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Abstract Location analysis and modeling have been widely applied to support
locational decisions for service provision. The general idea of such analysis has
been for sited facilities to serve the demand of interest in an efficient and/or effective
way. In many applications, service demand involves either general people or certain
population groups in a region. Currently, population-based demand has been
assessed mainly based on where people live, primarily using census population
count data. This can be problematic given that people do not always stay at home
or originate their trips from home. As a result, relying upon residential information
may lead to an inaccurate evaluation of service demand in location modeling. This
study investigates the impacts of alternative population characterizations on the
classic p-median problem. A new model incorporating time-varying population
distributions is introduced. An empirical study was conducted in three regions in
Shanghai, China, where time-varying population distributions were derived using
cell phone data. Analysis results show that solutions generated based on where
people live can be far from the optimal that considers the temporal variability of
population distributions. Discussion is provided on ways to remedy the issue.
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4.1 Introduction

Location analysis and modeling have been widely used to support locational deci-
sions for various service provisions in both the public and private sectors. Applica-
tions include urban green space design (Zhang et al. 2017), emergency humanitarian
logistics (Boonmee et al. 2017), health service development planning (Rahman and
Smith 2000; Ahmadi-Javid et al. 2017), and farmers’ market placement (Tong et al.
2012). The general idea of these models has been to locate facilities to serve the
demand of interest in an efficient and/or effective way. While some models focus on
ensuring a certain level of service with minimal resources, others try to achieve the
maximal efficiency or equity given a limited budget.

In many location models, people often serve as the demand for the intended
services. Such services include healthcare (Murawski and Church 2009; Meskarian
etal. 2017), public transportation (Wu and Murray 2005), cell phone signal coverage
(Akella et al. 2010), emergency responses (Marianov 2017), and disaster relief good
planning (Widener and Horner 2011; Chen et al. 2013). In these studies, population
has been mainly characterized based on where people live. Such information can be
obtained from Census Bureau in certain aggregate form. For example, American
Community Survey (ACS) provides population count data based on census data
collection units. Using census data, Socioeconomic Data and Applications Center
(SEDAC) provides population estimates at certain grid level (e.g., 1 km).

Characterizing demand based on where people live might be problematic in many
real-world applications as people may need to be present at workplaces, move on
roadways, and visit parks depending on the time of the day. Except for a few studies,
relying on the static residential information for population representation may lead to
an inaccurate evaluation of service demand in location modeling. It remains
unknown to what extent such an inaccurate demand assessment affects the optimal
solution and whether the impact varies with population distributions. Drawing on
spatiotemporal cell phone data collected in Shanghai, China, this chapter aims to
provide an investigation on these questions. The next section provides a literature
review on population characterization in existing location analysis studies and the
associated problems. This is followed by an introduction to a classic location model
and a new model incorporating temporal variability of population. An empirical
study is then conducted with the results presented. We conclude with some discus-
sion and future research directions.

4.2 Background

In many location modeling studies, population-based demand is often approximated
using census population count data given the data availability. The count data
summarize the total population information in the associated data collection unit,
such as census block group or tract. One common practice has been to aggregate
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these areal units into points each assigned with the corresponding population
information. For example, in a study on the sexual health service provision,
Meskarian et al. (2017) aggregated postcode-level population into a set of points
representing the service demand. In seeking the best sites for locating mobile food
markets, Widener et al. (2012) used block group centroids to represent the demand
site for fresh food. While most studies directly rely on census data for population
demand, some applications may need finer population information. To better char-
acterize the spatial variation, Wu and Murray (2005) made a population interpolation
analysis at the 30 x 30 m scale and applied the associated population estimates to
determine the best modification strategy for transit service provision.

Using census population data as the proxy for service demand is equivalent to
assuming people receive or originate their trips for the intended service at home. For
certain services that people need to receive all the time such as cell phone signals and
emergency responses, ensuring coverage of residential areas is insufficient. This is
because in addition to home people frequently visit and stay at other important sites
such as workplaces, schools, parks, etc. For example, the 2017 American Time Use
Survey reported that workers on average spent about 8 h on an average weekday at
work, and 83% of workers did some or all of their work at workplace. Also, people
spend a significant amount of time traveling to their activity destinations. The 2017
National Household Survey found that on average, American drivers and passengers
spent about an hour in a vehicle every day.

For services where people need to make their trips for, such as transit services,
grocery stores, and medical care, current modeling results may only cover home-
based trips by ensuring that the service provided is most convenient to homes.
However, studies showed that people may also initiate their travel from other
important locations such as school and workplace. Based on a survey, Mack and
Tong (2015) reported that about 42% of the farmers’ market trips originated from
nonhome places. In general, nonhome-based trips have been found to account for
over 30% of all daily trips (Mcguckin et al. 2005). Recognizing that workplaces may
serve as important sites where people originate their trips from, several studies
expanded the demand representation to also include employment in their location
modeling. For example, in a transit stop removal study, Wu and Murray (2005)
considered the amount of employees in each census block along with the census
population for potential transit service. Similarly, in determining the best farmers’
markets sites, Tong et al. (2012) considered workers at their workplaces for potential
demand for farmers’ markets. While in some applications, it is important to locate
services/facilities close to where people live or work, a more general framework has
been to capture the commute flows by locating facilities close to commute routes.
The approach to incorporating commute-based trip chain has been used to site
children day care centers (Hodgson 1981) and determine the location and operation
time of farmers’ markets (Tong et al. 2012).

In addition to home and workplace, people may be at different places during
different times of the day for various purposes, and these may include a large number
of non-commute chained trips. Based on a 2008 National Household Travel Survey
add-on dataset, Li and Tong (2017) observed 78% non-commute chained trips. They
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then developed a facility location model to address a full spectrum of trip chaining
by incorporating travelers’ daily activity-travel program into service provision
planning. According to their approach, people have the flexibility of visiting a
facility from any activity site, including home, workplace, and other activity desti-
nations, and along any trip made based on an individual’s daily activity-travel
program. Such an approach assumes the knowledge of an individual’s daily
activity-travel program, which can be very challenging due to the data availability
issue.

To have a better understanding of the issue associated with population character-
ization in location modeling, this study analyzes the temporal variability of popula-
tion distributions and examines how locational decisions may vary with alternative
demand characterization. Different from detailed activity-travel data used in Li and
Tong (2017), data involved in this study are relatively easier to obtain, especially
considering the increasing availability of large geotagged data collected through cell
phones and wearable devices. We also note the difference between people’s daily
movement and seasonal or long-term migration. For example, Ndiaye and Alfares
(2008) provided a study on healthcare facility location where population groups
migrated seasonally. In their study, during a season, population groups were fixed at
home locations, and people’s daily movement was not considered. We use the
classic p-median problem (ReVelle et al. 2008) to demonstrate the nuances of
alternative population characterization and investigate whether and how problem
solutions may be impacted.

4.3 Methodology
4.3.1 PMP

The p-median problem (PMP) is one of the classic location problems that aims to site
a number of facilities so that the overall demand-weighted travel distance/time to the
closest facility is minimized. The problem was first introduced by Hakimi (1964,
1965) in a network context, where the optimal sites are called “medians” of the
network. The PMP linear programming model was first provided by ReVelle and
Swain (1970). Since then, the PMP has been widely studied in the literature. The
problem has been applied to support cluster analysis (Klastorin 1985), transportation
logistics (Pamucar et al. 2016), political redistricting (Hess et al. 1965), bike-sharing
station planning (Park and Sohn 2017), and healthcare center siting (Jia et al. 2014).
Consider the following notation:

i: index of demand

Jj: index of candidate facility site

h;: demand associated with i

d;;: distance between 7 and j

p: the number of facilities to be sited
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= 1 if candidate site jis selected
770 otherwise

y { 1 if demand i is allocated to facility at j
.

0 otherwise

The PMP can be formulated as

Minimize Zizjhid[jylj (4.1)

subject to
ijij =1 vi (4'2)
%35 € {0,1} vij (4.5)

The PMP objective (4.1) minimizes the total demand-weighted travel distance.
Constraints (4.2) require that each demand be assigned to one facility. Constraints
(4.3) ensure that demand i is assigned to facility at j only when site j is selected for
siting. Constraint (4.4) specifies p number of facilities to be sited. Constraints (4.5)
impose binary conditions on decision variables. As specified in the original PMP,
demand at i and A; does not vary with time.

4.3.2 The PMP-Time-Varying Demand (PMP-TD)

As discussed previously, population distributions may vary with time (), resulting in
a time-varying demand distribution h;. The corresponding problem will then
become identifying the spatial configuration of p facilities so that they are most
accessible, considering the temporal variability of demand. Consider the additional
notation,
| 1 if demand atiis allocated to facility at j during time ¢
ijt { 0 otherwise

d;j;: distance between 7 and j during time ¢
The PMP-TD can be formulated as,
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Minimize ZiZjZ iy (4.6)

subject to

ij,.j, =1 Vit (4.7)

Vi S Xj Vi, j, t (4.8)
Xjs Yij € {0,1} Vi, j, t (4.10)

Objective (4.6) minimizes the overall demand-weighted travel across all times.
Constraints (4.7) specify that demand at i during time ¢ can be assigned to only one
facility. Constraints (4.8) states that demand at i during time ¢ can be assigned to facility
at j only when site j is selected for siting. Constraint (4.9) is the same as constraint (4.4).
Constraints (4.10) impose binary integer conditions on the decision variables.

We note here that given a spatial configuration of facilities, the assignment of
demand i does not change with time. This is because in the PMP demand (k;,) at i is
always assigned to the closest facility based on the minimal travel distance objective.
That is, demand allocation only depends on the spatial distribution of i and j. Given
that dj; is fixed over time ¢ (d;; = d;), y;j; is always the same for a given pair of i and j.
The time-independent nature of demand allocation y;;, also makes constraints (4.7)
irrelevant to time: given i and j, y;=1 for one time period ¢’ ensures satisfaction of
constraints (4.7) for all other time periods. As a result, in the PMP-TD, y;;, collapses
into y;;, and constraints (4.7, 4.8, 4.9, and 4.10) can be replaced by constraints (4.2,
4.3,4.4, and 4.5). Therefore, the new problem involves a new assessment of demand
> :hi; at demand site i. The new demand is a sum of the demand at i across all times.
Objective (4.6) then becomes Y>> hid;iy; (11)

4.4 Empirical Study

We will use a case study to demonstrate how to incorporate time-varying population
distributions into the PMP. We will also compare whether and how the solutions
based on time-varying demand differ from those obtained based on where people
live. The case study consisted of three regions in Shanghai, China (also see Fig. 4.1).
The first region contains Lujiazui and its surrounding neighborhood communities
with an overall area of 48 km?. This region serves as one of central business districts
(CBDs) in Shanghai and is known as one of the most important financial districts in
China. The second region is composed of the southern part of Yangpu district. This
region is primarily residential area with a size of 30 km?. The third region is located
in Zhangjiang Town with an area of 50.4 km?. This region contains a major
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Fig. 4.1. The study area

technology park hosting many IT companies in the northwest and some residential
areas in the southeast.

Spatiotemporal distributions of the population in the three regions were derived
based on cell phone data provided by China Unicom. The data were collected for an
entire week from Monday, November 20, 2017 to Sunday, November 26, 2017.
Hourly population count was summarized using 250 x 250 meter grids. In each of
the three regions, we assumed five facilities to be sited (p = 5). For each region, the
PMP-TD was performed to obtain the optimal solution considering the temporal
variation in the population distribution. Meanwhile, for each hour during weekdays
and weekends, we obtained the PMP optimal solutions based on the population
observed during that hour. For each of these solutions, we mapped the facility sites
obtained and computed the overall travel using the time-varying demand. Such
travel was then compared with the optimal travel obtained using the PMP-TD to
compare the solution quality.
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4.5 Results

4.5.1 Temporal Variability in the Population Distribution

Figure 4.2 shows the temporal variation of the population in the three regions during
weekdays and weekends. The horizontal axis records the 24 h of a day; it starts from
midnight (0) of the first day and ends before the midnight of the following day (23).
On weekdays, compared to the midnight population, Lujiazui region gained a
significant amount of population (58%) during the daytime, especially during the
work hours (8 am—6 pm). This is not surprising given the CBD functionality of the
region. In Zhangjiang Town, we also note significant population gain (56%) during
weekday work hours. In contrast, Yangpu region had a stable population distribution
with a daily population change of 8%. On weekends, while Yangpu and Zhangjiang
had relatively consistent population throughout the day, Lujiazui attracted as much
as 37% of people to this region as it also serves as an important tourist attraction site.

Figure 4.3 maps the spatial distribution of population gain/loss at 10 am com-
pared with that at midnight for both weekdays and weekends. For each grid in a
region, the population count at midnight is used as the baseline. Compared with the
population at midnight, blue areas are places losing population at 10 am, whereas red
areas correspond to locations gaining population. During weekday workday hours,
Lujiazui has substantially more areas that gained population than areas that lost
population (Fig. 4.3a). We notice that areas gaining population in Lujiazui were
distributed extensively throughout the region. This is different from the pattern we
observe in Zhangjiang (Fig. 4.3c). In Zhangjiang, areas gaining population are

14
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Time of day
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—#— Lujiazui (weekend) —— Yangpu (weekend) —4— Zhangjiang (weekend)

Fig. 4.2. Overall population change in the three regions
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Fig. 4.3. Population gain/loss assessed at 10 am compared with midnight. (a) Lujiazui (weekday).
(b) Yangpu (weekday). (¢) Zhangjiang (weekday). (d) Lujiazui (weekend). (e) Yangpu (weekend).
(f) Zhangjiang (weekend)

mainly clustered in the northwestern part of the town where the technology park is
located, and areas losing population are concentrated in the residential areas east to
the technology park. Different from Lujiazui and Zhangjiang, during weekday work
hours, Yangpu has minimal areas gaining population, and these areas are highly
dispersed in the region. During weekends, most of the areas gaining population in
Lujiazui are similar to those during weekdays though with a smaller magnitude of
gain. For Yangpu and Zhangjiang, much fewer areas gained population during
weekends. For both weekdays and weekends, we notice that the magnitude of
population gain in Lujiazui is much higher than the other two regions as reflected
in the legend, indicating the ability of many zones in this region in attracting people
during the daytime.

Figure 4.4 summarizes the average absolute population change (%) in a region for
both weekdays and weekends. Similar to Fig. 4.3, we computed the change using the
overall midnight population as the baseline. Population change in a grid at time ¢t was
computed using the percentage of population gain/loss at time ¢ compared with the
midnight population. Here, we did not differentiate population gain from loss as the
focus is on the magnitude of change. Summarizing all grids in a region, the average
population change was then calculated at time #. For all the three regions, population
changes during weekdays were higher than those during weekends. Different from
the overall population change shown in Fig. 4.2, Fig. 4.4 also captures people’s
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Fig. 4.4 Average absolute population change in the three regions

movement within a region. As shown in Fig. 4.4, in a general weekday, population
changes were higher than the weekend population changes, which is also consistent
with the overall population change in Fig. 4.2. However, when intraregional move-
ment is considered, Fig. 4.4 gives different population change profiles. According to
Fig. 4.4, on weekdays, Zhangjiang had the largest population change (106%),
followed by Lujiazui (91%) and Yangpu (27%). This is different from the overall
population change curve in Fig. 4.2, where Lujiazui had the highest overall popu-
lation gain (58%), followed by Zhangjiang (56%) and Yangpu (8%). This suggests
significant intraregional population exchange in Lujiazui and Zhangjiang. Unlike
weekdays, Lujiazui had the highest average population change (58%) during week-
ends followed by Zhangjiang (28%) and Yangpu (18%).

4.5.2 Optimal Solution Comparison

We compared the PMP-TD solutions with the PMP solutions for three times (7),
0 am, 10 am, and 6 pm (Figs. 4.5, 4.6 and 4.7). While we separated the weekday and
weekend solutions for = 10 am and 6 pm, we used the average midnight population
across the entire week to derive the solution for the PMP with ¢ = 0 am, given that
the population distribution at midnight did not vary much across days. Figures 4.5,
4.6, and 4.7 plot the facilities selected (black stars) and the associated allocation
(black lines) of population to its nearest facility. For the PMP solutions (Figs. 4.5b—f,
4.6b—f, and 4.7b—f), the population at the corresponding time ¢ is shown as the
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Fig. 4.6. Solution comparison in the Yangpu region. (a) PMP-TD. (b) PMP (weekday 10 am). (c)
PMP (weekday 6 pm). (d) PMP (0 am). (e) PMP (weekend 10 am). (f) PMP (weekend 6 pm)

background. For the PMP-TD solutions, the overall average population incorporat-
ing the hourly variation across the entire week is mapped (Figs. 4.5a, 4.6a, and 4.7a).

For Lujiazui, the spatial configurations of sited facilities drawn based on the PMP
during the daytime (e.g., = 10 am and 8 pm) tend to resemble those given by the
PMP-TD. This is as expected. As we show previously, the region gains a significant
amount of population during the daytime (58%). The significantly higher demand in
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Fig. 4.7 Solution comparison in the Zhangjiang region. (a) PMP-TD. (b) PMP (weekday 10 am).
(c) PMP (weekday 6 pm). (d) PMP (0 am). (e) PMP (weekend 10 am). (f) PMP (weekend 6 pm)

these hours lead to higher weights, given these hours in Objective (11), which
eventually helps pull the PMP-TD optimal solution toward sites that best serve the
population distribution during these hours. We also note that the population distri-
bution during weekend daytime in this region is similar to that during weekday
daytime with population concentrations in the northwestern part of the region. The
PMP solutions during weekend daytime (Figs. 4.5e and f) are therefore similar to the
PMP-TD solution. We notice significant difference in the spatial configuration of
sited facilities when comparing the solution given by the PMP (¢ = 0) with that given
by the PMP-TD. While both models prescribe three facilities to serve the western
part of the region, the PMP-TD sites two facilities in the northwest, whereas the PMP
(t = 0) locates only facility in that area.

In the Yangpu region, the solutions given by the PMP and PMP-TD are similar
due to the overall small population change throughout the day. Only slight difference
exists between the weekday and weekend solutions. We notice that weekend day-
time PMP solutions are similar to the midnight PMP solutions. This is also to our
anticipation, given that the weekend population distribution has the minimal tem-
poral variation.

In Zhangjiang, we have a similar comparison observation to that in Lujiazui. The
spatial configuration of the sited facilities using the PMP-TD (Fig. 4.7a) is very
similar to that based on the PMP solutions during weekday daytime (Figs. 4.7b
and c). This is because similar to Lujiazui, Zhangjiang gains substantial population
(56%) during the weekday daytime. As we discussed previously, such an increase
will result in higher weights in Objective (11) given to sites to better serve the
weekday daytime population. The PMP solutions based on weekend and weekday
daytime population are also similar except for the slight difference in the PMP
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weekend morning solution (Fig. 4.7e). The spatial configuration of the PMP mid-
night solution is found to be drastically different from that given by the PMP-TD
solution: while the PMP-TD prescribes three facilities to serve the technology park
area, the PMP locates only two facilities in the area (Fig. 4.7d).

We use the population distribution at midnight (r = 0) to approximate the census
population. Assuming a spatial configuration of facilities sited using the PMP
(t = 0), we computed the travel involved using the time-varying demand and
compared it with the travel based on the PMP-TD solutions. Figure 4.8 shows the
comparison for both weekdays and weekends. Here, positive/negative additional
travel means the PMP solutions need more/less travel when compared with the
PMP-TD solutions. In general, the PMP solutions involve more travel during
daytime (e.g., 7 am—8 pm) and less travel at night (e.g., 9 pm—6 am). As for daytime,
the PMP solutions require significantly more travel during weekdays than weekends
with the highest weekday additional travel of 15.3% for Lujiazui and 15.2% for
Zhangjiang, respectively, compared to highest weekend additional travel of 7.5% for
Lujiazui and 3.3% for Zhangjiang, respectively. Combining weekdays and week-
ends, the PMP solutions require an additional daytime travel of 9.2% for Lujiazui,
0.8% for Yangpu, and 8.6% for Zhangjiang. As for nighttime, the PMP solutions
give a travel reduction of 5% for Lujiazui and 3% for Zhangjiang. Summarizing the
entire week, the additional travel brought about by the PMP is 4.1% for Lujiazui,
0.3% for Yangpu, and 4.3% for Zhangjiang.
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Fig. 4.8. Additional travel based on the PMP (¢ = 0) solutions
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4.6 Discussion and Conclusion

In this study, we observe distinctly different population distributions by time of day
(daytime vs. nighttime) and across days (weekdays vs. weekends) especially in
Lujiazui and Zhangjiang. While many of existing location models focus on siting
facilities based on where people live, our empirical study indicates that the solutions
obtained using this approach could be very different from the optimal one when the
temporal variation of population is considered. Using a classic location model as an
example, we find that the existing approach may result in much worse solutions
when the temporal variation of population is large. We note that for many public
services that are only available during daytime, such as postal offices and public
libraries, the existing approach may give even worse solutions. Although the
existing approach appears to be more applicable during weekends, our empirical
study shows that the nontrivial temporal variation of population in two of the three
regions has led to significantly more travel needed by the existing approach.

Numerous studies have been developed to seek the optimal solutions to the PMP,
especially for medium- and large-sized problems. Many of these approaches try to
close the optimal gap at the magnitude of less than 1%. For example, Mu and Tong
(2018) introduced a spatial-knowledge-enhanced Teitz and Bart (STB) algorithm for
solving the PMP with an improvement of less than 1% for most test cases. Irawan
and Salhi (2015) developed a PMP solution heuristic based on a demand aggregation
strategy and reported an improvement of less than 0.5%. If the temporal variability
of population is not considered, solutions provided by the PMP could be farther from
the optimal when compared with heuristic approaches. As we show previously,
compared to the PMP-TD, the PMP solutions have an overall optimality gap of 4%
for Lujiazui and Zhangjiang and 0.3% for Yangpu.

In real-world applications, it is therefore worthwhile to examine the temporal
distribution of the targeted population before the implementation of a location
model. For an area where the population distribution does not vary much with
time, as in the case of Yangpu, a direct application of the associated location
model based on census population information might yield a solution that is not
very far from the optimal one. If an area involves significant population change
throughout the day, solely relying upon census population data can be very prob-
lematic. In this case, a better characterization of the population will be needed. As for
the PMP, we show that the average population throughout the day will be appropri-
ate. In this case, the 24-h average population data (e.g., LandScan data) could be
used. However, whether such data are suitable for other location models remains
unknown.

In this research, we incorporate the temporal variability of population into
location modeling by discretizing the population distribution into a finite number
of time periods. The population in each time period has an equal probability of being
served by the sited facility. This assumption is more appropriate for certain applica-
tions, such as cell phone signal coverage and emergency services. However, it can be
less appropriate for some other applications, such as grocery stores and dining places



4 Population Characterization in Location Modeling 71

as people may be at work or have other constraints during a particular time period
that may prevent them from using the service. In these applications, a better
characterization of the population as potential demand will be needed.

Nowadays, big geospatial data have been widely collected through taxis, shared
mobility applications such as Uber and Mobike, wearable devices, and social media
platforms. The emergence of big data provides statistically sound samples with finer
spatial and temporal resolutions. These data provides the opportunity to revisit some
of the assumptions we make in many location models (Tong and Murray 2017). In
this study, the temporal variation of population derived using cell phones allows us
to examine the impact of the population assumption made in one classic location
model. In addition, big data offer the opportunity for us to study individual-level
mobility and travel activity, which will be helpful for a better characterization of
service access. For example, the PMP assumes that people visit the closet facility,
which might not always be true. Some people may chain a visit to a facility with
other important trips even if the facility is far away. How to incorporate more
complex travel behavior into location modeling points to another venue for future
research.
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