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Abstract In this work, integration by parts formulas for variable-order fractional
operators with Mittag-Leffler kernels are presented and applied to study constrained
fractional variational principles involving variable-order Caputo-type Atangana–
Baleanu’s derivatives, where the variable-order fractional Euler–Lagrange equations
are investigated. A general formulation of fractional Optimal Control Problems
(FOCPs) and a solution scheme for such class of systems are proposed. The per-
formance index of a FOCP is taken into consideration as function of state as well as
control variables.

1 Introduction

Fractional calculus represents a generalization of the classical differentiation and
integration of nonnegative integer order to arbitrary order. This type of calculus
has recently gained its importance and popularity because of the significant and
interesting results which were obtained when fractional operators were utilized to
model real-world problems in diversity of fields, e.g., physics, engineering, biology,
etc. [1, 6, 12–14, 16, 23–31, 35, 37–39, 42, 43, 46, 47].

The Lagrangian and Hamiltonian mechanics are an alternate of the standard New-
tonianmechanics. They are important because they can be used for the sake of solving
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any problem in the traditional mechanics. It is worth mentioning that in the New-
tonian mechanics, the conception of force is needed. While, in the Lagrangian and
Hamiltonian systems, the terms of energy are required.

Riewe [44, 45] was the first to consider the Lagrangian and Hamiltonian for a
given dissipative system in the frame of fractional operators. Agarwal and Baleanu
made significant contributions to the concept of fractional variational principles in
[2–5, 19, 21].

In [2, 4, 20, 21, 40, 41], variety of optimization problems embodying constant
order fractional control problems were considered. In [2, 4], the author proposed a
general formulation for fractional optimal control problems and presented a solution
scheme for such problems. This formulation was based on variation principles and
Lagrangemultipliers technique. In [40, 41], the authors extended the classical control
theory to diffusion equations involving fractional operators in a bounded domainwith
and without a state constraints. These works were advanced in to a larger family of
fractional optimal control systems containing constant orders in [11, 17]. Other
contributions to this field were discussed in [18, 32, 33] and the references therein.
Nevertheless, to the last extent of our knowledge, the area of calculus of variations
and optimal control of fractional differential equations with variable order has been
paid less attention than the case where fractional derivatives with constant orders.
(see [15, 22, 36, 37]). This work is an attempt to fill this gap.

Motivated by what was mentioned above, we discuss the Lagrangian and Hamil-
tonian formalism for constrained systems in the presence of fractional variable order
in this work.

Recently, in order to overcome the disadvantage of the existence of the singular
kernels involved in the traditional fractional operators, Atangana and Baleanu [8]
proposed a derivative with fractional order. The kernel involved in this derivative is
nonlocal and nonsingular. Many researches have considered several applications on
this fractional derivative (see e.g [7, 9, 48] and the references therein).

In this study, we use the aforementioned fractional derivative with variable order
and propose to generalize the concept of equivalent Lagrangian for the fractional
case. For a certain class of classical Lagrangian, there are several techniques to
find the Euler–Lagrange equations and the associated Hamiltonians. However, the
fractional dynamics depending on the fractional derivatives are used to construct the
Lagrangian to begin with. Therefore, the existence of several options can be utilized
to deal with a certain physical system. From this point of you, applications of the
fractional derivative proposed by Atangana and Baleanu to the fractional dynamics
may adduce new advantages in studying the constrained systems primarily because of
the fact that there exist left and right derivatives of this kind. Addition, the fractional
derivative of a function is given by a definite integral and it depends on the values of
the function over the entire interval. Therefore, the fractional derivatives proposed
are suitable to model systems with long-range interactions in space and/or time
(memory) and process with many scales of space and/or time involved.

This work is organized as follows: In Sect. 2, we go over some concepts and
definitions, and then we present the integration by parts formula in the framework
of variable-order Atangana–Baleanu fractional time derivative. Section3 includes a
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tabloid review of the fractional Lagrangian and Hamiltonian approaches in the frame
of the proposed variable-order fractional derivatives and some detailed examples.
In Sect. 4, we discuss constrained systems in the frame of the proposed derivative
and investigate some example in details. In Sect. 5, the Fractional Optimal Control
Problem (FOCP) is presented. Section6 is dedicated to our conclusions.

2 Preliminaries

In this section, we present some definitions and notions related to Atangana–Baleanu
fractional derivatives.

Let L2(Ω) be the usual Hilbert space fitted to the scalar product (., .) and let
Hm(Ω), Hm

0 (Ω) denote the usual Sobolev spaces.
First, lets recall the Mittag-Leffler function Eα(x),β(u) for variable α(x) ∈ (0, 1)

that is used in a great scale in this work and given below

Eα(x),β(u) =
∞∑

k=0

uk

Γ (kα(x) + β)
, 0 < α(x) < 1, 0 < β < 1,

Eα(x),1(u) = Eα(t)(u), u ∈ C,

where Γ (.) denotes the Gamma function defined as

Γ (α(x)) =
∫ ∞

0
sα(x)−1e−sds, �(α(x) > 0.

It can be easily noticed that the exponential function is a particular case of theMittag-
Leffler function. In fact,

E1,1(u) = eu, E2,1(u) = cosh
√
u, E1,2(u) = eu − 1

u
, E2,2(u) = sinh

√
u√

u
.

Amore generalized form of theMittag-Leffler function is theMittag-Leffler function
with three parameters defined as

Eλ
α,β(u) =

∞∑

k=0

(λ)k

Γ (kα + β)

uk

k! , u, β, λ ∈ C, �(α) > 0,

where, (λ)k denotes the familiar Pochhammer symbol.
First of all, we present a new approach in defining variable-order Riemann–

Liouville fractional integrals different from those in [10].
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Definition 1 Let φ(x) be an integrable defined on an interval [a, b] and a let α(x)
be function such that 0 < α(x) ≤ 1.We define the left Riemann–Liouville fractional
integral of order α(x] as

a I
α(.)φ(x) = 1

Γ (α(x))

∫ x

a
(x − s)α(x)−1φ(s)ds (1)

and

aI
α(.)φ(x) =

∫ x

a
(x − s)α(s)−1φ(s)

1

Γ (α(s))
ds. (2)

In the right case, we have

I α(.)
b φ(x) = 1

Γ (α(x))

∫ b

x
(s − x)α(x)−1φ(s)ds (3)

and

I α(.)
b φ(x) =

∫ b

t
(s − x)α(s)−1φ(s)

1

Γ (α(s))
ds. (4)

To define fractional integral type operators with variable order, we follow [34].

Definition 2

Eα(x),1, −α(x)
1−α(x) ,a

+ϕ(x) = B(α(x))

1 − α(x)

∫ x

a
Eα(x)

[ −α(x)

1 − α(x)
(x − s)α(x)

]
ϕ(s)ds, x > a.

(5)
Similarly, we define the right generalized fractional integral as

Eα(x),1, −α(x)
1−α(x) ,b

−ϕ(x) = B(α(x))

1 − α(x)

∫ b

t
Eα(x)

[ −α(x)

1 − α(x)
(s − x)α(x)

]
ϕ(s)ds, x < b.

(6)
We define the following operators as well:

Eα(x),1, −α(x)
1−α(x) ,a

+ϕ(x) =
∫ x

a

B(α(s))

1 − α(s)
Eα(s)

[ −α(s)

1 − α(s)
(x − s)α(s)

]
ϕ(s)ds, x > a

(7)
and

Eα(x),1, −α(x)
1−α(x) ,b

−ϕ(x) =
∫ b

x

B(α(s))

1 − α(s)
Eα(s)

[ −α(s)

1 − α(s)
(s − x)α(s)

]
ϕ(s)ds, x < b.

(8)

Now, we present the definitions of the fractional integrals and derivatives of vari-
able order in the point of view of Atangana–Baleanu [7].
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Definition 3 For a given function u ∈ H 1(a, b), b > a, α(x) ∈ (0, 1), the
Atangana–Baleanu fractional integrals (AB integral) of variable orderα(x) of a given
function u ∈ H 1(a, b), b > x > a (where A denotes Atangana, B denotes Baleanu)
with base point a is defined at a point x ∈ (a, b) by

AB
a I α(x)

x u(x) = 1−α(x)
B(α(x))u(t) + α(x)

B(α(x))Γ (α(x))

∫ x
a u(s)(x − s)α(x)−1ds, (left ABI)

= 1−α(x)
B(α(x))u(x) + α(x)

B(α(x)) a I α(x)
x u(x)

(9)
and

AB
x I α(x)

b u(x) = 1−α(x)
B(α(x))u(x) + α(x)

B(α(x))Γ (α(x))

∫ b
x u(s)(s − x)α(x)−1ds, (right ABI)

= 1−α(x)
B(α(x))u(x) + α(x)

B(α(x)) x I
α(x)
b u(x).

(10)

AB
a I α(x)

x u(x) = 1−α(x)
B(α(x))u(x) + ∫ x

a
α(s)

B(α(s))Γ (α(s))u(s)(x − s)α(s)−1ds, (left ABI )

= 1−α(x)
B(α(t))u(x) + aI α(x)

x

[
α(x)

B(α(x))u(x)
]

(11)
and

AB
x I

α(x)
b u(x) = 1−α(x)

B(α(x))u(x) + ∫ b
x

α(s)
B(α(s))Γ (α(s))u(s)(s − x)α(s)−1ds, (right ABI )

= 1−α(x)
B(α(x))u(x) + I α(x)

b

[
α(x)

B(α(x))u(x)
]
.

(12)
Once one takes α(x) = 0 in (9), (10) we recover the initial function and when

α(x) = 1 is considered in (9), (10) we recover the ordinary integral.
The Atangana–Baleanu fractional derivatives in the Riemann–Liouville sense

(ABR derivative) of variable order α(x) for a given function ϕ(x) ∈ H 1(a, b), b >

x > a (where R denotes Riemann) with base point a is defined at a point x ∈ (a, b)
by

ABR
a Dα(x)

x ϕ(x) = d

dx
Eα(x),1, −α(x)

1−α(x) ,a
+ϕ(x) (left ABRD) (13)

ABR
x Dα(t)

b ϕ(x) = − d

dt
Eα(x),1, −α(x)

1−α(x) ,b
−ϕ(x) (right ABRD), (14)

ABR
a Dα(t)

x ϕ(x) = d

dx
Eα(x),1, −α(x)

1−α(x) ,a
+ϕ(x) (left ABRD) (15)

ABR
x Dα(x)

b ϕ(t) = − d

dx
Eα(t),1, −α(x)

1−α(x) ,b
−ϕ(x) (right ABRD) (16)
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and the Caputo Atangana–Baleanu fractional derivatives (ABC derivative) of vari-
able order α(x) for a given function ϕ(x) ∈ H 1(a, b), b > x > a (where C denotes
Caputo) with base point a is defined at a point x ∈ (a, b) by

ABC
a Dα(x)

x ϕ(x) = Eα(x),1, −α(x)
1−α(x) ,a

+ϕ′(x) (left ABRD) (17)

ABC
x Dα(x)

b ϕ(t) = − Eα(x),1, −α(x)
1−α(x) ,b

−ϕ′(x) (right ABRD), (18)

ABC
a Dα(t)

x ϕ(x) = Eα(x),1, −α(x)
1−α(x) ,a

+ϕ′(x) (left ABRD) (19)

ABC
x Dα(x)

b ϕ(x) = −Eα(x),1, −α(x)
1−α(x) ,b

−ϕ′(x) (right ABRD) (20)

Remark 1 If one replace α(x) in (5) and (6) by α(x − s) and replaces each α(s) in
(7) and (8) by α(x − s), then the ABR and ABC fractional derivatives with variable
order can be expressed in the convolution form. Analogously, if one replaces α(x) in
(9) and (10) by α(x − s) and replaces each α(s) in (11) and (12) by α(x − s), then
the second part of the AB fractional integrals with variable order can be expressed
in the convolution form.

Lemma 1 For functions u and v defined on [a, b] and 0 < α(x) ≤ 1 we have

∫ b

a
u(x) a I

α(x)
x v(x)dx =

∫ b

a
v(x) xI

α(x)
b u(x)dx, (21)

∫ b

a
u(x) aI

α(x)
x v(x)dt =

∫ b

a
v(x) x I

α(x)
b u(x)dx . (22)

Proof Using Definition 1 and changing the order of integration, we have

∫ b

a
u(x) a I

α(x)
x v(x)dx =

∫ b

a
u(x)

(
1

Γ (α(x))

∫ x

a
(x − s)α(x)−1v(s)ds

)
dx

=
∫ b

a
v(s)

(∫ b

s
(x − s)α(x)−1 u(x)

Γ (α(x))
dx

)
ds

=
∫ b

a
v(s) sI

α(s)
b u(s)ds.

On the other side, again using Definition 1 and changing the order of integrations,
we get
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∫ b

a
u(x) aI

α(x)
x v(x)dx =

∫ b

a
u(x)

(∫ x

a
(x − s)α(s)−1v(s)

ds

Γ (α(s))

)
dx

=
∫ b

a
v(s)

(
1

Γ (α(s))

∫ b

s
u(x)(x − s)α(s)−1dx

)
ds

=
∫ b

a
v(s) x I

α(s)
b u(s)ds

Now, benefiting from Lemma 1 we can show that the following integration by
parts formulas hold.

Theorem 1 (Integration by parts for AB fractional integrals) Let α(x) > 0, p ≥
1, q ≥ 1, and 1

p + 1
q ≤ 1 + α(x) for all t . Then for any u(x) ∈ L p(a, b), v(x) ∈

Lq(a, b), we have

∫ b

a
u(t) AB

a I α(x)
x v(x)dt =

∫ b

a
v(x) AB

x I α(x)
b u(x)dx, (23)

∫ b

a
u(x) AB

a I α(x)
x v(x)dx =

∫ b

a
v(x) AB

x I α(x)
b u(x)dx . (24)

Proof From Definition 3 and by applying the first part of Lemma 1, we have

∫ b

a
u(x) AB

a Iα(x)
x v(x)dt =

∫ b

a
v(x)

1 − α(x)

B(α(x))
u(x)dx +

∫ b

a
u(x)

α(x)

B(α(x))
a I

α(x)
x v(x)dx

=
∫ b

a
v(x)

1 − α(x)

B(α(x)
u(x)dx +

∫ b

a
v(t) xI

α(x)
b

[
u(x)α(x)

B(α(x))

]
dx

=
∫ b

a
v(x)

(
1 − α(x)

B(α(x))
u(x) + xI

α(x)
b [ α(x)

B(α(x))
u(x)]

)
dx

=
∫ b

a
v(x) AB

x I
α(x)
b u(x)dx .

The proof of the formula in (24) can be done similarly, once we use the second
part of Lemma 1.

Lemma 2 Let u(x) and v(x) be functions defined on [a, b] and let 0 < α(x) ≤ 1.
Then, we have

∫ b

a
u(x) Eα(x),1, −α(x)

1−α(x) ,a
+v(x)dx =

∫ b

a
v(x)Eα(x),1, −α(x)

1−α(x) ,b
−u(x)dx, (25)

∫ b

a
u(x)Eα(x),1, −α(x)

1−α(x) ,a
+v(x)dx =

∫ b

a
v(x)Eα(x),1, −α(x)

1−α(x) ,b
−u(x)dx . (26)
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Proof The proof can be executed using some definitions and changing the order of
integrations. In fact, we have

∫ b

a
u(x) Eα(x),1, −α(x)

1−α(x) ,a
+v(x)dx

=
∫ b

a
u(x)

B(α(x))

1 − α(x)

(∫ x

a
v(s)Eα(x)(

−α(x)

1 − α(x)
(x − s)α(x))ds

)
dx

=
∫ b

a
v(s)

(∫ b

s

B(α(x))

1 − α(x)
Eα(x)(

−α(x)

1 − α(x)
(x − s)α(x))u(x)dx

)
ds

=
∫ b

a
v(s)Eα(s),1, −α(s)

1−α(s) ,b
−u(s)ds.

The formula in (26) can proved similarly.

Theorem 2 Let u(x) and v(x) be functions defined on [a, b] and let 0 < α(x) ≤ 1.
We have

∫ b

a
u(x) ABC

a Dα(x)
x v(x)dx = v(x)E

α(x),1, −α(x)
1−α(x) ,b

−u(x)
∣∣∣
b

a
+

∫ b

a
v(x) ABR

x D
α(x)
b u(x)dx,

(27)

∫ b

a
u(x) ABC

a D
α(x)
x v(x)dx = v(x)E

α(x),1, −α(x)
1−α(x) ,b

−u(x)
∣∣∣
b

a
+

∫ b

a
v(x) ABR

t Dα(x)
b u(x)dx,

(28)

∫ b

a
u(x) ABC

x Dα(x)
b v(x)dx =

∫ b

a
v(x) ABR

a D
α(x)
x u(x)dx − v(x)E

α(x),1, −α(x)
1−α(x) ,a

+u(x)
∣∣∣
b

a
,

(29)
and

∫ b

a
u(x) ABC

x D
α(x)
b v(x)dx =

∫ b

a
v(x) ABR

a Dα(x)
x u(x)dx − v(x)E

α(x),1, −α(x)
1−α(x) ,a

+u(x)
∣∣∣
b

a
.

(30)

Proof The proof follows from Definition 3, Lemma 2 and the classical integration
by parts. Bellow, we prove (27) only. The proofs of the rest of the formulas are
analogous. Actually, using Definition 3 and applying the first part of Lemma 2 and
the traditional integration by parts, we have

∫ b

a
u(x) ABC

a Dα(x)
x v(x)dx =

∫ b

a
u(x) E

α(x),1, −α(x)
1−α(x) ,a

+v
′(x)dx

=
∫ b

a
v′(x)E

α(x),1, −α(x)
1−α(x) ,b

−u(x)dx

= v(x)E
α(x),1, −α(x)

1−α(x) ,b
−u(x)

∣∣∣
b

a
+

∫ b

a
v(x) ABR

x D
α(x)
b u(x)dx .

(31)
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3 Fractional Variational Principles in the Frame of
Variable-Order Fractional Atangana–Baleanu’s
Derivatives

In this section, we present Euler–Lagrange and fractional Hamilton equations in the
frame of the fractional variable-order Atangana–Baleanu derivatives are.

Theorem 3 Let J [z] be a functional of the form

J [z] =
∫ b

a
L(x, z, ABC

a D
α(x)
x z(x))dx (32)

defined by the set of functions which have continuous variable-order Atangana–
Baleanu fractional derivative in the Caputo sense on the set of order α(x) in [a, b]
andwhich satisfy the boundary conditions z(a) = za and z(b) = zb. Thenanecessary
condition for J [z] to have a maximum for given function z(x) is that z(x)must satisfy
the following Euler–Lagrange equation:

∂L

∂z
+ ABR

xD
α(x)
b

(
∂L

∂( ABC
a D

α(x)
x z(x))

)
= 0 (33)

Proof To obtain the necessary conditions for the extremum, we assume that z∗(x) is
the desired function. Let ε ∈ R define a family of curves

z(x) = z∗(x) + εη(x) (34)

where, η(t) is an arbitrary curve except that it satisfies the homogeneous boundary
conditions; that is

η(a) = η(b) = 0. (35)

To obtain the Euler–Lagrange equation, we substitute equation (34) into Eq. (32) and
differentiate the resulting equation with respect to ε and set the result to 0. This leads
to the following condition for extremum:

∫ b

a

[
∂L

∂z
η(x) + ∂L

∂ ABC
a D

α(z)
z z(x)

ABC
a D

α(x)
x η(x)

]
dx = 0. (36)

Using Eqs. (30), (36) can be written as

∫ b

a

[
∂L

∂z
+ABR

z D
α(x)
b

∂L

∂( ABC
a D

α(x)
x z(x))

]
η(x)dx+

η(x) · Eα(x),1, −α(x)
1−α(x) ,b

−(
∂L

∂( ABC
a D

α(x)
x z(x))

)(x)
∣∣∣
b

a
= 0. (37)
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We callEα(x),1, −α(x)
1−α(x) ,b

−(
∂L

∂( ABC
a D

α(x)
x z(x))

)(x)
∣∣∣
b

a
= 0, the natural boundary condition.

Now, since η(x) is arbitrary, it follows from a well established result in calculus of
variations that

∂L

∂z
+ ABR

xD
α(x)
b

∂L

∂( ABC
a D

α(x)
x z(x))

= 0 (38)

Equation (38) is the Generalized Euler–Lagrange Equation GELE for the Fractional
Calculus Variation (FCV) problem defined in terms of the variable-order Atangana–
Baleanu Fractional Derivatives ABFD. Note that the Atangana–Baleanu derivatives
in the Caputo and Riemann–Liouville sense appears in the resulting differential
equations.

Example 1 Consider the following Lagrangian:

L = 1

2
(z + ABC

a D
α(x)
x z)2, (39)

then independent fractional Euler–Lagrange equation (38) is given by

z + ABR
xD

α(x)
b ( ABC

a D
α(x)
x z) = 0 (40)

Example 2 We consider now a fractional Lagrangian of the oscillatory system

L = 1

2
m( ABC

a D
α(x)
x z)2 − 1

2
kz2, (41)

where m the mass and k is constant. Then the fractional Euler–Lagrange equation is

m ABR
xD

α(x)
b ( ABC

a D
α(x)
x z) − kz = 0 (42)

This equation reduces to the equation of motion of the harmonic oscillator when
α(x) → 1.

3.1 Some Generalizations

In this section, we extend the results obtained in give some Theorem 3.1 to the
case of n variables z1(x), z2(x), ..., zn(x). We denote by Fn the set of all functions
which have continuous left ABC fractional derivative of order α(x) and right ABC
fractional derivative of order β for x ∈ [a, b] and satisfy the conditions

zi (a) = zia, zi (b) = zib, i = 1, 2, ..., n.
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The problem can be defined as follows: find the functions z1, z2, ..., zn fromFn , for
which the functional

J [z1, z2, ..., zn] =
∫ b

a
L
[
x, z1(x), z2(x), ..., zn(x),

ABC
a D

α(x)
x z1(x), ...,

ABC
a D

α(x)
x zn(x),

ABC
x D

α(x)
b z1(x), ...,

ABC
x D

α(x)
b zn(x)

]
dx

has an extremum,where L(x, z1, ..., zn, y1, ..., yn, w1, ..., wn) is a functionwith con-
tinuous first and second partial derivatives with respect to all its arguments. A neces-
sary condition for J [z1, z2, ..., zn] to admit an extremum is that z1(x), z2(x), ..., zn(x)
satisfy Euler–Lagrange equations:

∂L

∂zi
+ ABR

x D
α(x)
b

∂L

∂ ABC
a Dα(x)

x zi (x)
+ ABR

a D
α(x)
x

∂L

∂ ABC
x Dα(x)

b zi (x)
= 0, i = 1, 2, ..., n.

(43)

Example 3 Lets consider the system of two planar pendula, both of length l and
mass m, suspended from the same distance apart on a horizontal line so that they
are moving in the same plane. The fractional counter part of the Lagrangian is
L(t, z1, z2,

ABC
a D

α(z)
x z1,

ABC
x D

α(x)
b z2) =

1

2
m

[
( ABC

a D
α(x)
x z1)

2 + ( ABC
x D

α(x)
b z2)

2
]

− 1

2

mg

l
(z21 + z22). (44)

To obtain the fractional Euler–Lagrange equation, we use

∂L

∂z
+ ABR

x D
α(x)
b

∂L

∂ ABC
a D

α(x)
x z(x)

+ ABR
a D

α(t)
x

∂L

∂ ABC
x D

α(x)
b z(x)

= 0, . (45)

It follows that

ABR
xD

α(x)
b ( ABC

a D
α(x)
x z1) − g

l
x1 = 0, ABR

aD
α(x)
x ( ABC

x D
α(x)
b z2) − g

l
z2 = 0 (46)

These equation reduces to the equation of motion of the harmonic oscillator when
α(t) → 1.

z′′
1 + g

l
z1 = 0, z′′

2 + g

l
z2 = 0 (47)
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4 Fractional Variational Principles and Constrained
Systems in the Frame of Variable-Order
Atangana–Baleanu’s Derivatives

Lets now consider the following problem: Find the extremum of the functional

J [x] =
∫ b

a
L(x, z,ABCa Dα(x)

x z(x))dt,

subject to the dynamical constraint

ABC
a D

α(x)
x z(x) = φ(z),

with the boundary conditions

x(a) = xa, x(b) = xb.

In this case, we define the functional

S[x] =
∫ b

a
[L + λΦ]dx,

where
Φ(x, z, ABC

a D
α(x)
x z(x)) = φ(z) − ABC

a D
α(x)
x z(x) = 0

and λ is the Lagrange multiplier. Then Eq. (38) in this case takes the form

∂S

∂z
+ ABR

xD
α(x)
b

∂S

∂ ABC
a D

α(x)
x z(x)

= 0 (48)

which can be written as

∂L

∂z
+ ABR

xD
α(x)
b

∂L

∂ ABC
a D

α(x)
x z(x)

+ λ

[
∂Φ

∂z
+ ABR

xD
α(x)
b

∂Φ

∂ ABC
a D

α(x)
x z(x)

]
= 0

(49)

Example 4 Lets consider

J [z] =
∫ 1

0
(ABC0D

α(x)
x z(x))2dt,

with the boundary conditions
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z(0) = 0, z(1) = 0,

∫ 1

0
zdx = 0,

∫ 1

0
xzdx = 1.

Then we have

S[z] =
∫ 1

0

[
(ABC0D

α(x)
x z(x))2 + λ1z + λ2xz

]
dx,

where λ1, λ2 are the Lagrange multipliers. Then Eq. (48) takes the form

ABR
xD

α(x)
1 (ABC0 Dα(x)

x z(x)) − 1

2
(λ1 + λ2x) = 0. (50)

5 Fractional Optimal Control Problem Involving
Variable-Order Atangana–Baleanu’s Derivatives

Find the optimal control v(t) for a that minimizes the performance index

J [v] =
∫ 1

0
F(z, v, x)dx, (51)

subject to the dynamical constraint

ABC
0D

α(x)
x z(x) = G(z, v, x), (52)

with the boundary conditions
z(0) = z0. (53)

where z(x) is the state variable, x represents the time, and F and G are two arbitrary
functions. Note that Eq. (51) may also include some additional terms containing state
variables at the end point. This term in not considered here for simplicity. When
α(x) = 1, the above problem reduces to the standard optimal control problem. To
find the optimal control we follow the traditional approach and define a modified
performance index.

Lets define the functional

J [z] =
∫ 1

0
[F(z, v, x) + λ(G(z, v, x) − ABC

0D
α(x)
x z(x))]dx, (54)

where λ is the Lagrange multiplier. The variations of Equation (54) give
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δJ [v] =
∫ 1

0

[∂F

∂z
δz + ∂F

∂v
δv + δλ(G(z, v, x) − ABC

0D
α(x)
x z(x)) (55)

+ λ

(
∂G

∂z
δz + ∂F

∂v
δv − δ( ABC

0D
α(x)
x z(x))

) ]
dx,

Using Eqs. (27), (55) becomes

∫ 1

0
λδ( ABC

0D
α(x)
x z(x))dx =

∫ 1

0
δz(x)( ABR

xD
α(x)
1 λ)dx, (56)

where δz(0) = 0 or λ(0) = 0, and λz(1) = 0 or λ(1) = 0. Because z(0) is specified,
we have δz(0) = 0, and since z(1) is not specified, we require λ(1) = 0. Using these
assumptions, Eqs. (55) and (56) become

δJ [v] =
∫ 1

0

[
δλ(G(z, v, x) − ABC

0D
α(x)
x z(x)) + δz[∂F

∂z
+ λ

∂G

∂z
− ABR

xD
α(x)
1 λ](57)

+ δv[∂F
∂v

+ λ
∂G

∂v
]
]
dx,

Since J [v] and consequently J (v)) is minimized, δz, δv, and δλ in Eq. (57) are
all equal to zero. This gives

ABC
0D

α(x)
x z(x) = G(z, v, x) (58)

ABR
xD

α(x)
1 λ = ∂F

∂z
+ λ

∂G

∂z
(59)

∂F

∂v
+ λ

∂G

∂v
= 0. (60)

and
z(0) = z0 and λ(1) = 0. (61)

Observe that Eq. (58) contains Left Atangana–Baleanu in Caputo sense FD,
whereas Eq. (59) contains Right Atangana–Baleanu in Caputo FD. This clearly indi-
cates that the solution of optimal control problems requires knowledge of not only
forward derivatives but also backward derivatives to count on the end conditions. In
classical optimal control theories, this issue is either not discussed or they are not
clearly stated. This is largely because the backward derivative of order 1 turns out to
be the negative of the forward derivative of order 1.

Example 5 Consider

J [v] = 1

2

∫ 1

0
[a(x)z2(x) + b(x)v2(x)]dx, (62)
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where a(x) ≥ 0, b(x) > 0, and,

ABC
0D

α(x)
x z(x) = c(x)z(x) + d(x)v. (63)

This linear system for α(t) = 1 and 0 < α(t) < 1 was considered before in the
literature and formulations and solution schemes for this systemwithin the traditional
Riemann–Liouville and Caputo derivatives are addressed in many books and articles
(see e.g. [2, 3]. Here, we discuss the same problem in the framework of Atangana–
Baleanu fractional derivatives. For 0 < α(t) < 1, the Euler–Lagrange Equations (58)
to (60) gives (63) and

ABR
xD

α(x)
1 λ = a(x)z(x) + c(x)λ, (64)

and
b(x)v(x) + d(x)λ = 0. (65)

From (63) and (65), we obtain

ABC
0D

α(x)
x z(x) = c(x)z(x) − b−1(x)d2(x)λ. (66)

Thus, z(x) and λ(x) can be computed from (64) and (66).

Example 6 Consider the following time-invariant problem.
Find the control v(x) which minimizes the quadratic performance index

J [v] = 1

2

∫ 1

0
[z2(z) + v2(x)]dx, (67)

subject to
ABC

0D
α(x)
x z(t) = −z + v, (68)

and the initial condition
z(0) = 1. (69)

Note that from (5), we have

a(x) = b(x) = −c(x) = d(x) = z0 = 1, (70)

and (64) and (65) read
ABR

t D
α(x)
1 λ = z − λ (71)

and
v + λ = 0. (72)



56 G. M. Bahaa et al.

6 Conclusions

In this work, we have tackled some types of optimal control problems in the presence
of the newly proposed nonlocal and nonsingular fractional derivatives that involve
Mittag-Leffler functions as kernels. In order to obtain Euler–Lagrange equations, we
exploited the techniques mentioned in several books and the fractional integration
by parts formulas. It turned out, the formulation shewed and the obtained equations
are analogous with the ones when the classical variation principles are used; but with
slight differences. That is, all the concepts of the classical calculus of variation can
be carried to fractional calculus of variation in the frame of either the traditional
fractional operators with singular kernels or the newly defined operators involving
nonsingular kernel. However, since there is a little advance that has been done in
the theory of fractional operators with variable order, there is no big progress in
the calculus of variation in the presence of such operators. Therefore, we believe in
the need of tackling such operators and that this work may initiate the interest of
researches and them as they can also be used in modeling some problems considered
in various fields of sciences.
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