj (t) − C j (t)].
According to Büyüktahtakın et al. [1], we add the following constraints (9.20)–(9.23)
to the proposed model. Herein, the upper boundUBj is an estimate of the maximum
number of unsatisfied beds in affected area j . In this study, we set it to be the initial
number of susceptible individuals Sj (0) minus the initial number of isolated wards
C j (0) in such area. The lower bound LBj for [I j (t) + Hj (t) − C j (t)] is set to be
−C j (0), which represents there are no more infected individuals in area j .

NC j (t) ≤ ω j (t)UBj , ∀ j ∈ J, t ∈ T (9.20)

NC j (t) ≥ ω j (t)LBj , ∀ j ∈ J, t ∈ T (9.21)

NC j (t) ≤ [I j (t) + Hj (t) − C j (t)] − LBj (1 − ω j (t)), ∀ j ∈ J, t ∈ T (9.22)

NC j (t) ≥ [I j (t) + Hj (t) − C j (t)] −UBj (1 − ω j (t)), ∀ j ∈ J, t ∈ T (9.23)

Again, following the convention of Büyüktahtakιn et al. [1], the proposed
MINLP model can be replaced by an equivalent MIP model, which is defined in
Eqs. (9.1)–(9.8), (9.10)–(9.16), and (9.18)–(9.23). Therefore, we can solve it directly
by use MATLAB2017 or CPLEX.
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9.4 Case Study

In this section, we present a case study to demonstrate the performance of the pro-
posed model. All computational processes are conducted on a personal computer
with a 2.4 Hz CPU and 8G RAM in the Microsoft Windows 10 environment.

9.4.1 Background and Parameters Setting

The proposed model is employed on a real case study concerning the 2009–2010
H1N1 pandemic in Jiangsu Province, China. Data are gathered from the Data-center
of China Public Health Science (DCPHS), the World Health Organization (WHO)
and the literature regarding the H1N1 outbreak [12, 13]. Jiangsu Province is located
on the coast of the East China Sea. It is among the most populous provinces in China
and registers more than 78 million permanent residents on 39,614 m2 of land. These
numbers account for 5.69% of mainland China’s population and only 1.06% of the
national land area. After the first H1N1 patient was confirmed on June 12, 2009, the
epidemic quickly spread across the entire province because no control intervention
was implemented at the beginning.

When the severity of this public health emergency was determined, the local
government started the emergency response plan on July 1, 2009. As illustrated
in Fig. 9.2, the province was divided into three affected areas, North-Jiangsu (JS-
N), Center-Jiangsu (JS-C) and South-Jiangsu (JS-S). The JS-N area includes the
prefectures of Xuzhou, Lianyungang, Suqian and Huaian. The JS-C area covers the
cities of Yancheng, Yangzhou, Taizhou and Nantong. The JS-S area includes the
cities of Nanjing, Zhenjiang, Changzhou, Wuxi and Suzhou. Most regions in the
JS-N area are rural villages and more than 1/3 of the people in these areas travel
out as migrant workers throughout the year. Therefore, the JS-N area is a typical
population output area. In contrast, most regions in the JS-S area are modern cities
with numerous job opportunities. Therefore, the JS-S area is a typical population
input area. Correspondingly, the JS-C area in the middle position is a population
equilibrium area. The population data for each affected area is given in Table 9.2.
The immigration rate and emigration rate between different areas are estimated in
Table 9.3. These data are extracted from the Sixth Population Census Report of China
in 2010 [46]. Emergency budget is allocated to help establish isolated wards in all
three affected areas. The fixed cost for establishing an new isolated room is estimated
to be ¥10,000 and the fixed for closing an unused isolated ward is estimated to be
¥1500 (i.e., a fixed cost accounts for administrative manpower, overhead, utilities,
and sterilization of the patient rooms and facilities allocated exclusively for treating
H1N1 patients). Finally, the unit variable cost for treating a patient is approximately
¥1000 (i.e., a variable cost includes doctor-hours, nurse-hours, medicine cost, meals,
etc.).



9.4 Case Study 179

EMC

North Jiangsu (JS-N)

JS-C

JS-S

JS-N Population
output area

Population
input area

Population
 equilibrium area

Center Jiangsu (JS-C)

South Jiangsu (JS-S)

Fig. 9.2 Map of 3 affected areas in Jiangsu Province

Table 9.2 Population size in
affected areas [46]

Affected areas Population size Ratio

JS-N 22,489,856 0.29

JS-C 23,621,393 0.30

JS-S 32,548,654 0.41

Total 78,659,903 1.00

Table 9.3 Migration rate
between areas [46]

Affected areas JS-N JS-C JS-S

JS-N – 0.1 0.25

JS-C 0.05 – 0.1

JS-S 0.05 0.1 –

Although the whole province is divided into three affected areas, we believe that
there is no difference in the values of epidemic parameters. The parameters are given
as follows. First, because the age distribution profile in Jiangsu Province is similar
to that in Guangdong Province of China [12], the mean latent period of the exposed
stage E(t) is assumed to be 2.62 days (95% confidence interval, (CI) 2.28–3.12).
Therefore, the infected rate δ is considered to be δ = 1/2.62. Second, of all the
cases in Jiangsu Province, most symptomatic individuals are characterized by mild
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infections and symptoms. According to Tuite et al. [47], the same rates are used to
reflect recovery rates of symptomatic and asymptomatic cases. Therefore, we have
1/γ1 = 1/γ2 = 3.38(95% CI, 2.06–4.69). Moreover, the possibility of transmission
from exposed class q is fixed at 1/8 in a rather crude way [48]. The proportion
of symptomatic infectious cases p is fixed at 60.2% according to the serological
survey conducted by the Jiangsu Center for Disease Control and Prevention. Finally,
the transmission rate β is set to be 0.411 according to Tan et al. [12], which has a
confidence interval of 95% (0.390–0.432). Using these initialized parameters, it is
revealed that the basic reproduction number (R0, the expected number of secondary
infections produced by an index case in a completely susceptible population) is 1.525
(95% CI, 1.448–1.602), which is consistent with most analyses of data fromMexico
(R0: 1.2–1.6, Davoudi et al. 2010) [49] and Vietnam (R0: 1.5–1.6, Hien et al. [50]).

9.4.2 Test Results

Because Chinese Center for Disease Control and Prevention (CCDCP) requires local
government to report the H1N1 data every three days, our test data is a time-series
data with an interval of three days. The actual cumulative number of isolated wards
in each area j from July 1st, 2009, to December 27th, 2009, are adopted and fed
into the model. Therefore, the proposed model can be solved with fixed C j (t) values
based on the actual data. Similar to the verification process in Büyüktahtakın et al.
[1], we validate our predicted data against the actual outbreak data in terms of the
cumulative number of infected individuals on these days. The result is shown in
Appendix B.1.

(1) Optimization results with different budget sizes

When facing an unexpected epidemic outbreak, managers want to know how to
allocate the limited budget to different affected areas andwhat the impact on epidemic
dynamics with different budget scales is. Following the convention of Büyüktahtakın
et al. (2018) [1], we conduct these two questions and demonstrate the results in
Appendix B.2. The CPU times for the four scenarios are 1268.24, 1326.31, 1194.12,
and 1378.56 s, respectively.

Initially, when budget allocation is inadequate (i.e., ¥100 M), the effect of emer-
gency response is extremely limited. More than half of people in Jiangsu Province
will be infected by the disease and most of them can not be hospitalized for treat-
ment.As the budget grows, one can see that the unsatisfied demand sharply decreased.
When a budget limitation of ¥250 M is given, the unsatisfied demand is only 2821.
The cumulative number of infected individuals decreases by approximately 99.9%
when compared to the scenario of a budget limitation of ¥100 M. The above results
demonstrate that an ample emergency budget is very important when response to
an unexpected epidemic outbreak. In that case, managers can implement several
effective intervention measures, i.e. quarantine and treatment, which can effectively
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reduce the contact between susceptible people and infected people, and thus decrease
the possibility of disease transmission among the population.

Second, Fig. 9.3 shows budget allocation proportions for the three affected areas.
One can see that the test results are pretty stable (22.8–23.7%, 28.2–30.2% and
46.8–48.4%, respectively). Combined with the population ratio in these three areas
(29, 30 and 41%, respectively), one can see that budget allocation is always partial
to the JS-S area and prejudice to the JS-N area. The core reason is that the JS-N area
is a population output area and the JS-S area is a population input area. During the
entire planning horizon, thousands of people move from the JS-N area to the JS-S
area for study, work or business. Therefore, budget allocation is not consistent with
the population proportion for these affected areas.

(2) The optimal number of isolated wards

Figure 9.4 provides model results regarding the number of isolated wards that should
be added and removed at each period with the budget of ¥250 M. First, when inter-
vention starts on July 1, one can see that hundreds of isolated wards should be
immediately opened in all three affected areas (156, 187, and 311, respectively).
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This can help accept as many patients as possible who were infected in the period
from the outbreak date (June 12) to the intervention start time (July 1). Second, we
need to continuously open new isolated wards in the following 5 periods, which
means 15 days in our test. Although infected individuals can be obviously reduced
when control intervention starts, there are still numerous exposed individuals who
will become new infected persons and thus we still need to establish new isolated
wards for them. Finally, after the first 5 periods, the opened isolated wards will be
gradually closed until the final planning horizon.

9.4.3 Discussion

Again, following the convention of Büyüktahtakın et al. [1], we solve our model
with five different intervention starting dates (July 1, July 16, July 31, August 15
and August 30). After that, we discuss the impact of different intervention starting
dates from the following three aspects: (1) the number of infected individuals; (2) the
optimal allocation of emergency budget; and (3) the available capacity required. The
impact of different intervention starting dates on the number of infected individuals
is illustrated in Appendix B.3. In what follows, we introduce the test results of the
above questions (2) and (3).

The impact of different intervention starting dates on the optimal allocation of
emergency budget is demonstrated in Table 9.4. First, it can be observed that the
major cost for H1N1 intervention is the fixed cost, which is expended for establishing
isolated rooms in the appointed hospitals. This is different from Büyüktahtakın et al.
[1], which suggested a major cost of the variable treatment cost and followed by the
fixed cost and the burial cost for controlling the shocking Ebola. Second, the test

Table 9.4 Budget allocation with different intervention starting dates

Budget allocation
(Million)

Cost July 1 July 16 July 31 August 15 August 30

JS-N Fixed cost 55.8 112.4 258.5 610.8 1458.2

Variable cost 3.4 6.3 16.9 44.6 105.2

Area total cost 59.2 118.7 275.4 655.4 1563.4

JS-C Fixed cost 67.5 135.8 316.3 748.1 1786.0

Variable cost 6.1 8.7 21.9 54.3 126.7

Area total cost 73.6 144.5 338.2 802.4 1912.7

JS-S Fixed cost 109.4 216.2 508.5 1214.2 2901.7

Variable cost 7.8 15.2 36.8 90.6 215.6

Area total cost 117.2 231.4 545.3 1304.8 3116.3

Total cost 250 494.6 1158.9 2762.6 6592.4

Total unsatisfied demand 2821 7012 25,428 70,124 194,680
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result shows that emergency budget required could be significantly increased with
each 15 days of delay in intervention. For example, if intervention starts on July 1st
and an emergency budget of ¥250 M is allocated, the cumulative unsatisfied demand
is only 2821. However, if we postpone the intervention by half a month (July 16), the
model solution requires an optimal budget of ¥494.6 M with an unsatisfied demand
of 7012. What is worse, although there is ample emergency budget, the values of
total unsatisfied demand in the following three scenarios are considerably large.

The impact of different intervention starting dates on the isolated wards capacity
required is illustrated in Fig. 9.5. It can be observed that the capacity required in all
three areas show similar change trajectories. The capacity required increases sharply
in the first several days. Beyond its peak, it decreases until the final planning horizon.
The later the intervention starts, the more isolated rooms will be required to suppress
the disease spread. In summary, we suggest that intervention to an unexpected epi-
demic should start as early as possible. This can significantly reduce the number of
infected individuals, shrink the scale of isolated wards required, and finally save the
valuable emergency budget.

Furthermore, we also conduct sensitivity analysis for three key parameters in our
epidemic model. The results suggest that local government should try its best to
reduce the transmission rate. Meanwhile, shorting the treatment time for infected
persons could also reduce the total number of infected individuals. To reduce the
transmission rate, several forcible quarantine measures should be carried out. In
the meantime, self-quarantine for the exposed people and decreasing the contact
with other susceptible individuals around are also effective strategies for controlling
epidemic diffusion. Other monitoring measures such as taking a temperature test
before boarding airplane or train could also help to alleviate epidemic diffusion risk.
As to short the treatment time, it could be realized by improving the corresponding
medical techniques and this beyond our research scope.

9.5 Conclusion

In this study, we present a modified epidemic-logistics model for controlling H1N1
in China. Our model is inspired by the modeling framework of Büyüktahtakın et al.
[1]. We get several similar conclusions from our test. For example, managers should
start intervention strategy as early as possible when response to an unexpected epi-
demic outbreak. Otherwise, the consequence would be very serious even with ample
emergency budget and strong intervention efforts. We also obtain several different
viewpoints from our test. For instance, we demonstrate that budget allocation pro-
portion for the three affected areas is pretty stable. However, it is not consistent with
population ratio. Managers should allocate more budget to the population input area
(i.e. JS-S area). We also suggest that managers should do their best to open enough
number of isolated wards at the beginning of intervention, to receive asmany patients
as possible who were infected in the period from the outbreak date to the intervention
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start time. This can effectively help control the epidemic diffusion. Other differences
between Büyüktahtakın et al. [1] and this study are listed as follows.

(1) Different infectious diseases have dissimilar diffusion dynamics, and thus we
have different constraints for the integrated epidemic-logisticsmodel. For exam-
ple, individuals infected by H1N1 will first go into a latent (exposed) stage, dur-
ing which they may have a low level of infectivity. However, the transmission
dynamics of Ebola is totally different in Büyüktahtakın et al. [1]. Moreover, we
consider a compartment of asymptomatic and partially infectious (see Fig. 9.1),
but we do not consider the deceased individuals becauseH1N1 is now a seasonal
flu.While in the Ebola pandemic, funerals and how to bury the deceased individ-
uals are important and unavoidable problems. Therefore, when we address the
time discretized epidemic compartment model as the linear constraints, there
will be total different constraints for the integrated epidemic-logistics model.

(2) Different infectious diseases can cause different public health emergencies,
and thus we have different optimization objectives for the integrated epidemic-
logistics model. As one can see, Büyüktahtakın’s objective is to minimize the
total number of infected individuals and deaths of infected people who do not
receive treatment. While in our study, the objective function is to minimize the
total unsatisfied demand in all affected areas.

(3) InBüyüktahtakın et al. [1], the authors preset two kinds of ETC, 50-bed and 100-
bed, and thus the capacity decision is a combinatorial optimization problem.
While in this study, we focus on when to open the new isolated wards and
when to close the unused isolated wards. Moreover, our test demonstrates that
the major cost for H1N1 intervention is the fixed cost. This is also different
from Büyüktahtakın et al. [1], which suggested the major cost is the variable
treatment cost and followed by the fixed cost. We think the difference of cost
structure is caused by the different characteristics of the two diseases. As we
all know, the treatment for Ebola patients is more complex and dangerous, and
thus the variable treatment cost should be the major one. As to H1N1, it is
now a seasonal flu with very low mortality rates due to advances in medical
technologies. Therefore, the major cost for treating the infected individuals is
the fixed cost.

Note that although there are several papers that study the integration of epidemic
control and logistics planning in recent 5 years (i.e., [33, 39, 41, 45]), many of
them divide the continuous time into several independent decision-making periods
and update forecasting for the number of infected individuals at the beginning of
each period. Thus in essentially, the epidemic compartment model and the planning
model are still independent from each other. Different from that, Büyüktahtakın
et al. [1] integrated epidemic dynamics and the corresponding emergency logistics
considerations into one optimizationmodel. The key component was that no constant
transition rate from compartment I to H . In this study, we retain the advantage of
this modeling framework and thus our model could also forecast the development of
H1N1 and depict the impact on different resource-allocation scenarios on the disease
progression.



186 9 Integrated Planning for Public Health Emergencies …

Future research could address some of the limitations in both the epidemiolog-
ical and resource allocation portions of the proposed model. For example, other
epidemics with other transmission characteristics could be incorporated into the
optimization model. Moreover, cross-regional transmission with different transition
rates and population structures could also be incorporated into the model. As to the
resource allocation portion, future studies could also consider the influence of unsat-
isfied demand, the emergency service level, or the potential delay in arrival time of
the intervention budget.

References
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Chapter 10
Logistics Planning for Hospital
Pharmacy Trusteeship Under a Hybrid
of Uncertainties

This chapter presents two medicine logistics planning models by using a time-space
network approach, one with deterministic variables and the other with stochastic
variables. Flow dependent variable costs, random demand and random service time
are featured in our models in addressing economies of scale and uncertainties in a
real-worldmedical logistics problem. Effective computational schemes are designed,
and an evaluation method is proposed to derive and assess a solution to the models.
Numerical tests are conducted and show promising results for applications to a real-
world problem.

10.1 Introduction

Medicine logistics planning is a major part of operations management in a hospital
that is responsible for the procurement of medicine, setting order quantities and order
times, scheduling shipping, the in-house distribution of medicine, and determining
the safety stock and service level for the medicine. This study is partly motivated by
the concerns of practical medicine logistics operations in many hospitals in China.
Because of the culture and the current prevailing health insurance plans in China,
most people go to the hospital to see a doctor and obtain prescriptions from the
hospital pharmacy rather than going to a community health care center for even mild
illnesses, such as a cold. The statistics show that more than 90% of patients purchase
their medicine in a hospital pharmacy with a doctor’s prescription instead of using
retail pharmacies outside of the hospital. Therefore, medicine inventory levels in
most hospitals remain high year round, blocking capital flow and increasing the risk
of medicine expiration.

In the past decades, two main capital sources were presented in maintaining a
high-level inventory of medicines in hospitals: government funding and medicine
revenue generated by hospital pharmacies. Government authorities allow hospitals
to make a 15–20% profit on medicine sales. For example, the wholesale price of a
box of amoxicillin capsules is 15 CNY, and the retail price in the hospital’s pharmacy
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may be 16–18 CNY. However, due to the lack of supervision, the actual retail price
of amoxicillin capsules can reach 26–30 CNY in some hospitals.

The Chinese government has been in the process of implementing medical and
healthcare system reform, which prohibits hospitals from profiting from medication
sales, which means that a hospital’s pharmacy will become a not-for-profit depart-
ment and can no longer generate medicine-related revenue. This is the reason why
many hospitals are looking for outsourcing solutions, such as the hospital pharmacy
trusteeship (HPT) scheme. HPT is a vendor-managed inventory approach. In this
scheme, the internal pharmacy of a hospital will be outsourced to and managed by a
pharmaceutical company, which is responsible for ensuring the timely replenishment
of the hospital pharmacy’s stock and maintaining the required medical service level
[1]. Therefore, it is in the core mission of HPT to develop a stable and economic
medicine logistics plan to minimize operation costs while ensuring supply mainte-
nance and managing a combination of uncertainties. However, a stable logistics plan
is always disrupted by the following factors.

(1) The first influencing factor is uncertain demand. Although electronic purchase
systems and decision support systems are used in medicine inventory manage-
ment in most Chinese medical institutions, important parameters for decision-
making, such as the order quantity, order point, and safety stock, are manu-
ally determined by staff members based upon his/her experience. Since most
patient requests in a hospital are stochastic and time-varying, experience-based
schedules are often insufficient or ineffective in meeting the actual demand. In
lacking a systematic analysis and optimal decision making mechanism, the fear
of stock-out drives the stock level to be consistently high.

(2) The second factor is the uncertain service time. “Service time” in this study is
a general term (similar to the lead time) that is defined as the total time from
when an order is placed until the order is received. This includes the order
processing time, sorting time, packaging time, loading and unloading time, and
transportation time. Many of these operation links can experience unexpected
delays, such as traffic congestion, resulting in the actual receipt time being far
from the planned service time. Therefore, designing robust medicine logistics
planning entails explicitly addressing the uncertainty in the service time.

(3) The third factor is the variable service cost. Although the price of a medicine
does not vary, its cost varies because of the wholesale discount price. Therefore,
there are economies of scale in production and distribution. The unit service cost
is not a fixed constant but is dependent on the flow in the service arc.

This study develops two medicine logistics planning models based on a time-
space network approach, one for deterministic variables and the other for stochastic
variables. Most research on this topic in the existing literature tends to either address
demanduncertainty or only service timeuncertainty. TheSPMmodel proposed in this
study addresses both uncertainties in a unified framework. Meanwhile, the penalty
for the time error between the planned service time and actual service time is also
introduced into our model for the first time. Incorporating the penalty on an early or
late arrival of a delivery into the objective function can effectively reduce excessive
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holding and shortage costs, as shown in our numerical examples, and further yield
an optimal solution as a more robust logistics plan. Our models employ variable
service costs accounting for possible economies of scale, such as wholesale price,
consolidation in order processing and transportation. This is another step forward
toward the reality of modeling with flow independent service costs in the previous
works.

10.2 Literature Review

10.2.1 VMI in Hospital

The VMI strategy originated in the U.S. in the 1980s; early adopters of this strategy
included large retailers such as Wal-Mart and JC Penney [2]. However, most of the
existing studies addressing the issue of VMI have focused on manufacturing firms
and retailers [3]. The literature has largely ignored the application of the VMI system
within the healthcare domain.

In recent years, some studies highlight the advantages of implementing the VMI
system in the hospital’s pharmacy. Kim [4] discussed the adoption of the VMI system
between a wholesaler and a hospital warehouse in South Korea. The VMI system
has several advantages, the most significant one being a reduction of the inventory
level. Furthermore, it decreases the workload of the pharmacy staff in the hospital
and facilitates information integration between the wholesaler and the hospital. Tsui
et al. [5] also stated that the VMI can help the hospital reduce the number of required
staff members, reduce stock holdings and improve customer service. According
to their report, 3.5 full-time equivalent staff members were redeployed to clinical
pharmacy support duties, and the stock holding decreased by $352,000. Lin and Sun
[6] developed a mathematical model based on VMI to describe the supply chain in a
hospital. They proposed a quantitative model of a two-stage supply chain to compare
the inventory cost of hospitals and their suppliers before and after the adoption of
VMI. Through a quantitative comparison, it is confirmed that the adoption of VMI
can effectively reduce the overall inventory cost of the hospitals and the supply chain.
Mustaffa and Potter [7] also suggested that the application of a VMI system leads
to higher customer service levels (i.e., delivering the correct quantity of the product
to the clinic) and improvements in key supply chain variables such as decreasing
stock-outs and eliminating the bullwhip effect.

More recent works in this stream include Liang et al. [8], Bhakoo et al. [9] and
Govindan [10]. For example, Liang et al. [8] focused on the establishment of a
VMI pattern in medicine storage management. Through a comparison between the
traditional ABC analysis method and VMI pattern, an optimization strategy was
established. Bhakoo et al. [9] showed how VMI works by discussing the application
of a VMI system downstream in the supply chain, particularly from the hospital’s
perspective. Govindan [10] proposed the optimal replenishment policy for time-
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Table 10.1 Summary of the studies with respect to VMI in the hospital

Reference Goal Methodology VMI’s benefit(s)

Kim [4] Inventory optimization Case study (1), (2), (3)

Tsui et al. [5] Inventory optimization Case study (1), (2), (4)

Lin and Sun [6] Cost minimization Mathematical model (5)

Mustaffa and Potter [7] Inventory management Case study (4), (5)

Liang et al. [8] Inventory management ABC versus VMI (1), (5)

Bhakoo et al. [9] Inventory management Case study (1), (4), (5)

Govindan [10] Cost minimization Mathematical model (4), (5)

(1) Reduce inventory level; (2) decrease the workload; (3) facilitate information integration; (4)
improve customer service; (5) reduce inventory cost

varying stochastic demand under VMI. Themodels are applied in both the traditional
system and VMI supply chain based on pharmaceutical industry data. Table 10.1
shows a summary of the studies mentioned in this section with respect to several
factors, such as goals, methodology and the benefit(s) of VMI.

10.2.2 Logistics Planning with Different Influence Factors

As mentioned in Sect. 10.1, stable logistics planning is always disrupted by the
following factors: uncertain demand, uncertain service time and variable service
cost. The related literature is briefly introduced below.

There are three commonways to model uncertain demand: (1) stochastic distribu-
tion [32], (2) time-varying function [11–13], and (3) the information updating mode
[14, 15]. A stochastic distribution means that the demand is defined as a random
function, i.e., uniform distribution, normal distribution and Poisson distribution. The
time-varying function indicates that the demand has a time-varying characteristic.
For example, Wang and his colleagues constructed a time-varying function for fore-
casting the demand in hospitals, where the time-varying function was designed based
on an epidemic diffusion rule [16, 17]. The last information updatingmode allows the
demand information to be updated as the decision-making process evolves. Because
this mode can effectively reduce the mismatch between the supply side and demand
side, it is adopted in this study in the following sections.

Regarding uncertain service times, researchers tend to use the average service time
in drug delivery scheduling [18–21]. For example,Yan et al. [21] proposed a logistical
support scheduling model in humanitarian relief. In this model, an average service
time is adopted for each delivery trip, and stochastic factors during the vehicle travel
stage may have a significant influence on logistics planning. When real stochastic
service time is not considered in traditional deterministic models, medical resources
in hospitals will be used excessively, resulting in an overly optimistic “optimal”
schedule [22, 23, 33]. Therefore, Yan and his colleagues employed network flow
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techniques to construct a logistical support scheduling model with uncertain service
times. The concept of time inconsistency is proposed to precisely estimate the impact
of stochastic disturbances arising from variations in vehicle trip service times during
the planning stage [24]. This helps us design an unanticipated penalty cost to penalize
the time inconsistency in the following sections.

Motivated by the importance of uncertain demand and service times, which are
key elements of scheduling strategy, scholars have developedmodels to guide optimal
logistics support for medicine order and delivery with hybrid uncertainties [25, 26].
For example, Lapierre and Ruiz [25] presented an innovative approach for improving
hospital logistics by coordinating procurement and distribution operations while
respecting inventory capacities. In recent years, Liu and his colleagues have also
worked extensively in this domain. They employed time-space network and different
optimization techniques to construct logistical scheduling models for optimization
medicine order and delivery [27–30].

Table 10.2 shows a summary of the studies mentioned in this section. These works
give us constructive inspiration for managing the various uncertainties in this study.
As introduced in Sect. 10.1, this study differs from previous studies by addressing
a much more realistic environment with uncertain demand, service time and service
cost. To the best of our knowledge, so far, no model has been formulated to solve
this type of problem. Moreover, logistics planning for medicine order and delivery
involves numerous time and space constraints that are highly correlated with each
other. Therefore, it is difficult to use traditional integer programming techniques to
formulate and efficiently solve this type of problem.On the other hand, the time-space
network method has been popularly employed to solve various scheduling problems
because it provides a natural and efficient way to represent the relative network nodes
in the dimensions of time and space. Although the resulting model scale generally
enlarges due to the extension in the dimension of time, complicated time-related
constraints can normally be easily modeled for realistic problems, particularly in
comparison to the space network models [31]. Coupled with the development of effi-
cient algorithms, the time-space models (usually formulated as multiple commodity
network flow problems) can be effectively solved; see Yan et al. [24, 31] and Liu
et al. [27].

Based on the analysis mentioned above, the time-space network techniquemay be
a suitable way to solve the logistics planning issue for HPT under a hybrid of uncer-
tainties. Therefore, this study employs it to develop models to help a pharmaceutical
company manage a hospital’s pharmacy with several types of medicine. Certainly,
the development of other models to solve this type of problem and comparing the
results with those of our model could be a direction of future research.
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Table 10.2 Summary of the studies with respect to logistics planning

Reference Goal Model/methodology Questions
addressed

Cost min. Profit max. (1) (2) (3)

Mcguire and Hughes
[32]

√
Case study

√

Sheu [11]
√ √

Hybrid fuzzy
clustering
optimization

√

Sheu [12]
√

Data fusion, fuzzy
clustering, TOPSIS

√

Rachaniotis et al.
[13]

√
System dynamics
model

√

Liu et al. [14]
√

Dynamic
programming

√

Liu and Zhang [15]
√

Dynamic
programming

√

Wang and Wang [16]
√

Stochastic
programming

√

Xu and Wang [17]
√

Dynamic
programming

√

Zhen et al. [18]
√

Stochastic
programming

√

Gonsalves and Itoh
[19]

√
Simulation
optimization

√

Hui et al. [20]
√

Case study
√

Yan et al. [21]
√

Integer
programming

√

Zhang et al. [22]
√

Queuing model
√

Dessouky et al. [33]
√

Mixed 0–1 integer
programming

√

Harper et al. [23]
√

Mixed 0–1 integer
programming

√

Yan et al. [24]
√

Mixed-integer
programming

√

Lapierre and Ruiz
[25]

√
0–1 programming

√ √

Mete and Zabinsky
[26]

√
Stochastic
programming

√ √

Liu et al. [27]
√

Stochastic
programming

√ √

Zhang and Liu [28]
√

Chance-constrained
programming

√ √

(continued)
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Table 10.2 (continued)

Reference Goal Model/methodology Questions
addressed

Cost min. Profit max. (1) (2) (3)

Zhang and Liu [29]
√

Mixed 0–1 integer
programming

√ √

Liu et al. [30]
√

Mixed 0–1 integer
programming

√ √

Our study
√

Multi-stage
stochastic
programming

√ √ √

(1) Uncertain demand; (2) uncertain service time; (3) variable service cost

10.3 Time-Space Network Model

This section presents a time-space network model for a healthcare logistics planning
problem with uncertain demand, uncertain service time and variable cost. First, a
deterministic planningmodel (DPM) is developed for the supply chain planning with
constant demand and deterministic service time. After that, a stochastic logistics
planning model (SPM) is developed to incorporate the uncertainties in demand,
service cost and service time. A network structure will be introduced as the common
platform for these two models in the next subsection.

10.3.1 Network Structure

In a real-world medicine logistics supply chain, operations management is respon-
sible for planning, controlling, collecting feedback from implementation, updating
the parameters and re-planning. The time-space network model proposed here is a
rolling horizon of a dynamic decision making process for a periodical adjustment
process. In Fig. 10.1, the horizontal axis stands for the time duration, and the vertical
axis stands for the decision-making round. In each round of decision-making, the
planning horizon (PH) is divided into two parts: the execution phase (EP) and the
reference phase (RP). In each round of decision making, an optimization problem is
solved for the planning horizon, of which only its EP will be implemented in deci-
sion variables, and its RP will not be executed but open for reference updating.When
implementation of the EP is completed, the planning horizon is rolled into the next
round of decision making, in which the information regarding demand, service time,
and inventory level, etc., from the execution will be updated and feedback sent to
the next PH. For instance, suppose that the entire planning horizon lasts 12 days and
each execution phase lasts 2 days. There will then be 6 rounds of decision making.
In the 1st round, a scheduling problem for the whole 12 days needs to be solved, but
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EP RP=PH-EP

Planning horizon (PH)
Decision 
Making 
Round

EP RP=PH-EP

1st

2nd

T EP

Fig. 10.1 Schematic diagram of a dynamic decision-making framework

only the optimal solution for the first 2 days will be adopted as our executive phase.
After that, the planning will be updated with new information on the demand and
service time and then go to the 2nd round of decision-making. In the 2nd round, the
planning horizon is rolled into the remaining 10 days. Optimal scheduling will be
conducted for the last 10 days, but will be executed for 2 days (i.e., day 3 and day
4 in the original calendar). The planning horizon is rolled into the remaining 8 days
for the 3rd round of decision making and so forth until the 6th round, which is the
last two days.

As shown in our previous works [14, 15], this periodical adjustment can help track
the actual demand and service time in the real world and provide a more accountable
logistics plan than only planning without adjustment. It is worth mentioning that
“day” here is a modeling term for the basic time unit for planning, which can be an
hour or week in actual time for a practical problem.

Figure 10.2 illustrates a time-space network for the logistics planning of medicine
delivery and storage within a certain period of time and space. Each layer represents
a medicine type. The various tiers in the supply chain, including the pharmaceutical
company, the hospital’s pharmacy, and departments in the hospital, are horizontally
displayed. The planning horizon is illustrated by the vertical axis. A node in this
time-space network indicates an individual party at a certain time in the planning
horizon. A vertical link whose length corresponds to the time unit used in the PH,
e.g., one day, is used to indicate the evolution of medicine flow or storage in each
party. Therefore, if a shorter time unit is employed in an application, the time-space
network will display more nodes that are vertically aligned. An arc represents an
operation activity in the medicine supply chain. There are four types of arcs that are
defined below.

(1) External service arc

An external service arc (arc (1) in Fig. 10.2) represents a shipment of medicine from
a pharmaceutical company to the hospital’s pharmacy. The arc cost consists of the
procurement cost and the shipping cost of the medicine, both having economies of
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EP: Execution phase

RP: Reference phase

PH: Planning horizon

Fig. 10.2 Time-space network of the logistics planning

scale. For simplicity of expression and modeling convenience, these two costs are
combined into a general arc cost for an external service arc, which should reflect
the corresponding economies of scale, such as a quantity discount in a purchasing
strategy. In a real-world application, there are usually two price schedules. One is a
fixed unit price that is negotiated by the pharmaceutical company and the hospital
when they sign themedicine supply contract. In this case, the supplier would consider
the quantity discount and the price fluctuation in advance. The other is a dynamic
pricing strategy, which has a basic charge set in the contract and a dynamic price that
will be adjusted according to the actual medicine flow. The latter method is more
flexible and widely adopted. This study adopts the dynamic pricing strategy, which
can be expressed mathematically by:
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f (xni j ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pm1 , 0 < xmi j ≤ Xm
1

pm2 , Xm
1 < xmi j ≤ Xm

2

pm3 , Xm
2 < xmi j ≤ Xm

3

. . . . . .

pmP , Xm
P−1 < xmi j ≤ Xm

P

(10.1)

Herein, f (xmi j ) is the unit service cost for medicine type m on service arc (i, j),
which is a piecewise function of arc flow xmi j .

(2) Internal delivery arc

An internal delivery arc (arc (2) in Fig. 10.2) represents the delivery of a medicine
type from the hospital’s pharmacy to various departments in the hospital, and the arc
cost reflects the labor and overhead cost involved in this operation. The upper bound
of the flow in this arc is the inventory capacity of the hospital’s pharmacy.

(3) Holding arc

A holding arc, shown as (3–4) in Fig. 10.2, represents the operation of holding a
stock of medicine at the hospital’s pharmacy or departments. The arc cost reflects
the inventory carrying cost, which is in proportion to the flow amount (inventory
level) in the arc. The upper bound of the arc flow is the inventory capacity of the
corresponding node (hospital’s pharmacy or a department), and the lower bound is
the safety stock, specified as the minimum level that should be kept for the hospital
or department to guarantee the emergency medical need.

(4) Collection arc

The collection note at the bottom of Fig. 10.2 is the sink of this network that is created
for flow conservation. A collection arc (arc (5–7) in Fig. 10.2) does not represent any
substantial operation in the supply chain but is an artificial link that connects every
party node to the collection note by the end of the PH so that the unused medicines
(at the pharmaceutical company, the hospital’s pharmacy, and hospital departments)
“flow” to the collection node in the model. Therefore, the arc cost is zero for a
collection arc.

10.3.2 Deterministic Planning Model

The deterministic planning model (DPM) assumes that the dynamic demand at each
node is known in advance and that the service times from thepharmaceutical company
to the hospital’s pharmacy and from the hospital’s pharmacy to the departments
are known constants. For the convenience of the presentation of the model, the
pharmaceutical company ships the medicines to the hospital’s pharmacy every two
days, and the hospital’s pharmacy delivers the medicines to its departments every
day. The notations in the DPM formulation are introduced below:
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Sets

M Set of all medicine types in the time-space network.
Nm Set of all nodes in the mth layer of the time-space network.
Am Set of all arcs in the mth layer of the time-space network.
Sm Set of all external service arcs in the mth layer of the time-space network.
Dm Set of all internal delivery arcs in the mth layer of the time-space network.
Hm Set of all holding arcs in the mth layer of the time-space network.

Parameters

ctmi j Unit cost for internal delivery arc (i, j) in the mth layer of the time-space
network.

chmi j Unit cost for holding arc (i, j) in the mth layer of the time-space network.
lmi j Lower bound for flow on arc (i, j).
umi j Upper bound for flow on arc (i, j).
umi j Inventory capacity of the arc (i, j).
ami Supply or demand of node i in the mth layer of the time-space network

(ami > 0: indicates a supply node, ami ≤ 0: indicates a demand node).

Decision variables

xmi j Arc (i, j) flow in the mth layer of the time-space network.

TheDPMis to solve for the followingoptimizingproblem todetermine the optimal
arc flows subject to the flow conservation, upper bound and lower bound of the arc
flows to minimize the total logistical cost for the planning horizon.

Min z =
∑

m∈M

⎛

⎝
∑

i j∈Sm
f (xmi j )x

m
i j +

∑

i j∈Dm

ctmi j x
m
i j+

∑

i j∈Hm

chmi j x
m
i j

⎞

⎠ (10.2)

s.t.:
∑

j∈Nm

xmi j −
∑

k∈Nm

xmki = ami , ∀i ∈ Nm, m ∈ M (10.3)

∑

m∈M
xmi j ≤ umi j , ∀i j ∈ Hm (10.4)

lmi j ≤ xmi j ≤ umi j , ∀i j ∈ Am, m ∈ M (10.5)

xmi j ∈ I NT, ∀i j ∈ Am, m ∈ M (10.6)

The objective function (10.2) minimizes the total logistics cost, including the
external service cost, the internal delivery cost and the holding cost. The constraints
at (10.3) are the flow conservation equations for each node in the time-space network.
The constraints at (10.4) are the capacity constraints for the hospital’s pharmacy and
the departments in the hospital. The constraints at (10.5) guarantee that all arc flows
are within their bounds. The constraints at (10.6) ensure that all flow variables are
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integers. Because the service costs in the objective function are piecewise functions,
the optimization problem (10.2)–(10.6) is a nonlinear integer programming problem.

The DPM works well if the demand at each node in the time-space network can
be known for certain in advance. However, in reality, a large part of the demand is
uncertain and is difficult to accurately forecast. In addition, the shipping time, as a
part of the external service cost, is subject to the traffic congestion and delay. This
calls for an extension of the model that can address these uncertainties and is the
motivation for developing the Stochastic Planning Model in the next subsection.

10.3.3 Stochastic Planning Model

In the stochastic planning model (SPM), the demand at each node in the time-space
network is assumed to be a random variable, the service time from a dispatch node to
an arrival node is also set at a random variable, and both obey a normal distribution.
In fact, the SPM proposed here can accommodate any other distributions, but the
normal distribution is chosen for implementation in our computation in this study
as a specific demonstration of the model. It is worth noting that SPM is designed
to address the uncertainties in daily operation, namely, events that were observed
and recorded in the past under normal conditions but not to capture extraordinary
events or disasters such as an earthquake or an epidemic, which instead fall into the
category of emergency logistics research.

(1) Penalty for plan time deviation

SPM is designed to minimize the expected deviation of the service time for all
delivery links in the time-space network for the best planning effect. If the actual
time of a medicine delivery is longer or shorter than the plan time of the activity in
this link, there is an error in the service time estimate, which is to be penalized in the
model.

As shown in Fig. 10.3, suppose that the actual service time is a random variable
that can be 1, 2, or 3 days, respectively, with a probability of 0.2, 0.5 and 0.3 and
that the planned time for this delivery is 2 days. If X1 = 1, X2 = 2, X3 = 3, then the
delivery time is one day less than the plan time in scenario 1, equal to the plan time in
scenario 2, and one day more than the plan time in scenario 3. Therefore, in scenarios
1 and 3, the plan time has an error of time estimate and will be penalized for the
estimate deviation.While an early arrival of the deliverymay cause stocking problem
and increase holding cost, a late arrival may affect the downstreamworkflows or even
a shortage of this medicine in the hospital.

Let γ m
i j be the penalty on arc (i, j) in the mth layer of the time-space network

for each unit time deviation from the planned time. The expected penalty cost on arc
(i, j) is:

pcmi j =
∑

ω∈Ω

pmi j (ω)
∣
∣�tmi j (ω)

∣
∣γ m

i j (10.7)



10.3 Time-Space Network Model 201
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where pmi j (ω) is the probability of an early or late arrival in scenario ω for arc (i, j)
and �tmi j (ω) is the time deviation in scenario ω on service arc (i, j). Therefore, the
expected penalty cost for the previous example is:

pcmX2 = 0.2 × 1 × γ m
X1 + 0.5 × 0 × γ m

X2 + 0.3 × 1 × γ m
X3.

Note that the time deviation in the second term is zero, meaning that the second
term can be removed.

(2) Mathematical formulation for SPM

The following is a list of the notations that will be employed in the formulation of
SPM.

Sets

Cm Set of the arcs in the execution stage in the mth layer of the time-space
network.

Um Set of the arcs in the reference stage in the mth layer of the time-space
network.

CNm Set of the nodes in the execution stage in the mth layer of the time-space
network.

UNm Set of the nodes in the reference stage in the mth layer of the time-space
network.

CSm Set of all arcs from pharmaceutical company to hospital’s pharmacy in the
Cm .
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USm Set of the arcs from the pharmaceutical company to the hospital’s pharmacy
in the Um .

CZm Set of the arcs from the hospital’s pharmacy to the departments in the Cm .
UZm Set of the arcs from the hospital’s pharmacy to the departments in the Um .
CHm Set of the holding arcs in the Cm .
UHm Set of the holding arcs in the Um .
� Set of all scenarios ω.

Parameters

�tmi j (ω) Time deviation for the service arc (i, j) in scenario ω in the Um .
�tmi j Time deviation for the service arc (i, j) in the Cm .
ami (ω) Supply or demand of node i in scenarioω in themth layer of the time-space

network (ami > 0: indicates a supply node, ami ≤ 0: indicates a demand
node).

Decision variables

xmi j Arc flow on arc (i, j) in the Cm .
ymi j (ω) Arc flow on arc (i, j) in scenario ω in the Um .

Based on the notations, the SPM is defined by the following nonlinear stochastic
integer programming problem:

Min z =
∑

m∈M
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+
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⎛

⎝
∑

m∈M

∑
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chmi j y
m
i j (ω)

⎞

⎠ (10.8)

s.t.:
∑

j∈CNm

xmi j +
∑

r∈UNm

ymir (ω) −
∑

p∈CNm

xmpi

−
∑

c∈UNm

ymci (ω) = ami (ω), ∀i ∈ Nm, m ∈ M, ω ∈ � (10.9)

∑

m∈M
xmi j ≤ umi j , ∀i j ∈ CHm (10.10)
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∑

m∈M
ymi j (ω) ≤ umi j , ∀i j ∈ UHm, ω ∈ � (10.11)

lmi j ≤ xmi j ≤ umi j , ∀i j ∈ Cm, m ∈ M (10.12)

lmi j ≤ ymi j (ω) ≤ umi j , ∀i j ∈ Um, m ∈ M, ω ∈ � (10.13)

xmi j ∈ I NT, ∀i j ∈ Cm, m ∈ M (10.14)

ymi j (ω) ∈ I NT, ∀i j ∈ Um, m ∈ M, ω ∈ � (10.15)

The objective function (10.8) minimizes the sum of the total expected logistics
cost on all the arcs and the expected penalty cost of the plan. The constraints at
(10.9) are the flow conservation equations for each node in the time-space network.
The constraints at (10.10) and (10.11) are the capacity constraints. The constraints at
(10.12) and (10.13) guarantee all the arc flows within their bounds. The constraints
at (10.14) and (10.15) ensure that all flow variables are integers. Because the service
costs in the objective function are piecewise functions, the optimization problem is
a nonlinear stochastic integer programming problem.

10.4 Solution Algorithms and Evaluation Methods

This section develops efficient and effective algorithms for the DPM and the SPM.
In both models, the arc costs are expressed by a piecewise linear function in the
objective function, which increases the computational difficulty and complexity in
solving these models. For a small problem, the costs can be found in a reasonable
time using commercial software such as MATLAB and CPLEX. When the problem
size becomes close to the practical one in the real world, it is impossible to be solved
in a reasonable amount of time by using commercial software. Therefore, a suitable
and effective procedure should be designed.

10.4.1 Solution Method for DPM

There are m medicine types, P service price schedules and T rounds of decision
making (T = PH/EP) in DPM. Because these parameters increase, the complex-
ity of the problem increases exponentially and it will make the model practically
unsolvable by commercial software such as CPLEX directly.

A genetic algorithm (GA) can be an effective computational method to solve
an optimization problem for which little is known. It can usually derive a highly
qualified solution if it has been coded in the search criteria. A GA will then evolve
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itself until the termination condition is satisfied, incorporating a cyclical process with
successive operations of selection, crossover, mutation, and improvement.

The generic algorithm for the DPM is described as follows:

Step 1. There are 2 types of service prices for the parameter f (xmi j ), p and 0.9 × p.
Herein, binary coding is adopted for the chromosome. 0 represents the service price
pm and the flow constraint xmi j ≤ Xm . 1 denotes the service price 0.9 × pm and
the flow constraint xmi j > Xm . Because there are m medicine types and T rounds of
decision-making in a planning horizon, the length for a chromosome is m · T .
Step 2. The fitness of each chromosome is obtained by calculating the objective
function of the DPM, which means fi = f i tness(popi (t)).
Step 3. The selection operator is critically important since it can improve the average
quality of the population by giving the high-quality chromosomes a better chance
to be copied in the next generation [34]. There are two basic types of selection
schemes that are widely used in practice: proportionate selection and ordinal-based
selection. Proportionate selection selects chromosomes according to their fitness
values relative to the fitness of other chromosomes, while ordinal-based selection
selects chromosomes based on their fitness values compared to certain chromosomes
in the population. In this study, a classic proportionate selection, the roulette wheel
selection, is used to choose the new population. The probability distribution for the
roulette wheel selection is calculated as follows:

pi = fi
∑Popsi ze

i=1 f
, i = 1 . . . Popsi ze.

Step 4. Pairs of parents are selected for crossover in the population according to the
crossover rate pc. The crossover procedure exchanges the genes in pairs of parents
in a random position to produce offspring. After that, the fitness of the parents and
the offspring are compared, and then the best two chromosomes are adopted from
them to replace the original parents in the population.
Step 5. Parents are selected for mutation in the population according to the mutation
rate pm . Themutation procedure uses a single-point mutationmethod, whichmutates
the gene (from 0 to 1 or from 1 to 0) in a random position to produce offspring. After
that, the fitness of the paternal chromosome and the offspring will be compared,
and the better one will be reserved. The mutation expands the search space for good
solutions.

10.4.2 Solution Method for SPM

The heuristic procedure for the SPM is introduced below.

Step 1. Initialization; set all parameters in the SPM.
Step 2. Set λ = 1.
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Step 3. Generate � groups of data as the demand data for all nodes in the time-space
network according to the given distribution functions. Relax the constraints in the
SPM and disassemble the stochastic model into � deterministic models.
Step 4. Solve the deterministic models with GA and compare the results for each arc.
Choose the arcs with constant flow quantity or minor changes. Calculate the average
value and use it as the arc flow quantity.
The pick method is illustrated as follows. First, calculate the average value and
standard deviation of the arc flow quantity on the same arc with different scenarios.
Then, filtrate the arc with the statistical constraint

∣
∣Xω − X

∣
∣ ≤ α · σ . Herein, Xω

is the arc flow quantity on the same arc with a different scenario, X is the average
value, σ is the standard deviation, and α is a coefficient of determination.
Step 5. If λ = 
, where 
 is a given number, go to Step 6; otherwise, λ = λ + 1,
and return to Step 3.
Step 6. Input the information of average demand at each node and the arc flows,
which have been confirmed in Step 4, into the deterministic model, solve it again
and obtain the arc flows for these unconfirmed arcs.

10.4.3 Evaluation Method

According to the dynamic decision-making framework in Sect. 3.1, an evaluation
method is designed to assess the performance of theDPMand the SPM. The rationale
of this evaluation method is introduced below. When the planning time is at an end,
the actual demand information in each node and the actual service time between
any two nodes will be collected. These data will be used as the input data, and the
deterministic model will be solved again. Intuitively, an optimal logistics planning
result with the complete information will be obtained. Herein, it is referred as the
ideal planning model (IPM). In theory, the logistics planning result in IPM is the
optimized result. Therefore, it can be used as a reference standard to evaluate the
performance of the DPM and the SPM.

10.5 Numerical Tests

To test the practicality and efficiency of the proposedmodels and algorithms, numeri-
cal tests use operating data fromGulou Hospital in Nanjing with reasonable simplifi-
cations are performed in this section. MATLAB software is used as the development
environment, coupledwith CPLEX 12.4. The tests are performed on an Intel Pentium
1.87GHz desktop computerwith 6GBRAM in aMicrosoftWindows 7 environment.
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10.5.1 Data Setting

As a numerical example, 5 departments and 3 medicine types in Gulou Hospital are
chosen as our sample. The planning horizon is set at 12 days. The execution phase
is 2 days. Six rounds of decision-making are constructed for this numerical test.
Demand information from these medicines over the past 5 years is adopted as our
basic data. For each node in the time-space network, the average demand with the
basic data is used as the deterministic demand information in the DPM. The mean
value of�t in the SPM is 0, and the variance is set at 2. The determination coefficient
α is set at 0.6. Of course, it can be other values in an actual operation depending on
the actual need. The unit time penalty costs are 1 and 0.5 CNY, respectively, for the
external service arc and the internal delivery arc. The service prices for the 3 types
of medicines are 20, 30 and 10 CNY, and the order quantities for the price discount
are 770, 1232 and 2170, respectively. The holding cost is set at 20% of the service
cost. The unit internal delivery cost for each type of medicine is 3 CNY. The safety
stock in the hospital’s pharmacy is set at 5 times its daily demand. The safety stock
in the department is set at its daily demand. The capacity of the hospital’s pharmacy
and the department are set at 20 times its their daily demand.

10.5.2 Test Results

(1) Performance of the GA

The crossover probability is set at 0.6, and the mutation probability is set at 0.1. The
population size is set at 30. To test the best iteration number, the maximum iteration
number is set at 20, 30, 40, 50, 70, and 100, respectively. The results are shown in
Fig. 10.4. When the iteration number is more than 70, the optimal result is stable.
Therefore, the iteration number is set at 70 in the following test. As introduced in
Sect. 4.1, for each permutation and combination of the three parameters m, P and
T , the DPM will be an integer programming, and it can be solved with the CPLEX
software directly. The performance of the proposed GA and the CPLEX software is
compared in Table 10.3.

In the 1st round of decision-making, there are 262,144 possibilities for the per-
mutation and combination, which means it should be delayed for a long period of
time (6591 s, 1 h and 50 min) to obtain the optimal result when the CPLEX software
is used to solve the model directly. However, when the proposed GA is applied, a
near-optimal solution can be obtained in less than 2 min (110 s). The result with GA
may be slightly inferior. However, the performance of the calculation time shows
that its calculation ability outperforms the commercial software, particularly when
the problem scale is large.
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Fig. 10.4 Test of the maximum iteration number

Table 10.3 Comparison of the solution results

Round Objective value Solution time

CPLEX (CNY) GA (CNY) Gap (%) CPLEX (s) GA (s) Gap (%)

1 419,991 421,180 −0.28 6591 110 98

2 312,923 313,385 −0.15 829 90 89

3 263,878 264,079 −0.07 129 56 57

4 190,551 190,655 −0.05 5.9 5.6 5

5 98,769 98,790 −0.02 0.8 0.78 2.5

6 10,618 10,618 0.00 0.1 0.1 0

GAP = (CPLEX − GA)/CPLEX * 100%

(2) Performance of the proposed two models

To compare the performances of the DPM and the SPM, the test results are collected
together in Table 10.4. First, it can be observed that the objective value shows a
decreasing tendency as the decision-making round increases because the dynamic
decision making framework is applied in this work. In the 1st round of decision
making, logistics planning for the whole 12 days is solved. Additionally, in the last
round, planning for only 2 days is solved. Second, it can be observed that the SPM
shows better performance most of time because the objective values in the SPM are
always smaller than in theDPM, except for the 1st round. The planning results should
not mislead the reader into believing that the DPM performs more poorly than the
SPM. The actual performance of these planning methods can be evaluated after their
application to actual operations. In this test, it is observed that the solution time using
the SPM is much longer than the DPM, which is the weakness of the SPM.

According to the dynamic decision making framework in Sect. 3.1, when a deci-
sion is made in each round, an optimal result is solved for its planning time (notice
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Table 10.4 Comparison of the DPM and the SPM

Round 1 2 3 4 5 6

DPM Objective value
(CNY)

421,150 313,322 277,746 190,551 98,769 10,618

Solution time (s) 111.92 90.00 56.47 5.91 0.72 0.11

SPM Objective value
(CNY)

462,268 262,373 211,041 118,327 45,360 11,866

Solution time (s) 2237 1923 1184 179 18 2

Gap Objective value (%) 8.89 −19.42 −31.61 −61.04 −117.74 10.52

Solution time (%) 95 95 95 97 96 95

Gap = ((SPM − DPM)/SPM) * 100%

that the planning time is variable), and only the schedules during the execution stage
are adopted because this stage is a short period and the demand and service time at
this stage are relatively clear and unchanged. After that, the demand information and
service time will be updated. Therefore, the optimal result for each execution stage
can be collected whether it is in the DPM or the SPM. When the planning time is
at an end, the actual demand information in each node and the actual service time
between any two nodes can be collected. These data are used as the input data for
the IPM. The results are shown in Table 10.5.

It can be observed that logistics cost in each execution stage is a fluctuating value.
Generally, in the 1st execution stage, managers will order a larger quantity of the
required medicine to obtain the discount of the service cost and decrease the delivery
trips. Therefore, the logistics costs in the following two execution stages can remain
at a relatively low level. After this, the medicine should be ordered again to guarantee
the demand, and thus the logistics cost increases again in the 4th execution stage.
The difference is shown in the 5th execution stage. The medicine should be ordered
once more in this stage when the DPM is applied. However, the order quantity in the
4th stage can satisfy the last two stages when the SPM is adopted. The total logistics
cost obtained from the SPM (with a value of 395,290 CNY) is 0.56% higher than
the IPM (with a value of 393,071 CNY). This proportion for the DPM is 1.88%. It

Table 10.5 Test results for each execution stage

Round 1 2 3 4 5 6 Total
cost

Gap (%)

DPM
(CNY)

102,406 66,671 48,021 81,427 81,167 20,759 400,451 1.88

SPM
(CNY)

151,766 43,525 59,702 91,427 32,806 16,064 395,290 0.56

IPM
(CNY)

151,435 43,218 59,304 91,143 32,310 15,661 393,071 –

Gap = ((DPM − IPM)/IPM) * 100% or ((SPM − IPM)/IPM) * 100%
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appears that the SPM yields the better solution. The main reason is that uncertain
disruptions have been considered in the SPM, while the demand and service time in
the DPM are deterministic.

10.5.3 Sensitivity Analysis

The proposedmodels and solutionmethods described in Sects. 10.3 and 10.4 provide
several key parameters that may affect the solution: the average demand, the standard
deviation and the safety stock. A sensitivity analysis of these parameters is performed
as follows.

First, the ratio of the average demand is set with 5 different values (−50, −25, 0,
+25 and +50%) to see the influence in the final solution. As shown in Table 10.6,
the sum of the logistics cost increases as the value of the ratio increases, regardless
of which planning model is used. This suggests that the higher the average demand
is, the higher the total logistics cost becomes. If the manager can find a way to
reduce the average demand, the sum of the logistics cost can be reduced. However,
this requires further investigation and could be a topic of future research. Another
interesting result is the gaps between the two proposed models and the IPM. The
gaps between the DPM and the IPM change from 3.56 to 1.24%, while the gaps
between the SPM and the IPM vary from 1.33 to 0.2%. Both decrease as the value
of the ratio increases.

To examine the impact of the standard deviation changes on the models’ perfor-
mance, 5 different values (−50, −25, 0, +25 and +50%) of the standard deviation
in both average demand and the uncertain service time are tested. As shown in
Table 10.7, the sum of the logistics cost in SPM increases slightly as the standard
deviation of the average demand increases (with a value from 393,894 to 396,586
CNY). However, the values in IPM almost show no changes. Therefore, the gaps
between the SPM and the IPM gradually increase (with a value from 0.22 to 0.88%),
while the gaps between the DPM and the IPM show almost no change. Table 10.8
shows a similar variation trend. According to these two tables, it can be concluded
that the standard deviation changes only have a small influence on the models’ per-
formance. However, the SPM’s performance becomes unstable with the increase of
the standard deviation.

Table 10.6 Sensitivity analysis of the ratio of average demand

Ratio (%) −50 −25 0 +25 +50

DPM (CNY) 195,420 300,338 400,451 500,964 601,477

SPM (CNY) 191,203 296,467 395,290 496,088 595,307

IPM (CNY) 188,702 294,029 393,071 494,590 594,085

DPM versus IPM (%) 3.56 2.15 1.88 1.29 1.24

SPM versus IPM (%) 1.33 0.83 0.56 0.30 0.20
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Table 10.7 Sensitivity analysis of the ratio of standard deviation (average demand)

Ratio (%) −50 −25 0 +25 +50

DPM (CNY) – – 400,451 – –

SPM (CNY) 393,894 394,642 395,290 395,887 396,586

IPM (CNY) 393,025 393,110 393,071 393,192 393,126

DPM versus IPM (%) 1.89 1.87 1.88 1.85 1.86

SPM versus IPM (%) 0.22 0.39 0.56 0.69 0.88

Table 10.8 Sensitivity analysis of the ratio of the standard deviation (service time)

Ratio (%) −50 −25 0 +25 +50

DPM (CNY) – – 400,451 – –

SPM (CNY) 394,731 394,996 395,290 395,672 396,025

IPM (CNY) 393,075 393,019 393,071 393,138 393,151

DPM versus IPM (%) 1.88 1.89 1.88 1.86 1.86

SPM versus IPM (%) 0.42 0.50 0.56 0.64 0.73

Table 10.9 Sensitivity analysis of the ratio of safety stock

Ratio (%) −50 −25 0 +25 +50

DPM (CNY) 396,452 391,282 400,451 409,661 419,266

SPM (CNY) 383,170 380,198 395,290 404,381 416,628

IPM (CNY) 373,037 378,703 393,071 402,139 410,293

DPM versus IPM (%) 6.28 3.32 1.88 1.87 2.19

SPM versus IPM (%) 2.72 0.39 0.56 0.56 1.54

The impact of the changes in the safety stock is also examined. As shown in
Table 10.9, the total logistics cost decreases first and then increases as the safety
stock increases, regardless of which planning model is adopted. The gaps between
the two proposed models and the IPM show the same tendencies. The optimal result
can be obtained when the safety stock is 75% of the present setting. This means that
when the safety stock in the departments is set at 75% of their daily demand in the
test, better logistics planning can be designed.

10.6 Conclusions

Two medicine logistics planning models are developed in this study based on a
time-space network approach for daily logistics operations in medicine management
for a hospital. The deterministic planning model (DPM) is designed for logistics
problems whose demand and service time can be known for certain in advance. The
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stochastic planning model (SPM) is developed to address uncertain demand and
uncertain service time. Efficient computational schemes are specially designed for
each of the models to effectively find an optimal solution. An evaluation method is
presented to compare the performance of these two models through numerical tests
running on the data for Gulou Hospital in Nanjing, China. The test results show
that SPM outperforms DPM in terms of both cost minimization and robustness. A
sensitivity analysis is conducted to see how the parameters affect the performance
of the proposed models.

The contribution of this work to the literature can be recognized in three aspects:
(1)Most research onmedicine logistics planning focuses either on the demand uncer-
tainty or only on service time uncertainty. The SPM model in this study addresses
both certainties at the same time. (2) Variable service costs are incorporated in a
model that accounts for realistic concerns such as price discount strategies, trans-
portation consolidation, economies of scale, etc. for the first time. (3) Penalties have
been introduced in our model to penalize early or late arrival of scheduled medicine
deliveries that may generate additional costs for medicine logistics, such as increased
stocking and holding costs or the shortage of a medicine in the downstream flow.

The application prospects of the model are particularly promising now given
China’s current medical and healthcare system reform process. Traditionally, most
patients in China go to hospitals to see a doctor and obtain their prescriptions from the
hospital pharmacy because of the culture and the current prevailing health insurance
plans in China. Hospitals earn most of their revenue frommedicine sales by marking
up the price. Consequently, medicine inventory levels in most hospitals remain high
year round, blocking capital flow and increasing the risk of medicine expiration.
The proposed models in this study are in support of a hospital pharmacy trusteeship
(HPT) that would outsource hospital pharmacy services to a major pharmaceutical
company using a vendor managed inventory system. Our research is from the stand-
point of a major medicine supplier (a pharmaceutical company) that acts as a vendor
manager for a hospital in generating an optimal logistic plan to minimize the opera-
tional cost and logistical risk of stock-out. As is explicitly factored into the objective
function, our model aims to provide a stable and economic medicine logistic plan
that addresses the uncertainties in demand and service time and minimizes the total
operational costs, including in external and internal delivery, inventory holding, and
distribution. The potential benefit for the hospital in such HPT practice is apparent
and enormous. By outsourcing the pharmacy to supplier, a hospital severs a large
portion of their payroll costs in labor and management, inventory costs, the costs
of expired medicine and liability cost of lawsuits. More importantly, by outsourcing
the pharmacy business, a hospital can concentrate on its mission of diagnosing and
treating patients, which is one of the main purposes of the medical system reform.
Since 2013, the Chinese government has been in the process of enforcing a zero
mark-up price policy as part of the medical and health care system reform. For the
implementation of this policy, hospitals must surrender their for-profit pharmacy
business, willingly or otherwise, and outsourcing has been widely recognized as a
feasible and effective solution.
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There are several directions that can be extended and enhanced. First, hospitals can
collaborate in theirmedicine logistics planning, such as consolidating their shipments
from the same pharmaceutical company and reducing expensive medicine inventory
units in the hospitals to reduce the carrying costs and reduce the risk of supply
shortage. Second, a mechanism of penalty weight adjustment can be proposed and
studied to find the most effective penalty weights based on the cost structure of
the service arcs and distribution of service times. Third, it will be interesting on a
practical level to study the measures to avoid stock outs of critical medicines and
incorporate such measures into a medicine logistics plan.
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Chapter 11
Medical Resources Order and Shipment
in Community Health Service Centers

Medical resources scheduling affects the medical institution’s operation cost, cus-
tomer satisfaction andmedical service quality. Therefore, a lean arrangement ofmed-
ical resources order and shipment is quite necessary and important. In this chapter, we
propose two optimal models for medical resources order and shipment in community
health service centers (CHSCs), with a dual emphasis on minimizing the total opera-
tion cost and improving the operation level in practice. The first planning model is a
deterministic planning model (DM). Systematically, it considers constraints includ-
ing the lead time of the suppliers, the storage capacity of the medical institutions,
and the integrated shipment planning in the dimensions of time and space. The prob-
lem is a multi-commodities flow problem and is formulated as a mixed 0–1 integer
programming model. Considering the stochastic demand, the second model is con-
structed as a stochastic programmingmodel (SM). A solution procedure is developed
to solve the two models and a simulation-based evaluation method is presented to
compare the performances of the proposed models. The main contributions of this
study include the following two aspects: (1) most research on medical resources
allocation studies a static problem taking no consideration of the time evolution and
the time-varying demand. In this study, time-space network technique is adopted to
depict the logistics situation in CHSCs from both time and space dimensions. (2) The
logistics plans in response to the deterministic demand and the time-varying demand
are constructed as a 0–1 mixed integer programming model and a stochastic integer
programming model, respectively. The optimal solutions can not only minimize the
total operation cost, but also improve the order and shipment operation in practice.
Generally, medical resources in CHSCs are purchased by telephone or e-mail. The
important parameters in decision making, i.e., order/shipment frequency and order
quantity, are manually determined by the decision maker based upon his/her experi-
ence. The planned schedules may not be efficient or feasible to satisfy all demands
since a large portion of customer requests are uncertain and time-varying. The pro-
posed methods in this chapter could be effective in solving the problems in actual
operations.
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11.1 Introduction

In 2014, we conducted a research on medicine supply chain situation in CHSCs in
Nanjing, China, by using the questionnaire survey method. The result shows that
most CHSCs currently in this city do not use any electronic purchase systems or
decision support systems to help optimize the ordering and schedulingwork.Medical
resources are always purchased by telephone or e-mail. The important parameters
in decision making, i.e., order/shipment frequency and order quantity, are manually
determinedby the decisionmaker basedonhis/her experience.Theplanned schedules
may not be efficient, ormay not be feasible to satisfy all demands since a large portion
of customer service requests in CHSCs are uncertain and time-varying [1]. The result
of the questionnaire survey motivates us to improve the situation and to develop a
systematic planning approach that takes all these factors into consideration.

In line with our survey, CHSC purchases medical resources from its upstream
authorities, the District Center for Disease Control and Prevention (DCDC), and
DCDC imports medical resources from the pharmaceutical companies (the sup-
pliers). A lead time is required for the supplier, to produce the required medical
resources. Similarly, a lead time is required for the DCDC to check the quality of
medical resources. Generally, a compacted scheduling of medical resources order
and shipment can not only efficiently reduce the operation cost, but also promote the
medical service quality. However, to the best of our knowledge, although many stud-
ies have focused on medical resources scheduling, few of them consider the problem
of medical resources scheduling problem in CHSCs with uncertain demands, lead
time, as well as capacity constraint.

In this chapter, we consider the medical resources scheduling problem in CHSCs
with time-varying demand, the lead time of supplier, the capacity constraint. Mean-
while, the scheduling problem integrates the shipment planning in the dimensions of
time and space.

11.2 Literature Review

Numerous studies have focused onmedical resources scheduling, includingmedicine
ordering, shipment and medical resources allocation. We briefly introduce them in
the following paragraphs.

Initially, a most related empirical study is provided by Dib et al. [2]. They investi-
gated 58 community health centers and surveyed 372 residents randomly about their
satisfaction towards these centers in Dalian, China. They suggested that the medicine
supply chain for the community health centers should be improved and the superior
departments support to the community health centers should be augmented.

In the second place, theory researchwith the topic ofmedical resources scheduling
have been conducted by many experts. For example, Tebbens et al. [3] proposed
a mathematical framework for determining the optimal management of a vaccine
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stockpile over time. Sun et al. [4] built mathematical models to optimize the patients’
allocation considering two objectives related to patients’ cost of access to healthcare
services: (1) minimizing the total travel distance to hospitals; and (2) minimizing
the maximum distance a patient travels to a hospital. Moreover, the models can help
decisionmakers to predict a resources shortageduring apandemic influenzaoutbreak.
Savachkin and Uribe [5] presented a simulation optimization model to generate
dynamic strategies for distribution of limited mitigation resources, such as vaccines
and antivirals, over a network of regional outbreaks. The model can redistribute the
resources remaining fromprevious allocations in response to changes in the pandemic
progress. Jerić and Figueira [6] addressed the issue of scheduling medical treatments
for resident patients in a hospital as a multi-objective binary integer programming
(BIP) model and three types of heuristics were proposed and implemented to solve it.
Rottkemper et al. [7] designed a mixed-integer programming model for distribution
and inventory relocation under uncertainty in humanitarian operations. Rachaniotis
et al. [8] presented a resources scheduling model in epidemic control with limited
resources. The objective is to minimize the total amount of the infected people in
a certain time horizon by relocating the available resources over several regions.
Dasaklis et al. [9] suggested several future research directions and defined the roles
of logistics operations and their management may play in assisting the control of
epidemic outbreaks.

Thirdly, as to the variability and uncertainty characteristics of the demand, Holte
and Mannino [10] presented that a major difficulty in medical resources allocation
stems from the fact that such an allocation must be established several months in
advance, and the exact number of patients for each specialty is an uncertain parameter.
They modeled the uncertain problem as adjustable robust scheduling problem and
developed a row and column generation algorithm to solve it. Beraldi et al. [11]
considered the inherent uncertainty in emergency medical services and developed a
stochastic programming model with probabilistic constraints, which aims to decide
the location of the service sites and the amount of emergency vehicles to be assigned
to each site. Zhang and Jiang [12] presented a bi-objective robust program to design
a cost-responsiveness efficient emergency medical services (EMS) system under
uncertainty. The proposed model simultaneously determined the location of EMS
stations, the assignment of demand areas to EMS stations, and the number of EMS
vehicles at each station to balance cost and responsiveness. Nikakhtar and Hsiang
[13] considered uncertain situations such as epidemic diseases that could affect the
patient flow in a healthcare system by developing a discrete-event simulation model
for a local community health clinic in Lubbock, Texas. To tackle the uncertain nature
of emergency department and improve the resourcesmanagement, Xu et al. [14] used
self-organizing map, k-means, and hierarchical methods to group patients based on
their medical procedures, and then discussed how the resulting patient groups can
be used to enhance the emergency department resources planning.

In summary, the time-varying demand in CHSCs, withmultiplemedical resources
types and the optimal scheduling of ordering and shipment are highly correlated with
each other. It is difficult to use the traditional integer programming techniques to
formulate and efficiently solve this type of problem.On the other hand, the time-space
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network method has been popularly employed to solve scheduling problems, which
provides a natural and efficient way to represent multiple conveyance routings with
multiple commodities in the dimensions of time and space. Although the resulting
model scale is generally enlarged due to the extension in the dimension of time,
complicated time-related constraints can normally be easily modeled for realistic
problems, particularly in comparison with the space network models [15]. Coupled
with the development of efficient algorithms, the time-space networkmodels (usually
formulated as multiple commodity network flow problems) can be effectively and
efficiently solved [16–19]. Therefore, time-space network technique could be suitable
to solve the medical resources scheduling problem in CHSCs.

11.3 Modeling Approach

In this section, we discuss the network structure and mathematical formulation for
the planning of logistical support in CHSCs. A time-space network framework is
employed to denote the medical resources order and shipment scheduling. Based on
the time-space network, a deterministic planningmodel (DM) is developed to address
the issue of knowing the demand in CHSCs in advance. A stochastic planning model
(SM) is then presented to address the issue of stochastic demand in actual operations.
Inwhat follows, wewill first introduce the time-space network that serves as the basis
for our mathematical formulations.

11.3.1 Network Structure

The time-space network of logistical support in CHSCs denotes the potential order
and shipment of the medical resources within a certain period and space locations,
as shown in Fig. 11.1. The vertical axis represents the supplier, the district center
for disease control and prevention (DCDC) and the CHSCs, while the horizontal
axis stands for the duration of time. Each node denotes the different department at a
specific time. The shorter the time interval is, the more accurate the decision-making
is. Three types of arcs are defined below.

(1) Ordering arc

An ordering arc (see (a–b) in Fig. 11.1) represents an order from the DCDC to the
supplier, or an order from the CHSC to the DCDC. While an ordering arc exists,
an ordering cost is incurred no matter when the order takes place, and how many
medical resources are purchased. Note that order operation is always completed by
telephone or e-mail in practice, thus there is no physical flow on the ordering arc.
The arc flow, which is a binary variable, denotes whether an order is placed or not.
The arc flow’s upper bound is one, indicating that an order takes place. Intuitively,
the arc flow’s low bound is zero.
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Fig. 11.1 Time-space network of medical resources flows

(2) Shipment arc

A shipment arc (see (c–d) in Fig. 11.1) represents medical resources are delivered
from the supplier to the DCDC or from the DCDC to the CHSC. The cost for the
shipment arc is also comprised of two parts, which are the constant cost that is
incurred whenever the shipment takes place and regardless of the quantity of medical
resources, and a variable cost represented by travel distance, carry hours used, meals
etc., which is in proportion to the quantity of medical resources shipped. Since the
shipment arc connects different depots, the arc flow’s upper bound is the capacity of
the DCDC or the CHSC, and the arc flow’s low bound is zero.

(3) Holding arc

A holding arc (see (e–f) in Fig. 11.1) represents the holding of medical resources at
DCDCor CHSC. The arc cost denotes the inventory cost incurred by holdingmedical
resources, which is in proportion to the stored quantity of medical resources on the
arc. Therefore, the arc flow’s upper bound is also the capacity of the node (DCDC
or CHSC), and the arc flow’s low bound is zero.

11.3.2 The Deterministic Planning Model (DM)

Before introducing the model’s formulation, the notations and symbols are listed
below:

Sets

Ak Set of all arcs in the kth layer of the time-space network.
Nk Set of all nodes in the kth layer of the time-space network.
K Set of the kth layer of the time-space network.
H Set of all holding arcs in the time-space network.



220 11 Medical Resources Order and Shipment in Community Health …

Parameters

ck
i j

Arc (i, j) cost in the kth layer of the time-space network; if the arc is a
ordering arc, the arc cost is the ordering cost; if the arc is a shipment arc, the
arc cost is the shipment cost; if the arc is a holding arc, the arc cost is the
inventory cost incurred by holding the medical resources.

uki j Arc (i, j) flow’s upper bound in the kth layer of the time-space network.
lki j Arc (i, j) flow’s lower bound in the kth layer of the time-space network.
umi j Storage capacity (DCDC or CHSC) for the holding arc (i, j) flow.
aki The supply or demand of medical resources at node i in the kth layer of the

time-space network; if aki ≥ 0, the supply of medical resources; if aki < 0,
the demand of medical resources; at the time slot for beginning dispatching,
the supply at the DCDC and the CHSC equals to its storage capacity.

Decision variables

xki j Arc (i, j) flow in the kth layer of the time-space network.

Based on the notations, the mathematical formulation of DM can be formulated
as follows:

Min: Z =
∑

k∈K

∑

i j∈A

cki j x
k
i j , (11.1)

s.t.:
∑

j∈Nk

xki j −
∑

l∈Nk

xkli = aki , ∀i ∈ Nk, k ∈ K , (11.2)

∑

k∈K
xki j ≤ umi j , ∀i j ∈ H, (11.3)

lki j ≤ xki j ≤ uki j , ∀i j ∈ Ak, k ∈ K , (11.4)

xki j ∈ I, ∀i j ∈ Ak, k ∈ K . (11.5)

The objective function (11.1) minimizes the sum of the operation cost, including
the ordering cost, the shipment cost and the holding cost. Constraint (11.2) is the flow
conservation constraint for each node in the time-space network. Constraint (11.3)
is the capacity constraints. Constraint (11.4) guarantees that all arc flows are within
their bounds. Constraint (11.5) ensures that all flow variables are integers.

Since all constraints and cost functions in this optimization model are linear,
the proposed multi-commodity flow problem is formulated as a mixed 0–1 integer
programming model. The optimal result can be put to practical use if we can identify
the demand at each node in the time-space network in advance. However, a large part
of the demand for medical resources are stochastic and are difficult to be accurately
forecasted, which make the planned medicine scheduling unable to satisfy all those
demands that suddenly pop up. Therefore, we need to improve the model to make it
more realistic and practical.
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11.3.3 The Stochastic Planning Model (SM)

The network structure of the SM is the same to the network of the DM, except
that the demand at each node in the time-space network is uncertain. It is worth
mentioning that only the normal stochastic demand is considered in this work. Large-
scale disruption of the demand which may be caused by some unexpected public
health incidents (i.e., SARS) goes beyond our research scope. To formulate the SM,
we set more notations and symbols as follows in addition to those already introduced.

Set

� The set of stochastic situations.

Parameters

aki (ω) The stochastic supply or demand for medical resources at node i in the kth
layer of the time-space network; if aki ≥ 0, the stochastic supply of medical
resources; if aki < 0, the stochastic demand of medical resources; at the time
slot for beginning dispatching, the stochastic supply at the DCDC and the
CHSC is still set to be its storage capacity.

E() Excepted cost of the logistics arcs with the stochastic demand.

Decision variables

xki j (ω) Arc (i, j) flow in the kth layer of the time-space network with the stochastic
situation ω.

Based on the notations, the SM can be formulated as follows:

Min: Z = E

⎛

⎝
∑

k∈K

∑

i j∈A

cki j x
k
i j (ω)

⎞

⎠, (11.6)

s.t.:
∑

j∈Nk

xki j (ω) −
∑

l∈Nk

xkli (ω) = aki (ω), ∀i ∈ Nk, k ∈ K , ω ∈ �, (11.7)

∑

k∈K
xki j (ω) ≤ umi j , ∀i j ∈ H, ω ∈ �, (11.8)

lki j ≤ xki j (ω) ≤ uki j , ∀i j ∈ Ak, k ∈ K , ω ∈ �, (11.9)

xki j (ω) ∈ I, ∀i j ∈ Ak, k ∈ K , ω ∈ �. (11.10)

Similarly, the objective function (11.6) minimizes the excepted value of the oper-
ation cost. Constraint (11.7) is the flow conservation constraint for each node in
the time-space network. Constraint (11.8) is the capacity constraint with stochastic
demand. Constraint (11.9) guarantees that all arc flows with stochastic demand are
within their bounds. Constraint (11.10) ensures that all flow variables with stochastic
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demand are integers. Since all decision variables are time-varying with the stochastic
demand, the proposed problem can be processed as a stochastic integer programming
model. The optimal result would be more realistic and practical.

11.4 Solution Procedure and Evaluation Method

In this section, we will discuss how to solve the proposedmodels and how to evaluate
them based on a simulation method.

11.4.1 Solution Procedure

TheDMis formulated as amixed0–1 integer programmingmodel and it can be solved
within a reasonable time, by using themathematical toolMATLAB, coupled with the
optimal software CPLEX12.4. The SM is formulated to depict the stochastic demand
at each time point, and the model is constructed as a stochastic integer programming
model. Given the demand for each node in the time-space network, the SM can be
solved as a deterministic planning model. Therefore, the solution procedure for the
SM is described as follows:

Procedure for the SM: 

Input: Initial parameters in the SM and the distribution function of demand. 

Output: The optimal scheduling and the operation cost of the medical resources order and 

shipment for the DCDCs and the CHSCs.

Begin

Initialization, set C as the number of simulation times, 1,2,...,c n= ; 

c←1; 

while (not termination condition) do

1. Randomly generate the demand for each CHSC in the time-space network 

according to the distribution function; 

2. Solve the mixed 0-1 integer programming model by using the MATLAB compiler, 

coupled with CPLEX 12.4 ;

3. Record the optimal schedules and the operation cost.

  c←c+1;

end

4. Calculate the average operation cost as the final result.

5. Output optimal scheduling and the operation cost.  

End
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11.4.2 Evaluation Method

In practice, a classic order strategy, the (t, S) strategy, has always been adopted to
manage the medicine inventory in both CHSC and DCDC. That means, the CHSC
and the DCDCwill import medical resources with a fixed time interval. The purpose
of the order is to keep the stock of medical resources at a certain level. Herein, we
address it as the actual operations of medical resources scheduling and we abbreviate
it as AOM. Similarly in the SM, demand for each node in the time-space network is
randomly generated. The first difference between the AOM and the SM is the order
quantity, which is equal to the capacity of the node minus the available quantity of
medical resources when decision making. The second difference between these two
models is the fixed time interval, which is set to be two weeks. Similarly, the AOM
can be solved by using the above solution procedure.

The performances of theDM, the SM, and theAOMare evaluated via a simulation
test. We first use the average demand of the historical demand data to complete the
DM calculation. Next we randomly generate the stochastic demand data based on
the average demand with a certain standard deviation, and input them into the SM
and then solve it. After that, we fix the ordering time interval and adopt the (t, S)
strategy to complete the AOM calculation. Finally, we compare the DM, the SM and
the AOM with statistical results.

11.5 Numerical Tests

To test how well the models may be applied in the real world, we perform numerical
tests using operating data from 5 CHSCs in Nanjing, China, with reasonable sim-
plifications. The tests are performed on a personal computer equipped with a Intel
(R) Core (TM) 3.10 GHz CPU and 4.0 Gb of RAM in the environment of Microsoft
Windows 7.

11.5.1 Parameters Setting

This numerical example focuses on the scheduling of logistical support for medical
resources order and shipment in CHSCs. The planning period is set to be half a year
(26 weeks). Lead time of the supplier is set to be 2 weeks, and lead time of the
DCDC is 1 week. Each layer of the time-space network, which represents a kind of
the medicine, involves 1 supplier, 1 DCDC and 5 CHSCs. The historical data of the
order quantity for each kind of vaccines in the past years, from January 2011 to June
2013, was collected when we conducted the questionnaire survey in the CHSCs in
Nanjing, China. For example, the historical data of influenza vaccine during these
years in a CHSC is shown in Fig. 11.2. According to the historical data, we can
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Fig. 11.2 Historical data of influenza vaccine

calculate the average demand for each kind of vaccines at each week. The standard
deviation of the stochastic demand is set to be 10. In practice, the decision makers
can adjust these parameters according to the actual situation.

11.5.2 Test Results

As introduced above, we use the AOM to simulate the actual operation of themedical
resources order and shipment, and we present two other methods, the DM and the
SM, to address with different demand situations. DM is designed to deal with the
scheduling when demand at each time point is preset in advance, and SM is proposed
to complete the planning when demand is uncertain. The performances of these three
methods are shown in Table 11.1. The objective value of the SM (638,087.2) is the
smallest one, which is 35.4% lower than the operation cost of the AOM (987,950.1).
Similarly, the objective value of the DM is 643,167.5, which is 34.8% lower than the
cost of the AOM and only 0.78% lower than the value of the SM. It can be observed
that both of the two proposed methods are superior to the empirical operations in

Table 11.1 Comparison of different methods

Planning method DM SM AOM

Average objective value 643,167.5 638,087.2 987,950.1*

Average solution time (s) 834.44 314.38 N/A

Gap (%)

Difference in the total cost between other methods and
the AOM

34.8 35.4 0.0
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actual operations, and the performance of the DM is a little inferior to the SM. This
result is quite suitable and meaningful for the actual operations.

It is worth mentioning that out-of-stock situation occurred during the AOM test
(we use the symbol * to label it). A shortage of the third kind ofmedical resourceswas
appeared at the 7th week and the 25th week, with a quantity of 3 and 6, respectively.
However, this phenomenon does not occur in both the DM and the SM. The reason
is that both the order time and order quantity in these two models are decision
variables and would be systematically optimized, while both the order time and order
quantity in AOMare pre-set. As introduced in Sect. 11.1, if the important parameters,
such as order/shipment frequency and order quantity, are manually determined by
the decision maker based on his/her experience, the planned schedules may not be
efficient, or may not be at all feasible to satisfy all demands since a large portion of
customer service requests in CHSCs are uncertain and tine-varying.

11.5.3 Sensitivity Analysis

To understand the influence of stochastic demand on the solution, we perform sensi-
tivity analysis of the change of demand to the operation cost. The proposed models
in Sect. 11.3 provide several key parameters that may affect the final result, i.e., the
average demand of medical resources in each planning week, the standard deviation
setting, and the capacity of DCDC and CHSC, etc. The sensitivity analyses of these
parameters are shown as follows.

To detect the influence of the average demand on the final solution, the value of it is
adjusted with four different values (−20,−10, 10 and 20%). The results are shown in
Table 11.2. The total operation cost is increasing alongwith the growth of the average
demand, regardless of which planning method is used as a basis (from −24.00 to
24.41%, from −24.58 to 24.67%, and from −13.73 to 10.79%, respectively). This
suggests us that the higher the average demand of medical resources, the higher the
operation cost. If the decision makers can find a way to reduce the average demand,
i.e., informing people to prevent the epidemic by using internet, radio and television,
and thus reduce the actual demand of medical resources, the total operation cost can
be reduced.

It can also be observed that the difference between the DM and the SM is negli-
gible, no matter what the average demand is. However, difference between the DM
and the AOM decreases from 42.64 to 26.89%, and it varies from 43.53 to 27.32%
when it is compared between the SM and the AOM. This result suggests that the
proposed two methods produce better planned results, especially when the average
demand is lower.

To investigate the influence of standard deviation on the final solution, we test
four values of the standard deviation (8, 9, 11 and 12). As the standard deviation
increases, the stochastic demand can be generated in a larger range. The results
are shown in Table 11.3. The operation cost is increasing along with the standard
deviation, whatever in SM or AOM. The difference in the operation cost between
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Table 11.2 Sensitivity analysis with the change of average demand

Ratios (%) −20 −10 +10 +20

DM

Objective value 488,835.5 566,242.5 721,369 800,174.5

Solution time (s) 273.16 630.48 406.02 120.80

Gap (%)

Before versus after −24.00 −11.96 12.16 24.41

SM

Objective value 481,252.5 588,244 748,945.5 795,494

Solution time (s) 617.25 130.23 157.19 69.33

Gap (%)

Before versus after −24.58 −7.81 17.37 24.67

AOM

Objective value 852,267 917,423.5 1,043,610* 1,094,520*

Solution time (s) N/A N/A N/A N/A

Gap (%)

Before versus after −13.73 −7.14 5.63 10.79

Gap (%)

DM versus AOM 42.64 38.28 30.88 26.89

SM versus AOM 43.53 35.88 28.24 27.32

Table 11.3 Sensitivity analysis of the standard deviation

Value 8 9 11 12

SM

Objective value 640,302 644,415 657,644.5 668,352

Solution time (s) 329.98 535.19 720.34 987.69

Gap (%)

Before versus after 0.35 0.99 3.06 4.74

AOM

Objective value 985,927.5 985,668 993,108 1,001,154*

Solution time (s) N/A N/A N/A N/A

Gap (%)

Before versus after −0.20 −0.23 0.52 1.34

Gap (%)

Difference in the total cost between SM and
AOM

35.06 34.62 33.78 33.24
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the SM and the AOM decreases from 35.06 to 33.24% as the standard deviation
increases. Although there are only small differences among these objective values
(from 0.35 to 4.74% and from −0.20 to 1.34%, respectively), more time is required
to solve the problem as the standard deviation increases (from 329.98 to 987.69 s in
SM). This suggests that the more stable of the demand, the lower of the operation
cost and the better of the solution performance.

To investigate the influence of the capacity of the organizations on the perfor-
mances of the three different methods, we test four values of the parameters. As
shown in Table 11.4, the operation cost decreases about 0.3% when the capacity of
DCDC and CHSCs respectively increases 10%, whatever in DM or SM. It can also
be found that only small differences among these objective values. However, 5%
of the operation cost increases when the capacity of DCDC and CHSC respectively
increases 10% in the AOM. Moreover, difference between the DM and the AOM
raises from 39.01 to 47.00% as the value of ratio increases. Similarly, difference
between the SM and the AOM is varied from 38.91 to 46.91%. This suggests us that
the capacity of the medical institutions can strongly influence the total operation cost
in our actual operations. However, when the proposed two methods are applied, such
influence decreases greatly.

Table 11.4 Sensitivity analysis of the change ratio of capacity

Ratios (%) +10 +20 +30 +40

DM

Objective value 640,790.5 639,078 637,305 635,431

Solution time (s) 110.81 484.59 880.84 476.53

Gap (%)

Before versus after −0.37 −0.64 −0.91 −1.20

SM

Objective value 641,843 639,906 638,134.5 636,508.5

Solution time (s) 1034.36 524.64 145.02 442.52

Gap (%)

Before versus after 0.59 0.29 0.01 −0.25

AOM

Objective value 1,050,569 1,099,984 1,149,399 1,198,814

Solution time (s) N/A N/A N/A N/A

Gap (%)

Before versus after 6.34 11.34 16.34 21.34

Gap (%)

DM versus AOM 39.01 41.90 44.55 47.00

SM versus AOM 38.91 41.83 44.48 46.91
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11.6 Conclusions

In this study, a time-space network technique is applied to formulate the medical
resources order and shipment scheduling in community health service centers. A
deterministic planning model is presented to depict medical resources order and
shipment with a pre-ascertained demand. A stochastic planning model is then devel-
oped to respond to the uncertain demand. A solution procedure is developed to
efficiently solve the proposed models and a simulation-based evaluation method is
also developed to compare the performances of the models. Numerical tests, relating
to some health service departments’ operations, are performed to evaluate the pro-
posed models and the actual operations. The main contributions of this work to the
literature are as follows:

(1) While most research on medical resources optimization studies a static problem
taking no consideration of the time evolution and especially the dynamic demand
for such resources [20, 21], the proposed models in our work integrate time-
space network technique, which can find the optimal scheduling of logistical
support for medical resources order and shipment in CHSCs effectively.

(2) The logistics plans in response to the deterministic demand and the time-varying
demand are constructed as a 0–1 mixed integer programming model and a
stochastic integer programming model, respectively. The optimal solutions not
only minimize the operation cost of the logistics system, but also can improve
the order and shipment operation in practice.

Future research would be useful in the following directions. Initially, although
it is reasonable to assume that the government can ensure the adequate supply of
the needed medical resources, out-of-stock situation could be a meaningful topic
of future research. Secondly, we did not consider shipment routing in this work.
Actually, it would be more useful in application if the model considers these two
aspects. Certainly, the development of other models using other methods for solving
this type of problem and comparing the results with those of our model could also
be a direction of future research.
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Chapter 12
Three Short Time-Space Network
Models for Medicine Management

Generally, medicine order and delivery are operated based on the previous experi-
ences. First of all, estimating the average annual demands of hospital storage center.
Second, planning a medical goods order and delivery schedule based on the annual
average demands as well as establishing the period of ordering and delivering. Third,
in the process of operating, medical system supplies goods according to the re-order
point and safe stock. In this chapter, we propose three time-space network models
for medicine order and shipment, which may help improve the effectiveness when
managing the medicine in hospitals.

12.1 Model I: A Basic Time-Space Network Model

12.1.1 Introduction

To minimize the operation cost, Wei [1] applied the concept of JIT and stockless
in hospital materials management system. Breen and Crawford [2] pointed out that
the use of electronic commerce technology can improve the internal pharmaceutical
supply chain. Danas et al. [3] proposed virtual hospital pharmacy (VHP) information
system to meet the demands and calculate minimum stock level and reorder point of
hospital departments. Zhu et al. [4] designed an improved randomized algorithm for
the vehicle routing problem of medical goods for large-scale emergency scenario.

The time-space network approach has been popularly employed to solve medical
material transit scheduling problems, because it is natural and efficient to represent
conveyance routings in the dimensions of time and space. Liao [5] and Cao [6]
employed time-space network techniqueswith the systemoptimization perspective to
construct a deterministic real-time and stochastic real-timemedical goods scheduling
model and adopted integer programmingmethod tominimize the total cost ofmedical
system. Yan and his colleagues [7, 8] developed a novel time-space network model
with the objective of minimizing the length of time needed for emergency repair.
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Steinzen et al. [9] presented a new modeling approach that is based on a time-space
network representation of the underlying vehicle-scheduling problem. Yan et al. [10,
11] applied time-space network to present a logistical support scheduling model for
the given emergency repair work schedule to minimize the total operating cost.

This study presents a logistics support model for medical goods scheduling to
address the uncertain demand in the hospital nodes. The model is a stochastic order
and delivery scheduling model, which systematically considers the demand of med-
ical goods for every time slot in different hospital nodes, the storage capacity and
other constraints, as well as the integrated delivery plan of medical goods in the
dimensions of time and space. The problem is formulated as a mixed 0–1 integer
programming model and a heuristic algorithm is proposed to solve it. The test results
show the good performance of the proposed model. Hence, it is expected to be a
useful planning tool for decision-maker to get effective medical goods supply order
and delivery schedules.

12.1.2 The Time-Space Network Model

In this section, we will first introduce the dynamic decision-making structure and the
time-space network structure which can help us to understand the logistics support
process. After that, we will give the mathematical formulation of the problem.

(1) The dynamic decision-making structure

As Fig. 12.1 shows, we make a dynamic decision-making framework for the whole
planning cycle. We operate the model once a week and it will present the scheduling
result for the whole remainder planning cycle. For example, in the first week, the
optimal result will show the schedules for the whole 26 weeks. However, only the

Fig. 12.1 Dynamic decision-making framework
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result for the first week will be adopted while the results in the other 25 weeks are
used as reference. We do this because the demand information in the recent week is
more deterministic and the demand information in further is inaccurate. After that,
we will update the demand information in the following weeks and then repeat the
above work until the end of the planning cycle.

(2) Time-space network structure

As Fig. 12.2 shows, a time-space network is built for supply routing and inventory
state at one planning cycle. The horizontal axis represents the manufacturer, the sup-
plier and the hospitals inmedical system; the vertical axis stands for the time duration.
“Nodes” and “arcs” are the twomajor components in the network. The nodes include
the manufacturer, the supplier, the hospitals and the collection points. The supplier
node provides medical goods to hospitals. The hospitals nodes order medical goods
from suppliers. The collection node is used to ensure flow conservation. One time
point represents one week. The arc flows express the flow of medical goods in the
network. The arc flow’s lower and upper bounds are defined as the minimum and

Fig. 12.2 The time-space network



234 12 Three Short Time-Space Network Models for Medicine Management

maximum number of flow units allowable on the arc. Three types of arcs are defined
as below.

(i) Supply arc. A supply arc (see (1–2) in Fig. 12.2) represents the medical goods
are delivered from the manufacturer to the supplier, or from the supplier to the
hospital. The arc’s cost for (1–2) is the purchase cost of the medical goods plus
the fixed ordering cost. The arc flow’s upper bound for (1–2) is the inventory
capacity of the supplier or the hospital. The arc flow’s lower bound is zero.

(ii) Holding arc. A holding arc (see (3–4) in Fig. 12.2) represents the holding of
medical goods in the supplier or in the hospital. The arc flowdenotes the number
of medical goods held in the supplier or the hospital in a moment. The arc’s
cost is the inventory cost. The arc flow’s upper bound is the inventory capacity
of the supplier or the hospital. The arc flow’s lower bound is safe stock of the
supplier or the hospital.

(iii) Collection arc. A collection arc (see (5–7) in Fig. 12.2) connects the last node
associated with a supplier, the last node associated with a hospital and the
manufacturer node to the collection node. It is used to ensure flow conservation
at the last time associated with each supplier and hospital point. The arc flow’s
upper bound is infinity and the arc flow’s lower bound is zero. The arc’s cost
is zero.

(3) Mathematical formulation

The assumptions for the mathematical formulation are listed below:

1. Demand for each hospital node at every time point is uncertain and obey random
distribution.When themodel is operated, the demand informationwill be updated
in each decision period.

2. The manufacturer can provide enough medical goods, thus out-of-stock will not
take place.

3. Lead time of the order is oneweek.However, when to order and the order quantity
is uncertain, they are the decision variables.

4. For simplicity, only onemanufacturer, one supplier and one kind ofmedical good
are considered in the supply network.

5. The initial inventory of every hospital in the first week is the safe inventory plus
the maximum demand.

Before introducing the model’s formulation, the notations and symbols are listed
below:

Parameters:

cbi j Supply arc (i, j) cost.
csi j Holding arc (i, j) cost.
coi j Fixed ordering cost for the supply arc (i, j).
li j Arc (i, j) flow’s lower bound.
ui j Arc (i, j) flow’s upper bound.
S,W, H The set of all manufacturer, supplier and hospital nodes, respectively.
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NM Set of all nodes in the network.
AB, AS Set of all supply arcs and holding arcs, respectively.
ai (w) The i th node’s supply or demand in the wth random event (if ai ≥ 0,

supply; else demand).

Decision variables:

xi j (w) The supply arc (i, j) flow in the wth random event.
yi j (w) The holding arc (i, j) flow in the wth random event.
δi j (w) A binary variable in the wth random event which indicates whether supply

arc (i, j) in the network has flows. If δi j (w) = 1, then xi j (w) > 0; else,
xi j (w) = 0

Based on the notations, the proposed problem can be formulated as follows:

Min z =
∑

∀i j∈AB

cbi j xi j (w) +
∑

∀i j∈AS

csi j yi j (w) +
∑

∀i j∈AB

coi jδi j (w) (12.1)

s.t.:
∑

j∈W∪H

xi j (w) +
∑

r∈W∪H

yir (w) −
∑

p∈S∪W
xpi (w)

−
∑

c∈W∪H

yci (w) = ai (w), ∀i ∈ NM (12.2)

xi j (w) ≤ Mδi j (w), ∀i j ∈ AB (12.3)

li j ≤ xi j (w) ≤ ui j , ∀i j ∈ AB (12.4)

li j ≤ yi j (w) ≤ ui j , ∀ j ∈ AS (12.5)

xi j (w), yi j (w) ∈ I, ∀ j ∈ AS (12.6)

δi j (w) = 0, 1, ∀i j ∈ AB (12.7)

The objective function (12.1) minimizes the total cost of the medical system. The
first item of objective function represents all supply costs; the second item stands for
all inventory costs; the third item expresses all order costs. Constraint (12.2) denotes
the flow conservation constraint at every node in the network. Constraint (12.3)
denotes whether the node orders medical goods or not. Constraint (12.4) and (12.5)
holds all the arc flows within their bounds. Constraint (12.6) ensures the integrality
of the supply flows and holding flows, and constraint (12.7) denotes all the decision
variables are either 0 or 1.
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12.1.3 Solution Algorithm

The model is formulated as a mixed 0–1 integer network flow problem that is charac-
terized as NP-hard problem. To efficiently solve this problem we develop a heuristic
algorithm, with the assistance of the mathematical programming solver, CPLEX.
The procedure is described as follows:

Step 1. Initialization, generate a sequential data follows uniform distribution, which
includes 26 data stand for the demand at 26 time points.
Step 2. Set f = 1 as the decision period.
Step 3. With the target of minimizing the total cost of the medical system, we solve
the medical goods order and delivery schedules for the remainder weeks by CPLEX.
Step 4. Take the schedules of decision period (f) as a certain result. Then we execute
it and put the holding situation and the ordering situation in the decision period as
the initial conditions of the next decision period.
Step 5. If f = 26, then go to Step 6; otherwise, f = f + 1, and return to Step 3.
Step 6. Record the optimal schedules and the operations cost.

12.1.4 Numerical Tests

To test how well the proposed model may be applied in the real world, we perform
some numerical tests using data in Ref. [5]. The matlab computer language, coupled
with the CPLEX 12.4 mathematical programming solver, is used to develop all the
necessary programs for building and solving the proposed model. Assume there
are five hospitals and thus the model contains 156 nodes, 468 variables and 778
constraints.

(1) The initial data setting

We generate the demands for the hospitals by using unidrnd() function in the matlab
tool. The average of each hospital demand is 450, 550, 600, 450 and 450, respectively.
The variance of each hospital demand is 300, 833, 133, 208 and 300, respectively.
The unit procurement price for the supplier is 20 yuan, and it is 22 yuan for the
hospital. The unit inventory cost for the supplier and the hospital is 0.3 yuan and 0.5
yuan per week, respectively. The fixed ordering cost for the supplier and the hospital
is 3000 and 600 yuan, respectively. Safe stock in each hospital is set as 450, 550, 600,
450 and 500, respectively. The safe stock of the supplier is 3 times of the sum of all
hospital’s average demand. The inventory capacity of the supplier and the hospital is
5 times of their safe stock, respectively. In practice, relevant data can be set according
to the actual situation.

(2) The test results

As shown in Fig. 12.3, the objective value decrease as the dynamic decision-making
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Fig. 12.3 Objective value variation with the solution procedure continuous implement

procedure continuous implement. In the first week, the optimal result will give out
the schedules for the whole 26 weeks. Thus the total cost is 2,796,137.7 yuan. As
the reference period goes down, the number of decision variables reduce, then the
objective values decrease.

To test the stability of the solution result, we adjust the inventory capacity as 2,
3, 4, 5 and 6 times of the safe stock, and then we solve the model respectively. The
results are shown in Fig. 12.4. As inventory capacity increases, the total costs reduce.
For the frequency of ordering decrease, but the order quantity increases. When the
fixed ordering cost and the inventory cost balanced, the inventory capacity will not
affect the final result.

We change the variances of the demands to observe the influence on the objective
values. When the variances are changed to 1, 4 and 9 times of the original variances,
their squared correlation coefficient (R2s) are 0.9917, 0.992 and 0.9921 in scatter
diagrams, as shown in Fig. 12.5. The results show that variances of demands can
only bring slight changes on the objective values.

Furthermore, we evaluate our model with a certain order time model which may
always adopted in an actual operation. The order time of the certain order timemodel
is one week. Other parameters are set as the same to proposed model. We adjust the
ordering cost for the two models. The comparison results are shown in Fig. 12.6.
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When the ordering cost is set as no more than 50% of the original costs setting, the
two results are similar. However, when the ordering cost is greater than 50% of the
original costs setting, the objective values of the proposed model in this work is more
optimal.

12.1.5 Conclusions

In this study, the time-space network technique is applied to develop a model to
find optimal medical goods order and delivery schedules. The model is a stochastic
order and delivery scheduling model, which systematically considers the demand of
medical goods for every time slot in different hospital nodes, the storage capacity
and other constraints, as well as the integrated delivery plan of medical goods in the
dimensions of time and space. The problem is formulated as a mixed 0–1 integer
programming model and a heuristic algorithm is proposed to solve it. In an actual
practice, the medical goods could be multi-commodities, and lead time of the order
would be influenced by many factors and therefore be stochastic. Hence, how to
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incorporate a multiple commodity flow and stochastic lead time of the order into the
model, to make the schedule more reliable, are our research directions in the future.

12.2 Model II: An Improved Time-Space Network Model

12.2.1 Introduction

Nowadays, most domestic hospitals still make medical resource order plans by expe-
rience or according to historical data. In actual operations, this subjective and unsci-
entific method could not only increase inventory level, but also lead to stock-outs
sometimes. Hence, how to plan the order and distribution of medical resource, and
how to improve hospitals’ service quality has become a hot issue in recent years.

To the best of our knowledge, several past studies have focused on the medical
resource order and distribution scheduling problem. For example, Shi [12] devel-
oped a two stage supply chain inventory or supplier-hospital model with Vender
Managed Inventory (VMI), which could effectively reduce the overall inventory cost
of the hospitals and the supply chain. Rachaniotis et al. [13] established a determin-
istic model to schedule limited available resource under the situation of an epidemic
infection with the concept of deteriorating jobs. Zhou et al. [14] built a stochastic
dynamic programming model for ordering a perishable medical product, and con-
cluded that the total expected cost was sensitive to changes in the expected demand
as well as the regular policy. Nagurney [15] developed a tractable network model
and computational approach for the design of medical nuclear supply chains to mini-
mize the total operational cost, the cost associated with nuclear waste discarding, and
capacity investment costs. Chen et al. [16] proposed a model based on a relational
view, delineating the factors that influence hospital supply chain performance: trust,
knowledge exchange, IT integration between hospital and its suppliers, and hospital-
supplier integration. Uthayakumar and Priyan [17] presented an inventorymodel that
integrated continuous review with production and distribution for a supply chain to
achieve hospital customer service level (CSL) targets with a minimum total cost.

As the time-space network can visually and effectively show the movement both
in the dimensions of time and space, this approach has been widely used to solve
scheduling problems in many fields. Zhang and Li [18] applied time-space network
to establish a dynamic pricing model to maximize manufacturers’ profits. To help
airport authorities with flight-to-gate reassignments following temporary airport clo-
sures, Yan et al. [19] developed a reassignment network model with the objective to
minimize the number of gate changes. Steinzen et al. [9] developed a time-space net-
work model to solve the integrated vehicle- and crew-scheduling problem in public
transit with multiple depots, and numerical results showed that this approach could
perform well. Buhrkal et al. [20] used the time-space concept to develop three main
models of the discrete dynamic berth allocation problem, and the results indicate
that a generalized set-partitioning model outperforms all other existing models. Yan
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et al. [10] developed a logistical support scheduling model for the emergency road-
way repair work schedule to minimize the short-term operating cost subject to time
constraints and other related operating constraints. Lin et al. [21] developed a plan-
ning model and a real-time adjustment model based on a time-space network to plan
courier routes and schedules and adjust the planned routes in actual operations for
an international express company facing uncertain demands.

But as for medical resource order and distribution scheduling, the time-space
network concept has seldom been applied to this problem. Liao [5] and Cao [6]
established a deterministic real-time and stochastic real-time medical resource order
and transit scheduling model based on the time-space network with the objective of
minimizing the total operation costs. However, they did not consider the constant
ordering cost (related to ordering frequency), which is not practical. In this work,
the ordering cost is taken into consideration, and we employ the time-space network
flow technique to develop a model designed to help a hospital to plan the order and
distribution of medical resource.

12.2.2 Model Formulation

This section presents the formulation of medical resource order and distribution
model. In practice, hospital staff would periodically review the current standards of
purchasing plans (e.g. safety inventory, ordering frequency), and adjust the plans to
new demands. Therefore, the ‘dynamic decision-making framework’ is introduced
into the time axis of the scheduling model to correspond with real-world opera-
tions. The time axis is divided into 2 parts: ‘decision period’ and ‘reference period’.
To make the scheduling results more consistent with reality, after every decision
period, the order and distribution will be rescheduled according to new demands.
This operation would be repeated until the end of the scheduling cycle. Besides, the
scheduling results during decision period are deterministic scheduling, and results
during reference period can be used as a reference for the current scheduling.

For example, if we implement the model every week, the duration of every
scheduling is from the time where the implementation starts to the end of scheduling
cycle, as shown in Fig. 12.7. The duration of implementation for the first time is
26 weeks. After that, 25 weeks is remained for the second time, and 24 weeks for the
third time. It’s worth mentioning that only the scheduling results during the decision
period (the first week) would be put to actual use.

(1) Basic assumptions

Only one kind of medical resource is considered in this work. To facilitate the model
formulation, we set some assumptions as follows:

1. Demands for medical resource at each time interval can be set to obey a normal
distribution according to history data.

2. The scheduling cycle is half a year (26 weeks); both of the order lead time and
the distribution lead time are one week.
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Fig. 12.7 Dynamic decision framework of the scheduling model

3. Medical resource is supplied by one supplier; there is only one warehouse in the
hospital.

4. The supplier can meet the market demand completely, and transit medical
resources to the hospital warehouse in time and in the right quantity.

5. The storage capacity of the hospital warehouse and departments are known and
fixed.

(2) Time-space network of medical resource order and distribution

A time-space network is established to describe the supply of medical resource in the
dimensions of time and space, as shown in Fig. 12.8. The horizontal axis represents
the supplier, the hospital warehouse and departments. The vertical axis stands for
the duration of scheduling. The time interval is one week.

The time-space network contains two basic elements: node and arc. Next, we will
introduce them in detail respectively as follows.

1. Node

A node represents the supplier, the hospital warehouse or a department at a specific
time. There are 4 types of nodes in this time-space network: the supplier node,
the hospital warehouse node, the hospital department node and the collection node.
The supplier must convey the medical resource to the warehouse first, and then the
resource will be distributed to each department after arrangement. The department
nodes will place an order to the warehouse when their inventory cannot afford their
demands. The warehouse and each department have an initial amount of medical
resource at the beginning of the scheduling cycle, which is the remaining inventory of
the previous scheduling cycle. The collection nodemaintains the flow conservation of
the network. All unusedmedical resource on the nodes will assemble at the collection
node at the last week of the scheduling cycle.
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Fig. 12.8 Time-space network of medical resource scheduling

2. Arc

An arc denotes the activity of medical resource distribution in different time and
space. The arc flows express the flow of medical resource in the network. There are
4 types of arcs: supply arc, distribution arc, holding arc and collection arc.

(i) Supply arc: It represents that the supplier delivers medical resource to the
hospital. The arc cost is the unit price of medical resource plus a fixed ordering
cost. The arc flow’s upper bound is the warehouse’s storage capacity, and the
lower bound is zero.

(ii) Distribution arc: It represents that the warehouse delivers medical resource to
the departments. The arc cost is the unit distribution cost plus a fixed labor
cost. The arc flow’s upper bound is each department’s storage capacity, and the
lower bound is zero.

(iii) Holding arc: It represents the holding of medical resource at the warehouse
or departments. The arc cost is the unit inventory-holding cost. The arc flow’s
upper bound is the storage capacity of the warehouse/departments, and the
lower bound is the safety stock of the warehouse/departments.

(iv) Collection arc: It connects the supplier node, the warehouse node and depart-
ment nodes to the collection node, and ensures the flow conservation of this
network. The arc cost is zero. The supplier collection arc flow’s upper bound
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is infinity, and the lower bound is zero. The warehouse/departments collection
arc flow’s upper bound is the storage capacity of the warehouse/departments,
and the lower bound is the safety inventory of the warehouse/departments.

(3) Notations used in the model formulation

Parameters:

Z The total costs of the order and distribution of medical resource;
a jt The demand for medical resource of the j th department at the time interval

of t ;
pSW Unit purchasing cost from the supplier;
sWD Unit distribution cost from the warehouse to departments;
f1 Constant fixed ordering cost from the supplier to the warehouse;
f2 Constant fixed labor cost from the warehouse to departments;
hw Unit inventory-holding cost of medical resource in the warehouse;
hd Unit inventory-holding cost of medical resource in each department;
T The set of time interval;
SW The set of arcs between the supplier and the warehouse;
WD The set of arcs between the warehouse and the departments;
D The set of all departments in the hospital;
LW Minimum inventory level of the warehouse;
UW Maximum inventory level of the warehouse;
LDj Minimum inventory level of the j th department;
UDj Maximum inventory level of the j th department.

Decision variables:

xi j Supply arc (i, j) flow from the supplier to warehouse;
y jk Distribution arc ( j, k) flow from the warehouse to departments;
zwt Holdingflow in thewarehouse at the time interval of t ;when t =0, zwt represents

the initial inventory of medical resource in the warehouse;
z jt Holding flow in the j th department at the time interval of t ; when t = 0, z jt

represents the initial inventory of medical resource in the j th department;
δi j A binary variable that indicates whether the hospital warehouse sends an order

to the supplier. If δi j = 1, then xi j ≥ 0; if δi j = 0, then xi j = 0;
ξ jk A binary variable that indicates whether the departments send an order to the

warehouse. If ξ jk = 1, then y jk ≥ 0; if ξ jk = 0, then y jk = 0.

(4) The mathematic model

Based on the notations, the scheduling model can be formulated as follows:

Min Z =
∑

i j∈SW
(pSW xi j + f1)δi j +

∑

jk∈WD

(sWD y jk + f2)ξ jk + hwzwt +
∑

j∈D
hdz jt

(12.8)
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Subject to:

xi jδi j + zwt−1 −
∑

j∈D
y jk = zwt , ∀i j ∈ SW, jk ∈ WD, t ∈ T (12.9)

y jkξ jk + z jt−1 − z jt = a jt , ∀ jk ∈ WD, j ∈ D, t ∈ T (12.10)

0 ≤ xi j ≤ UW, ∀i j ∈ SW (12.11)

0 ≤ y jk ≤ UD, ∀ jk ∈ WD (12.12)

LW ≤ zwt ≤ UW, ∀t ∈ T (12.13)

LDj ≤ z jt ≤ UDj , ∀ j ∈ D, t ∈ T (12.14)

xi j ∈ I, ∀i j ∈ SW (12.15)

y jk ∈ I, ∀ jk ∈ WD (12.16)

zwt ∈ I, ∀t ∈ T (12.17)

z jt ∈ I, ∀ j ∈ D, t ∈ T (12.18)

δi j = 0 or 1, ∀i j ∈ SW (12.19)

ξ jk = 0 or 1, ∀ jk ∈ WD (12.20)

The objective function (12.8) denotes the minimization of total costs of medical
resource order and distribution, including purchasing cost, distribution cost in hospi-
tal and holding cost. Constraints (12.9) and (12.10) indicate the flow conservation in
this network. Constraints (12.11) to (12.14) ensure that all arc flows are within their
bounds. Constraints (12.15) to (12.20) ensure that all variables are binary number or
integers.

12.2.3 The Solution Procedure

In this section, we discuss how to solve the proposedmodel. Themodel is formulated
as a mixed 0–1 integer network flow problem with NP-hard complexity. Considering
the long scheduling cycle and the number of departments in practice, it is almost
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impossible to optimally solve this large problem within a limited time. Thus the
solution effectiveness and efficiency need to be traded off. To efficiently solve this
problem, we develop a heuristic algorithm, with the assistance of the mathematical
programming solver, CPLEX. The procedure is described as follows:

Step 1: Initialization. Set parameters of the model, including simulation rounds, the
storage capacity, the safety inventory, the initial inventory, cost data and other related
data.
Step 2: Set t = 1. Solve the model for the first round.
Step 3: Use MATLAB function normrnd() to generate N groups of demands for
medical resource at each time interval.
Step 4: Call function cplexmilp() to solve the model and obtain the scheduling results
of the whole scheduling cycle. The results from the previous decision period will be
taken as the input data for the current decision period.
Step 5: Continue generating demands of the remaining time intervals. Solve and get
the rest of scheduling results.
Step 6: Repeat step 4 and 5, until obtaining the scheduling results at the last time
interval of the scheduling cycle. If t = 26, then go to Step 7; otherwise, t = t + 1,
and return to Step 4.
Step 7: Record the optimal schedules and the total operation costs.

12.2.4 Numerical Tests

To test how well the proposed model may be applied in the real world, we perform
several numerical tests using historical operating data of a certain kind of medical
resource from a hospital in Nanjing, China, with reasonable simplifications. The
tests were performed on a personal computer equipped with a Intel (R) Core (TM)
2.13 GHz CPU and 2.00 GB of RAM in the environment of Microsoft Window 7.

(1) Case data

This kind of medical resource has only one supplier. There is one warehouse and five
departments in the hospital. The scheduling cycle is 26 weeks. The time interval is
one week. We set the demands to obey a normal distribution, and use MATLAB to
generate the demands of 26 weeks. The averages of each department’s demand are
10, 11, 12, 8 and 13 respectively, and the standard deviations are 2, 2, 2, 1 and 1,
respectively. According to the hospital’s practical operations in Nanjing, the related
cost data and inventory bounds are set as in Tables 12.1 and 12.2.

Table 12.1 Parameter settings

pSW sWD f1 f2 hw hd

20 8 50 15 0.7 1.4
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Table 12.2 Inventory bounds settings

Warehouse Dept. 1 Dept. 2 Dept. 3 Dept. 4 Dept. 5

LD 250 12 13 15 10 15

UD 750 36 40 50 30 45

(2) Test results

As shown in Fig. 12.9, we get the total operation costs from one scheduling cycle.
The horizontal axis represents the week that is scheduled; the vertical axis represents
the objective value at each week. In different rounds of programming, the objective
value decreasesweekly until it equals zero as the dynamic decision-makingprocedure
continuously proceeds. The objective values are the results during decision period
and reference period. In the early decision period,most of supply and distribution arcs
are idle, the number of variables in the model is large, and the scope of scheduling
is the whole scheduling cycle (26 weeks), so the objective value is high. As time
advances, the reference period of dynamic decision framework gets shorter, and the
number of variables declines, so the objective value reduces.

Besides,we test the schedulingmodel for five times andget fivegroups of objective
value data, from whom we select five sets of results of the 1st, 6th, 12th, 18th, 24th
week to compare the changes of objective values at the same scheduling interval. As
shown in Fig. 12.10, in the vertical direction, the 5 sets of objective values all decrease
as the model continues to be implemented, which is in line with the characteristic
of the objective value’s changes in each scheduling cycle shown in Fig. 12.9. On
the other hand, horizontally, the objective value at the same week is fluctuant for
the reason that the demands data are generated randomly by MATLAB function
normrnd(). But the amplitude of fluctuation is small (the largest rate of change from
the 5 sets of results above is 10.70%), which reveals that the randomly generated
demands would not influence the objective value, and then proves the stability of the
model.
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Fig. 12.9 Changes of objective value in one scheduling cycle
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Fig. 12.10 Comparison of objective values at the same scheduling interval in different scheduling
cycles

(3) Sensitivity analysis

To understand the influence of the related parameters on the proposed model, several
sensitivity analyses are performed here, which could be taken as references for ware-
house managers. In consideration of emergencies (e.g., number of patients increases,
or overdue supplying), safety inventory is necessary to be set accurately. So we per-
formed the sensitivity analysis on safety inventory of the warehouse to understand
its influence on the total operating costs. We tested five situations, 60, 80, 100, 120
and 140% of the original safety inventory. The results are shown in Fig. 12.11. The
results show that the objective value grows with the increase of safety inventory.
When the safety inventory rises from 60 to 140% of the original, the growth rates of
objective value are 4.6, 4.5, 4.4 and 4.3% respectively, from which we can see that
the growth is trending down. When the warehouse’s safety inventory increases, the
hospital manager would order more medical resource for each time, so the inventory
cost increases. But the ordering frequency declines, so the ordering cost declines.
The inventory cost and ordering cost would finally achieve a balance and then the
objective value would level off and approach a certain constant value. However, in
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Fig. 12.11 Sensitivity analysis on safety inventory
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Fig. 12.12 Sensitivity analysis on unit holding cost

actual operations, managers should not reduce safety inventory level without limit
to obtain less operation costs. An adequate safety inventory level is indispensable
to mitigate risk of stock-outs due to uncertainties in supply and demand, and permit
operational activities to proceed according to their plans.

In order to test whether the holding cost is properly set, we performed the sen-
sitivity analysis on it. We tested five situations, 60, 80, 100, 120 and 140% of the
original safety inventory. The results are shown in Fig. 12.12. The results show that
the objective value grows with the increase of unit holding cost. When the holding
cost rises from 60 to 140% of the original, the growth rates of objective value are 4.0,
3.8, 3.6 and 3.5% respectively. So we can conjecture that the objective value would
reach to a certain constant value if the unit holding cost keeps increasing. As the unit
holding cost increases, the manager would order less medical resource for each time
to reduce the total holding cost, but the frequency of ordering gets relatively high, and
which increases the ordering cost. When the unit holding cost continues increasing,
the ordering cost and total holding cost would be balanced until the objective value
reaches to a certain fixed value.

In general, every supplier has different ordering fees and price standards, and
the hospital should make a trade-off among them and select a supplier modestly. So
there is a need to perform a sensitivity analysis on the shipment cost to understand
the influence of different ordering costs on total costs. We tested five situations, 60,
80, 100, 120 and 140% of the original ordering cost. As we can see on Fig. 12.13, the
objective value increases as the ordering cost increases. When the constant ordering
cost rises from 60 to 140% of the original, the growth rates of objective value are
0.2863, 0.2855, 0.2738 and 0.2603% respectively.With the increasing of the constant
ordering cost, the hospital manager would order more medical resource for each time
to reduce the ordering frequency, and then to reduce the ordering cost. When the
ordering cost keeps rising, it would finally balance with the ordering cost until the
objective value reaches to a certain fixed value. Hence, the hospital should select a
right supplier for a right ordering fee.
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Fig. 12.13 Sensitivity analysis on constant ordering cost

12.2.5 Conclusion

In this work, we creatively take the ordering cost into consideration, and employ the
ideas of time-space network and dynamic decision framework to describe the order
and distribution of medical resource in a hospital. The problem is formulated as a
mixed 0–1 integer programming model. Then a heuristic algorithm is developed to
solve it. The test results show the good performance and practicability of the model.

Future research would be useful in at least the following directions. First, since
we assume the demands are known and the lead time is certain, the problem to be
solved is how to optimize the total cost of medical resource order and distribution
under stochastic conditions. Second, only one kind of medical resource is considered
in the model, hence it would be more practical and useful to consider multi-variety
problem.

12.3 Model III: A Chance-Constrained Programming
Model Based on Time-Space Network

12.3.1 Introduction

High operating cost has been a thorny problem for most hospitals in China all the
time. Aside of institutional reasons, management method in purchase and inventory
should also be responsible for it. Althoughmostmajor hospitals have adopted electric
purchasing management information systems, parameters inside them are often set
according to staff’s experience. This could give rise to inaccurate decisions due to
lack of systematic analysis and overdependence on staff’s subjective judgments.

To the best of our knowledge, many studies have focused on the hospital medical
resources order and distribution scheduling problem. Lapierre and Ruiz presented an
inventory cost oriented model and a balanced schedule model, and used a tabu search
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metaheuristic to solve them. The supply schedules generated by this method were
efficient and well balanced [22]. Chang et al. [23] established an optimal purchase
model to minimize a hospital’s drug inventory management cost, and obtained the
optimal quantity and frequency to order medicine. Liao and Chang [24] established
a simulation model for the supply chain of the hospital logistics system based on the
dynamic Taguchi method, and proposed an optimal approach to obtain an optimal
robust design in achieving optimal multi-performance. Uthayakumar and Priyan
[25] presented an inventory model that considers multiple pharmaceutical products,
variable lead time, permissible payment delays, constraints on space availability, and
the customer service level (CSL) designed to achieve hospital CSL targets with a
minimum total cost for the supply chain. Then they put this problem in a fuzzy-
stochastic environment and extended the model [26].

Particularly, Liao [5] and Cao [6] applied the time-space network concept to
medical resources order and distribution scheduling, and constructed a deterministic
model and a stochastic model respectively. Zhang and Liu [27] developed a mixed
0–1 integer programming model based on time-space network with the assumptions
that the demand is known and the supplier can completely meet the market demand.

In this study, we discuss the order and distribution under uncertainty, where the
departments’ demands are stochastic, and cannot be completely met by the supplier,
which may cause a penalty cost due to stock shortage. With time-space network and
stochastic programming, a chance-constrained programming model is constructed
with the objective to help a hospital to plan the order and distribution of one certain
kind of medical resources. Generic algorithm is applied to solve the proposed model.

12.3.2 Model Formulation

(1) Basic assumptions

To facilitate the model formulation, some assumptions are set as follows:

1. Demand for medical resources of every week is stochastic, and obeys a Gaussian
distribution.

2. The weekly supply quantity of the supplier is a known value, and the supplier
might not completely meet the hospital’s demand.

3. The whole scheduling cycle is 52 weeks; the lead time of order and distribution
are both one week.

4. The safety stock and stock capacity of the warehouse and departments are known
and fixed.

5. There is a certain known amount of initial stock in thewarehouse and departments
at the beginning of the scheduling cycle.

(2) Time-space network

A time-space network is established to describe the supply of medical resources
as shown in Fig. 12.14. The horizontal axis represents the supplier, the hospital
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Fig. 12.14 Time-space network for medical resources ordering and distribution

warehouse and departments. The vertical axis stands for the duration of scheduling.
The time interval is one week. The time-space network contains two basic elements:
node and arc.

1. Node

A node represents the supplier, the hospital warehouse or a department at a specific
time. There are 4 types of nodes in this network: (1) Supplier node: It supplies
medical resources to the hospital. (2) Warehouse node: It delivers the resources to
departments. (3) Department node: They receive the resources from the warehouse
node. (4) Collection node: It maintains the flow conservation of the network. All
unused medical resources would assemble at this node at the end of the scheduling
cycle.

2. Arc

An arc denotes the activity of medical resources distribution in different time and
space. The arc flows express the flow ofmedical resources in the network. There are 4
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types of arcs: (1) Supply arc: It represents that the supplier delivers medical resources
to the hospital. The arc cost is the unit purchase price of medical resources plus a
fixed ordering cost. The arc flow’s upper bound is the warehouse’s stock capacity,
and the lower bound is zero. (2) Distribution arc: It represents that the warehouse
delivers medical resources to the departments. The arc cost is the unit distribution
cost. The arc flow’s upper bound is each department’s stock capacity, and the lower
bound is zero. (3) Holding arc: It represents the holding of medical resources in the
warehouse or departments. The arc cost is the unit stock holding cost. The arc flow’s
upper bound is their stock capacity, and the lower bound is their safety stock. (4)
Collection arc: It connects the supplier node, the warehouse node and department
nodes to the collection node, and ensures the flow conservation of this network. The
arc cost is zero. The supplier collection arc flow’s upper bound is infinity, and the
lower bound is zero. The warehouse and departments collection arc flow’s upper
bound is their stock capacity, and the lower bound is their safety stock.

(3) Notations used in the model formulation

Parameters:

AM, NM The set of all arcs and nodes respectively;
SW The set of all arcs between the supplier and hospital warehouses;
WD The set of all arcs between the hospital warehouses and departments;
H A The set of all holding arcs in the network;
RM The set of all arcs except H A;
D The set of all department nodes;
p Unit purchase price;
d Unit distribution cost from the warehouse to departments;
h Unit stock holding cost in the warehouse and departments;
c Fixed cost incurred by every ordering;
t Unit shortage cost;
li j /ui j The lower/upper bound of the arc (i, j)’s flow;
ai j The demand quantity of the node i ;
α, β, λ The confidence levels of the corresponding chance constraints.

Decision variables:

xi j The flow of arc (i, j);

yi The shortage quantity of node i , and yi = max

{
ai − ∑

j∈NM
x ji , 0

}
, i ∈ NM .

δi j A binary variable that indicates whether the hospital places an order to the
supplier. When δi j = 1, xi j > 0; when δi j = 0, xi j = 0.

(4) The mathematic model

Based on the notations, the scheduling model can be formulated as follows:

Min f (12.21)
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Pr

⎧
⎨

⎩
∑

i j∈SW
(pxi j + c)δi j +

∑

i j∈WD

dxi j +
∑

i j∈H A

hxi j +
∑

i∈D
yi t ≤ f

⎫
⎬

⎭ ≥ α (12.22)

Pr

⎧
⎨

⎩
∑

j∈NM

xi jδi j −
∑

k∈NM

xkiδki = ai

⎫
⎬

⎭ ≥ β, ∀i ∈ NM (12.23)

Pr
{
li j ≤ xi j

} ≥ λ, ∀i j ∈ H A (12.24)

xi j ≤ ui j , ∀i j ∈ H A (12.25)

li j ≤ xi j ≤ ui j , ∀i j ∈ RM (12.26)

xi j ∈ I, ∀i j ∈ AM (12.27)

δi j ∈ 0, 1 ∀i j ∈ AM (12.28)

The objective function (12.21) denotes the minimization of total costs of medical
resources order and distribution. Constraint (12.22) means the model obtains the
optimal solution under the confidence level α. Constraint (12.23) indicates the flow
conservation in this network under the confidence level β. Constraint (12.24) ensures
all holding arc flows exceed the corresponding safety stock under the confidence level
λ. Constraints (12.25) and (12.26) set bounds for all arc flows. Constraints (12.27)
and (12.28) guarantee all variables are binary numbers or integers.

12.3.3 The Solution Procedure

The model is formulated as a chance-constrained stochastic programming problem
with NP-hard complexity. Considering the scale of the problem, it is almost impos-
sible to solve it with general enumeration method. Practices have proven that genetic
algorithm can solve NP-hard problems effectively by virtue of its superior global
optimization search strategy, and is regarded as one of the best tools to find the sat-
isfactory solution. Therefore, genetic algorithm is applied to solve the mathematic
model.

12.3.4 Numerical Tests

To test howwell the model may be applied in the real world, we performed numerical
tests based on operating data of a certain kind of medical resources from amajor hos-
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pital in Nanjing, China, with reasonable simplifications. We used MATLAB R2012a
to build the model and to solve the problems. The tests were performed on a PC
equipped with an Intel (R) Core (TM) 2.13 GHz CPU and 2.00 GB of RAM in the
environment of Microsoft Windows 7.

(1) Input data

We consider 1 supplier, 1 hospital warehouse and 3 departments in the test case.
The input data of the computer program conclude: demand of each department,
unit purchase price, fixed ordering cost, unit distribution cost (in hospital), unit stock
holding cost, unit shortage cost, safety stock and stock capacity of the warehouse and
each departments, and the three confidence levels α, β, λ. As for genetic algorithm
parameters, we set population size = 50, maximum evolutional generations = 200,
crossover probability = 60%, and mutation probability = 30%.

(2) Test results

After running the program in the MATLAB environment, we get the scheduling
results. As shown in Fig. 12.15, with genetic algorithm “selecting the superior and
eliminating the inferior” generation by generation, the objective value decreases until
it becomes afixedvalue at about 120th generation,which is themodel’s optimal value.

Also, we get the order and distribution scheduling results of 52 weeks, including
warehouse order quantity and distribution quantity of every department, as shown in
Fig. 12.16. We can find that there are some weeks when the hospital doesn’t order
medical resources. Because of the fixed ordering cost for every purchase order, the
hospital can neither place an order every week, nor order all the needed medical
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Fig. 12.16 Scheduling results of weekly order and distribution quantity

resources for the whole year at the first week, which could result in huge stock
holding cost. The model keeps a good balance between fixed ordering cost and stock
holding cost, and obtains the minimum total operating cost.

(3) Sensitivity analyses

With different parameter settings, the scheduling model may get different scheduling
results and performance. In order to understand the parameters’ influence on the
proposed model, several sensitivity analyses are performed in this section. For each
rate of change, we run the program 20 times, and take the mean of these 20 objective
values as the observation value.

1. Sensitivity analysis on average demand

With other parameters being constant, we change the average of the demand from
80 to 120%. The planning results are shown in Fig. 12.17. As the rate increases, the
mean objective value goes up. The reason could be that when the demand rises, the
hospital must purchase more medical resources as inventory reserves in response to
random disturbances in actual operations.

2. Sensitivity analysis on standard deviation

We change the standard deviation from 80 to 120%. As we can see in Fig. 12.18,
the mean objective value grows up as the rate increases. That the rate of change for
standard deviation rises suggests the stochastic disturbances increase. So when the
variation range of the demand for every week increases, it leads to the advance of
the objective value. Therefore, the more the demand is disturbed in real operations,
the more operating cost the hospital will pay.
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Fig. 12.17 Sensitivity analysis on average demand

Fig. 12.18 Sensitivity analysis on standard deviation

3. Sensitivity analysis on fixed ordering cost

We change the fixed ordering cost from 50 to 150%. The test results are shown in
Fig. 12.19. With the rate increasing, the mean objective value descends until 100%
at first, and then goes up. So we can get the optimal objective value with the original
fixed ordering cost, which demonstrates the importance of a proper fixed ordering
cost.

12.3.5 Conclusions

In this work, we study the order and distribution of medical resources in an environ-
ment characterized by stochastic demand and limited supply. A chance-constrained
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Fig. 12.19 Sensitivity analysis on fixed ordering cost

programming model is constructed based on time-space network. Generic algorithm
is applied to solve the model. The test results show the good performance of the
proposed model.

Future research would be useful in at least the following directions. First, since
we discuss only one kind of medical resources, future work could study multiple
kinds of medical resources. Second, the lead time in this model is certain, so it would
be more practical and useful to consider an uncertain lead time.
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Chapter 13
Epidemic-Logistics Network Considering
Time Windows and Service Level

In this chapter, we present two optimization models for optimizing the epidemic-
logistics network. In the first one, we formulate the problem of emergency materials
distribution with time windows to be a multiple traveling salesman problem. Knowl-
edge of graph theory is used to transform theMTSP to be a TSP, then such TSP route
is analyzed and proved to be the optimal Hamilton route theoretically. Besides, a new
hybrid genetic algorithm is designed for solving the problem. In the second one, we
propose an improved location-allocation model with an emphasis on maximizing the
emergency service level. We formulate the problem to be a mixed-integer nonlinear
programming model and develop an effective algorithm to solve the model. In this
chapter, we present two optimization models for optimizing the epidemic-logistics
network. In the first one, we formulate the problem of emergency materials distri-
bution with time windows to be a multiple traveling salesman problem. Knowledge
of graph theory is used to transform the MTSP to be a TSP, then such TSP route is
analyzed and proved to be the optimal Hamilton route theoretically. Besides, a new
hybrid genetic algorithm is designed for solving the problem. In the second one, we
propose an improved location-allocation model with an emphasis on maximizing the
emergency service level. We formulate the problem to be a mixed-integer nonlinear
programming model and develop an effective algorithm to solve the model.

13.1 Emergency Materials Distribution with Time
Windows

13.1.1 Introduction

With rapid development of the global economy, a new biological virus can get any-
where around the world in 24 h. Virus which lurked in the forest or other biological
environment before, have been forced to face human ecologywhen its nature ecology
environment destroyed, and this would cause some new type diseases such as Mar-
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burg hemorrhagic fevers in Angola, SARS in China, Anthrax mail in USA, Ebola in
Congo,smallpox and so on. Bioterrorism threats are realistic and it has a huge influ-
ence on social stability, economic development and human health. Without question,
nowadays the world has become a risk world, filling with all kinds of threaten from
both nature and man made.

Economywould always be the most important factor in normal materials distribu-
tion network. However, timeliness is much more important in emergency materials
distribution network. To form a timeliness emergency logistics network, a scientific
and rational emergency materials distribution system should be constructed to cut
down the length of emergency rescue route and reduce economic loss.

In 1990s, America had invested lots of money to build and perfect the emergency
warning defense system of public health, aiming to defense the potential terror-
ism attacks of biology, chemistry and radioactivity material. Metropolitan Medical
Response System (MMRS) is one of the important parts, which played a crucial role
in the “9.11” event and delivered 50 tons medicine materials to New York in 7 h
[1]. In October 2001, suffered from the bioterrorism attack of anthrax, the federal
medicine reserve storage delivered a great deal of medicine materials to local health
departments [2].

Khan et al. [3] considered that the key challenge of anti-bioterrorism is that people
don’t knowwhen, where and in whichway theywould suffer bioterrorism attack, and
what they can do is just using vaccine, antibiotics and medicine to treat themselves
after disaster happened. Because of this, Venkatesh and Memish [4] mentioned that
what a country most needed to do is to check its preparation for bioterrorism attacks,
especially the perfect extent of the emergency logistics network which includes the
reserve and distribution of emergency rescue materials, and the emergency response
ability to bioterrorism attacks. Other anti-bioterrorism response relative researches
can be found in Kaplan et al. [5].

Emergencymaterials distribution is one of themajor activities in anti-bioterrorism
response. Emergency materials distribution network is driven by the biological virus
diffusion network, which has different structures from the general logistics network.
Quick response to the emergency demand after bioterrorism attack through efficient
emergency logistics distribution is vital to the alleviation of disaster impact on the
affected areas, which remains challenges in the field of logistics and related study
areas [6].

In the work of Cook and Stephenson [7], importance of logistics management in
the transportation of rescue materials was firstly proposed. References Ray [8] and
Rathi et al. [9] introduced emergency rescue materials transportation with the aim of
minimizing transportation cost under the different constraint conditions. A relaxed
VRP problem was formulated as an integer programming model and proved that’s
a NP-Hard problem in Dror er al. [10] Other scholars have also carried out much
research on the emergency materials distribution models such as Fiedrich et al. [11],
Ozdamar et al. [12] and Tzeng et al. [13].

During the actual process of emergency material distribution, the Emergency
Command Center(ECC) would always supply the emergency materials demand
points(EMDP) in groups based on the vehicles they have. Besides, each route
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wouldn’t repeat, which made any demand point get the emergency materials as fast
as possible. To the best of our knowledge, this is a very common experience in China.
Under the assumption that any demand point would be satisfied after once replen-
ishment, the question researched would be turn into a multiple traveling salesman
problem (MTSP) with an immovable origin. In the work of Bektas [14], the author
gave a detailed literature review on MTSP from both sides of model and algorithm.
Malik et al. [15], Carter and Ragsdale [16] illustrate some more results on how to
solve the MTSP.

To summarize, our model differs from past research in at least three aspects.
First, nature disaster such as earthquake, typhoons, flood and so on was always
used as the background or numerical simulation in the past research, such kind of
disaster can disrupt the traffic and lifeline systems, obstructing the operation of rescue
machines, rescue vehicles and ambulances. But situation in anti-bioterrorism system
is different, traffic would be normal and the epidemic situation could be controlled
with vaccination or contact isolation. Second, to the best of our knowledge, this is the
first time to combine research on the biological epidemic model and the emergency
materials distribution model, and we assume that emergency logistics network is
driven by the biological virus diffusion network. Therefore, it has a different structure
from the general logistics network. Third, the new hybrid genetic algorithm we
designed and applied in this study is different from all the traditional ways, we
improved the two-part chromosome which proposed by Carter and Ragsdale [16],
and custom special set order function, crossover function and mutation function,
which can find the optimal result effectively.

13.1.2 SIR Epidemic Model

Although rule of the virus diffusion isn’t the emphasis in our research, it is the
necessary part when depicting the emergency demanded. Figure 13.1 illustrates SIR
epidemic model with natural birth and death of the population.

Then we can get the mathematic formulas as follows.

dR 

bR bI 

αI dI 

βSI 

dS 

bS γI 
S I R 

Fig. 13.1 SIR model with natural birth and death
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dS

dt
= (b − d)S − βSI

d I

dt
= βSI + (b − γ − d − α)I

d R

dt
= bR + γ I − dR

(13.1)

where S, I and R, represent number of the susceptible, infective and recovered
population, respectively. b and d, stand for the natural birth and death coefficient, α
is the death coefficient for disease, β is the proportion coefficient from S to I in unit
time, and last, γ is the proportion coefficient from I to R.

Note that number of the susceptible and the infective persons would be gotten via
computer simulation with value of the other parameters preset. Then, the emergency
materials each point demanded can be also calculated based on the number of sick
person.

13.1.3 Emergency Materials Distribution Network with Time
Windows

Figure 13.2 is the roadway network of a city in south China, numbers beside the
road are the length of the section (unit: km). Point O is the ECC and the other nodes
1–32 are the EMDPs. Now, there are some emergency materials arrived at the ECC
by air transport and we need to send it to each demand point as fast as possible. We
assumed that all the EMDPs are divided into 4 groups, and any demand point in the
network would be satisfied after once replenishment, then the question researched
was turn into a MTSP with an immovable origin. However, time windows constraint
wasn’t considered.

In this study, we use the new hybrid GA to solve the MTSP with time windows.
Using SIR epidemic model in Sect. 13.2, number of the susceptible and infective
people can be forecasted before emergency distribution. Then symbol ti is set to
show how much time is consumed in demand point i , i = 1, 2, . . . , 32. We assume
it has a simple linear functional relationship with number of the infective person as
follows.

ti = Ii
vvac

(13.2)

where Ii is number of the infective people in demand point i , vvac is the average
speed of vaccination. Another assumption for this research is that vehicle speed is
the same as in any roadway section in the network, which noted as a symbol V .
So, question researched in this study is: Based on the epidemic model analysis,
how can we distribute the emergency materials to the whole EMDPs with a time
windows constraint? How many groups should be divided? And, how can we get
the optimization route? With the analysis above, objective function model can be
formulated as follows.
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Fig. 13.2 Roadway network of the city

min
32∑

i=1

32∑

j=1

si j xi j
V

+
32∑

i=1

ti (13.3)

s.t.
32∑

j=1

xoj = n (13.4)

32∑

j=1

x jo = n (13.5)

32∑

i=1

xi j = 1,∀ j = 1, 2, . . . , 32 (13.6)
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32∑

j=1

xi j = 1,∀i = 1, 2, . . . , 32 (13.7)

∑

i /∈S

∑

j∈S
xi j ≥ 1,∀S ⊆ V \{O}, S �= ∅ (13.8)

Tk ≤ TTW , k = 1, 2, . . . , n (13.9)

xi j ∈ {0, 1},∀(i, j) ∈ G (13.10)

where xi j = 1 means that the emergency materials is distributed to point j immedi-
ately after point i , otherwise, xi j = 0. si j represent the shortest route between point
i and j . n is number of the distribution groups. Tk is time consumed in group k. TTW
is the time windows. Equations (13.4) and (13.5) are the grouping constraints, (13.6)
and (13.7) insure that each demand point would be supplied once. Equation (13.8)
assures that there is no sub loop in the optimal route. Equation (13.9) is the time
windows constraint. And last, Eq. (13.10) is the parameter specification. The hybrid
genetic algorithm are presented as follows.

Step 1:Using SIR epidemic model in Sect. 13.2 to forecast number of the susceptible
and infective people, and then, confirm the emergency distribution time in each
EMDP;
Step 2: Generate the original population based on the code rule;
Step 3: Using the custom set order function to optimize the original population and
make the new population have finer sequence information;
Step 4: Estimate that whether the results satisfy the constraints (4) to (10) in the
model, if yes, turn to the next step, if not, delete the chromosome;
Step 5: Using the fitness function to evaluate fitness value of the new population;
Step 6: End one fall and the best one doubled policy are used to copy the population;
Step 7: Crossover the population using the custom crossover function;
Step 8:Mutate the population using the custom mutation function;
Step 9: Repeat the operating procedures (3)–(8) until the terminal condition is sat-
isfied;
Step 10: 10 approximate optimal routes would be found by the new hybrid genetic
algorithm and then the best equilibrium solution would be selected by the local
search algorithm.

13.1.4 Numerical Tests

In order to evaluate the practical efficiency of the proposed methodology, parameters
of the SIR epidemic model are given as follows, b = d = 10−5, β = 10−5, α =
0.01, γ = 0.03, and initializing S = 10,000, I = 100, R = 0. vvac = 2000,
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Fig. 13.3 Virus diffusion with time

TTW = 12, V = 40, Day = 5. And we assume that each EMDP has the same
situation. Figure 13.3 illustrates that number of the susceptible and infective people
changed. Similarly, with different initial value of the Si and Ii in different EMDP,
number of the susceptible and infective people in any EMDP and any time can
be forecasted, and then, time consumed in each demand point can be calculated.
Figure 13.4 illustrates the magnitude of the differences in the solution spaces for the

Fig. 13.4 Solution space of the MTSP
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three chromosomes for a MTSP with n = 32 demand points as the group number is
varied from 1 to 32. From this figure we can see that when n ≥ 4, size of the solution
space in Two-part chromosome is distinguish to the other two styles.

Figures 13.5 and 13.6 show the fitness and route length vary with iterate times
using the new hybrid GA, respectively. From the figures we can see that each group
would be converged effectively, 10 approximate optimal routes would be obtained.

Comparison of the 10 approximate optimal routes is illustrated in Fig. 13.7, and the
best equilibrium solution of emergency materials distribution is shown in Fig. 13.8.

From Figs. 13.6 and 13.7, though length of the route in group 9 is the shortest
one, it isn’t the best equilibrium solution. In other words, some demand points can be
supplied immediately but others should wait for a long time. This is not the objective
we pursue. From Fig. 13.7, inside deviation of group 7 is the minimum one, which
means route in group 7 is the best equilibrium solution, though it isn’t the shortest
route. In other words, all the demand points can be supplied in the minimum time
difference at widest possibility. Another problem worthy to be pointed out is that
group 10 is the suboptimal to group 7, and this can be used as a candidate choice for
commander under the emergency environment.

Fig. 13.5 Fitness with iteration
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Fig. 13.6 Route length with iteration

Fig. 13.7 The inside deviation of each group

13.1.5 Discussion

In fact, results in the prior section are too idealized, for we just considered emer-
gencymaterials distribution at the beginning of the virus diffusion (Day = 5) andwe
assume that each EMDP has the same situation. In fact, it is impossible. Each param-
eter preset would affect the result at last immensely. Some of them are discussed as
follows.

(1) Time consumed with different initial size of S

There are 32 EMDPs in this distribution network, actually, each point has a different
number of the susceptible people to others, and we can assume they are distributed
from 10,000 to 50,000. With the SIR epidemic model in Sect. 13.1.2, different size
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Fig. 13.8 Best equilibrium solution of the MTSP

Fig. 13.9 Time consumed with different initial size of S

of the initial susceptible people will bring different size of infective people at last,
and then, time consumed in these EMDPs would be varied. Figure 13.9 illustrates
that time consumed in one EMDP with different initial size of S as date increased.
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There is almost no distinguish among them in the first 30 days (a month), however,
distinguish is outstanding in the following days. The larger the initial size of S is,
the faster increment speed of the time consumed. In Sect. 13.1.4, S = 10, 000 is
taken for each EMDP and the time consumed almost no more than 1 h, this is a very
simple situation, and the optimal route with timewindows can be depicted easily. But
when initial size of S increased, the problem would become much more trouble for
satisfying the time window constraint, and then, we should divided the distribution
route in much more groups.

(2) Time consumed with different initial size of I

Asmentioned before, each EMDP also has a different number of the infective people
to others, and we can assume they are distributed from 50 to 200. Figure 13.10
illustrates that time consumed in one EMDP with different initial size of I as date
increased. It also can get that time consumed in the first 30 days is smoothly, but
distinguish is outstanding in the following days. Similar as before, the larger the initial
size of I is, the faster increment speed of the time consumed. Another interesting
result is that vary I from 50 to 200, distinguish of the time consumed in each situation
isn’t very outstanding, and size of the time consumed is around 1 h. In other words,
model in Sect. 13.1.3 is still serviceable and we needn’t change the grouping design.

(3) Time consumed with different initial size of β

β is one of themost important parameters in SIR epidemicmodel, it affects number of
the infective people in the population directly, and then, it affects the time consumed
in EMDP accordingly. Vary value of β from 10−5 to 5 × 10−5, and we get time
consumed with it changed as show in Fig. 13.11. Still we have conclusion that time
consumed in the first 30 days is more or less in different situations, but distinguish
is outstanding in the following days. Similar as before, the larger the initial size of β

is, the faster increment speed of the time consumed. With initial size of β increased,
distribution groups should be adjusted for satisfying the time windows.

Fig. 13.10 Time consumed with different initial size of I
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Fig. 13.11 Time consumed with different initial size of β

Based on the analysis above, we can see that time consumed in the first 30 days
always stay in a lower level. It is important information for emergency relief in
the anti-bioterrorism system, which means the earlier the emergency materials dis-
tributed, the less affect would be brought by parameters varied. This also answers the
actual question that why emergency relief activities always get the best effectiveness
at the beginning.

13.1.6 Conclusions

Emergencymaterials distribution problemwith aMTSPTWcharacteristic in the anti-
bioterrorism system is researched in this study, and the best equilibrium solution
is obtained by the new hybrid GA. Modeling the MTSP using the new two-part
chromosome proposed has clear advantages over using either of the existing one
chromosome or the two chromosome methods. Besides, combined with the SIR
epidemic model, relationship between the parameters and the result are discussed at
last, which makes methods proposed in this study more practical.

A problem worthy to be pointed out is that the shortest route between any two
EMDPs in the new hybrid GA is calculated by Dijkstra algorithm, so, the optimal
result would be gotten even if some sections of the roadway are disrupted, which
makes applicability range of the method projected in this study expanded. Research
on the emergency materials distribution is a very complex work, only some idealized
situations are analyzed and discussed in this study, and some other constraints such
as loading capacity of the vehicles, death coefficient for disease, distribution mode
and so on, which could be directions of further research.
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13.2 An Improved Location-Allocation Model
for Emergency Logistics Network Design

Emergency logistics network design is extremely important when responding to
an unexpected epidemic pandemic. In this study, we propose an improved location-
allocationmodelwith an emphasis onmaximizing the emergency service level (ESL).
We formulate the problem to be a mixed-integer nonlinear programming model
(MINLP) and develop an effective algorithm to solve the model. The numerical
test shows that our model can provide tangible recommendations for controlling an
unexpected epidemic.

13.2.1 Introduction

Over the past decade, various types of diseases have erupted throughout the
world, i.e., SARS (2003), human avian influenza (2004), H1N1 (2009), and Ebola
(2014–2015). These unconventional diseases not only seriously endanger humanity’s
life, but also have significant impacts on economic development. A recent example
is the 2014–2015 Ebola pandemic occurring in West Africa, which infected 28,610
individuals, causing 11,300 fatalities and $32.6 billion in economic losses.

To satisfy the emergency demand of epidemic diffusion, an efficient emergency
service network,which considers how to locate the regional distribution center (RDC)
and how to allocate all affected areas to these RDCs, should be urgently designed.
This problem opens a wide range for applying the OR/MS techniques and it has
attracted many attentions in recent years.

For example, Ekici et al. [17] proposed a hybridmodel, which estimated the spread
of influenza and integrated it with a location-allocation model for food distribution
in Georgia. Chen et al. [18] proposed a model which linked the disease progression,
the related medical intervention actions and the logistics deployment together to help
crisis managers extract crucial insights on emergency logistics management from a
strategic standpoint. Ren et al. [19] presented a multi-city resource allocation model
to distribute a limited amount of vaccine tominimize the total number of fatalities due
to a smallpox outbreak. He and Liu [20] proposed a time-varying forecasting model
based on a modified SEIR model and used a linear programming model to facili-
tate distribution decision-making for quick responses to public health emergencies.
Liu and Zhang [21] proposed a time-space network model for studying the dynamic
impact of medical resource allocation in controlling the spread of an epidemic. Fur-
ther, they presented a dynamic decision-making framework, which coupled with a
forecasting mechanism based on the SEIR model and a logistics planning system to
satisfy the forecasted demand andminimize the total operation costs [22]. Anparasan
and Lejeune [23] proposed an integer linear programming model, which determined
the number, size, and location of treatment facilities, deployed medical staff, located
ambulances to triage points, and organized the transportation of severely ill patients
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to treatment facilities. Büyüktahtakın et al. [24] proposed a mixed-integer program-
ming (MIP)model to determine the optimal amount, timing and location of resources
that are allocated for controlling Ebola in West-Africa. Moreover, literature reviews
on OR/MS contributions to epidemic control were conducted in Dasaklis et al. [25],
Rachaniotis et al. [26] and Dasaklis et al. [27].

In this study, we propose an improved location-allocation model for emergency
resources distribution.We define a new concept of emergency service level (ESL) and
then formulate the problem to be a mixed-integer nonlinear programming (MINLP)
model. More precisely, our model (1) identifies the optimal number of RDCs, (2)
determines RDCs’ locations, (3) decides on the relative scale of each RDC, (4)
allocates each affected area to an appropriate RDC, and (5) obtains ESL for the best
scenario, as well as other scenarios.

13.2.2 Model Formulation

(1) Definition of ESL

In this study, ESL includes two components. ESL1 is constructed to reflect the
level of demand satisfaction and ESL2 is proposed for the relative level of emergency
operation cost. These two aspects are given by the weight coefficient α and 1 − α

respectively. The influence of these two factors on the ESL is illustrated in Fig. 13.12.
Figure 13.12a represents that ESL1 increases as the level of demand satisfaction
raised. As we can see that it is a piecewise curve. Before demand is completely
met, it is an S-shape curve from zero to α. After that, it becomes a constant, which
means the additional emergency supplies cannot improve the ESL. Figure 13.12b
identifies that ESL2 decreases as the relative total cost increases. When emergency
operation cost is minimized, the ESL2 arrives at its best level of 1 − α. Similarly,
when emergency operation cost is maximized, the ESL2 is zero.

(2) Mathematic Model

0 1

α

ESL1

Demand 
Satisfaction

1-α

ESL2

Total Cost
min

2f
max

2f

(a) (b)

Fig. 13.12 Schematic diagram of ESL
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Our model depicts the problem of location and allocation for emergency logistics
network design. The network is a three-echelon supply chain of strategic national
stockpile (SNS), RDCs, and affected areas. The core problem is to determine the
number and locations for the RDCs. In each affected area, there is a point of dis-
pensing (POD). To model the problem, we first present the relative parameters and
variables as follows.

Parameters:
I : Set of SNSs, i ∈ I .
J : Set of RDCs, j ∈ J .
K : Set of affected areas, k ∈ K .
α: Weight coefficient for the two parts of ESL.
dk : Demand for emergency supplies in affected area k.
(xk, yk): Coordinates of affected area k.
(xi , yi ): Coordinates of SNS i .
CT L : Unit transportation cost from SNS to RDC.
CLT L : Unit transportation cost from RDC to affected area.
CRDC

j : Cost for operating a RDC. It is decided by the relative size of the RDC j .
Ui : Supply capacity of SNS i .

Variables:
Di j : Distance from SNS i to RDC j . For simplify, the Euclidean distance is adopted.
Djk : Distance from RDC j to affected area k.
ε jk : Binary variable. If RDC j provides emergency supplies to affected area k,
ε jk = 1; otherwise, ε jk = 0.
z j : Binary variable. If RDC j is opened, z j = 1; otherwise, z j = 0.
x jk : Amount of emergency supplies from RDC j to affected area k.
yi j : Amount of emergency supplies from SNS i to RDC j.
(x j , y j ): Coordinates of RDC j .

According to the above notations,we candefine the optimizationmodel as follows.

Max ESL = ESL1 + ESL2 (13.11)

Herein, ESL1 is defined as (13.12)–(13.14). These equations reflect that the less
the unsatisfied demand is, the higher ESL1 is.

ESL1 = α
1

K

K∑

k=1

pk(h) (13.12)

pk(h) = e
−hk
1−hk (13.13)

hk = 1 −
∑J

j=1 ε jk x jk

dk
(13.14)



274 13 Epidemic-Logistics Network Considering …

ESL2 is defined as follows. First, we formulate the total operation cost as (13.15):

f2 = CT L

J∑

j=1

I∑

i=1

z j yi j Di j+CLT L

J∑

j=1

K∑

k=1

ε jk x jk D jk +
J∑

j=1

z jC
RDC
j (13.15)

where CRDC
j is the operating cost for RDC j when it is opened. It is decided by the

relative size of the RDC, which can be expressed as:

CRDC
j = f (s j ) (13.16)

s j =
∑K

k=1 x jk
∑J

j=1

∑K
k=1 x jk

,∀ j (13.17)

Second, to non-dimensionalize the cost function f2, we calculate the following
two extreme values for Eq. (13.15).

Min
var∈S

f2(var) = fmin
2 , Max

var∈S
f2(var) = fmax

2 (13.18)

F2 = 1 − f2(var) − fmin
2

fmax
2 − fmin

2

= fmax
2 − f2(var)

fmax
2 − fmin

2

(13.19)

ESL2 = (1 − α)F2 (13.20)

where var represents all variables and S represents the following constraints. f min
2

and f max
2 are the minimum and maximum values obtained by solving (13.15) with-

out considering the ESL1. The definition of ESL2 means that the lower the total
operation cost is, the higher the ESL is. The constraints for the optimization model
are given as follows:

s.t.
J∑

j=1

ε jk = 1,∀k ∈ K (13.21)

J∑

j=1

ε jk x jk ≤ dk,∀k ∈ K ; (13.22)

I∑

i=1

z j yi j =
K∑

k=1

ε jk x jk,∀ j ∈ J (13.23)

ε jk ≤ z j ,∀ j ∈ J, k ∈ K (13.24)
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J∑

j=1

z j ≤ J (13.25)

J∑

j=1

yi j ≤ Ui ,∀i ∈ I (13.26)

z j , ε jk = {0, 1},∀ j ∈ J, k ∈ K (13.27)

x jk, yi j ∈ Z+
0 ,∀i ∈ I, j ∈ J, k ∈ K (13.28)

(x j , y j ),∀ j ∈ J are continuous variables. (13.29)

Constraint (13.21) indicates that each affected area is serviced by a single RDC.
Constraint (13.22) specifies that the supplies to each affected area should not bemore
than its demand. Constraint (13.23) is a flow conservation constraint. Constraint
(13.24) shows that only the opened RDC can provide distribution service. Constraint
(13.25) specifies the upper bound of RDC number. Constraint (13.26) is the supply
capacity constraint of each SNS. Finally, constraints (13.27)–(13.29) are variables
constraints.

13.2.3 Solution Procedure

The proposed model for emergency services network design is a MINLP model
as it involves multiplication of two variables (i.e., ε jk x jk). More importantly, the
optimization model includes a continuous facility location-allocation model with
unknown number of RDCs. To avoid the complexity of such MINLP model, we
modify it by adding two auxiliary variables. The detail of the modification was
introduced in McCormick [28]. Our solution procedure integrates an enumeration
search rule and a genetic algorithm (GA), which are applied iteratively. As GA is a
mature algorithm [29], details of the GA process are omitted here. We summarize
the proposed solution methodology as below.

Step 1: Data input and parameters setting, which includes I, J, K, α, dK ,
(xk, yk), (xi , yi ),CT L ,CLT L , andCRDC

j and the related parameters for GA.
Step 2: Initialization. Generate the original population according to the constraints.
Step 3: Evaluation. Fitness function is defined as the reciprocal of ESL.
Step 4: Selection. Use roulette as the select rule.
Step 5: Crossover. Single-point rule is used.
Step 6: Mutation. A random mutation is applied.
Step 7: If termination condition is met, go to the next Step; else, return to Step 4.
Step 8: Output the results.
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13.2.4 Numerical Test

(1) Data Setting

To clarify the effect of the model, we conduct a numerical test. Assuming there is an
unexpected epidemic outbreak in a 100 × 100 square region with 10 affected areas
in it. In the square region, only three SNSs can provide emergency supplies. Because
at the early stage of the outbreak, there is a large demand for emergency supplies.
The supply capacity of these SNSs is less than the total demand in affected areas,
which are set at 700, 600 and 400 respectively. The coordinates of the SNSs and the
affected areas are obtained in advance. The upper bound of RDC number is set to
be 8. The cost of operating a RDC is defined as 6760 × √

s j . The demand in each
affected area is randomly generated. Finally, unit transportation cost from SNS to
RDC is set to be 80 and unit transportation cost from RDC to affected area is 160.

(2) Test Results

Based on the above data setting, we solve our model by using MATLAB software
and obtain the results in Fig. 13.13. As it shows in this figure, one can observe that
there is a trade-off between the two components of the ESL. In our example, we test
the parameter α from 0.4 to 0.9, which means the demand satisfaction is more and
more important in our decision making. The result shows that when α is equal to 0.6,
the total ESL can arrive at its best value (0.9258). Beyond which it decreases again.
In practice, the decision makers may have different value of α according to the actual
needs. Correspondingly, it will lead to different ESL.

Our model also determines the optimal number, locations and relative sizes for
the RDCs. The test results are shown in Table 13.1. For example, RDC1 deliver
emergency supplies to affected areas 2, 7 and 9. Its relative size is 33.23%, which
means emergency supplies transshipped in this RDC occupies the corresponding
proportion in total emergency distribution.

Table 13.2 illustrates the proportion of demand satisfaction for each affected area.
For an example, demand for emergency supplies in affected area 2 is 149, and all
this area’s demand is totally satisfied. However, one can also observe that demands
in some areas are partly supplied due to the supply capacity limitation. For example,
only 69.5% of the demand in affected area 1 is delivered.

Fig. 13.13 ESL with
different scenario of α
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Table 13.1 Location and relative scale of each RDC

RDC Location Relative scale (%) Affected area

1 (18.1651, 33.8696) 33.23 2, 7, 9

2 (38.2318, 39.6607) 10.24 10

3 (75.9550, 37.1063) 21.24 4, 6

4 (61.6731, 93.3449) 13.41 1, 5

5 (48.1101, 84.0045) 21.88 3, 8

Table 13.2 The proportion of demand satisfaction in each affected area

Number Affected areas Demand Supply Proportion (%)

1 (81.5, 15.7) 141 98 69.5

2 (90.6, 89) 149 149 100

3 (31.7, 85.7) 158 158 100

4 (48.5, 31.3) 170 170 100

5 (3.2, 70) 188 130 69.15

6 (8.7, 4.2) 191 191 100

7 (27.8, 42.1) 208 208 100

8 (54.7, 91.6) 214 214 100

9 (55.8, 79.2) 208 208 100

10 (36.4, 26) 233 174 74.68

(3) Sensitivity Analysis

(1) Impact of α on the ESL

To understand the impact of α on the ESL, we solve our model with 6 different
values of this parameter, meaning that decision makers have different considerations
of the two components of the ESL. We compare the test result in Table 13.3. It can
be observed that ESL1 increases along with the emphasis on demand satisfaction.
However, the actual proportion of ESL1 is always staying at 90% of the setting of α.

Table 13.3 Sensitivity analysis on weight of ESL

α ESL1 Proportion (%) ESL2 Proportion (%) ESL

0.4 0.3537 88.425 0.5466 91.1 0.9003

0.5 0.4381 87.62 0.4839 96.78 0.9220

0.6 0.5398 89.96 0.386 96.5 0.9258

0.7 0.6378 89.99 0.2822 94.07 0.9200

0.8 0.7269 90.86 0.1876 93.8 0.9145

0.9 0.8182 90.91 0.0914 91.4 0.9096
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Fig. 13.14 ESL with
different demand in affected
areas
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As to the ESL2, one can note that it increases at first and then decreases as α varied
from 0.4 to 0.9.

(2) Sensitivity analysis on different demand in each affected area

We also examined the impact of different demand in each affected area. The test
results are shown in Fig. 13.14. We change the original demand in each affected
area for five scenarios. That means different demand situations when an unexpected
infectious epidemic happened. One can easily observe the more the demand is, the
lower the optimal ESL is. That is because when the demand increases, the supplies
of SNSs remain original, which leads a reduction in ESL1. When the demand in each
affected area changes, ESL2 varies slightly. Which shows that the change of the total
operation cost for the emergency logistics is not obvious when the scale of disease
becomes smaller.

13.2.5 Conclusions

In this study, we propose an improved location-allocation model with an emphasis
on maximizing the emergency service level (ESL). We formulate the problem to be
a mixed-integer nonlinear programming model and develop an effective algorithm
to solve the model. Moreover, we test our model through a case study and sensitivity
analysis. Themain contribution of this research is the function of ESL, which consid-
ers demand satisfaction and emergency operation cost simultaneously. Our definition
of ESL is different from the existing literature and has a significant meaning for guid-
ing the actual operations in emergency response. Future studies could address the
limitations of our work in both the disease forecasting and logistics management.
For example, the dynamics of epidemic diffusion could be considered and thus our
optimization problem can be extended to a dynamic programming model.
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Appendix A

Total distance for three depots (C subset)

D1 D2 D3

PTP mode 357.278 288.473 202.642

MMTS mode 119.3851 145.0218 88.4474

Mixed mode 187.36958 164.4879 126.0311

Total timeliness for three depots (C subset)

D1 D2 D3

PTP mode 1 1 1

MMTS mode 0.88821901 0.83309162 0.75788615

Mixed mode 0.97178651 0.89720673 0.94884224

Total distance for three depots (R subset)

D1 D2 D3

PTP mode 452.153 293.746 240.466

MMTS mode 233.8722 215.4168 132.5380

Mixed mode 238.6701 248.54435 178.3513

Total timeliness for three depots (R subset)

D1 D2 D3

PTP mode 1 1 1

MMTS mode 0.662748 0.452693 0.777507

Mixed mode 0.816888 0.820834 0.905773
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Total distance for three depots (RC subset)

D1 D2 D3

PTP mode 234.556 288.473 131.7881

MMTS mode 109.0158 137.5527 65.3893

Mixed mode 141.13521 181.61341 72.29127

Total timeliness for three depots (RC subset)

D1 D2 D3

PTP mode 1 1 1

MMTS mode 0.830251 0.87731 0.872961

Mixed mode 0.936154 0.914882 0.90525
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Appendix B

B.1 Model Validation

Following the verification process in Büyüktahtakın et al. [1], we validate our
predicted data against the actual outbreak data in terms of the cumulative number of
infected individuals on these days (from July 1st to December 27th), which includes
a planning horizon of 180 days and contains 60 time-series data. Figure B.1 shows
that our predicted data is slightly underestimated at the initial 15 time-series data
and then marginally overestimated than the actual outbreak data in later. The
paired-t-test results in Table B.1 prove that our model provides statistically similar
results with respect to the outbreak data for the time period (from July 1st, 2009 to
December 27th, 2009). As we all know, the paired-t-test, sometimes called the
dependent sample t-test, is a statistical procedure used to compare the mean dif-
ference between two sets of observations. Since all p-values in Table B.1 are
greater than 0.05, it illustrates that there is no significant difference between the
predicted data and the actual outbreak data.

© Science Press and Springer Nature Singapore Pte Ltd. 2020
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Fig. B.1 Comparison of the cumulative number of infected individuals between the predicted data
and the outbreak data [1]
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B.2 Optimization Results With Different Budget Sizes

The columns of Table B.2 report the objective value, affected areas, optimal bud-
get allocations, cumulative capacity, cumulative number of infected individuals and
cumulative number of hospitalized individuals in each affected area, by solving our
model with different budget limitations.

B.3 Impact of Different Intervention Starting Dates

The impact of different intervention starting dates on the number of infected
individuals is shown in Fig. B.2. Although all intervention strategies can help
reduce the number of infections and lessen the exponential growth of the disease
[1], one can see that the earlier the intervention starts, the fewer the infected
individuals there are. It is worth mentioning that starting intervention on August 30
is too late because it leads to an outstandingly higher number of infected individuals
when compared to the other four scenarios. Such result is consistent with
Büyüktahtakın et al. [1], which suggests that the number of infected cases can

Table B.1 Statistical test of our predicted data and outbreak data [1]

Area Mean Two-tailed
paired-t-test

Outbreak data Predicted data t-stat p-value

Infected areas JS-N 19.78 20.35 −0.1476 0.8826

JS-C 23.81 24.57 −0.2932 0.8125

JS-S 40.42 38.23 −0.1793 0.8355

Table B.2 Optimization results with different budget sizes [1]

Budget (Million) Objective Affected area Budget allocation Capacity Infected Hospitalized

100 44,412,018 JS-N 22.9 M (22.9%) 1911 10,931,678 1474

JS-C 28.9 M (28.9%) 2253 13,933,064 1738

JS-S 48.2 M (48.2%) 3768 19,552,069 2907

Total 100 M 7932 44,416,812 6120

150 10,902,400 JS-N 34.2 M (22.8%) 2903 2,983,946 2240

JS-C 45.3 M (30.2%) 3635 3,216,222 2804

JS-S 70.5 M (47.0%) 5359 4,717,945 4135

Total 150 M 11,897 10,918,113 9179

200 853,285 JS-N 46.8 M (23.4%) 3895 239,426 3005

JS-C 56.4 M (28.2%) 4475 264,531 3453

JS-S 96.8 M (48.4%) 7685 395,144 5930

Total 200 M 16,056 899,101 12,388

250 2821 JS-N 59.2 M (23.7%) 4396 5218 4178

JS-C 73.6 M (29.4%) 5943 6590 5153

JS-S 117.2 M (46.9%) 8908 10,298 6310

Total 250 M 19,247 22,106 15,641
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Fig. B.2 Impact of different intervention starting dates [1]
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increase significantly if starting intervention is too late, even with ample emergency
budget and strong intervention efforts. Therefore, this result implies us that applying
an early intervention strategy is particularly important when response to an unex-
pected epidemic outbreak.
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