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1 Introduction

In this chapter, we present a survey of the qualitative theory pertaining to fractional
differential equations (FDEs) developed using differential inequalities and compari-
son theorems. Differential inequalities help in finding bounds for the solution of the
nonlinear fractional differential equation, and once the bounds are known the con-
structive techniques of Quasilinearization andMonotone Iterative Technique provide
the solution.

In Sect. 2, the basic concepts of lower and upper solutions are introduced and the
fundamental lemma needed in the comparison theorems is given. Next, the concept
of dominating component solution is introduced and existence results pertaining to
these solutions are stated.

Section 3 begins with a result relating the solutions of the Caputo and the
Riemann–Liouville differential equations. This is followed first by a result relat-
ing the solutions of fractional differential equations to those of ordinary differential
equations and then by a variation of parameters formula for solutions of perturbed
fractional differential equations in terms of solutions of ordinary differential equa-
tions. Next, a stability result using Dini derivatives is presented.
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Section 4 covers the concept of fractional trigonometric functions developed using
fractional differential equations. It also covers the generalization of these results to
fractional trigonometric-like functions.

Section 5 deals with impulsive fractional differential equations of two types,
impulsive fractional differential equations with fixedmoments of impulse and impul-
sive fractional differential equationswith variablemoments of impulse. For each type
of equation, an existence and uniqueness result is given. In the case of fixed moments
of impulse, the result presented was obtained using the Generalized Quasilineariza-
tion (GQL)method. Note that the Quasilinearization (QL)method is a special case of
the GQL method. See [8] for an existence and uniqueness result obtained using this
method. In the case of variable moments of impulse, the result was obtained using the
method of lower and upper solutions and the Monotone Iterative Technique (MIT).

Results pertaining to periodic boundary value problem of Caputo fractional
integro-differential equations form the content of Sect. 6.

2 Comparison Theorems, Existence Results, and
Component Dominating Solution

2.1 Basic Concepts

The comparison theorems in the fractional differential equations setup requireHolder
continuity [22–24]. Although this requirement was used to develop iterative tech-
niques such as themonotone iterative technique and themethod of quasilinearization,
there is no feasible way to check whether the functions involved are Holder continu-
ous. However, the comparison results can be obtained using the weaker condition of
continuity. In a subsequent paper [38], it was shown that the same results hold under
the less restrictive condition of continuity. Similarly, in [11], differential inequalities,
comparison theorems, and existence results were established under a continuity con-
dition for impulsive fractional differential equations. Since Lemma 2.3.1 in [24] is
essential in establishing the comparison theorems, we provide a sketch of the proof
of this result under this weaker hypothesis. The basic differential inequality theorems
and required comparison theorems are also stated.

We begin with the definition of the class Cp[[t0, T ],R].
Definition 2.1 m ∈ Cp[[t0, T ],R] means that m ∈ C[(t0, T ],R] and (t − t0)pm(t)
∈ C[[t0, T ],R] with p + q = 1

Definition 2.2 Form ∈ Cp[[t0, T ],R], the Riemann–Liouville derivative ofm(t) is
defined as

Dqm(t) = 1

�(p)

d

dt

t∫

t0

(t − s)p−1m(s)ds (2.1)
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Lemma 2.3 Let m ∈ Cp[[t0, T ],R]. Suppose that for any t1 ∈ [t0, T ] we have
m(t1) = 0 and, m(t) < 0 for t0 ≤ t < t1, then it follows that

Dqm(t1) ≥ 0.

Proof Consider m ∈ Cp[[t0, T ],R], such that m(t1) = 0 and m(t) < 0 for t0 ≤ t <

t1.
Since m(t) is continuous on (t0, T ], given any t1 such that t0 < t1 < T , there

exists a k(t1) > 0 and h > 0 such that

− k(t1)(t1 − s) ≤ m(t1) − m(s) ≤ k(t1)(t1 − s) (2.2)

for t0 < t1 − h ≤ s ≤ t1 + h < T . Set H(t) =
t∫
t0

(t − s)p−1m(s)ds and consider

H(t1) − H(t1 − h) =
t1−h∫
t0

[(t1 − s)p−1 − (t1 − h − s)p−1]m(s)ds +
ts∫

t1−h
(t1 − s)p−1

m(s)ds.

Let I1 =
t1−h∫
t0

[(t1 − s)p−1 − (t1 − h − s)p−1]m(s)ds and I2 =
t1∫

t1−h
(t1 − s)p−1

m(s)ds. Since t1 − s > t1 − h − s and p − 1 < 0, we have (t1 − s)p−1 < (t1 − h −
s)p−1.

This coupled with the fact that m(t) ≤ 0, t0 < t ≤ t1, implies that I1 ≥ 0. Now,

consider I2 =
t0∫

t1−h
(t1 − s)p−1m(s)ds. Using (2.2) and the fact that m(t1) = 0, we

obtain
m(s) ≥ −k(t1)(t1 − s),

and I2 ≥ −k(t1)
t1∫

t1−h
(t1 − s)pds = −k(t1)

h p+1

p + 1
, for s ∈ (t1 − h, t1 + h). Thus we

have

H(t1) − H(t1 − h) ≥ −k(t1)(h p+1)

p + 1

and

lim
h→0

[
H(t1) − H(t1 − h)

h
+ k(t1)h p+1

h(p + 1)

]
≥ 0.

Since p ∈ (0, 1), we conclude that
dH(t1)

dt
≥ 0, which implies that Dqm(t1)

≥ 0. �

We next state the fundamental differential inequality result in the set up of fractional
derivative, which is Theorem 2.3.2 in [24] with a weaker hypothesis of continuity.

Theorem 2.4 Let v,w ∈ Cp[[t0, T ],R], f ∈ C[[t0, T ] × R,R] and
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Dqv(t) ≤ f (t, v(t)),

Dqw(t) ≥ f (t, w(t)),

t0 < t ≤ T . Assume f satisfies the Lipschitz condition

f (t, x) − f (t, y) ≤ L(x − y), x ≥ y, L > 0. (2.3)

Then v0 ≤ w0, where v0 = v(t)(t − t0)1−q |t=t0 and w0 = w(t)(t − t0)1−q |t=t0 ,

implies v(t) ≤ w(t), t ∈ [t0, T ].
Now, we define the Caputo fractional derivative, which we need in Sect. 3.

Definition 2.5 The Caputo derivative, denoted by cDqu, is defined as

cDqu(t) = 1

�(1 − q)

t∫

t0

(t − s)−qu′(s)ds. (2.4)

If u(t) is Caputo differentiable, then we write u ∈ Cq [[t0, T ],R].
We now state the comparison theorem in terms of the Caputo derivative.

Theorem 2.6 Assume that m ∈ Cq [[t0, T ],R] and
cDqm(t) ≤ g(t,m(t)), t0 ≤ t ≤ T,

where g ∈ C[[t0, T ] × R,R]. Let r(t) be the maximal solution of the initial value
problem (IVP)

cDqu = g(t, u), u(t0) = u0, (2.5)

existing on [t0, T ] such that m(t0) ≤ u0. Then, we have m(t) ≤ r(t), t0 ≤ t ≤ T .

The results in Sects. 2.2 and 2.3 are taken from [39].

2.2 Dominating Component Solutions of Fractional
Differential Equations

Consider the IVP for the Caputo differential equation given by

cDqx = f (t, x), (2.6)

x(t0) = x0, (2.7)

for 0 < q < 1, f ∈ C[[t0, T ] × R
n,Rn].
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If x ∈ Cq [[t0, T ],Rn] satisfies (2.6) and (2.7) then it also satisfies the Volterra
fractional integral equation

x(t) = x0 + 1

�(q)

t∫

t0

(t − s)q−1 f (s, x(s))ds, (2.8)

for t0 ≤ t ≤ T .

Next, we present a class of functions that are possible solutions of the IVP of
FDEs, and which under certain conditions satisfy the relations

cDq+|x(t)| ≤ |cDqx(t)|

and
Dq+|x(t)| ≤ |Dqx(t)|,

where cDq+
is the Caputo Dini derivative and Dq+

is the Riemann–Louiville (RL)
fractional Dini derivative, which are defined as follows.

Definition 2.7 The Caputo fractional Dini derivative of a function x(t) is defined as

cDq+
x(t) = 1

�(1 − q)

t∫

t0

(t − s)−q D+x(s)ds

where D+ is the usual Dini derivative defined in [25]. For more details on fractional
Dini derivatives, see [21, 24].

Definition 2.8 The RL fractional Dini derivative is defined as

Dq+
x(t) = 1

�(1 − q)
D+

t∫

t0

(t − s)−q x(s)ds.

Definition 2.9 A continuous function x : I → R
n is said to be a dominating com-

ponent function (DCF) if there exists i ∈ {1, 2, . . . , n} such that |x j (s)| ≤ xi (t) and
|x ′

j (t)| ≤ x ′
i (t) for all t ∈ I = [t0, T ], j = 1, 2, . . . , n.

Definition 2.10 Acontinuous function x : I → R
n is said to be aweaklydominating

component function (WDCF) if there exists i ∈ {1, 2, . . . , n} such that |x ′
j |(t)| ≤

x ′
i (t) for all t ∈ I, j = 1, 2, . . . , n.

Remark 2.11 Every DCF is a WDCF. For example, x(t) = (
√
t, t)), t ∈ [1, 2] is a

DCF and a WDCF whereas x(t) = (
1

2
t2,

−1

2
t,

−1

3
t, t), t ∈ [1, 2], is a WDCF.
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Definition 2.12 By a weakly dominating component solution of the IVP (2.6) and
(2.7), we mean a weakly dominating component function which satisfies the IVP
(2.6) and (2.7).

We now state a comparison theorem in terms of the Caputo fractional Dini deriva-
tive. Note that it is essential to use Dini derivatives when we use an absolute value
function or a norm function.

Theorem 2.13 Assume that f ∈ C[[I × R
n,Rn] and satisfies the relation

| f (t, x)| ≤ g(t, |x |), (2.9)

where g ∈ C[[I × R+,R+]. Let r(t) be the maximal solution of the scalar Caputo
FDE

cDqu = g(t, u), u(t0) = u0. (2.10)

If x(t) is the weakly dominating solution of the IVP (2.6) and (2.7), then

|x(t, t0, x0)| ≤ r(t, t0, u0),

t ∈ I provided |x0| ≤ u0.

Proof Setm(t) = |x(t)| for t ∈ I . Then, using the definition of the Caputo fractional
Dini derivative and the fact that x(t) is WDCF of (2.6) and (2.7), we get

cDq+
m(t) = cDq+|x(t)|

= 1

�(1 − q)

t∫

t0

(t − s)−q D+|x(s)|ds,

≤ 1

�(1 − q)

t∫

t0

(t − s)−q |x ′(s)|ds,

= 1

�(1 − q)

t∫

t0

(t − s)−q max
j

|x ′
j (s)|ds,

≤ 1

�(1 − q)

t∫

t0

(t − s)−q x ′
i (s)ds,

≤ max
j

| 1

�(1 − q)

t∫

t0

(t − s)−q x ′
j (s)ds|

= |cDqx(t)| = | f (t, x(t))| ≤ g((t, |x(t)|) = g((t,m(t)).

Now, with m(t0) = |x0|, the conclusion follows from the hypothesis and the appli-
cation of Theorem 2.6, which yields
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|x(t, t0, x0)| ≤ r(t, t0, x0), t ∈ I.

Thus, the proof is complete. �

Remark 2.14 If n = 1, the above theorem states that the result holds if the solution
belongs to the set of all increasing functions. In this case, one can observe that the
Caputo FDE

cDqx = Lx, x(t0) = x0

has a solution, the Mittag-Leffler function, which is also a weakly dominating com-
ponent solution.

2.3 Dominating Component Solutions for
Riemann–Liouville FDE

Consider the IVP given by

Dqx = f (t, x) (2.11)

x(t0) = x0 = x(t)(t − t0)
1−q |t=t0 (2.12)

where f ∈ C[I × R
n,Rn].

For the sake of completeness we give the following definitions from [24].

Definition 2.15 Let 0 < q < 1 and p = 1 − q. The function space Cp[[t0, T ],Rn]
= {u ∈ C[[(t0, T ],Rn] and (t − t0)pu(t) ∈ C[[t0, T ],Rn]}
Definition 2.16 A function x(t) is said to be a solution of the IVP (2.11) and (2.12)
if and only if x ∈ Cp[[(t0, T ],Rn], Dqx(t) exists and x(t) is continuous on [t0, T ]
and satisfies the relations (2.11) and (2.12).

Definition 2.17 A function x(t) is said to be dominating component solution of the
IVP (2.11) and (2.12) if x(t) is a dominating component function and further satisfies
the IVP (2.11) and (2.12).

Theorem 2.18 Assume that f in (2.11) satisfies

| f (t, x(t)| ≤ g((t, |x(t)|), (2.13)

where g ∈ C[I × R+,R+]. Let r(t) be the maximal solution of the scalar Riemann–
Liouville FDE

Dqu = g((t, u), u(t0) = u0 = u(t)(t − t0)
1−q |t=t0 (2.14)

Further, if x(t) is the dominating component solution of (2.11) and (2.12) then,
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|x(t, t0, x0| ≤ r(t, t0, u
0),

t ∈ I, provided |x0| ≤ u0.

Proof Set m(t) = |x(t)|, t ∈ I . Using the definition of the RL fractional derivative
and the fact that x(t) is a dominating component function, we get

Dq+
m(t) = 1

�(1−q)
D+

t∫
t0

(t − s)−q |x(s)|ds

= 1
�(1−q)

D+
t∫
t0

(t − s)−q xi (s)ds

= 1
�(1−q)

d
dt

t∫
t0

(t − s)−q xi (s)ds

= fi (t, x(t))
= | f (t, x(t))|
≤ g(t, |x(t)|) = g(t,m(t)).

Then,with m(t0) = |x0|, a result for Riemann–Liouville FDEs, parallel to Theorem
2.6, yields

|x(t, t0, x0)| ≤ r(t, t0, x
0),

t ∈ I. �

Remark 2.19 Note that, in case of Riemann–Liouville FDE, for n = 1, we need the
solutions to be positive and also increasing. Thus, it is clear that Riemann–Liouville
FDEs are more complex than Caputo FDEs.

Next, we give criteria that will guarantee the existence of a dominating component
solution for Riemann–Liouville FDE (2.11) and (2.12). Since, as will be shown in
Sect. 3, any result that holds for solutions of Riemann–Liouville FDE also holds for
solutions of the corresponding Caputo FDE, we obtain a sufficiency condition for
the Riemann–Liouville FDEs to have a dominating component solution.

Theorem 2.20 Suppose that f ∈ C1[I × R
n,Rn] in (2.11) is a dominating

component-bounded function, that is, there exists an i ∈ {1, 2, 3 . . . , n} such that

| f j (t, x)| ≤ fi (t, x) < M (2.15)

| d
dt

f j (t, x)| ≤ d

dt
fi (t, x) (2.16)

where (t, x) ∈ I × R
n, j = 1, 2, 3 . . . , n. Further, for the above fixed i assume the

following criteria hold

(i) x0i = max{x01 , x02 , x03 , . . . , x0n } and |x0j | < x0i , j = 1, 2, 3, . . . , n. (2.17)

(ii) For every neighborhood of t0, the following relation holds
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(t − t0) fi (t, x
0) > x0i (1 − q) (2.18)

(iii) For all j �= i , the following relations hold in every neighborhood of t0,

fi (t0, x
0) + f j (t0, x

0) ≥ (1 − q)

(t − t0)
(x0i + x0j ), (2.19)

f j (t0, x
0) − fi (t0, x

0) ≤ (1 − q)

(t − t0)
(x0i − x0j ). (2.20)

Then, there exists a dominating component solution for the IVP of Riemann–Liouville
FDE (2.11) and (2.12).

3 The Variational Lyapunov Method and Stability Results

Next, we give a relation between ordinary differential equations (ODEs) and frac-
tional differential equations (FDEs), then present the variation of parameters formula
for FDEs in terms of ODEs. This is an important result, as obtaining the variation
of parameters formula for FDEs in terms of fractional derivatives is still an open
problem. Then, we present a stability result using the variational Lyapunov method.
In order to establish the above results, a relation between the solutions of Caputo and
Riemann–Liouville fractional differential equations is needed, which we give in the
next section.

3.1 Relation Between the Solutions of Caputo and
Riemann–Liouville Fractional Differential Equations

In this section, we begin with a relation between the solutions of Caputo FDEs and
those of Riemann–Liouville FDEs. This relation leads to the observation that the
solutions of Caputo FDEs have the same properties as the solutions of the Riemann–
Liouville FDEs [11].

Consider theCaputo fractional differential equation and the correspondingVolterra
integral differential equation given by

cDqx(t) = F(t, x), x(t0) = x0 (3.1)

x(t) = x0 + 1

�(q)

t∫

t0

(t − s)q−1F(s, x(s))ds. (3.2)

The aforementioned relation is established by observing that
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cDqx(t) = Dq [x(t) − x(t0)]. (3.3)

Setting y = x − x0, we have

cDq y = Dqx = F(t, x) = F(t, y + x0)

which gives
cDq y = F̂(t, y) (3.4)

and
y0 = [x(t) − x0](t − t0)

1−q |t=t0 = 0, (3.5)

The integral equation corresponding to (3.4) and (3.5) is given by

y(t) = 1

�(q)

t∫

t0

(t − s)q−1 F̂(s, y(s))ds. (3.6)

Suppose y(t) is a solution of the Volterra fractional integral equation (3.6). Then y(t)
also satisfies the corresponding Riemann–Liouville fractional differential equation
(3.4). Letting y(t) = x(t) − x0, we obtain

x(t) = x0 + 1

�(q)

t∫

t0

(t − s)q−1F(s, x(s))ds,

which implies that x(t) satisfies the integral equation (3.2) and hence is a solution
of both the Caputo fractional differential equation and its corresponding Volterra
integral equation.

Thus, a givenCaputo FDE can be transformed into aRiemann–Liouville FDE, and
hence solutions of Caputo fractional differential equations have properties similar to
the properties of solutions of Riemann–Liouville fractional differential equations.

3.2 Relation Between Ordinary Differential Equations
and Fractional Differential Equations

The method of variation of parameters provides a link between unknown solutions
of a nonlinear system and the known solutions of another nonlinear system, and,
as such, is a useful tool for the study of the qualitative behavior of the unknown
solutions.

We now present a relation between ODEs and FDEs which was developed in
[24]. Then, we use the variation of parameters formula to link the solutions of the
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two systems. Using this relation and the properties of the solutions of ODEs, which
are relatively easy to find, the properties of the solutions of the corresponding FDEs
can be investigated.

Consider the IVP

Dqx = f (t, x), x0 = x(t)(t − t0)
q |t=t0 , (3.7)

where f ∈ C[([t0, T ] × R
n,Rn), x ∈ Cp([t0, T ],Rn), Dqx is the Riemann–

Liouville fractional differential operator of order q, 0 < q < 1, 1 − q = p, and
assume the existence and uniqueness of the solution x(t, t0, x0) of (3.7).

To obtain a relation between fractional and ordinary differential equations, we
tentatively write

x(t) = x(s) + φ(t − s), t0 ≤ s ≤ T, (3.8)

with the function φ(t − s) to be determined. Substituting this expression in the
Riemann–Liouville fractional differential equation, we get

Dqx(t) = 1

�(p + 1)

d

dt

t∫

t0

(t − s)p−1[x(t) − φ(t − s)]ds

= 1

�(p + 1)

d

dt
[x(t)(t − t0)p] − η(t, p,φ).

(3.9)

where

η(t, p,φ) = 1

�(p + 1)

d

dt
[

t∫

t0

(t − s)p−1φ(t − s)ds]. (3.10)

Setting y(t) = x(t)(t − t0)p

�(1 + p)
, where x(t) is any solution of IVP (3.7), we arrive at

the IVP for ordinary differential equation, namely,

y′(t) = dy

dt
= F(t, y(t)) + η(t, p,φ), y(t0) = x0 (3.11)

where
F(t, y) = f (t, �(1 + p)y(t)(t − t0)

−p). (3.12)

We consider the unperturbed system

y′(t) = F(t, y(t)), y(t0) = x0, (3.13)

and the perturbed system (3.11) and use perturbation theory to obtain the estimates
of |y(t)|. The nonlinear variation of parameters formula is also a very useful tool
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to study perturbation theory. It was developed for fractional differential equation in
terms of ordinary differential equations in [24] and is presented below.

Suppose Fy(t, y) exists and is continuous on [t0, T ] × R
n . It is known, (see The-

orem 2.5.3 in [25]), that the solution y(t, t0, x0) of IVP (3.13) satisfies the identity

∂

∂t0
y(t, t0, x

0) + ∂

∂x0
y(t, t0, x

0)F(t0, x0) ≡ 0, (3.14)

where
∂

∂t0
y(t, t0, x0) and

∂

∂x0
y(t, t0, x0)F(t0, x0) are solutions of the linear system

z′ = Fy(t, y(t, t0, x
0))z,

with the corresponding initial conditions z(t0) = −F(t0, x0) and z(t0) = I , the iden-
tity matrix. Using this information, the nonlinear variation of parameters formula for
the solutions of IVP (3.11) was obtained. Setting p(s) = y(t, s, z(s)), where z(t) is
the solution of the perturbed IVP (3.11), and using (3.13) we have

d

ds
p(s) = ∂

∂t0
y(t, s, z(s)) + ∂

∂x0
y(t, s, z(s))[F(s, z(s)) + η(s, t0,φ0)]

= ∂

∂x0
y(t, s, z(s))η(s, t0,φo).

Integrating from t0 to t yields the desired nonlinear variation of parameters formula,
which links the solutions of the fractional differential equation to the solutions of the
generated ordinary differential equation:

z(t, t0, x
0) = y(t, t0, x

0) +
t∫

t0

∂

∂x0
y(t, s, z(s))η(s, t0,φ0)ds.

3.3 Variational Lyapunov Method and Stability

In order to present the stability results, the Caputo fractional Dini derivative of the
Lyapunov function is defined using the Grunwald–Letnikov fractional derivative,
taking advantage of the series in its definition.

Definition 3.1 The Grunwald–Letnikov (GL) fractional derivative is defined as

Dq
0 x(t) = lim

h→0+
nh=t−t0

1

hq

n∑
r=0

(−1)r qCr x(t − rh) (3.15)

or
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Dq
0 x(t) = lim

h→0+

1

hq
xqh (t),

where

xqh (t) = 1

hq

n∑
r=0

(−1)r qCr x(t − rh)

= 1

hq
[x(t) − S(x, h, r, q)]

(3.16)

with

S(x, h, r, q) =
n∑

r=1

(−1)r+1
qCr x(t − rh). (3.17)

Now, using (3.15) we define the GL fractional Dini derivative by

Dq
0+x(t) = lim sup

h→0+

1

hq

n∑
r=0

(−1)r qCr x(t − rh). (3.18)

Since the Caputo fractional derivative and GL fractional derivative are related by the
equation

cDqx(t) = Dq
0 [x(t) − x(t0)],

we define the Caputo fractional Dini derivative by

cDq
+x(t) = Dq

0+[x(t) − x(t0)]. (3.19)

Consider the Caputo differential equation

cDqx = f (t, x), x(t0) = x0. (3.20)

Then, using relations (3.19) and (3.20), we get

f (t, x) = lim sup
h→0+

1

hq

n∑
r=0

(−1)r qCr [x(t − rh) − x0]

= lim sup
h→0+

1

hq
[x(t) − x0 − S(x, h, r, q)]

where S(x, h, r, q) =
n∑

r=1
(−1)r+1

qCr [x(−rh) − x0]. This yields

S(x, h, r, q) = x(t) − x(t0) − hq f (t, x) − ε(hq)], (3.21)

where
ε(hq)

hq
→ 0 as h → 0. The definition of the Caputo fractional Dini derivative

for the Lyapunov function is given below.
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Definition 3.2 Let V ∈ C[R+ × S(ρ),R+] where S(ρ) = {x : |x | < ρ}. Let
V (t, x) be locally Lipschitzian in x . The Grunwald–Letnikov fractional Dini deriva-
tive of V (t, x) is defined by

Dq
0+V (t, x) = lim sup

h→0+

1

hq
[V (t, x) −

n∑
r=1

(−1)r+1
qCrV (t − rh, S(x, h, r, q))]

where S(x, h, r, q) = x(t) − hq f (t, x) − ε(hq) with
ε(hq)

hq
→ 0 as h → 0. Then,

the Caputo fractional Dini derivative of V (t, x) is defined as

cDq
+V (t, x) = lim sup

h→0+

1

hq
[V (t, x) − V (t − h, x − hq f (t, x)) − V (t0, x0)].

Definition 3.3 The zero solution of (3.1) is said to be

(i) stable if for every ε > 0 and t0 ∈ R+, there exists δ = δ(ε, t0) > 0 such that for
any x0 ∈ R

n the inequality |x0| < δ implies |x(t; t0, x0)| < ε for t ≥ t0;
(ii) uniformly stable if for every ε > 0, there exists δ = δ(ε) > 0 such that, for t0 ∈

R+, x0 ∈ R
n with |x0| < δ, the inequality |x(t; t0, x0)| < ε holds for t ≥ t0;

(iii) uniformly attractive if for β > 0 and for every ε > 0 there exists T = T (ε) > 0
such that for any t0 ∈ R+, x0 ∈ R

n with |x0| < β, the inequality |x(t; t0, x0)| <

ε holds for t ≥ t0 + T ;
(iv) uniformly asymptotically stable if the zero solution is uniformly stable and

uniformly attractive.

Now we present a comparison theorem, which uses the variation of parameters for-
mula and relate the solutions of a perturbed system to the known solutions of an
unperturbed system in terms of the solution of a comparison scalar fractional differ-
ential equation.

Consider the two fractional differential systems given by

cDq y = f (t, y), y(t0) = y0, (3.22)
cDqx = F(t, x), x(t0) = x0 (3.23)

where f, F ∈ C[R+ × S(ρ),Rn], and assume the following assumption relative to
system (3.22).
(H) The solutions y(t, t0, x0) of (3.22) exist for all t ≥ t0, are unique and continuous
with respect to the initial data, and |y(t, t0, x0| is locally Lipschitzian in x0.

Let |x0| < ρ and suppose that |y(t, t0, x0)| < ρ for t0 ≤ t ≤ T . For any V ∈
C[R+ × S(ρ),R+] and for any fixed t ∈ [t0, T ], we define the Grunwald–Letnikov
fractional Dini derivative of V by
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Dq
0+V (s, y(t, s, x))

= lim sup
h→0+

1

hq
{V (s, y(t, s, x)) −

n∑
r=1

(−1)r+1
qCrV (s − rh, s − hq F(s, x))}.

The Caputo fractional Dini derivative of the Lyapunov function V (s, y(t, s, x)),
for any fixed t ∈ [t0, T ], any arbitrary point s ∈ [t0, T ] and x ∈ R

n , is given by

cDq
+V (s, y(t, s, x))

= lim sup
h→0+

1

hq
{V (s, y(t, s, x)) − V (s − h, y(t, s − h, x − hq F(s, x)))},

where

V (s − h, y(t, s − h, x − hq F(s, x)))

=
n∑

r=1

(−1)r+1
qCr V (s − rh, y(t, s − rh, x − hq F(s, x))).

Theorem 3.4 Assume that assumption (H) holds. Suppose that

(i) V ∈ C[R+ × S(ρ),R+], V (t, x) is locally Lipschitzian in x with Lipschitz con-
stant L > 0, and for t0 ≤ s ≤ t and x ∈ S(ρ),

cDq
+V (s, y(t, s, x)) ≤ g(s, V (s, y(t, s, x)); (3.24)

(ii) g ∈ C[R2+,R] and the maximal solution r(t, t0, u0) of

cDqu = g(t, u), u(t0) = u0 ≥ 0 (3.25)

exists for t0 ≤ t ≤ T .
Then, if x(t) = x(t, t0, x0) is any solution of (3.23), we have V (t, x(t, t0, x0)) ≤
r(t, t0, u0), t0 ≤ t ≤ T , provided V (t0, y(t, t0, x0)) ≤ u0.

The following stability result is an application of Theorem 3.4.

Theorem 3.5 Assume that (H) holds and condition (i) of Theorem 3.4 is satisfied.
Suppose that g ∈ C[R2,R], g(t, 0) = 0, f (t, 0) = 0, F(t, 0) = 0 and for (t, x) ∈
R+ × S(ρ),

b(|x |) ≤ V (t, x) ≤ a(|x |)

a, b ∈ K = {c ∈ C[[0, ρ),R+] : c(0) = 0 and c is monotonically increasing}. Fur-
ther suppose that the trivial solution of (3.22) is uniformly stable and u ≡ 0 of (3.25)
is asymptotically stable. Then, the trivial solution of (3.23) is uniformly asymptoti-
cally stable.
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4 Fractional Trigonometric Functions

It is well known that trigonometric functions play a vital role in understanding physi-
cal phenomena that exhibit oscillatory behavior. The generalization of trigonometric
functions has beenmade through differential equations. In this section,we give a brief
summary of the work done in order to introduce fractional trigonometric functions
and their generalizations through fractional differential equations of a specific type
[35]. Fractional hyperbolic functions and their generalizations are also described in
a similar fashion in [36].

Consider the following αth order homogeneous fractional initial value with
Caputo derivative

cDαx(t) + x(t) = 0, 1 < α < 2, t ≥ 0, (4.1)

x(0) = 1, cDqx(0) = 0, where α = 2q, 0 < q < 1. (4.2)

The general solution of (4.1) and (4.2) is given by c1x(t) + c2y(t), where c1 and c2
are arbitrary constants, and where x(t) and y(t) are infinite series solutions of the
form

x(t) =
∞∑
k=0

(−1)
k
t2kq

�(1 + 2kq)
, y(t) =

∞∑
k=0

(−1)
k
t (2k+1)q

�(1 + (2k + 1)q)
, t ≥ 0, 0 < q < 1.

We designate these series by cosq t and cosq t , respectively. Then,

cosq t =
∞∑
k=0

(−1)
k
t2kq

�(1 + 2kq)
, (4.3)

sinq t =
∞∑
k=0

(−1)
k
t (2k+1)q

�(1 + (2k + 1)q)
, (4.4)

which we denote Mq
2,0(t) and Mq

2,1(t), respectively, for future convenience. Observe
that if q = 1, cosq t = cos t and sinq t = sin t . Using the FDE (4.1) and the initial
condition (4.2), one can prove the following properties of x(t) and y(t):

(1) x2(t) + y2(t) = 1, t ≥ 0
(2) x(t) and y(t) have at least on zero in R+.
(3) The zeros of x(t) and y(t) interlace each other, i.e., between any two consecutive

zeros of y(t) there exists one and only one zero of x(t).
(4) For t ≥ 0 and η ≥ 0

y(t + η) = y(t)x(η) + y(η)x(t)

x(t + η) = x(t)x(η) + y(η)y(t)
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(5) x(t) is an even function, but for q �= 1, y(t) is not an odd function
(6) Euler’s Formulae:

The solutions of FDE (4.1) can also be expressed as Eq(i tq) and Eq(−i tq)
where ±i are the roots of λ2 + 1 = 0. Eq(−i tq) can be expressed in terms of
Mq

2,0(t) and Mq
2,1(t) as

(i) Eq(i tq) = 1 − t2q∑
(1+2q)

+ t4q

�(1+4q)
− · · · + i

(
tq∑

(1+q)
− t3q

�(1+3q)
+ . . .

)
,

= Mq
2,0(t) + iMq

2,1(t)

(i i) Eq(−i tq) = 1 − t2q

�(1+2q)
+ t4q

�(1+4q)
− · · · − i

(
tq

�(1+q)
− t3q

�(1+3q)
+ . . .

)
.

= Mq
2,0(t) − iMq

2,1(t)

Thus, Mq
2,0(t) = 1

2
(Eq(i tq) + Eq(−i tq)), and

Mq
2,1(t) = 1

2i
(Eq(i tq) − Eq(−i tq)), t ∈ R

+.

The following theorem generalizes the notion of fractional trigonometric functions
using an αth order fractional differential equation of the type considered in (4.1).

Theorem 4.1 Consider the αth order fractional IVP of the form

cDαx(t) + x(t) = 0, x(0) = 1, cDqx(0) = 0, . . . , cD(n−1)q x(0) = 0 (4.7)

where n < α < n + 1, with α = nq, 0 < q < 1, n fixed.
The general solution of this equation is given by c1x1(t) + c2x2(t) + · · · + cnxn(t)

where c1, c2, . . . , cn are arbitrary constants and x1(t), x2(t), . . . , xn(t) are infinite
series of the form

x1(t) =
∞∑
k=0

(−1)
k
t nkq

�(1 + nkq)

x2(t) =
∞∑
k=0

(−1)
k
t (nk+1)q

�(1 + (nk + 1)q)
...

...
...

xn(t) =
∞∑
k=0

(−1)
k
t nk+(n−1))q

�(1 + (nk + (n − 1))q)
,

which are denoted by Mq
n,0(t), Mq

n,1(t), . . . , Mq
n,n−1(t), respectively.

More generally, let

Mq
n,r (t) =

∞∑
k=0

(−1)
k
t (nk+r)q

�(1 + (nk + r)q)
, n ∈ N , t ≥ 0.
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These are the n linearly independent solutions of the Caputo FDE (4.7).

Let x1(t), x2(t), . . . , xn(t) be n solutions of the nth order Caputo FDE for t ∈ R
+.

Then, the Wronskian W (t) of the n solutions is defined as

W (t) =

∣∣∣∣∣∣∣∣∣∣∣

x1 x2 · · · xn
−xn x1 · · · xn−1

−xn−1 −xn · · · xn−2
...

...
...

...

−x2 −x3 · · · x1

∣∣∣∣∣∣∣∣∣∣∣
(t).

Theorem 4.2 Let x1(t), x2(t), . . . , xn(t) be n solutions of (4.7). Then, these solu-
tions are linearly independent on R+ if and only if W (t) �= 0 for every t ∈ R+.

Finally, we give the addition formula of the solutions of (4.7) for η ≥ 0 and t ≥ 0,

Mq
n,r (t + η) =

r∑
k=0

Mq
n,k(t)M

q
n,r−k(η) −

n−1∑
k=r+1

Mq
n,k(t)M

q
n,n+r−k(η).

5 Impulsive Differential Equations

It is well established that many evolutionary processes exhibit impulses, which are
perturbations whose duration is negligible compared to the duration of the process.
Thus, differential equations with impulses are appropriate mathematical models for
the study of physical phenomena exhibiting sudden change. As fractional differential
equations are considered better models of processes that havememory and hereditary
properties, it is natural to use FDEs with impulses to study perturbations or sudden
changes in these systems.

In this section, we present known existence and uniqueness results for impulsive
fractional differential equation with both fixed and variable moments of impulse.

In both cases, we use the theory of inequalities and comparison theorems, the
method of lower and upper solutions and the iterative methods of quasilinearization
(QL) andmonotone iterative technique (MIT). In order to illustrate this approach, we
present an existence and uniqueness result for impulsive FDEs using the generalized
QL method for fixed moments of impulse and using the method lower and upper
solutions and the MIT for variable moments of impulse.

5.1 FDE with Fixed Moments of Impulse

We begin with the basic notation and a definition of the solution of a FDE with fixed
moments of impulse and then proceed to the generalized QL method.
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Definition 5.1 Let 0 ≤ t0 < t1 < t2 < · · · < tk < . . . and tk → ∞ as k → ∞. Then
we say that h ∈ PCp[R+ × R

n,Rn] if h : (tk−1, tk] × R
n → R

n isCp-continuous on
(tk−1, tk] × R

n and for any x ∈ R
n

lim
(t,y)→(t+k ,x)

h(t, y) = h(t+k , x)

exists for k = 1, 2, . . . , n − 1.

Definition 5.2 Let 0 ≤ t0 < t1 < t2 < · · · < tk < . . . and tk → ∞ as k → ∞. Then
we say that h ∈ PCq [R+ × R

n,Rn] if h : (tk−1, tk] × R
n → R

n isCq -continuous on
(tk−1, tk] × R

n and for any x ∈ R
n

lim
(t,y)→(t+k ,x)

h(t, y) = h(t+k , x)

exists for k = 1, 2, . . . , n − 1.

Consider the impulsive Caputo fractional differential system defined by

⎧⎨
⎩

cDqx = f (t, x), t �= tk,
x(t+k ) = Ik(x(tk)), k = 1, 2, . . . , n − 1,
x(t0) = x0,

(5.1)

where f ∈ PC[[t0, T ] × R
n,Rn], Ik : Rn → R

n, k = 1, 2, . . . , n − 1.

Definition 5.3 By a solution x(t, t0, x0) of system (5.1), wemean a PCq continuous
function x ∈ PCq [[t0, T ],Rn], such that

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0(t, t0, x0), t0 ≤ t ≤ t1,
x1(t, t1, x

+
1 ), t1 ≤ t ≤ t2,

·
·
·
xk(t, tk, x

+
k ), tk < t ≤ tk+1,

·
·
xn−1(t, tn−1, x

+
n−1), tn−1 < t ≤ T,

(5.2)

where 0 ≤ t0 < t1 < t2 < · · · < tn−1 ≤ T and xk(t, tk, x
+
k ) is the solution of the fol-

lowing fractional initial value problem

cDq
x = f (t, x),

x+
k = x(t+k ) = Ik(x(tk))

.

Definition 5.4 α,β ∈ PCq [[t0, T ],R] are said to be lower and upper solutions of
equation (5.1), if and only if they satisfy the following inequalities:
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⎧⎨
⎩

cDqα ≤ f (t,α) + g(t,α), t �= tk,
α(t+k ) ≤ Ik(α(tk)), k = 1, 2, 3, . . . , n − 1,

α(t0) ≤ x0,
(5.3)

and ⎧⎨
⎩

cDqβ ≥ f (t,β) + g(t,β), t �= tk,
β(t+k ) ≥ Ik(β(tk)), k = 1, 2, 3, . . . , n − 1,

β(t0) ≥ x0,
(5.4)

respectively.

We first state two lemmas [9] that are needed to prove the main theorem.

Lemma 5.5 The linear, nonhomogeneous impulsive Caputo initial value problem

⎧⎨
⎩

cDqx = M(x − y) + f (t, y) + g(t, y), t �= k,
x(t+k ) = (Ik(x(tk)), k = 1, 2, . . . , n − 1,
x(t0) = x0,

has a unique solution on the interval [t0, T ].
Lemma 5.6 Suppose that

(i) α0(t) and β0(t) are lower and upper solutions of the hybrid Caputo fractional
differential equation (5.1).

(ii) α1(t) and β1(t) are the unique solutions of the following linear, impulsive
Caputo initial value problems,

⎧⎨
⎩

cDqα1 = f (t,α0) + fx (t,α0)(α − α0) + g(t,α0) + gx (t,β0)(α1 − α0), t �= tk ,
α1(t

+
k ) = Ik(α0(tk)), k = 1, 2, 3, . . . , n − 1,

α1(t0) = x0,
(5.5)

and

⎧⎨
⎩

cDqβ1 = f (t,β0) + fx (t,α0)(β1 − β0) + g(t,β0) + gx (t,β0)(β1 − β0), t �= tk ,
β1(t

+
k ) = Ik(β0(tk)), k = 1, 2, 3, . . . , n − 1,

β1(t0) = x0,
(5.6)

respectively;
(iii) Ik(x) is nondecreasing function in x for each k = 1, 2, 3, . . . , n − 1;
(iv) fx , gx are continuous and Lipschitz in x on [t0, T ].
Then, α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t) on [t0, T ].
We now state the main result.

Theorem 5.7 Assume that

(i) f, g ∈ PC[t0, T ] × R,R] and α0,β0 ∈ PCq [[t0, T ],R] are lower and upper
solutions of (5.1) such that α0(t) ≤ β0(t), t ∈ [t0, T ];
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(ii) fx (t, x) exists, is increasing in x for each t, f (t, x) ≥ f (t, y) + fx (t, y)(x −
y), x ≥ y and | fx (t, x) − fx (t, y| ≤ L1|x − y|, and further suppose that
gx (t, x) exists, is decreasing in x for each t, g(t, x) ≥ g(t, y) + gx (t, y)(x −
y), x ≥ y and |gx (t, x) − gx (t, y| ≤ L2|x − y|;

(iii) Ik is increasing and Lipschitz in x for each k = 1, 2, 3, . . . , n − 1.

Then, there exist monotone sequences {αn}, {βn} such that αn → ρ,βn → r, as
n → ∞, uniformly and monotonically to the unique solution ρ = r = x of (5.1) on
[t0, T ], and the convergence is quadratic.

Remark 5.8 Observe that if we set Ik ≡ 0 for all k, then (5.1) reduces to a Caputo
fractional differential equation, for which the generalized quasilinearization for this
type of equations has been studied in [24], under the assumption of a Holder conti-
nuity. However, Theorem 5.7, with Ik ≡ 0, shows that those results also hold with
the weakened hypothesis of Cq -continuity.

5.2 Impulsive Differential Equation with Variable Moments
of Impulse

Consider a sequence of surfaces {Sk} given by Sk : t = τk(x), k = 1, 2, 3, . . . ; τk :
R → R such that τk(x) < τk+1(x) and

lim
k→∞τk(x) = ∞. Then, the impulsive Caputo

FDE with variable moments of impulse is given by

cDqx = f (t, x), t �= τk(x)
x(t+) = x(t) + Ik(x(t)), t = τk(x).

}
(5.7)

where f : R+ × � → R,� ⊂ R is an open set, τk ∈ C[�, (0,∞)], Ik(x(t)) =
�(x(t)) = x(t+) − x(t−), and Ik ∈ C[�,R], k = 1, 2, 3, . . . .

In this case, the moments of impulse depend on the solutions satisfying tk =
τk(x(tk)), for each k. Thus, solutions starting at different points will have different
points of discontinuity. Also, a solution may hit the same surface Sk : t = τk(x)
several times and we shall call such a behavior “pulse phenomenon”. In addition,
different solutions may coincide after some time and behave as a single solution
thereafter. This phenomenon is called “confluence”.

In order to construct the method of lower and upper solutions in the given inter-
val, we have to ensure that the solution does not exhibit a pulse phenomenon. The
following theorem gives a simple set of sufficient conditions for any solution to meet
each surface exactly once and shows the interplay between the functions f, τk , and
Ik [14]. In the rest of the section,we shall assume that the solution of (5.7) exists for
t ≥ t0 and is Cp continuous.

Theorem 5.9 Assume that

(i) f ∈ C[[t0, T ] × �,R], t0 ≥ 0, Ik ∈ C[�,R], τk ∈ C[�, (0,∞)], is linear
and bounded, and τk(x) < τk+1(x) for each k;
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(ii) (a)
∂τk(x)

∂x
f (t, x) <

(t − t̃)p

�(p + 1)
, whenever t = τk(x(t, t̃, x̃)),

(b)

(
∂τk

∂x
(x + s Ik(x))

)
Ik(x) < 0, and

(c)

(
∂τk

∂x
(x + s Ik−1(x))

)
Ik−1(x) ≥ 0, 0 ≤ s ≤ 1, x + Ik(x) ∈ � whenever

x ∈ �.

Then, every solution x(t) = x(t, t0, x0) of IVP (5.7), such that 0 ≤ t0 < τ1(x0),meets
each surface Sk exactly once.

Next, we consider the following initial value problem:

cDqx = f (t, x), t �= τ (x),
x(t+) = x(t) + I (x(t)), t = τ (x)
x(t+0 ) = x0,

(5.8)

where f ∈ C[J × R,R], I ∈ C[R,R], and τ ∈ Cq [R, (0,∞)], with J = [t0, T ],
t0 ≥ 0, τ (x) is linear of the form λ0x + λ1, λ0 ∈ R

+, λ1 ∈ R, and τ (x) is increas-
ing.

The lower and upper solutions of (5.8) are defined as follows:

Definition 5.10 A function v ∈ Cp[J,R] is said to be a lower solution of (5.8) if it
satisfies the following inequalities

cDqv ≤ f (t, v), t �= τ (v(t)),
v(t+) ≤ v(t) + I (v(t)), t = τ (v(t))
v(t+0 ) ≤ x0,

(5.9)

Definition 5.11 A function w ∈ Cp[J,R] is said to be an upper solution of (5.8), if
it satisfies the following inequalities

cDqw ≥ f (t, w), t �= τ (w(t)),
w(t+) ≥ w(t) + I (w(t)), t = τ (w(t))
w(t+0 ) > x0,

(5.10)

The following result is the fundamental inequality theorem in the theory of Caputo
fractional differential inequalities with variable moments of impulse [13].

Theorem 5.12 Assume that

(i) v,w ∈ Cp[J, R] are lower and upper solutions of (5.8), respectively;
(ii) f ∈ C[J × R,R], I ∈ C[R,R], τ ∈ Cq [R, (0,∞)], τ is linear and increas-

ing;
(iii) τx (v + s I (v))I (v) < 0, t = τ (v(t)), 0 ≤ s ≤ 1;
(iv) τx (w + s I (w))I (w) > 0, t = τ (w(t)), 0 ≤ s ≤ 1;
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(v) τx (v) f (t, v) <
(t − t1)p

p
, whenever t = τ (v(t, t1, v1)), where v(t, t1, v1) is the

lower solution of (5.8) starting at (t1, v1), t1, t ∈ J ;
(vi) τx (w) f (t, w) >

{
(t − t1)p

p

}
, whenever t = τ (w(t, t1, w1)), where w(t, t1,

w1) is the upper solution of (5.8) starting at (t1, w1), t1, t ∈ J.
(vii) f (t, x) − f (t, y) ≤ L(x − y), x ≥ y, L > 0.

Then, v(t0) ≤ w(t0) implies v(t) ≤ w(t), t0 ≤ t ≤ T .

Next, we state an existence result based on the existence of upper and lower solutions.

Theorem 5.13 Let v,w ∈ Cp[J,R] be lower and upper solutions of (5.8), respec-
tively, such that v(t) ≤ w(t) on J . Suppose that w(t) hits the surface S : t = τ (x)
only once at t = t∗ ∈ (t0, T ] and w(t∗) < w(t+∗ ). Also, assume

(i) f ∈ C[J × R,R], τ ∈ Cq [R, (0,∞)], τ is linear and increasing for v(t) ≤
x ≤ w(t), t ∈ J ;

(ii) τx (x + s I (x))I (x) < 0, 0 ≤ s ≤ 1, t = τ (x), v(t) ≤ x ≤ w(t), t ∈ J ;
(iii) τx (x) f (t, x) <

(t − t1)p

p
whenever t = τ (x(t, t1, x1)), v(t) ≤ x ≤ w(t), t,

t1 ∈ J,
(iv) For any (t, x) such that t = τ (x), v(t) ≤ x ≤ w(t) implies v(t) ≤ x+ ≤ w(t),

t ∈ J.

Then, there exists a solution x(t) of (5.8) such that v(t) ≤ x(t) ≤ w(t) on J .

The method of upper and lower solutions, described previously, gives a theoretical
result, namely, the existence of a solution of (5.8) in a closed sector, whereas the
monotone iterative technique is a constructive method, which gives a sequence that
converges to a solution of (5.8). In the case of impulsive Caputo fractional differ-
ential equations with variable moments of impulsive, this practical method involves
working with sequences of solutions of a simple linear Caputo fractional differential
equation of order q, 0 < q < 1, with variable moments of impulse. This result is
given in the following theorem [12].

Theorem 5.14 Assume that

(i) v0, w ∈ PCp[J,R] are lower and upper solutions of (5.8) respectively, such
that v0(t) ≤ w(t) on J , and w(t) hits the surface S : t = τ (x) only once
at t = t∗ ∈ (t0, T ] and w(t∗) < w(t+∗ ), f ∈ C[J × R,R], I ∈ C[R,R], τ ∈
Cq [R, (0,∞)] and τ (x) is linear and increasing for v0(t) ≤ x ≤ w(t), t ∈ J ;

(ii) τx (x + s I (x))I (x) < 0, 0 ≤ s ≤ 1, t = τ (x), v0(t) ≤ x ≤ w(t), t ∈ J ;
(iii)

∂τ

∂x
f (t, x) <

(t − t1)p

p
, whenever t = τ (x(t, t1, x1)), v0(t) ≤ x ≤ w(t);

(iv) f (t, x) − f (t, y) ≥ −M(x − y), v0(t) ≤ y ≤ w(t), t ∈ J, M > 0;
(v) for any (t, x) such that t = τ (x), v0(t) ≤ x ≤ w(t) implies v0(t) ≤ x+ ≤

w(t), t ∈ J ,

Then, there exists a monotone sequence {vn} such that vn → ρ as n → ∞ monoton-
ically on J . Also, ρ is the minimal solution of (5.8).
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6 Fractional Integro-Differential Equations

It is well known that integro-differential equations are used to mathematically model
physical phenomena,where past information is necessary to understand the present.
On the other hand, fractional differential equations play an important role in studying
processes that havememory and hereditary properties. Fractional integro-differential
equations combine these two topics. In this section, we present a summary of
results involving periodic-boundary value problems (PBVP) for fractional integro-
differential equations using inequalities and comparison theorems [37].

Consider the following Caputo fractional integro-differential equation

cDqu = f (t, u, I qu) (6.1)

u(0) = u0, (6.2)

where f ∈ C[J × R × R
+,R], u ∈ C1[J,R], J = [0, T ],

and I qu(t) = 1

�(q)

t∫

0

(t − s)q−1u(s)ds. (6.3)

The following theorem gives the explicit solution of the linear Caputo fractional
integro-differential initial value problem.

Theorem 6.1 Letλ ∈ C1([0, T ],R). The solution of cDqλ(t) = Lλ(t) + MIqλ(t)
is given by

λ(t) =
∞∑
n=0

∞∑
k=0

n+kCkMnLk2n+kλ(0)

�[(2n + 1)q + 1] t (2n+1)q

where L , M > 0.

The following comparison theorem is needed to prove the main result.

Theorem 6.2 Let J = [0, T ], f ∈ C[J × R × R
+,R], v, w ∈ C1[J,R] and sup-

pose that the following inequalities hold for all t ∈ J .

cDqv(t) ≤ f (t, v(t), I qv(t)), v(0) ≤ u0 (6.4)
cDqw(t) ≥ f (t, w(t), I qw(t)), w(0) ≥ u0. (6.5)

Suppose further that f (t, u(t), I qu(t)) satisfies the following Lipschitz-like condi-
tion,

f (t, x, I q x) − f (t, y, I q y) ≤ L(x − y) + M(I q x − I q y), (6.6)

for x ≥ y, L , M > 0. Then, v(0) ≤ w(0) implies that u(t) ≤ w(t), 0 ≤ t ≤ T .
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Corollary 6.3 Let m ∈ C1[J,R] be such that

cDqm(t) ≤ L m(t) + MIqm(t), m(0) = m0 ≤ 1,

then
m(t) ≤ λ(t)

for 0 ≤ t ≤ T, L , M > 0; λ(0) = 1 and λ(t) =
∞∑
n=0

∞∑
k=0

n+kCkMnLk2n+k

�[(2n + 1)q + 1] t
(2n+1)q .

Proof We have
cDqm(t) ≤ L m(t) + MIqm(t),
cDqλ(t) + 2L λ(t) + 2MIqλ(t)

≥ Lλ(t) + MIqλ(t),
for m(0) = m0 ≤ 1 = λ(0).

Hence, from Theorem 6.2 we conclude that m(t) ≤ λ(t), t ∈ J. �

The result in the above corollary is true even if L = M = 0, which we state below.

Corollary 6.4 Let cDqm(t) ≤ 0 on [0, T ]. If m(0) ≤ 0 then m(t) ≤ 0, t ∈ J.

Proof By definition of cDqm(t) and by hypothesis,

cDqm(t) = 1

�(1 − q)

t∫

0

(t − s)−qm ′(s)ds ≤ 0,

which implies that m ′(t) ≤ 0, on [0, T ]. Therefore m(t) ≤ m(0) ≤ 0 on [0, T ]. The
proof is complete. �

Next, we present a result which uses the generalized monotone iterative technique
in order to obtain minimal and maximal solutions of the Caputo fractional integro-
differential equation

cDqu = F(t, u, I qu) + G(t, u, I qu), (6.7)

with the boundary condition

g(u(0), u(T )) = 0, (6.8)

where F,G ∈ C[J × R × R
+,R], u ∈ C1[J,R].

Definition 6.5 Let v0, w0 ∈ C1[J,R]. Then v0 and w0 are said to be coupled lower
and upper solutions of Type I of (6.7) and (6.8) if
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cDqv0(t) ≤ F(t, v0(t), I qv0(t)) + G(t, w0(t), I qw0(t)),
g(v0(0), v0(T )) ≤ 0

(6.9)

cDqw0(t) ≤ F(t, w0(t), I qw0(t)) + G(t, v0(t), I qv0(t)),
g(w0(0), w0(T )) ≥ 0

(6.10)

The monotone iterative technique for (6.7) and (6.8) was developed using
sequences of iterates which are solutions of linear fractional integro-differential
initial value problems. Since the solution of a linear Caputo fractional differential
equation is unique, the sequence of iterates is a unique sequence converging to a
solution of (6.7) and (6.8). In this approach,it is not necessary to prove the existence
of a solution of the Caputo fractional integro-differential equation as it follows from
the construction of the monotone sequences.

In the following theorem, coupled lower and upper solutions of Type I are used to
obtainmonotone sequences which converge uniformly andmonotonically to coupled
minimal and maximal solutions of (6.7) and (6.8).

Theorem 6.6 Suppose that

(i) v0, w0 are coupled lower and upper solutions of Type I for (6.7) and (6.8) with
v0(t) ≤ w0(t) on J;

(ii ) the function g(u, v) ∈ C[R2,R] is nonincreasing in v for each u, and there
exists a constant M > 0 such that

g(u1, v) − g(u2, v) ≤ M(u1 − u2),

for v0(0) ≤ u2 ≤ u1 ≤ w0(0), v0(T ) ≤ v ≤ w0(T );
(i i i ) F,G ∈ C[J × R × R+,R] and F(t, x1, x2) is nondecreasing in x1 for each

(t, x2) ∈ J × R+ and is nondecreasing in x2 for each (t, x1) ∈ J × R; Fur-
ther, G(t, y1, y2) is nonincreasing in y1 for each (t, y2) ∈ J × R+ and is non-
increasing in y2 for each (t, y1) ∈ J × R.

Then, the iterative scheme given by

cDqvn+1 = F(t, vn, I qvn) + G(t, wn, I qwn),

vn+1(0) = vn(0) − 1

M
g(vn(0), vn(T ))

cDqwn+1 = F(t, wn, I qwn) + G(t, vn, I qvn),

wn+1(0) = wn(0) − 1

M
g(wn(0), wn(T )),

yields two monotone sequences {vn(t)} and {wn(t)} such that

v0 ≤ v1 ≤ · · · ≤ vn ≤ wn ≤ · · · ≤ w1 ≤ w0.
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Further, vn → ρ and wn → r in C1[J,R], uniformly and monotonically, such that
ρ and r are,respectively, the coupled minimal and maximal solutions of (6.7) and
(6.8), that is, ρ and r satisfy the coupled system

cDqρ = F(t, ρ, I qρ) + G(t, r, I qr),
g(ρ(0), ρ(T )) = 0,

cDqr = F(t, r, I qr) + G(t, ρ, I qρ),

g(r(0), r(T )) = 0.

7 Conclusion

Our aim in this chapter was to give a brief survey of the qualitative theory of frac-
tional differential equations developed using the fundamental concepts of differen-
tial inequalities and comparison theorems, as well as constructive monotone iterative
methods. The results presented here constitute only a representative sample of the
work done using these tools. For additional results see, for example, Abbas and
Bechohra [1], Agarwal et al. [3–6], Jankowski [16–20], Lin et. al. [26], Nanware
[29], Sambadham et al. [31, 32], Vatsala et al. [10, 30, 33, 34], Wang et al. [40–44],
Yakar et al. [45, 46], and Zhang [46].

Themain results in Sects. 2 and 3 are fromDevi et al. [38, 39], Drici et al. [11] and
Lakshmikantham et al. [22–24]. The main result in Sect. 4 is from Devi et al. [35].
The main results in Sect. 5 are from Giribabu et al. [12–14] and Devi and Radhika
[8, 9]. The result in Sect. 6 is from Devi and Sreedhar [37].
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