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Foreword

It gives me immense pleasure to write the foreword for the volume edited by
Prof. Varsha Daftardar-Gejji with contributions from eminent researchers in the
fields of fractional calculus (FC) and fractional differential equations (FDEs). These
are the most important and prominent areas for research which have emerged as
interdisciplinary branch of mathematical, physical, biological sciences and engi-
neering. This book provides a systematic, logical development of modern topics
through the articles by eminent scientists and active researchers working in this area
all over the globe.

Fractional calculus has a history of more than 300 years, while modelling of
various phenomena in terms of fractional differential equations has gained
momentum since the last two decades or so. There is an upsurge of research articles
in the areas of FC and FDEs. This book is appealing and unique in this context as it
encompasses numerical analysis of fractional differential equations, dynamics and
stability analysis of fractional differential equations involving delay, variable-order
fractional operators along with chapters on engineering applications. Moreover, the
fractional analogues of classical Poisson processes, analysis of fractional differential
equations using inequalities and comparison theorems are dealt with in a concise
manner in this book.

Bologna, Italy Francesco Mainardi
University of Bologna
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Preface

Fractional calculus (FC) and fractional differential equations (FDEs) have emerged
as the most important and prominent areas of interdisciplinary interest in recent
years. FC has a history of more than 300 years, yet its applicability in different
domains has been realised only recently. In the last three decades, the subject
witnessed exponential growth and a number of researchers around the globe are
actively working on this topic. The Department of Mathematics at Savitribai Phule
Pune University (SPPU) organised a national workshop on fractional calculus in
2012, which was the first workshop in India that exclusively focussed on fractional
calculus. This workshop attracted researchers of pure and applied mathematics,
statisticians, physicists and engineers from all over India, working in fractional
calculus and related areas. Deliberations in that workshop have been appeared
earlier as a book titled Fractional Calculus: Theory and Applications which was
very well received.

As a continuation of this, in 2017, we organised a national conference on
fractional differential equations bringing together researchers in FDEs for academic
exchange of ideas through discussions. Many active scientists from all parts of the
country participated in this conference. It covered a significant range of topics
motivating us to take up this endeavour. The present book comprises excellent
contributions by the resource persons in this conference besides invited contribu-
tions from experts abroad, who willingly contributed. This book gives a panoramic
overview of the latest developments and is expected to help new researchers
entering this vast field.

The book comprises eight chapters which cover numerical analysis of FDEs,
fractional Poisson processes, variable-order fractional operators, fractional-order
delay differential equations and related phenomena including chaos, impulsive
FDEs, inequalities and comparison theorems in FDEs. Moreover, artificial neural
network and FDEs are also discussed by a group of engineers. New transform
methods such as Sumudu transform methods are presented, and their utility for
solving fractional partial differential equations (PDEs) is discussed.
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The book is written keeping young researchers in mind who are planning to
embark upon the research problems in FC and FDEs and related topics. There are
many aspects that are still open for pursuing further research. If this book motivates
some readers to venture into these areas, the aim of the endeavour will be fulfilled.

I am very grateful to all the researchers who have made wonderful contributions
to this volume. My sincere thanks to Springer India Pvt. Ltd. for publishing this
beautiful book. I also take this opportunity to thank the authorities of SPPU and my
colleagues at the Department of Mathematics. Last but not least, my sincere thanks
to my parents, husband and children for their unfailing support throughout.

Pune, India Varsha Daftardar-Gejji

viii Preface



Contents

Numerics of Fractional Differential Equations . . . . . . . . . . . . . . . . . . . . 1
Varsha Daftardar-Gejji

Adomian Decomposition Method and Fractional Poisson Processes:
A Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
K. K. Kataria and P. Vellaisamy

On Mittag-Leffler Kernel-Dependent Fractional Operators
with Variable Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
G. M. Bahaa, T. Abdeljawad and F. Jarad

Analysis of 2-Term Fractional-Order Delay Differential Equations . . . . 59
Sachin Bhalekar

Stability Analysis of Two-Dimensional Incommensurate Systems
of Fractional-Order Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 77
Oana Brandibur and Eva Kaslik

Artificial Neural Network Approximation of Fractional-Order
Derivative Operators: Analysis and DSP Implementation . . . . . . . . . . . 93
Pratik Kadam, Gaurav Datkhile and Vishwesh A. Vyawahare

Theory of Fractional Differential Equations Using Inequalities
and Comparison Theorems: A Survey . . . . . . . . . . . . . . . . . . . . . . . . . . 127
J. V. Devi, F. A. McRae and Z. Drici

Exact Solutions of Fractional Partial Differential Equations
by Sumudu Transform Iterative Method . . . . . . . . . . . . . . . . . . . . . . . . 157
Manoj Kumar and Varsha Daftardar-Gejji

ix



About the Editor

Varsha Daftardar-Gejji is Professor at the Department of Mathematics, Savitribai
Phule Pune University, India. She completed her Ph.D. at Pune University, India.
She has developed original methods for solving fractional differential equations that
have become widely popular. Her noteworthy contributions include analysis of
fractional differential equations and developing theories of fractional-ordered
dynamical systems and related phenomena such as chaos. She is the editor of the
book Fractional Calculus: Theory and Applications and has co-authored the book
Differential Equations (Schaum’s Outline Series). She has published more than 65
papers in reputed international journals in areas of fractional calculus, fractional
differential equations and general relativity.

xi



Numerics of Fractional Differential
Equations

Varsha Daftardar-Gejji

Abstract Fractional calculus has become a basic tool for modeling phenomena
involving memory. However, due to the non-local nature of fractional derivatives,
the computations involved in solving a fractional differential equations (FDEs) are
tedious and time consuming. Developing numerical and analytical methods for solv-
ing nonlinear FDEs has been a subject of intense research at present. In the present
article, we review some of the existing numericalmethods for solving FDEs and some
new methods developed by our group recently. We also perform their comparative
study.

1 Introduction

Fractional calculus (FC) is emerging as an unavoidable tool to model many phenom-
ena in Science and Engineering [1, 2]. Fractional differential equations (FDEs) play
a pivotal role in formulating processes involving memory effects. This realization is
rather recent and during the past 3–4 decades there is an upsurge of intense activity
exploring various aspects of FC and FDEs. Compared to integer-order differential
equations, the FDEs open up great opportunities for modeling and simulations of
multi-physics phenomena, e.g., seamless transition from wave propagation to dif-
fusion, or from local to non-local dynamics. Due to the extra free parameter order,
fractional-order based methods provide an additional degree of freedom in optimiza-
tion performance. Not surprisingly, many fractional-order based methods have been
used in image processing [3], image denoising, cryptography, controls, and many
engineering applications very successfully.
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There existmany inequivalent definitions of fractional derivatives albeitRiemann–
Liouville and Caputo derivatives are most popular. Analysis of FDEs involving these
derivatives has been studied extensively in the literature [4–6]. Various analytical
methods have been developed for solving nonlinear fractional differential equations
such as Adomian Decomposition Method [7], New Iterative Method [8], Homo-
topy perturbation method, and so on. In these decomposition methods, solutions are
obtained without discretizing the equations or approximating the operators. As these
decomposition methods yield local solutions around initial conditions, for study-
ing long-time behavior of the solutions of FDEs one has to resort to numerical
methods. An important objective for developing new numerical methods is to study
fractional-ordered dynamical systems and related phenomena such as bifurcations
and chaos. For simulation work in fractional-ordered dynamical systems, accurate
and time-efficient numerical methods are required. Due to the nonlocal nature of
fractional derivatives, FDEs are computationally expensive to solve. So developing
time-efficient, accurate, and stable numerical methods for FDEs is currently an active
area of research.

Present article intends to give an overview of the numerical methods that are
currently used in the literature. Section 2 gives basics and preliminaries. In Sect. 3,
fractional Adams predictor–corrector method (FAM) has been presented. Section 4
deals with the new predictor–corrector method developed by Daftardar-Gejji et al.
[9]. In Sect. 5, predictor–corrector method introduced by Jhinga and Daftardar-Gejji
has been introduced along with its error estimate [10]. In Sect. 6, some illustrative
examples have been presented which are solved by all the three methods, and a
comparative study is made in the context of time taken, accuracy, and performance
of themethod for very small values of the order of the derivative. Finally, conclusions
are drawn in the last section.

2 Fractional Calculus: Preliminaries

2.1 Definitions

Riemann–Liouville fractional integral of order α > 0 of a function f (t) ∈ C[a, b]
is defined as

I α
a f (t) = 1

Γ (α)

∫ t

a
(t − s)α−1 f (s)ds. (1)

Caputo fractional derivative of order α > 0 of a function f ∈ Cm[a, b], m ∈ N is
defined as

cDα
a f (t) = 1

Γ (m − α)

[∫ t

a
(t − s)m−α−1 f (m)(s)ds

]
= I m−α

a Dm f (t),

m − 1 < α < m, (2)

where Dm f (t) = dm f (t)
dtm , cDm

a f (t) = Dm f (t).
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2.2 Properties of the Fractional Derivatives and Integrals

1. Let f ∈ Cm[a, b], m − 1 < β ≤ m, m ∈ N and α > 0. Then

a. I α
a ( cDβ

a f (t)) = cDβ−α
a f (t), if α < β.

b. I β
a ( cDβ

a f (t)) = f (t) − ∑m−1
k=0

f (k)(a)

Γ (k+1) (t − a)k .

2. For α, β > 0 and f (t) sufficiently smooth,

a. if α ∈ N, then
cDβ

a (I α
a f (t)) = I (α−β)

a f (t). (3)

b. For α < β,m − 1 ≤ α < m, n − 1 ≤ β < n,

cDβ
a (I α

a f (t)) = cDβ−α
a f (t) +

n−m∑
k=0

f (k)(a)

Γ (k + 1 + α − β)
(t − a)k+α−β. (4)

3. For α > 0, n ∈ N,
cDα

a (Dn
a f (t)) = cDn+α

a f (t). (5)

2.3 DGJ Method

Daftardar-Gejji and Jafari [8] introduced a newdecompositionmethod (DGJmethod)
for solving functional equations of the form

y = f + N (y) (6)

where f is a known function and N (y) is a nonlinear operator from a Banach space
B → B.

Equation (6) represents a variety of problems such as nonlinear ordinary differen-
tial equations, integral equations, fractional differential equations, partial differential
equations, and systems of them.

In this method, we assume that solution y of Eq. (6) is of the form:

y =
∞∑
i=0

yi . (7)

The nonlinear operator is decomposed as

N

( ∞∑
i=0

yi

)
= N (y0) +

∞∑
i=1

{
N

(
i∑

k=0

yk

)
− N

(
i−1∑
k=0

yk

)}
(8)
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=
∞∑
i=0

Gi , (9)

where G0 = N (y0) and Gi =
{
N

(∑i
k=0 yk

)
− N

(∑i−1
k=0 yk

)}
, i ≥ 1.

Equation (6) takes the form

∞∑
i=0

yi = f +
∞∑
i=0

Gi . (10)

yi , i = 0, 1, ... are then obtained by the following recurrence relation:

y0 = f,

y1 = G0,

y2 = G1,

...

yi = Gi−1,

...

(11)

Then
(y1 + y2 + · · · + yi ) = N (y0 + y1 + · · · + yi−1), i = 1, 2, . . . ,

and

y = f +
∞∑
i=1

yi = f + N

( ∞∑
i=0

yi

)
.

The k-term approximation is obtained by summing up first k-terms of (11) and is
defined as

y =
k−1∑
i=0

yi . (12)

Bhalekar andDaftardar-Gejji [11] have done the convergence analysis of thismethod.
Theorems regarding convergence of DGJ method are stated below [11].

Theorem 1 If N is C∞ in a neighborhood of y0 and

||N (n)(y0)|| = sup
{
N (n)(y0)(h1, h2, . . . , hn) : ||hi || ≤ 1, 1 ≤ i ≤ n

} ≤ L ,

for some real number L > 0 and for any n and ||yi || ≤ M < 1
e , i = 1, 2, . . . , then∑∞

i=0 Gi is absolutely convergent and moreover,

||Gn|| ≤ LMnen−1(e − 1), n = 1, 2, . . . . (13)
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Theorem 2 If N is C∞ and ||N (n)(y0)|| ≤ L < 1/e, ∀n, then the series
∑∞

i=0 Gi

is absolutely convergent.

3 Fractional Adams Method (FAM)

Consider the initial value problem (IVP) for 0 < α < 1:

cDα
0 x(t) = f (t, x(t)), x(0) = x0, (14)

where cDα
0 , denotes Caputo derivative and f : [0, T ] × D −→ R, D ⊆ R. For solv-

ing Eq. (14) on [0, T ], the interval is divided into l subintervals.
Let h = T

l , tn = nh, n = 0, 1, 2, . . . , l ∈ Z
+. Then

x(tn) = x0 + 1

Γ (α)

∫ tn

0
(tn − τ)α−1 f (τ, x(τ ))dτ. (15)

Consider an equispaced grid t j = t0 + jh, with step length h. Let x j denote the
approximate solution at t j and x(t j ) denotes the exact solution of the IVP (14) at t j .
Further denote f j = f (t j , x j ).

I α f (tn, x(tn)) = 1

Γ (α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)α−1 f (s, x(s))ds

≈ 1

Γ (α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)α−1 f (tk, x(tk))ds

= hα

n−1∑
k=0

bn−k−1 f (tk, x(tk)),

where bk = 1

Γ (α + 1)
[(k + 1)α − kα].

Hence xn = x0 + hα

n−1∑
k=0

bn−k−1 fk . (16)

Equation (16) is referred as fractional rectangle rule.
Implicit Adams quadrature method (using trapezoidal rule) gives the following

formula. On each subinterval [tk, tk+1], the function f (t) is approximated by straight
line

f̃ (t, x(t)) |[tk ,tk+1] = tk+1 − t

tk+1 − tk
f (tk, x(tk))+

t − tk
tk+1 − tk

f (tk+1, x(tk+1)).
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In view of this approximation

I α
0 f (tn, x(tn)) ≈ 1

Γ (α)

n−1∑
k=0

∫ tk+1

tk

(tn − t)α−1 f̃ (t, x(t)) |[tk ,tk+1] dt

= hα

n∑
k=0

an−k f (tk, x(tk)),where

a j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

Γ (α + 2)
if j = 0,

( j − 1)α+1 − 2 jα+1 + ( j + 1)α+1

Γ (α + 2)
if j = 1, . . . , n − 1,

(n − 1)α+1 − nα(n − α − 1)

Γ (α + 2)
if j = n.

Hence xn = x0 + hαan f0 + hα

n∑
j=1

an− j f (t j , x j ). (17)

Equation (17) is referred as fractional trapezoidal rule.
Thus, fractional rectangle rule and fractional trapezoidal rule form a predictor–

corrector algorithm. A preliminary approximation x p
n (predictor) is made using Eq.

(16), which is substituted in Eq. (17) to give a corrector. This method is also known
as fractional Adams method [12], and used for simulations of FDEs extensively.

x p
n = x0 + hα

n−1∑
j=0

bn− j−1 f (t j , x j ), (18)

xcn = x0 + hαan f0 + hα

n−1∑
j=1

an− j f (t j , x j ) + hαa0 f (tn, x
p
n ).

(19)

Order of the method is said to be p when the error can be shown to have O(h p) as
h → 0 for step length h > 0. Order of the method is often regarded as a benchmark
for comparing methods.

The error in the FAM [12] behaves as Max j=0,1,...,n

∣∣x(t j ) − x j

∣∣ = O(h p), where
p = min{2, 1 + α}.

4 New Predictor–Corrector Method (NPCM)

Though FAM is extensively used in the literature, for carrying out simulations
pertaining to fractional-ordered dynamical systems, one needs more time-efficient
numerical methods as solving FDEs involves memory effects. In pursuance to this,
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Daftardar-Gejji et al. [9] have proposed a new predictor–corrector method (NPCM).
This method is developed as a combination of fractional trapezoidal rule and DGJ
decomposition. We describe this method below.

Consider the initial value problem given in Eq. (14)

cDα
0 x(t) = f (t, x(t)), x(0) = x0, 0 < α < 1.

Equation (15) can be discretized as follows.

x(tn) = x(0) + hα

n∑
j=0

an− j f (t j , x j )

= x(0) + hα

n−1∑
j=0

an− j f (t j , x j ) + hα

Γ (α + 2)
f (tn, xn).

(20)

The solution of Eq. (20) can be approximated by DGJ method, where

N (x(tn)) = hα

Γ (α + 2)
f (tn, xn). (21)

We apply DGJ method to get approximate value of x1, as follows:

x(t1) = x1 = x0 + hαa1 f (t0, x0) + hα

Γ (α + 2)
f (t1, x1), (22)

x1,0 = x0 + hαa1 f (t0, x0),

x1,1 = N (x1,0) = hα

Γ (α + 2)
f (t1, x1,0),

x1,2 = N (x1,0 + x1,1) − N (x1,0).

The three-termapproximationof x1 ≈ x1,0 + x1,1 + x1,2 = x1,0 + N (x1,0 + x1,1).
This gives a new predictor–corrector formula as follows:

y p
1 = x1,0, z p1 = N (x1,0),

xc1 = y p
1 + hα

Γ (α + 2)
f (t1, y

p
1 + z p1 ).

x(t2), x(t3), . . . can be obtained similarly.
Daftardar-Gejji et al. [9] have proposed this new predictor–corrector method

(NPCM), which is derived by combining fractional trapezoidal formula and DGJ
method [8] and it leads to the following formula:
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y p
n = x0 + hα

n−1∑
j=0

an− j f (t j , x j ),

z pn = hα

Γ (α + 2)
f (tn, y

p
n ),

xcn = y p
n + hα

Γ (α + 2)
f (tn, y

p
n + z pn ),

where

a j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

Γ (α + 2)
if j = 0,

( j − 1)α+1 − 2 jα+1 + ( j + 1)α+1

Γ (α + 2)
if j = 1, . . . , n − 1,

(n − 1)α+1 − nα(n − α − 1)

Γ (α + 2)
if j = n.

Here y p
n and z pn are called as predictors and xcn is the corrector. Here x j denotes the

approximate value of solution of Eq. (20) at t = t j . This is called three-step iterative
method for solving nonlinear equation (20).

Error Estimation in NPCM

Let cDαx(t) ∈ C2[0, T ], T > 0, then max0≤ j≤l | x(t j ) − x j |= O(h2).
Comment: For 0 < α < 1, the error estimate for the case cDαx(t) ∈ C2[0, T ] in
the FAM is of the order O(h1+α), whereas for NPCM O(h2). Hence NPCM in this
case gives more accuracy.

4.1 Stability Regions

It is further noted that both FAM and three-term NPCM are strongly stable methods.
Comparison of the stability regions of NPCM and FAM is given below [13]. It should
be noted that the NPCM is more stable than FAM (Figs. 1, 2, 3 and 4).

S1: Stability region of FAM, S2: Stability region of NPCM

4.2 NPCM for System of FDEs

The NPCM can be generalized for solving following system of fractional differential
equations. Consider the following system of FDEs, for αi > 0, 1 ≤ i ≤ r :
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Fig. 1 α = 0.3

Fig. 2 α = 0.5

cDα1
0 u1(t) = f1(t, ū(t)), u(k1)

1 (0) = u(k1)
10 , k1 = 0, 1, 2, . . . , 
α1� − 1,

cDα2
0 u2(t) = f2(t, ū(t)), u(k2)

2 (0) = u(k2)
20 , k2 = 0, 1, 2, . . . , 
α2� − 1,

...

cDαr
0 ur (t) = fr (t, ū(t)), u(kr )

r (0) = u(kr )
r0 , kr = 0, 1, 2, . . . , 
αr� − 1.

(23)
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Fig. 3 α = 0.7

Applying trapezoidal quadrature formula to the equivalent system of Volterra
integral equations, it follows that

u1(tn+1) =

α1�−1∑
k1=0

u(k1)
10 t k1

k1! + hα1

Γ (α1 + 2)

n∑
k=0

a1,k,n+1 f1(tk, ū(tk))

+ hα1

Γ (α1 + 2)
f1(tn+1, ū(tn+1)),

u2(tn+1) =

α2�−1∑
k2=0

u(k2)
20 t k2

k2! + hα2

Γ (α2 + 2)

n∑
k=0

a2,k,n+1 f2(tk, ū(tk))

+ hα2

Γ (α2 + 2)
f2(tn+1, ū(tn+1)),

...

ur (tn+1) =

αr �−1∑
kr=0

u(kr )
r0 t kr

kr ! + hαr

Γ (αr + 2)

n∑
k=0

ar,k,n+1 fr (tk, ū(tk))

+ hαr

Γ (αr + 2)
fr (tn+1, ū(tn+1)),

where

ai,k,n+1 =

⎧⎪⎨
⎪⎩
nαi+1 − (n − αi )(n + 1)αi if k = 0,

(n − k + 2)αi+1 + (n − k)αi+1 − 2(n − k + 1)αi+1 if 1 ≤ k ≤ n,

1 if k = n + 1
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Fig. 4 α = 0.8

for 1 ≤ i ≤ r. In view of the NPCM algorithm, it follows that

u p
1,0(tn+1) =


α1�−1∑
k1=0

u(k1)
10 t k1

k1! + hα1

Γ (α1 + 2)

n∑
k=0

a1,k,n+1 f1(tk, ū(tk)),

u p
2,0(tn+1) =


α2�−1∑
k2=0

u(k2)
20 t k2

k2! + hα2

Γ (α2 + 2)

n∑
k=0

a2,k,n+1 f2(tk, ū(tk)),

...

u p
r,0(tn+1) =


αr �−1∑
kr=0

u(kr )
r0 t kr

kr ! + hαr

Γ (αr + 2)

n∑
k=0

ar,k,n+1 fr (tk, ū(tk)),

(24)

and
u p
1,1(tn+1) = N1(u

p
1,0, u

p
2,0, . . . , u

p
r,0),

u p
2,1(tn+1) = N2(u

p
1,0, u

p
2,0, . . . , u

p
r,0),

...

u p
r,1(tn+1) = Nr (u

p
1,0, u

p
2,0, . . . , u

p
r,0),

(25)

where

Ni [ū(tn+1)] = hαi

Γ (αi + 2)
fi (tn+1, ū(tn+1)), 1 ≤ i ≤ r.
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Hence, the final NPCM algorithm reads as

uc1(tn+1) = u p
1,0(tn+1) + hα1

Γ (α1 + 2)
f1(tn+1, u

p
1,0(tn+1)

+ u p
1,1(tn+1), u

p
2,0(tn+1) + u p

2,1(tn+1), ..., u
p
r,0(tn+1) + u p

r,1(tn+1)),

uc2(tn+1) = u p
2,0(tn+1) + hα2

Γ (α2 + 2)
f2(tn+1, u

p
1,0(tn+1)

+ u p
1,1(tn+1), u

p
2,0(tn+1) + u p

2,1(tn+1), ..., u
p
r,0(tn+1) + u p

r,1(tn+1)),

...

ucr (tn+1) = u p
r,0(tn+1) + hαr

Γ (αr + 2)
fr (tn+1, u

p
1,0(tn+1)

+ u p
1,1(tn+1), u

p
2,0(tn+1) + u p

2,1(tn+1), ..., u
p
r,0(tn+1) + u p

r,1(tn+1)),

where u p
i,0(tn+1) and u p

i,1(tn+1), 1 ≤ i ≤ r are given in Eqs. (24) and (25).

5 L1-Predictor Corrector Method (L1-PCM)

L1 method [1, 14] is used for the numerical evaluation of the fractional derivatives
of order α, 0 < α < 1. In this method, fractional derivative is numerically evaluated
as follows.

[c
Dα

0 u(t)
]
t=tn

= 1

Γ (1 − α)

∫ tn

0
(tn − s)−αu′(s)ds

= 1

Γ (1 − α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)−αu′(s)ds

≈ 1

Γ (1 − α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)−α u(tk+1) − u(tk)

h
ds

=
n−1∑
k=0

bn−k−1(u(tk+1) − u(tk)),

(26)

where

bk = h−α

Γ (2 − α)
[(k + 1)1−α − k1−α].

Recently, Jhinga and Daftardar-Gejji [10] have introduced yet another accurate
and time-efficient predictor–corrector method by combining L1 and DGJmethod [8]
which is abbreviated as L1-PCM. This is given by the following formula:
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u p
n = an−1u0 +

n−1∑
k=1

(an−1−k − an−k)uk,

z pn = N (u p
n ) = Γ (2 − α)hα f (tn, u

p
n ),

ucn = u p
n + Γ (2 − α)hα f (tn, u

p
n + z pn ),

(27)

where
ak = (k + 1)1−α − k1−α, k = 1, 2 . . . , n − 1.

Here u p
n and z pn are predictors and ucn is the corrector.

Error Estimation in L1-PCM [10]

Let u(t) be the exact solution of the IVP (14), f (t, u) satisfy the Lipschitz con-
dition with respect to the second argument u with a Lipschitz constant L , and
f (t, u(t)), u(t) ∈ C1[0, T ]. Further uck denotes the approximate solutions at t = tk
obtained by the L1-PCM. Then we have for 0 < α < 1,

| u(tk) − uck |≤ CT αh2−α, k = 0, 1, . . . , N , (28)

where C = d/(1 − α) and d is a constant.
Comment 1: L1-PCM is applicable only when 0 < α < 1.
Comment 2: For 0 < α < 1, the error estimate for L1-PCM is of the order O(h2−α),
whereas the error estimate for FAM is of the order O(h1+α). Hence, L1-PCM gives
more accuracy than FAM for 0 < α < 0.5.
Comment 3: Formulation of this method, for a system of FDEs is given in [10].

6 Illustrations

Example 1.

cDα
0 y(x) + y4(x) = Γ (2α + 1)xα

Γ (α + 1)
− 2x2−α

Γ (3 − α)
+ (x2α − x2)4; y(0) = 0. (29)

Exact solution of the IVP (29) is x2α − x2. This example is solved by FAM,
NPCM, and L1-PCM. Table 1 shows errors in each method and they are compared
for different values of h and α = 0.6, 0.7, 0.8. Table 2 presents CPU time required
by FAM (T1), NPCM (T2) and L1-PCM (T3). It may be noted that T3 < T2 < T1. So
the L1-PCM takes least time. Further we solve this equation for very small values
of α, (α = 0.001), for x = 1 and x = 0.8. We observe that both FAM and NPCM
diverge, only L1-PCM gives the answer. (cf. Tables 3 and 4).
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Table 1 Example 1: Error in FAM (E1), NPCM (E2), L1-PCM (E3), x = 1

Step length (h) α = 0.6 α = 0.7 α = 0.8

0.1 E1 –0.00487443 –0.00396479 –0.00287403

E2 –0.00487407 –0.0039647 –0.00287399

E3 –0.01614330 –0.01621376 –0.01419765

0.01 E1 –0.00010385 –0.0000715422 –0.0000456169

E2 –0.000103852 –0.0000715422 –0.0000456169

E3 –0.00064236 –0.00078227 –0.00084073

0.001 E1 −2.40227 × 10−6 −1.33008 × 10−6 −7.04757 × 10−7

E2 −2.4023 × 10−6 −1.33008 × 10−6 −7.04757 × 10−7

E3 −2.47 × 10−5 −3.798 × 10−6 −5.185 × 10−6

Table 2 Example 1: CPU time by FAM (T1), NPCM (T2), and L1-PCM (T3)

No. of iterations T1 (s) T2 (s) T3 (s)

100 0.02256 0.012677 0.003541

500 0.523676 0.27807 0.077884

1000 2.078472 1.086413 0.289886

10000 206.413373 107.445599 22.684047

Table 3 Example 1 for α = 0.001 and x = 1

Step length (h) FAM 3-term NPCM L1-PCM Exact

h = 0.01 Diverges Diverges –0.004355 0

h = 0.001 Diverges Diverges –0.004205 0

Example 2. Consider the following fractional initial value problem:

cDα
0 y(x) = Γ (3)

Γ (3 − α)
x2−α − 2Γ (2)

Γ (2 − α)
x1−α + (x2 − 2x)3 − y3(x); y(0) = 0.

(30)

The exact solution of the IVP is x2 − 2x . We apply FAM, NPCM, and L1-PCM
to solve the IVP (30) and compare with exact solution. Errors in FAM, NPCM, and
L1-PCM are tabulated in Table 5. CPU time required by FAM (T1), NPCM (T2) and
L1-PCM (T3) is given in Table 6. It may be noted that T3 < T2 < T1. Further we solve
this example numerically for small values of α such as α = 0.005 and α = 0.001 and
observe that FAM and NPCM do not converge for these small values of α, whereas
L1-PCM converges. These observations are presented in Tables 7 and 8.
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Table 4 Example 1 for α = 0.001 and x = 0.8

Step length (h) FAM 3-term NPCM L1-PCM Exact

h = 0.01 Diverges Diverges 0.351546 0.359553

h = 0.001 Diverges Diverges 0.35171574 0.359553

Table 5 Example 2: error in FAM (E1), NPCM (E2), L1-PCM (E3), x = 2

Step length (h) α = 0.6 α = 0.7 α = 0.8

0.1 E1 –0.00576076 –0.00255451 –0.00011668

E2 –0.00438643 0.00172467 0.00411813

E3 0.05435552 0.05297444 0.06904374

0.01 E1 –0.00003499 0.00007466 0.00019599

E2 –0.0000147 0.0001458 0.0002493

E3 0.00193404 0.00172231 0.00289783

0.001 E1 7.4 × 10−7 6.21 × 10−6 1.478 × 10−5

E2 2.17 × 10−6 7.66 × 10−6 1.559 × 10−5

E3 9.641 × 10−5 −7.757 × 10−5 1.6428 × 10−4

Table 6 Example 2: CPU time required by FAM (T1), NPCM (T2) and L1-PCM (T3)

No. of iterations T1 (s) T2 (s) T3 (s)

100 0.017772 0.010457 0.00335

500 0.405403 0.217934 0.05734

1000 1.612247 0.861459 0.224005

10000 159.338239 84.556418 20.778786

Table 7 Example 2 for α = 0.001 and x = 2

Steplength FAM 3-term NPCM L1-PCM Exact

h = 0.01 Diverges Diverges 0.004811 0

h = 0.001 Diverges Diverges 0.004702 0

Table 8 Example 2 for α = 0.005 and x = 1.7

Steplength FAM 3-term NPCM L1-PCM Exact

h = 0.01 Diverges Diverges –0.388979 –0.51

h = 0.001 Diverges Diverges –0.391465 –0.51
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7 Conclusion

Numerous problems in Physics, Chemistry, Biology, and Engineering are modeled
mathematically by fractional differential equations. Hence, developing methods to
solve FDEs is of paramount interest.

In pursuance to developing accurate and reliable numerical methods, Daftardar-
Gejji and co-workers have developed new predictor–corrector method (NPCM) and
L1-predictor corrector method (L1-PCM). NPCM and L1-PCM are more time effi-
cient than fractional Adams method (FAM) as they deal with half the weights
used in FAM. The time taken by FAM (T1), NPCM (T2), L1-PCM (T3) follows:
T 1 > T 2 > T 3, so L1-PCM is most time efficient. It should be noted that L1-PCM
is applicable when 0 < α < 1, whereas FAM and NPCM work even for α > 1.
The order of accuracy in case of NPCM is O(h2), for L1-PCM O(h2−α), where as
O(h1+α) in case of FAM. So NPCM is most accurate. For 0 < α < 0.5, L1-PCM
gives more accurate results than FAM. Further it is noted that L1-PCM converges
even for very small values of α, while FAM and NPCM diverge.
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Adomian Decomposition Method
and Fractional Poisson Processes: A
Survey

K. K. Kataria and P. Vellaisamy

Abstract This paper gives a survey of recent results related to the applications of
the Adomian decomposition method (ADM) to certain fractional generalizations of
the homogeneous Poisson process. First, we briefly discuss the ADM and its advan-
tages over existing methods. As applications, this method is employed to obtain the
state probabilities of the time fractional Poisson process (TFPP), space fractional
Poisson process (SFPP) and Saigo space–time fractional Poisson process (SSTFPP).
Usually, the Laplace transform technique is used to obtain the state probabilities of
fractional processes. However, for certain state-dependent fractional Poisson pro-
cesses, the Laplace transform method is difficult to apply, but the ADM method
could be effectively used to obtain the state probabilities of such processes.

Keywords Adomian decomposition method · Fractional derivatives · Fractional
point processes

Classifications Primary: 60G22 · Secondary: 60G55

1 Introduction

The Poisson process is a commonly used model for count data. Several charac-
terizations of the homogeneous Poisson process {N (t,λ)}t≥0, λ > 0, are available
in the literature. It can be defined as a pure birth process with rate λ, a process
with iid interarrival times distributed exponentially or a process with independent
and stationary increments, where N (t,λ) follows Poisson distribution with param-
eter λt . Here, N (t,λ) denotes the number of events in (0, t] with N (0,λ) = 0. A
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martingale characterization of the Poisson process is also available in the literature
(see [27]), viz., a point process is a homogeneous Poisson point process if and only
if {N (t,λ) − λt}t≥0 is a martingale. All these characterizations are equivalent. The
Poisson process can also be defined in terms of the Kolmogorov equations as follows:

A stochastic process {N (t,λ)}t≥0 with independent and stationary increments is
said to be a Poisson process with intensity parameter λ > 0 if its state probabilities
p(n, t) = Pr{N (t,λ) = n} satisfy

d

dt
p(n, t) = −λ(p(n, t) − p(n − 1, t)) = −λ(1 − B)p(n, t), n ≥ 0, (1.1)

with initial condition p(0, 0) = 1. In the above Kolmogorov equations, B is the
backward shift operator acting on the state space, i.e., B(p(n, t)) = p(n − 1, t).
The conditions p(0, 0) = 1, N (0,λ) = 0 a.s., and p(n, 0) = 0 for all n ≥ 1 are
essentially equivalent.

In the usual definition of the Poisson process, the state probabilities are given by

p(n, t) = e−λt (λt)n

n! , n = 0, 1, 2, . . . . (1.2)

The Poisson process is a Lévy process used to model the counting phenomenon.
However, it has certain limitations. The data traffic of bursty nature, especially on
multiple time scales, cannot be modeled using the Poisson process. It is known that
thewaiting times of aPoisson process are independent and identically distributed (iid)
exponential random variables. In certain empirical studies, it has been shown that the
power law decay offers a better model than an exponential decay, for example, in the
case of network connection sessions. In order to overcome such limitations, several
authors have tried to improve the Poisson model. This leads to many generalizations
of the Poisson process such as the non-homogeneous Poisson process, Cox point
process, higher dimensional Poisson process, etc.

The fractional generalizations of the Poisson process known as the fractional
Poisson processes (FPP) have drawn the interest of several researchers. The FPPgives
some interesting connections between fractional calculus, stochastic subordination,
and the renewal theory. Laskin [13] used time fractional Poisson process (TFPP) to
define a new family of quantum coherent states. He also introduced the fractional
generalizations of the Bell polynomials, Bell numbers, and Stirling’s numbers of the
second kind. Biard and Saussereau [4] have shown that the TFPP is a nonstationary
process and it has the long-range dependence property.

2 A Brief Survey on FPP

In this section, we briefly discuss the three main approaches to the FPP.
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2.1 FPP as a Stochastic Subordination

The time-changed stochastic processes have found applications in several areas of
physical science such as telecommunications, turbulence, image processing, bio-
engineering, hydrology, and finance. The TFPP has the long-range dependence prop-
erty (see [14]) and many authors time-changed the TFPP to define new processes.
Meerschaert et al. [15] give a time-changed characterization of the TFPP Nα(t,λ),
0 < α < 1. They have shown that

Nα(t,λ)
d= N (Eα(t),λ), (2.1)

where
d= means equal in distribution and {Eα(t)}t≥0 is the inverse α-stable subordi-

nator (see [17]) independent of the Poisson process {N (t,λ)}t≥0. Similar characteri-
zation for the space fractional Poisson process (SFPP), Nν(t,λ), 0 < ν < 1, is given
by Orsingher and Polito [19], where the homogeneous Poisson process {N (t,λ)}t≥0

is subordinated by an independent ν-stable subordinator {Dν(t)}t≥0, i.e.,

Nν(t,λ)
d= N (Dν(t),λ), t ≥ 0. (2.2)

2.2 FPP as a Renewal Process

The Poisson process is a renewal process (see [16]) with iid waiting times Wi ’s
such thatWi ∼Exp(λ), λ > 0, i ≥ 1. Let, N (t,λ) := max{n ≥ 0 : Sn ≤ t}, t ≥ 0,
where Sn = W1 + W2 + · · · + Wn . Then, N (t,λ) is a Poisson process with inten-
sity parameter λ > 0. Suppose now the waiting times W β

i follow iid Mittag-Leffler
distribution, i.e., Pr{W β

i > t} = Eβ(−λtβ), 0 < β < 1, i ≥ 1, where Eβ(x) is the
Mittag-Leffler function defined by

Eβ(x) :=
∞∑

k=0

xk

�(kβ + 1)
, β > 0, x ∈ R. (2.3)

Then, the Mittag-Leffler renewal process (see [15])

Nβ(t,λ) := max{n ≥ 0 : Sβ
n ≤ t}, t ≥ 0, 0 < β < 1,

is the TFPP with fractional index β. Here, Sβ
n = W β

1 + W β
2 + · · · + W β

n . The inter-
arrival times of the FPP follow Mittag-Leffler distribution which exhibits power law
asymptotic decay, which may find applications in network connection problems.
However, we mention that the SFPP or its generalizations are not renewal processes.
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2.3 FPP as a Solution of Fractional Difference-Differential
Equations

There is an interesting connection between the fractional-order derivatives, dif-
fusion process, and stochastic subordination. The state probabilities of the TFPP
{Nα(t,λ)}t≥0, 0 < α ≤ 1, satisfy (see [3, 12])

∂α
t p

α(n, t) = −λ(1 − B)pα(n, t), n ≥ 0,

with pα(−1, t) = 0, t ≥ 0 and the initial conditions pα(0, 0) = 1 and pα(n, 0) = 0,
n ≥ 1. Here, pα(n, t) = Pr{Nα(t,λ) = n} denotes the probability mass function
(pmf) and ∂α

t denotes the Dzhrbashyan–Caputo fractional derivative defined as

∂α
t f (t) :=

⎧
⎪⎪⎨

⎪⎪⎩

1

�(1 − α)

∫ t

0
(t − s)−α f ′(s) ds, 0 < α < 1,

f ′(t), α = 1.

(2.4)

Also, it is known that the state probabilities pν(n, t) = Pr{Nν(t,λ) = n} of the SFPP
{Nν(t,λ)}t≥0, 0 < ν ≤ 1, satisfy (see [19])

d

dt
pν(n, t) = −λν(1 − B)ν pν(n, t), n ≥ 0,

with pν(0, 0) = 1 and pν(n, 0) = 0, n ≥ 1. Here, (1 − B)ν =
∞∑

r=0

(ν)r

r ! (−1)r Br is

the fractional difference operator and (ν)r denotes the falling factorials, i.e., (ν)r =
ν(ν − 1) . . . (ν − r + 1).

Further, the space–time fractional Poisson process (STFPP) {Nα
ν (t,λ)}t≥0, 0 <

α ≤ 1, 0 < ν ≤ 1, is a counting process whose pmf pα
ν (n, t) = Pr{Nα

ν (t,λ) = n},
satisfies

∂α
t p

α
ν (n, t) = −λν(1 − B)ν pα

ν (n, t), n ≥ 0,

with initial conditions pα
ν (0, 0) = 1 and pα

ν (n, 0) = 0, n ≥ 1. Also, pα
ν (−n, t) = 0,

t ≥ 0, n ≥ 1.
A more generalized space fractional Poisson process (GSFPP) is recently intro-

duced and studied by Polito and Scalas [22]. The GSFPP {N δ
ν,η(t,λ)}t≥0 is defined

as the stochastic process whose pmf pδ
ν,η(n, t) = Pr{N δ

ν,η(t,λ) = n} satisfies

d

dt
pδ

ν,η(n, t) = − (
(η + λν(1 − B)ν)δ − ηδ

)
pδ

ν,η(n, t), n ≥ 0,

with initial conditions pδ
ν,η(0, 0) = 1 and pδ

ν,η(n, 0) = 0, n ≥ 1. Also, pδ
ν,η(−n, t) =

0, t ≥ 0, n ≥ 1. Here, m = �δ	, νm ∈ (0, 1) and δ, η,λ > 0.
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These three approaches to the fractional generalization of the homogeneous Pois-
son process reveal the connections among the Mittag-Leffler function, fractional
derivatives, and stochastic subordination. The fractional generalizations of the Pois-
son process are obtained by replacing the derivative involved in the difference-
differential equations (1.1) by certain fractional derivatives. For instance, Laskin [12],
Meerschaert et al. [15] used the Riemann–Liouville fractional derivative whereas
Beghin and Orsingher [3] used the Caputo fractional derivative. The other general-
ized fractional derivatives such asPrabhakar derivative andSaigo fractional derivative
are used by Polito and Scalas [22], Kataria and Vellaisamy [8]. The state probabili-
ties of these generalized Poisson processes are generally obtained by evaluating the
respective Laplace transforms, and then inverting them. However, in certain cases,
the inversion may becomes too cumbersome and involved. Recently, Garra et al. [6]
introduced and studied certain state-dependent versions of the TFPP. They obtained
the Laplace transforms of those state-dependent models but did not derive the cor-
responding state probabilities, as the associated Laplace transforms are difficult to
invert. The state probabilities of these processes are obtained by Kataria and Vel-
laisamy [10] by applying the Adomian decomposition method (ADM). These results
are discussed and are stated without proofs in Sect. 6.

3 Adomian Decomposition Method

In this section,we briefly explain theADM(for detailswe refer the reader toAdomian
[1, 2]). In ADM, the solution u(x, t) of the functional equation

L(u) + H(u) + f = u, (3.1)

where L and H are linear and nonlinear operators and f is a known function, is
expressed in the form of an infinite series

u(x, t) =
∞∑

n=0

un(x, t). (3.2)

Note that L(αu + βv) = αL(u) + βL(v), where α and β are scalars. The nonlinear
term H(u) is assumed to satisfy

H(u) =
∞∑

n=0

An(u0, u1, . . . , un). (3.3)

Here, An denotes the nth Adomian polynomial in u0, u1, . . . , un . Also, the series
(3.2) and (3.3) are assumed to be absolutely convergent. So, (3.1) can be rewritten as

∞∑

n=0

L(un) +
∞∑

n=0

An + f =
∞∑

n=0

un. (3.4)
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Thus un’s are obtained by the following recursive relation:

u0 = f and un = L(un−1) + An−1, n ≥ 1.

The important step involved in ADM is the computation of Adomian polynomi-
als. A method for determining these polynomials was given by Adomian [1]. By
parametrizing u as uλ = ∑∞

n=0 unλ
n and assuming H(uλ) to be analytic in λ which

decomposes as

H(uλ) =
∞∑

n=0

An(u0, u1, . . . , un)λ
n,

the Adomian polynomials can be obtained as

An(u0, u1, . . . , un) = 1

n!
∂nH(uλ)

∂λn

∣∣∣∣
λ=0

, ∀ n ∈ N0, (3.5)

where N0 = {0, 1, 2, . . .}.
A slightly refined version of the above result was given by Zhu et al. [28] as

An(u0, u1, . . . , un) = 1

n!
∂nH(

∑n
k=0 ukλ

k)

∂λn

∣∣∣∣
λ=0

, ∀ n ∈ N0. (3.6)

The following formula for these polynomials was given by Rach [23]: A0(u0) =
H(u0),

An(u0, u1, . . . , un) =
n∑

k=1

C(k, n)H (k)(u0), ∀ n ≥ 1, (3.7)

where

C(k, n) =
∑

�k
n

n∏

j=1

u
k j

j

k j ! , (3.8)

and the sum is taken over

�k
n =

⎧
⎨

⎩(k1, k2, . . . , kn) :
n∑

j=1

k j = k,
n∑

j=1

jk j = n, k j ∈ N0

⎫
⎬

⎭ .

Note that H (k)(.) denotes the kth derivative of H(.). The equivalence between (3.5)
and (3.7) can be established using Faà di Bruno’s formula. Two parametrization
methods for generating these Adomian polynomials were obtained by Kataria and
Vellaisamy [7]. It is also established that the nth Adomian polynomial for any non-
linear operator H(.) can be expressed explicitly in terms of the partial exponential
Bell polynomials; for details, we refer the reader to Kataria and Vellaisamy [9].
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An important observation is that the functional equations corresponding to the
difference-differential equations governing the state probabilities of various frac-
tional Poisson processes do not involve any nonlinear term. Thus, the ADM can be
used conveniently to obtain these state probabilities as the series solutions of the
corresponding difference-differential equations.

Next, we demonstrate the use of ADM to various fractional Poisson processes.

4 Application of ADM to Fractional Poisson Processes

In this section, we discuss the applications of the ADM to two fractional versions of
the Poisson process. We start with the time fractional version.

4.1 Time Fractional Poisson Process (TFPP)

The TFPP {Nα(t,λ)}t≥0, 0 < α ≤ 1, is defined as the stochastic process, whose
probability mass function (pmf) pα(n, t) = Pr{Nα(t,λ) = n} satisfies

∂α
t p

α(n, t) = −λ(1 − B)pα(n, t), n ≥ 0, (4.1)

with pα(−1, t) = 0, t ≥ 0 and the initial conditions pα(0, 0) = 1 and pα(n, 0) = 0,

n ≥ 1. Note that (4.1) is obtained by replacing
d

dt
in (1.1) by the Caputo fractional

derivative ∂α
t , defined in (2.4). The functional equation corresponding to (4.1) is

pα(n, t) = pα(n, 0) − λIα
t (1 − B)pα(n, t), n ≥ 0, (4.2)

where Iα
t denotes the Riemann–Liouville (RL) fractional integral defined by

Iα
t f (t) := 1

�(α)

∫ t

0
(t − s)α−1 f (s) ds, α > 0. (4.3)

We have Iα
t ∂α

t f (t) = f (t) − f (0), 0 < α ≤ 1 (see Eq. 2.4.44, [11]). The following
result for power functions of theRL integral holds (seeEq. 2.1.16, [11]): Forα, ρ > 0,

Iα
t t

ρ−1 = �(ρ)

�(ρ + α)
tρ+α−1.

Laskin [12] obtained the pmf of TFPP by using the method of generating function
and is given by

pα(n, t) = (λtα)n

n!
∞∑

k=0

(k + n)!
k!

(−λtα)k

� ((k + n)α + 1)
, n ≥ 0. (4.4)
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Moreover, for 0 < α < 1, Meerschaert et al. [15] showed that

Nα(t,λ)
d= N (Eα(t),λ), (4.5)

where {Eα(t)}t≥0 is the inverse α-stable subordinator independent of the Poisson
process {N (t,λ)}t≥0. We next show that how ADM could be employed to obtain the
solutions pα(n, t) of (4.2) for each n ≥ 0.

Consider the following difference-differential equations governing the state prob-
abilities of the TFPP:

∂α
t p

α(n, t) = −λ(pα(n, t) − pα(n − 1, t)), 0 < α ≤ 1, n ≥ 0, (4.6)

with pα(0, 0) = 1 and pα(n, 0) = 0, n ≥ 1.
Applying RL integral Iα

t on both sides of (4.6), we get

pα(n, t) = pα(n, 0) − λIα
t (pα(n, t) − pα(n − 1, t)), n ≥ 0. (4.7)

Note that pα(−1, t) = 0 for t ≥ 0. Next we solve (4.7) for every n ≥ 0. Consider
first the case n = 0. Substitute pα(0, t) = ∑∞

k=0 p
α
k (0, t) in (4.7) and apply ADM to

get
∞∑

k=0

pα
k (0, t) = pα(0, 0) − λ

∞∑

k=0

Iα
t pα

k (0, t).

The above equation is of the form (3.4) with the known function f = pα(0, 0), the
linear term L(pα

k (0, t)) = −λIα
t pα

k (0, t) and no nonlinear term. Thus, pα
0 (0, t) =

pα(0, 0) = 1 and pα
k (0, t) = −λIα

t pα
k−1(0, t), k ≥ 1. Hence,

pα
1 (0, t) = −λIα

t pα
0 (0, t) = −λIα

t t
0 = −λtα

�(α + 1)
,

and similarly

pα
2 (0, t) = (−λtα)2

�(2α + 1)
, pα

3 (0, t) = (−λtα)3

�(3α + 1)
.

Let us now assume the following suspected form for pα
k−1(0, t):

pα
k−1(0, t) = (−λtα)k−1

�((k − 1)α + 1)
. (4.8)

Now we use the method of induction to complete the argument for the case n = 0,

pα
k (0, t) = −λIα

t pα
k−1(0, t) = (−λ)k

�((k − 1)α + 1)
Iα
t t

(k−1)α = (−λtα)k

�(kα + 1)
, k ≥ 0.
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Therefore,

pα(0, t) =
∞∑

k=0

(−λtα)k

�(kα + 1)
, (4.9)

and thus the result holds for n = 0.
For n = 1, substituting pα(1, t) = ∑∞

k=0 p
α
k (1, t) in (4.7) and applying ADM,we

get
∞∑

k=0

pα
k (1, t) = pα(1, 0) − λ

∞∑

k=0

Iα
t

(
pα
k (1, t) − pα

k (0, t)
)
.

Thus, pα
0 (1, t) = pα(1, 0)=0 and pα

k (1, t)= − λIα
t

(
pα
k−1(1, t)−pα

k−1(0, t)
)
, k≥ 1.

Hence,

pα
1 (1, t) = −λIα

t

(
pα
0 (1, t) − pα

0 (0, t)
) = λIα

t t
0 = −(−λtα)

�(α + 1)
,

pα
2 (1, t) = −λIα

t

(
pα
1 (1, t) − pα

1 (0, t)
) = −2λ2

�(α + 1)
Iα
t t

α = −2(−λtα)2

�(2α + 1)
,

pα
3 (1, t) = −λIα

t

(
pα
2 (1, t) − pα

2 (0, t)
) = 3λ3

�(2α + 1)
Iα
t t

2α = −3(−λtα)3

�(3α + 1)
.

Assume now

pα
k−1(1, t) = −(k − 1)(−λtα)k−1

�((k − 1)α + 1)
, k ≥ 1. (4.10)

Then

pα
k (1, t) = −λIα

t

(
pα
k−1(1, t) − pα

k−1(0, t)
) = (−1)k+1kλk

�((k − 1)α + 1)
Iα
t t

(k−1)α

= −k(−λtα)k

�(kα + 1)
, k ≥ 1.

Therefore

pα(1, t) = −
∞∑

k=1

k(−λtα)k

�(kα + 1)
= λtα

∞∑

k=0

(k + 1)(−λtα)k

�((k + 1)α + 1)
, (4.11)

and thus the result holds for n = 1.
Now, the method of induction can be successfully applied to obtain (see [8] for

more details)

pα(n, t) = (λtα)n

n!
∞∑

k=0

(k + n)!
k!

(−λtα)k

� ((k + n)α + 1)
, n ≥ 0. (4.12)

We next discuss the application of the ADM to space fractional Poisson process.
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4.2 Space Fractional Poisson Process (SFPP)

Orsingher and Polito [19] introduced a fractional difference operator in (1.1) to obtain
a space fractional generalization. The SFPP {Nν(t,λ)}t≥0, 0 < ν ≤ 1, is defined as
the stochastic process whose pmf pν(n, t) = Pr{Nν(t,λ) = n} satisfies

d

dt
pν(n, t) = −λν(1 − B)ν pν(n, t), n ≥ 0, (4.13)

with initial conditions pν(0, 0) = 1 and pν(n, 0) = 0, n ≥ 1. Also, pν(−n, t) = 0,

t ≥ 0, n ≥ 1. Here, (1 − B)ν =
∞∑

r=0

(ν)r

r ! (−1)r Br is the fractional difference oper-

ator and hence (4.13) can be equivalently written as

d

dt
pν(n, t) = −λν

n∑

r=0

(ν)r

r ! (−1)r pν(n − r, t), n ≥ 0, (4.14)

where (ν)r = ν(ν − 1) . . . (ν − r + 1) denotes the falling factorial. They obtained
the pmf of SFPP using the method of generating function as

pν(n, t) = (−1)n

n!
∞∑

k=0

(−λν t)k

k!
�(kν + 1)

�(kν + 1 − n)
, n ≥ 0. (4.15)

They also showed that

Nν(t,λ)
d= N (Dν(t),λ), t ≥ 0, (4.16)

where {Dν(t)}t≥0, 0 < ν < 1, is a ν-stable subordinator independent of the Poisson
process.

Next, we give brief details of the proof of the above result using the ADM, given
in Kataria and Vellaisamy [8].

The difference-differential equations (4.14) can be equivalently written as

pν(n, t) = pν(n, 0) − λν

∫ t

0

n∑

r=0

(−1)r
(ν)r

r ! pν(n − r, s) ds, n ≥ 0. (4.17)

As done in the case of TFPP, one can show that the result (4.15) holds true for
n = 0, 1. Now assume for m > 1 the following:

pν,k(m, t) = (−1)m

m!
(kν)m(−λν t)k

k! , k ≥ 0,

i.e., (4.15) holds for n = m, where pν(m, t) = ∑∞
k=0 pν,k(m, t).
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For n = m + 1, substituting pν(m + 1, t) = ∑∞
k=0 pν,k(m + 1, t) in (4.17) and

applying ADM, we get

pν(m + 1, t) =
∞∑

k=0

pν,k(m + 1, t) = pν(m + 1, 0)

− λν
∞∑

k=0

∫ t

0

m+1∑

r=0

(−1)r
(ν)r

r ! pν,k(m + 1 − r, s) ds.

Thus, pν,0(m + 1, t) = pν(m + 1, 0) = 0 and

pν,k(m + 1, t) = −λν

∫ t

0

m+1∑

r=0

(−1)r
(ν)r

r ! pν,k−1(m + 1 − r, s) ds, k ≥ 1.

Hence,

pν,1(m + 1, t) = −λν

∫ t

0

m+1∑

r=0

(−1)r
(ν)r

r ! pν,0(m + 1 − r, s) ds

= −λν (−1)m+1

(m + 1)! (ν)m+1

∫ t

0
ds = (−1)m+1

(m + 1)! (ν)m+1(−λν t),

pν,2(m + 1, t) = −λν

∫ t

0

m+1∑

r=0

(−1)r
(ν)r

r ! pν,1(m + 1 − r, s) ds

= λ2ν(−1)m+1

(m + 1)!
∫ t

0
s ds

m+1∑

r=0

(m + 1)!
r !(m + 1 − r)! (ν)r (ν)m+1−r

= (−1)m+1

(m + 1)!
(2ν)m+1(−λν t)2

2! ,

where the last step follows from the binomial theorem for falling factorials. Now let

pν,k−1(m + 1, t) = (−1)m+1

(m + 1)!
((k − 1)ν)m+1(−λν t)k−1

(k − 1)! .

Then

pν,k(m + 1, t) = −λν
∫ t

0

m+1∑

r=0

(−1)r
(ν)r

r ! pν,k−1(m + 1 − r, s) ds

= (−λν)k(−1)m+1

(m + 1)!(k − 1)!
∫ t

0
sk−1 ds

m+1∑

r=0

(m + 1)!
r !(m + 1 − r)! (ν)r ((k − 1)ν)m+1−r

= (−1)m+1

(m + 1)!
(kν)m+1(−λν t)k

k! , k ≥ 0.
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Therefore

pα(m + 1, t) = (−1)m+1

(m + 1)!
∞∑

k=0

(−λν t)k

k!
�(kν + 1)

�(kν − m)
,

and thus the result holds for n = m + 1.

5 Application of ADM to Generalized Fractional Poisson
Processes

Wediscuss here some recent results obtainedbyKataria andVellaisamy [8] for space–
time fractional Poisson process and Saigo space–time fractional Poisson process,
using the ADM.

5.1 Space–Time Fractional Poisson Process (STFPP)

A further generalization of the SFPP, namely, the STFPP (see [19]) {Nα
ν (t,λ)}t≥0,

0 < α ≤ 1, 0 < ν ≤ 1, is defined as the stochastic process whose pmf pα
ν (n, t) =

Pr{Nα
ν (t,λ) = n} satisfies

∂α
t p

α
ν (n, t) = −λν(1 − B)ν pα

ν (n, t), n ≥ 0, (5.1)

with initial conditions pα
ν (0, 0) = 1 and pα

ν (n, 0) = 0, n ≥ 1. Also, pα
ν (−n, t) = 0,

t ≥ 0, n ≥ 1. Equivalently, (5.1) can be rewritten as

∂α
t p

α
ν (n, t) = −λν

n∑

r=0

(ν)r

r ! (−1)r pα
ν (n − r, t), n ≥ 0. (5.2)

The state probabilities of TFPP (SFPP) can be obtained as special cases of the STFPP,
i.e., by substituting ν = 1 (α = 1) in (5.1), respectively.

The functional equation obtained on applying RL integral Iα
t on both sides

of (5.2) is

pα
ν (n, t) = pα

ν (n, 0) − λν Iα
t

n∑

r=0

(−1)r
(ν)r

r ! pα
ν (n − r, t), n ≥ 0.

Using ADM, the state probabilities for n = 0, 1, 2 can be obtained as

pα
ν (0, t) =

∞∑

k=0

(−λν tα)k

�(kα + 1)
,
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pα
ν (1, t) = −

∞∑

k=0

kν(−λν tα)k

�(kα + 1)
,

pα
ν (2, t) = 1

2

∞∑

k=0

kν(kν − 1)(−λν tα)k

�(kα + 1)
.

Finally, the method of induction is used to obtain the solution of (5.2) as

pα
ν (n, t) = (−1)n

n!
∞∑

k=0

(−λν tα)k

�(kα + 1)

�(kν + 1)

�(kν + 1 − n)
, n ≥ 0. (5.3)

The above result is obtained by Orsingher and Polito [19] using the method of
generating function.

Remark 5.1 Let the random variable Xα
ν be the waiting time of the first space–time

fractional Poisson event. Then the following determine the distribution of Xα
ν :

Pr{Xα
ν > t} = Pr{Nα

ν (t,λ) = 0} = Eα(−λν tα), t ≥ 0, (5.4)

where Eα(.) is the Mittag-Leffler function defined by (2.3).
For α = 1 and ν = 1, we get the corresponding waiting times of SFPP and TFPP

as

Pr{Xν > t} = e−λν t , t ≥ 0, and

Pr{Xα > t} = Eα(−λtα), t ≥ 0,

respectively.

Polito and Scalas [22] introduced and studied a further generalization of STFPP
which involves the Prabhakar derivative. Kataria and Vellaisamy [8] introduced and
studied amore generalized version of STFPP, namely, theSaigo space–time fractional
Poisson process whose state probabilities are difficult to obtain using the existing
methods of generating function and the Laplace transforms.

5.2 Saigo Space–Time Fractional Poisson Process (SSTFPP)

The SSTFPP is a stochastic process {Nα,β,γ
ν (t,λ)}t≥0, 0 < α, ν ≤ 1, β < 0, γ ∈ R,

whose pmf pα,β,γ
ν (n, t) = Pr{Nα,β,γ

ν (t,λ) = n}, satisfies

∂
α,β,γ
t pα,β,γ

ν (n, t) = −λν(1 − B)ν pα,β,γ
ν (n, t), n ≥ 0, (5.5)

with pα,β,γ
ν (−1, t) = 0 and subject to the initial conditions pα,β,γ

ν (0, 0) = 1 and
pα,β,γ

ν (n, 0) = 0, n ≥ 1. Here, ∂α,β,γ
t denotes the regularized Saigo fractional deriva-
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tive defined by Kataria and Vellaisamy [8] thereby improving a result of Rao et al.
[24] as follows:

∂
α,β,γ
t f (t) = I 1−α,−1−β,α+γ

t f
′
(t). (5.6)

Here, Iα,β,γ
t denotes the Saigo integral (see [26]) defined as

Iα,β,γ
t f (t) = t−α−β

�(α)

∫ t

0
(t − s)α−1

2F1

(
α + β,−γ;α; 1 − s

t

)
f (s) ds, (5.7)

where f (t) is a continuous real valued function on (0,∞) of order O(t ε), ε >

max{0,β − γ} − 1. LetZ−
0 denotes the set of nonpositive integers. The Gauss hyper-

geometric function 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k! , |z| < 1, z ∈ C,

where a, b ∈ C and c ∈ C \ Z−
0 .

Note that (5.5) can be rewritten as

∂
α,β,γ
t pα,β,γ

ν (n, t) = −λν
n∑

r=0

(−1)r
(ν)r

r ! pα,β,γ
ν (n − r, t), n ≥ 0. (5.8)

For β = −α, the SSTFPP reduces to STFPP.
TheLaplace transform of the regularized Saigo derivatives is not known and hence

the method of generating function is not useful in obtaining the state probabilities of
SSTFPP. Kataria and Vellaisamy [8] used the ADM to obtain the state probabilities
of SSTFPP for each n ≥ 0.

The functional equation obtained on applying Saigo integral Iα,β,γ
t on both sides

of (5.8) is

pα,β,γ
ν (n, t) = pα,β,γ

ν (n, 0) − λν Iα,β,γ
t

n∑

r=0

(−1)r
(ν)r

r ! pα,β,γ
ν (n − r, t), n ≥ 0.

Using ADM, we get the following expressions of pα,β,γ
ν (n, t) (for n = 0, 1, 2):

pα,β,γ
ν (0, t) =

∞∑

k=0

Ck(−λν t−β)k

�(1 − kβ)
,

pα,β,γ
ν (1, t) = −

∞∑

k=0

kνCk(−λν t−β)k

�(1 − kβ)
,

pα,β,γ
ν (2, t) = 1

2!
∞∑

k=0

(kν)2Ck(−λν t−β)k

�(1 − kβ)
.
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Using the method of induction, Kataria and Vellaisamy [8] obtained the pmf
pα,β,γ

ν (n, t) of SSTFPP as

pα,β,γ
ν (n, t) = (−1)n

n!
∞∑

k=0

Ck(−λν t−β)k

�(1 − kβ)

�(kν + 1)

�(kν + 1 − n)
, n ≥ 0, (5.9)

where

Ck =
k∏

j=1

�(1 + γ − jβ)

�(1 + γ + α − ( j − 1)β)
. (5.10)

Thewaiting time Xα,β,γ
ν of thefirst Saigo space–time fractional Poisson event satisfies

Pr{Xα,β,γ
ν > t} = Pr{Nα,β,γ

ν (t,λ) = 0} =
∞∑

k=0

Ck(−λν t−β)k

�(1 − kβ)
, t ≥ 0.

The special case β = −α corresponds to Mittag-Leffler distribution, i.e., the first
waiting time of STFPP. The probability generating function (pgf) Gα,β,γ

ν (u, t) =
E(uNα,β,γ

ν (t,λ)) of SSTFPP is given by

Gα,β,γ
ν (u, t) =

∞∑

k=0

Ck(−λν(1 − u)ν t−β)k

�(1 − kβ)
, |u| < 1. (5.11)

It is shown that Gα,β,γ
ν (u, t) satisfies the following Cauchy Problem:

∂
α,β,γ
t Gα,β,γ

ν (u, t) = −λνGα,β,γ
ν (u, t)(1 − u)ν, |u| < 1,

Gα,β,γ
ν (u, 0) = 1.

The pgf of TFPP, SFPP and STFPP can be obtained from (5.11) by substituting
β = −α, ν = 1 and β = −α = −1, and β = −α, respectively.

6 Application of ADM to State-Dependent Fractional
Poisson Processes

Observe that the TFPP is obtained as a solution of the following fractional difference-
differential equation

∂α
t p

α(n, t) = −λ(1 − B)pα(n, t), n ≥ 0.
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Recently, Garra et al. [6] studied three state-dependent fractional point processes,
where the orders of the fractional derivative involved in the difference-differential
equations depend on the number of events that occur in (0, t].

6.1 State-Dependent Time Fractional Poisson Process-I
(SDTFPP-I)

The point process, namely, SDTFPP-I {Nd
1 (t,λ)}t≥0,λ > 0, is defined as the stochas-

tic process whose pmf pαn (n, t) = Pr{Nd
1 (t,λ) = n} satisfies (see Eq. (1.1), [6])

∂αn
t pαn (n, t) = −λ(pαn (n, t) − pαn−1(n − 1, t)), 0 < αn ≤ 1, n ≥ 0, (6.1)

with pα−1(−1, t) = 0, t ≥ 0, and the initial conditions pαn (0, 0) = 1and pαn (n, 0) =
0, n ≥ 1. For each n ≥ 0, ∂αn

t denotes the fractional derivative in Caputo sense
which is defined in (2.4). The order of the Caputo derivative in difference-differential
equations (6.1) depends on the number of events till time t . The Laplace transform
of the state probabilities of SDTFPP-I is given by

p̃αn (n, s) =
∫ ∞

0
pαn (n, t)e−st dt = λnsα0−1

∏n
k=0(s

αk + λ)
, s > 0. (6.2)

It is difficult to invert (6.2) to obtain pαn (n, t). Only the explicit expressions for n = 0
and n = 1 are obtained by Garra et al. [6] using the method of Laplace inversion as

pα0 (0, t) = Eα0 (−λtα0 ),

pα1 (1, t) =
∞∑

k=0

(−1)kλk+1
k∑

r=0

(
k

r

)
tα0(k−r)+α1r+α1 Ek+1

α0+α1,α0(k−r)+α1r+α1+1(−λ2tα0+α1 ),

where Eγ
α,β(.) is the generalized Mittag-Leffler function defined by

Eγ
α,β(x) =

∞∑

k=0

xk�(k + γ)

k!�(αk + β)�(γ)
, α,β, γ ∈ R

+, x ∈ R.

Note that E1
α,1(x) = Eα(x) is the Mittag-Leffler function given by (2.3).

The derivation of pα1(1, t) is tedious. The explicit expressions for pαn (n, t), for
all n ≥ 0, can be obtained as follows.

Note that the functional equation obtained on applying RL integral Iαn
t on both

sides of (6.1) is

pαn (n, t) = pαn (n, 0) − λIαn
t (pαn (n, t) − pαn−1(n − 1, t)), n ≥ 0.



Adomian Decomposition Method and Fractional Poisson Processes: A Survey 33

Using ADM, we get the following expressions of pαn (n, t) for the case n = 0, 1, 2

pα0(0, t) =
∞∑

k=0

(−λtα0)k

�(kα0 + 1)
,

pα1(1, t) = −
∞∑

k=1

(−λ)k
∑

�k
1

t k0α0+k1α1

� (k0α0 + k1α1 + 1)
,

pα2(2, t) =
∞∑

k=2

(−λ)k
∑

�k
2

t k0α0+k1α1+k2α2

� (k0α0 + k1α1 + k2α2 + 1)
.

Applying the method of induction, the solution of (6.1) can be derived and is given
(see [10] for more details) below.

Let k0 ∈ N0, k j ∈ N0\{0}, 1 ≤ j ≤ n. The solution of the governing equations of
SDTFPP-I, given in (6.1), with pα0(0, 0) = 1 and pαn (n, 0) = 0, n ≥ 1, is given by

pαn (n, t) = (−1)n
∞∑

k=n

(−λ)k
∑

�k
n

t
∑n

j=0 k jα j

�
(∑n

j=0 k jα j + 1
) , (6.3)

where �k
n = {(k0, k1, . . . , kn)| ∑n

j=0 k j = k}.
Let X0, X1, . . . , Xn be n + 1 independent random variables such that X0 follows

exponential distribution with mean 1 and X j , 1 ≤ j ≤ n, follow the Mittag-Leffler
distribution (see [21]) with FX j (t) = 1 − Eα j (−tα j ), 0 < α j ≤ 1, as the distribution
function. Then, the density function of the convolution S = X0 + X1 + · · · + Xn

follows from (6.3) as

fS(t) =
∞∑

k=n

(−1)n+k
∑

�k
n

t k0+
∑n

j=1 k jα j

�(1 + k0 + ∑n
j=1 k jα j )

, t ≥ 0, (6.4)

where �k
n = {(k0, k1, . . . , kn) : ∑n

j=0 k j = k, k0 ∈ N0, k j ∈ N0\{0}, 1 ≤ j ≤ n}.
The distribution of X (1)

1 , the first waiting time of SDTFPP-I, is given by

Pr{X (1)
1 > t} = Pr{Nd

1 (t,λ) = 0} = Eα0(−λtα0). (6.5)

The state probabilities of TFPP can be obtained as a special case of SDTFPP-I,
when αn = α for all n ≥ 0, as

pα(n, t) = (λtα)n

n!
∞∑

k=0

(k + n)!
k!

(−λtα)k

� ((k + n)α + 1)
, 0 < α ≤ 1, λ > 0, n ≥ 0.

(6.6)
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6.2 State-Dependent Time Fractional Poisson Process-II
(SDTFPP-II)

The point process SDTFPP-II {Nd
2 (t,λ)}t≥0, λ > 0, is defined as the stochastic pro-

cess with independent but nonidentically distributed waiting times Wn (see Sect. 3,
[6]) with Pr{Wn > t} = Eβn (−λtβn ), 0 < βn ≤ 1, where Eβn (.) is the Mittag-Leffler
function defined in (2.3).

Garra et al. [6] showed that the pmf pβn (n, t) = Pr{Nd
2 (t,λ) = n} of SDTFPP-II

satisfies

pβn (n, t) = pβn (n, 0) − λ(I βn
t pβn (n, t) − I βn−1

t pβn−1(n − 1, t)), n ≥ 0, (6.7)

with pβ−1(−1, t) = 0, t ≥ 0, and the initial conditions pβn (0, 0) = 1 and pβn (n, 0) =
0, n ≥ 1. Here, I βn

t denotes the RL fractional integral of order βn , n ≥ 0, defined in
(4.3).

The Laplace transform of the state probabilities of SDTFPP-II is given by

p̃βn (n, s) =
∫ ∞

0
pβn (n, t)e−st dt = λnsβn−1

∏n
k=0(s

βk + λ)
, s > 0. (6.8)

It is difficult to invert (6.8) to obtain pβn (n, t). However, on solving the functional
equation (6.7) using ADM, we get the following expressions of pβn (n, t) for the case
n = 0, 1, 2

pβ0
k (0, t) = (−λtβ0)k

�(kβ0 + 1)
,

pβ1(1, t) = −
∞∑

k=1

(−λ)k
∑

�k
1

t k0β0+k1β1

� (k0β0 + k1β1 + 1)
,

pβ2(2, t) =
∞∑

k=2

(−λ)k
∑

�k
2

t k0β0+k1β1+k2β2

� (k0β0 + k1β1 + k2β2 + 1)
.

The method of induction is used to obtain the following result (see [10]). Let
kn ∈ N0, k j ∈ N0\{0}, 1 ≤ j ≤ n − 1 and 0 < βn ≤ 1. The solution of the govern-
ing equations of SDTFPP-II, given in (6.7), with pβ0(0, 0) = 1 and pβn (n, 0) = 0,
n ≥ 1, is

pβn (n, t) = (−1)n
∞∑

k=n

(−λ)k
∑

�k
n

t
∑n

j=0 k jβ j

�
(∑n

j=0 k jβ j + 1
) , n ≥ 0, (6.9)

where �k
n = {(k0, k1, . . . , kn)| ∑n

j=0 k j = k}.
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Note that (6.4) also follows from (6.9). The distribution of X (2)
1 , the first waiting

time of SDTFPP-II, is given by

Pr{X (2)
1 > t} = Pr{Nd

2 (t,λ) = 0} = Eβ0(−λtβ0). (6.10)

When αn = α and βn = β for all n ≥ 0, the SDTFPP-I and SDTFPP-II reduce to
TFPP studied by Beghin and Orsingher [3]. Further, the case αn = 1 and βn = 1 for
all n ≥ 0, gives the classical homogeneous Poisson process.

The SDTFPP-I is related to SDTFPP-II by the following relationship (see Eq.
(3.4), [6]):

pαn (n, t) =
⎧
⎨

⎩

Iαn−α0
t Pr{Nd

2 (t,λ) = n}, αn − α0 > 0,

Dα0−αn
t Pr{Nd

2 (t,λ) = n}, αn − α0 < 0,

where Dα
t denotes the Riemann–Liouville (RL) fractional derivative which is

defined by

Dα
t f (t) := d

dt
I 1−α
t f (t), 0 < α < 1.

6.3 State-Dependent Fractional Pure Birth Process
(SDFPBP)

A fractional version of the classical nonlinear birth process, namely, fractional pure
birth process (FPBP), {Np(t,λn)}t≥0, is introduced by Orsingher and Polito [18],
whose state probabilities satisfy

∂ν
t p

ν(n, t) = −λn p
ν(n, t) + λn−1 p

ν(n − 1, t), 0 < ν ≤ 1, n ≥ 1, (6.11)

where pν(n, t) = Pr{Np(t,λn) = n} with pν(0, t) = 0, t ≥ 0, and the initial condi-
tions pν(1, 0) = 1 and pν(n, 0) = 0, n ≥ 2.

Garra et al. [6] studied a third fractional point process by introducing the state
dependency in (6.11). TheSDFPBP {N d

p (t,λn)}t≥0,λn > 0, is defined as the stochas-
tic process whose pmf pνn (n, t) = Pr{N d

p (t,λn) = n} satisfies (see Eq. (4.1), [6])

∂νn
t pνn (n, t) = −λn p

νn (n, t) + λn−1 p
νn−1(n − 1, t), 0 < νn ≤ 1, n ≥ 1, (6.12)

with pν0(0, t) = 0, t ≥ 0, and the initial conditions pν1(1, 0) = 1 and pνn (n, 0) = 0,
n ≥ 2. Further, on substitutingλn = λn for all n ≥ 1 in (6.12) the SDFPBP reduces to
a special process knownas the state-dependent linear birth process (SDLBP) (see [6]).
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The Laplace transform of the state probabilities of SDFPBP is given by

p̃νn (n, s) =
∫ ∞

0
pνn (n, t)e−st dt = sν1−1 ∏n−1

k=1 λk∏n
k=1(s

νk + λk)
, s > 0. (6.13)

Again, it is difficult to invert (6.13) to obtain pνn (n, t), even for n = 2. Using ADM,
the state probabilities of SDFPBP are obtained by Kataria and Vellaisamy [10]. Here,
we give brief details.

Note that the functional equation obtained on applying RL integral I νn
t on both

sides of (6.12) is

pνn (n, t) = pνn (n, 0) + I νn
t (−λn p

νn (n, t) + λn−1 p
νn−1(n − 1, t)), n ≥ 1.

The following expressions of pνn (n, t), for the case n = 1, 2, 3, is obtained using
ADM:

pν1(1, t) =
∞∑

k=0

(−λ1tν1)k

�(kν1 + 1)
,

pν2(2, t) = −λ1

λ2

∞∑

k=1

(−1)k
∑

�k
2

λk1
1 λk2

2 t
k1ν1+k2ν2

� (k1ν1 + k2ν2 + 1)
,

pν3(3, t) = λ1

λ3

∞∑

k=2

(−1)k
∑

�k
3

λk1
1 λk2

2 λk3
3 t

k1ν1+k2ν2+k3ν3

� (k1ν1 + k2ν1 + k3ν3 + 1)
.

Using the method of induction, the solution to (6.11) can be obtained and is stated
next.

Let k1 ∈ N0, k j ∈ N0\{0}, 2 ≤ j ≤ n. The solution of the governing equation of
the SDFPBP, given by (6.12), with pν1(1, 0) = 1 and pνn (n, 0) = 0, n ≥ 2, is

pνn (n, t) = (−1)n−1 λ1

λn

∞∑

k=n−1

(−1)k
∑

�k
n

λk1
1 λk2

2 . . . λkn
n t

∑n
j=1 k jν j

�
(∑n

j=1 k jν j + 1
) , (6.14)

where �k
n = {(k1, k2, . . . , kn)| ∑n

j=1 k j = k}.
Let Y1,Y2, . . . ,Yn be n independent random variables such that Y1 follows expo-

nential distribution with mean λ1 and Y j , 2 ≤ j ≤ n, follow the Mittag-Leffler
distribution (see [5]) with FYj (t) = 1 − Eν j (−λ j tν j ), 0 < ν j ≤ 1, as the distri-
bution function such that λn = 1. Then, the density function of the convolution
T = Y1 + Y2 + · · · + Yn follows from (6.14) as

fT (t) = (−1)n−1λ1

∞∑

k=n−1

(−1)k
∑

�k
n

t k1+
∑n

j=2 k jν j
∏n−1

j=1 λ
k j

j

�(1 + k1 + ∑n
j=2 k jν j )

, t ≥ 0,
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where �k
n = {(k1, k2, . . . , kn) : ∑n

j=1 k j = k, k1 ∈ N0, k j ∈ N0\{0}, 2 ≤ j ≤ n}.
Let Xp denote the time of second event for SDFPBP. Then the distribution of Xp

is given by
Pr{Xp > t} = Pr{N d

p (t,λ) = 1} = Eν1(−λ1t
ν1), (6.15)

which has the Laplace transform p̃ν1(1, s) = sν1−1/(sν1 + λ1).
The state probabilities of SDLBP can be obtained by putting λn = nλ, n ≥ 1, in

(6.14) as

pνn
l (n, t) = (−1)n−1

n

∞∑

k=n−1

(−λ)k
∑

�k
n

1k12k2 . . . nkn tk1ν1+k2ν2+···+knνn

� (k1ν1 + k2ν2 + · · · + knνn + 1)
, n ≥ 1.

Also, the state probabilities of FPBP (see [18]) can be obtained by substituting
νn = ν for all n ≥ 1 in (6.14). The pmf of FPBP is given by

pν(n, t) = (−1)n−1 λ1

λn

∞∑

k=n−1

(−t)kν

� (kν + 1)

∑

�k
n

λk1
1 λk2

2 . . . λkn
n , n ≥ 1.

Some semi-Markov processes and their connection with state-dependent mod-
els are recently studied by Orsingher et al. [20], Ricciuti and Toaldo [25]. They
established the semi-Markovian nature of such processes.

7 Conclusions

Wehave briefly described theADMand its applications to various fractional versions
of the classical homogeneous Poisson process. The state probabilities of the time frac-
tional Poisson process, space fractional Poisson process and the Saigo space–time
fractional Poisson process are derived using ADM. The Laplace transform technique
is usually applied to evaluate these state probabilities. For certain fractional gener-
alizations of the Poisson process, the Laplace transforms of the state probabilities
can be obtained, but their inversion is too difficult. This is especially the case when
we deal with state-dependent fractional Poisson processes. But the ADM could still
be used to obtain the state probabilities of such processes. This fact is explained for
some recently introduced state-dependent processes by Garra et al. [6]. We do hope
that this paper would motivate other researchers to explore the utility of the ADM to
other generalizations of the fractional Poisson process.
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On Mittag-Leffler Kernel-Dependent
Fractional Operators with Variable
Order

G. M. Bahaa, T. Abdeljawad and F. Jarad

Abstract In this work, integration by parts formulas for variable-order fractional
operators with Mittag-Leffler kernels are presented and applied to study constrained
fractional variational principles involving variable-order Caputo-type Atangana–
Baleanu’s derivatives, where the variable-order fractional Euler–Lagrange equations
are investigated. A general formulation of fractional Optimal Control Problems
(FOCPs) and a solution scheme for such class of systems are proposed. The per-
formance index of a FOCP is taken into consideration as function of state as well as
control variables.

1 Introduction

Fractional calculus represents a generalization of the classical differentiation and
integration of nonnegative integer order to arbitrary order. This type of calculus
has recently gained its importance and popularity because of the significant and
interesting results which were obtained when fractional operators were utilized to
model real-world problems in diversity of fields, e.g., physics, engineering, biology,
etc. [1, 6, 12–14, 16, 23–31, 35, 37–39, 42, 43, 46, 47].

The Lagrangian and Hamiltonian mechanics are an alternate of the standard New-
tonianmechanics. They are important because they can be used for the sake of solving
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any problem in the traditional mechanics. It is worth mentioning that in the New-
tonian mechanics, the conception of force is needed. While, in the Lagrangian and
Hamiltonian systems, the terms of energy are required.

Riewe [44, 45] was the first to consider the Lagrangian and Hamiltonian for a
given dissipative system in the frame of fractional operators. Agarwal and Baleanu
made significant contributions to the concept of fractional variational principles in
[2–5, 19, 21].

In [2, 4, 20, 21, 40, 41], variety of optimization problems embodying constant
order fractional control problems were considered. In [2, 4], the author proposed a
general formulation for fractional optimal control problems and presented a solution
scheme for such problems. This formulation was based on variation principles and
Lagrangemultipliers technique. In [40, 41], the authors extended the classical control
theory to diffusion equations involving fractional operators in a bounded domainwith
and without a state constraints. These works were advanced in to a larger family of
fractional optimal control systems containing constant orders in [11, 17]. Other
contributions to this field were discussed in [18, 32, 33] and the references therein.
Nevertheless, to the last extent of our knowledge, the area of calculus of variations
and optimal control of fractional differential equations with variable order has been
paid less attention than the case where fractional derivatives with constant orders.
(see [15, 22, 36, 37]). This work is an attempt to fill this gap.

Motivated by what was mentioned above, we discuss the Lagrangian and Hamil-
tonian formalism for constrained systems in the presence of fractional variable order
in this work.

Recently, in order to overcome the disadvantage of the existence of the singular
kernels involved in the traditional fractional operators, Atangana and Baleanu [8]
proposed a derivative with fractional order. The kernel involved in this derivative is
nonlocal and nonsingular. Many researches have considered several applications on
this fractional derivative (see e.g [7, 9, 48] and the references therein).

In this study, we use the aforementioned fractional derivative with variable order
and propose to generalize the concept of equivalent Lagrangian for the fractional
case. For a certain class of classical Lagrangian, there are several techniques to
find the Euler–Lagrange equations and the associated Hamiltonians. However, the
fractional dynamics depending on the fractional derivatives are used to construct the
Lagrangian to begin with. Therefore, the existence of several options can be utilized
to deal with a certain physical system. From this point of you, applications of the
fractional derivative proposed by Atangana and Baleanu to the fractional dynamics
may adduce new advantages in studying the constrained systems primarily because of
the fact that there exist left and right derivatives of this kind. Addition, the fractional
derivative of a function is given by a definite integral and it depends on the values of
the function over the entire interval. Therefore, the fractional derivatives proposed
are suitable to model systems with long-range interactions in space and/or time
(memory) and process with many scales of space and/or time involved.

This work is organized as follows: In Sect. 2, we go over some concepts and
definitions, and then we present the integration by parts formula in the framework
of variable-order Atangana–Baleanu fractional time derivative. Section3 includes a
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tabloid review of the fractional Lagrangian and Hamiltonian approaches in the frame
of the proposed variable-order fractional derivatives and some detailed examples.
In Sect. 4, we discuss constrained systems in the frame of the proposed derivative
and investigate some example in details. In Sect. 5, the Fractional Optimal Control
Problem (FOCP) is presented. Section6 is dedicated to our conclusions.

2 Preliminaries

In this section, we present some definitions and notions related to Atangana–Baleanu
fractional derivatives.

Let L2(Ω) be the usual Hilbert space fitted to the scalar product (., .) and let
Hm(Ω), Hm

0 (Ω) denote the usual Sobolev spaces.
First, lets recall the Mittag-Leffler function Eα(x),β(u) for variable α(x) ∈ (0, 1)

that is used in a great scale in this work and given below

Eα(x),β(u) =
∞∑

k=0

uk

Γ (kα(x) + β)
, 0 < α(x) < 1, 0 < β < 1,

Eα(x),1(u) = Eα(t)(u), u ∈ C,

where Γ (.) denotes the Gamma function defined as

Γ (α(x)) =
∫ ∞

0
sα(x)−1e−sds, �(α(x) > 0.

It can be easily noticed that the exponential function is a particular case of theMittag-
Leffler function. In fact,

E1,1(u) = eu, E2,1(u) = cosh
√
u, E1,2(u) = eu − 1

u
, E2,2(u) = sinh

√
u√

u
.

Amore generalized form of theMittag-Leffler function is theMittag-Leffler function
with three parameters defined as

Eλ
α,β(u) =

∞∑

k=0

(λ)k

Γ (kα + β)

uk

k! , u, β, λ ∈ C, �(α) > 0,

where, (λ)k denotes the familiar Pochhammer symbol.
First of all, we present a new approach in defining variable-order Riemann–

Liouville fractional integrals different from those in [10].
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Definition 1 Let φ(x) be an integrable defined on an interval [a, b] and a let α(x)
be function such that 0 < α(x) ≤ 1.We define the left Riemann–Liouville fractional
integral of order α(x] as

a I
α(.)φ(x) = 1

Γ (α(x))

∫ x

a
(x − s)α(x)−1φ(s)ds (1)

and

aI
α(.)φ(x) =

∫ x

a
(x − s)α(s)−1φ(s)

1

Γ (α(s))
ds. (2)

In the right case, we have

I α(.)
b φ(x) = 1

Γ (α(x))

∫ b

x
(s − x)α(x)−1φ(s)ds (3)

and

I α(.)
b φ(x) =

∫ b

t
(s − x)α(s)−1φ(s)

1

Γ (α(s))
ds. (4)

To define fractional integral type operators with variable order, we follow [34].

Definition 2

Eα(x),1, −α(x)
1−α(x) ,a

+ϕ(x) = B(α(x))

1 − α(x)

∫ x

a
Eα(x)

[ −α(x)

1 − α(x)
(x − s)α(x)

]
ϕ(s)ds, x > a.

(5)
Similarly, we define the right generalized fractional integral as

Eα(x),1, −α(x)
1−α(x) ,b

−ϕ(x) = B(α(x))

1 − α(x)

∫ b

t
Eα(x)

[ −α(x)

1 − α(x)
(s − x)α(x)

]
ϕ(s)ds, x < b.

(6)
We define the following operators as well:

Eα(x),1, −α(x)
1−α(x) ,a

+ϕ(x) =
∫ x

a

B(α(s))

1 − α(s)
Eα(s)

[ −α(s)

1 − α(s)
(x − s)α(s)

]
ϕ(s)ds, x > a

(7)
and

Eα(x),1, −α(x)
1−α(x) ,b

−ϕ(x) =
∫ b

x

B(α(s))

1 − α(s)
Eα(s)

[ −α(s)

1 − α(s)
(s − x)α(s)

]
ϕ(s)ds, x < b.

(8)

Now, we present the definitions of the fractional integrals and derivatives of vari-
able order in the point of view of Atangana–Baleanu [7].



On Mittag-Leffler Kernel-Dependent Fractional Operators … 45

Definition 3 For a given function u ∈ H 1(a, b), b > a, α(x) ∈ (0, 1), the
Atangana–Baleanu fractional integrals (AB integral) of variable orderα(x) of a given
function u ∈ H 1(a, b), b > x > a (where A denotes Atangana, B denotes Baleanu)
with base point a is defined at a point x ∈ (a, b) by

AB
a I α(x)

x u(x) = 1−α(x)
B(α(x))u(t) + α(x)

B(α(x))Γ (α(x))

∫ x
a u(s)(x − s)α(x)−1ds, (left ABI)

= 1−α(x)
B(α(x))u(x) + α(x)

B(α(x)) a I α(x)
x u(x)

(9)
and

AB
x I α(x)

b u(x) = 1−α(x)
B(α(x))u(x) + α(x)

B(α(x))Γ (α(x))

∫ b
x u(s)(s − x)α(x)−1ds, (right ABI)

= 1−α(x)
B(α(x))u(x) + α(x)

B(α(x)) x I
α(x)
b u(x).

(10)

AB
a I α(x)

x u(x) = 1−α(x)
B(α(x))u(x) + ∫ x

a
α(s)

B(α(s))Γ (α(s))u(s)(x − s)α(s)−1ds, (left ABI )

= 1−α(x)
B(α(t))u(x) + aI α(x)

x

[
α(x)

B(α(x))u(x)
]

(11)
and

AB
x I

α(x)
b u(x) = 1−α(x)

B(α(x))u(x) + ∫ b
x

α(s)
B(α(s))Γ (α(s))u(s)(s − x)α(s)−1ds, (right ABI )

= 1−α(x)
B(α(x))u(x) + I α(x)

b

[
α(x)

B(α(x))u(x)
]
.

(12)
Once one takes α(x) = 0 in (9), (10) we recover the initial function and when

α(x) = 1 is considered in (9), (10) we recover the ordinary integral.
The Atangana–Baleanu fractional derivatives in the Riemann–Liouville sense

(ABR derivative) of variable order α(x) for a given function ϕ(x) ∈ H 1(a, b), b >

x > a (where R denotes Riemann) with base point a is defined at a point x ∈ (a, b)
by

ABR
a Dα(x)

x ϕ(x) = d

dx
Eα(x),1, −α(x)

1−α(x) ,a
+ϕ(x) (left ABRD) (13)

ABR
x Dα(t)

b ϕ(x) = − d

dt
Eα(x),1, −α(x)

1−α(x) ,b
−ϕ(x) (right ABRD), (14)

ABR
a Dα(t)

x ϕ(x) = d

dx
Eα(x),1, −α(x)

1−α(x) ,a
+ϕ(x) (left ABRD) (15)

ABR
x Dα(x)

b ϕ(t) = − d

dx
Eα(t),1, −α(x)

1−α(x) ,b
−ϕ(x) (right ABRD) (16)
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and the Caputo Atangana–Baleanu fractional derivatives (ABC derivative) of vari-
able order α(x) for a given function ϕ(x) ∈ H 1(a, b), b > x > a (where C denotes
Caputo) with base point a is defined at a point x ∈ (a, b) by

ABC
a Dα(x)

x ϕ(x) = Eα(x),1, −α(x)
1−α(x) ,a

+ϕ′(x) (left ABRD) (17)

ABC
x Dα(x)

b ϕ(t) = − Eα(x),1, −α(x)
1−α(x) ,b

−ϕ′(x) (right ABRD), (18)

ABC
a Dα(t)

x ϕ(x) = Eα(x),1, −α(x)
1−α(x) ,a

+ϕ′(x) (left ABRD) (19)

ABC
x Dα(x)

b ϕ(x) = −Eα(x),1, −α(x)
1−α(x) ,b

−ϕ′(x) (right ABRD) (20)

Remark 1 If one replace α(x) in (5) and (6) by α(x − s) and replaces each α(s) in
(7) and (8) by α(x − s), then the ABR and ABC fractional derivatives with variable
order can be expressed in the convolution form. Analogously, if one replaces α(x) in
(9) and (10) by α(x − s) and replaces each α(s) in (11) and (12) by α(x − s), then
the second part of the AB fractional integrals with variable order can be expressed
in the convolution form.

Lemma 1 For functions u and v defined on [a, b] and 0 < α(x) ≤ 1 we have

∫ b

a
u(x) a I

α(x)
x v(x)dx =

∫ b

a
v(x) xI

α(x)
b u(x)dx, (21)

∫ b

a
u(x) aI

α(x)
x v(x)dt =

∫ b

a
v(x) x I

α(x)
b u(x)dx . (22)

Proof Using Definition 1 and changing the order of integration, we have

∫ b

a
u(x) a I

α(x)
x v(x)dx =

∫ b

a
u(x)

(
1

Γ (α(x))

∫ x

a
(x − s)α(x)−1v(s)ds

)
dx

=
∫ b

a
v(s)

(∫ b

s
(x − s)α(x)−1 u(x)

Γ (α(x))
dx

)
ds

=
∫ b

a
v(s) sI

α(s)
b u(s)ds.

On the other side, again using Definition 1 and changing the order of integrations,
we get
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∫ b

a
u(x) aI

α(x)
x v(x)dx =

∫ b

a
u(x)

(∫ x

a
(x − s)α(s)−1v(s)

ds

Γ (α(s))

)
dx

=
∫ b

a
v(s)

(
1

Γ (α(s))

∫ b

s
u(x)(x − s)α(s)−1dx

)
ds

=
∫ b

a
v(s) x I

α(s)
b u(s)ds

Now, benefiting from Lemma 1 we can show that the following integration by
parts formulas hold.

Theorem 1 (Integration by parts for AB fractional integrals) Let α(x) > 0, p ≥
1, q ≥ 1, and 1

p + 1
q ≤ 1 + α(x) for all t . Then for any u(x) ∈ L p(a, b), v(x) ∈

Lq(a, b), we have

∫ b

a
u(t) AB

a I α(x)
x v(x)dt =

∫ b

a
v(x) AB

x I α(x)
b u(x)dx, (23)

∫ b

a
u(x) AB

a I α(x)
x v(x)dx =

∫ b

a
v(x) AB

x I α(x)
b u(x)dx . (24)

Proof From Definition 3 and by applying the first part of Lemma 1, we have

∫ b

a
u(x) AB

a Iα(x)
x v(x)dt =

∫ b

a
v(x)

1 − α(x)

B(α(x))
u(x)dx +

∫ b

a
u(x)

α(x)

B(α(x))
a I

α(x)
x v(x)dx

=
∫ b

a
v(x)

1 − α(x)

B(α(x)
u(x)dx +

∫ b

a
v(t) xI

α(x)
b

[
u(x)α(x)

B(α(x))

]
dx

=
∫ b

a
v(x)

(
1 − α(x)

B(α(x))
u(x) + xI

α(x)
b [ α(x)

B(α(x))
u(x)]

)
dx

=
∫ b

a
v(x) AB

x I
α(x)
b u(x)dx .

The proof of the formula in (24) can be done similarly, once we use the second
part of Lemma 1.

Lemma 2 Let u(x) and v(x) be functions defined on [a, b] and let 0 < α(x) ≤ 1.
Then, we have

∫ b

a
u(x) Eα(x),1, −α(x)

1−α(x) ,a
+v(x)dx =

∫ b

a
v(x)Eα(x),1, −α(x)

1−α(x) ,b
−u(x)dx, (25)

∫ b

a
u(x)Eα(x),1, −α(x)

1−α(x) ,a
+v(x)dx =

∫ b

a
v(x)Eα(x),1, −α(x)

1−α(x) ,b
−u(x)dx . (26)
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Proof The proof can be executed using some definitions and changing the order of
integrations. In fact, we have

∫ b

a
u(x) Eα(x),1, −α(x)

1−α(x) ,a
+v(x)dx

=
∫ b

a
u(x)

B(α(x))

1 − α(x)

(∫ x

a
v(s)Eα(x)(

−α(x)

1 − α(x)
(x − s)α(x))ds

)
dx

=
∫ b

a
v(s)

(∫ b

s

B(α(x))

1 − α(x)
Eα(x)(

−α(x)

1 − α(x)
(x − s)α(x))u(x)dx

)
ds

=
∫ b

a
v(s)Eα(s),1, −α(s)

1−α(s) ,b
−u(s)ds.

The formula in (26) can proved similarly.

Theorem 2 Let u(x) and v(x) be functions defined on [a, b] and let 0 < α(x) ≤ 1.
We have

∫ b

a
u(x) ABC

a Dα(x)
x v(x)dx = v(x)E

α(x),1, −α(x)
1−α(x) ,b

−u(x)
∣∣∣
b

a
+

∫ b

a
v(x) ABR

x D
α(x)
b u(x)dx,

(27)

∫ b

a
u(x) ABC

a D
α(x)
x v(x)dx = v(x)E

α(x),1, −α(x)
1−α(x) ,b

−u(x)
∣∣∣
b

a
+

∫ b

a
v(x) ABR

t Dα(x)
b u(x)dx,

(28)

∫ b

a
u(x) ABC

x Dα(x)
b v(x)dx =

∫ b

a
v(x) ABR

a D
α(x)
x u(x)dx − v(x)E

α(x),1, −α(x)
1−α(x) ,a

+u(x)
∣∣∣
b

a
,

(29)
and

∫ b

a
u(x) ABC

x D
α(x)
b v(x)dx =

∫ b

a
v(x) ABR

a Dα(x)
x u(x)dx − v(x)E

α(x),1, −α(x)
1−α(x) ,a

+u(x)
∣∣∣
b

a
.

(30)

Proof The proof follows from Definition 3, Lemma 2 and the classical integration
by parts. Bellow, we prove (27) only. The proofs of the rest of the formulas are
analogous. Actually, using Definition 3 and applying the first part of Lemma 2 and
the traditional integration by parts, we have

∫ b

a
u(x) ABC

a Dα(x)
x v(x)dx =

∫ b

a
u(x) E

α(x),1, −α(x)
1−α(x) ,a

+v
′(x)dx

=
∫ b

a
v′(x)E

α(x),1, −α(x)
1−α(x) ,b

−u(x)dx

= v(x)E
α(x),1, −α(x)

1−α(x) ,b
−u(x)

∣∣∣
b

a
+

∫ b

a
v(x) ABR

x D
α(x)
b u(x)dx .

(31)
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3 Fractional Variational Principles in the Frame of
Variable-Order Fractional Atangana–Baleanu’s
Derivatives

In this section, we present Euler–Lagrange and fractional Hamilton equations in the
frame of the fractional variable-order Atangana–Baleanu derivatives are.

Theorem 3 Let J [z] be a functional of the form

J [z] =
∫ b

a
L(x, z, ABC

a D
α(x)
x z(x))dx (32)

defined by the set of functions which have continuous variable-order Atangana–
Baleanu fractional derivative in the Caputo sense on the set of order α(x) in [a, b]
andwhich satisfy the boundary conditions z(a) = za and z(b) = zb. Thenanecessary
condition for J [z] to have a maximum for given function z(x) is that z(x)must satisfy
the following Euler–Lagrange equation:

∂L

∂z
+ ABR

xD
α(x)
b

(
∂L

∂( ABC
a D

α(x)
x z(x))

)
= 0 (33)

Proof To obtain the necessary conditions for the extremum, we assume that z∗(x) is
the desired function. Let ε ∈ R define a family of curves

z(x) = z∗(x) + εη(x) (34)

where, η(t) is an arbitrary curve except that it satisfies the homogeneous boundary
conditions; that is

η(a) = η(b) = 0. (35)

To obtain the Euler–Lagrange equation, we substitute equation (34) into Eq. (32) and
differentiate the resulting equation with respect to ε and set the result to 0. This leads
to the following condition for extremum:

∫ b

a

[
∂L

∂z
η(x) + ∂L

∂ ABC
a D

α(z)
z z(x)

ABC
a D

α(x)
x η(x)

]
dx = 0. (36)

Using Eqs. (30), (36) can be written as

∫ b

a

[
∂L

∂z
+ABR

z D
α(x)
b

∂L

∂( ABC
a D

α(x)
x z(x))

]
η(x)dx+

η(x) · Eα(x),1, −α(x)
1−α(x) ,b

−(
∂L

∂( ABC
a D

α(x)
x z(x))

)(x)
∣∣∣
b

a
= 0. (37)
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We callEα(x),1, −α(x)
1−α(x) ,b

−(
∂L

∂( ABC
a D

α(x)
x z(x))

)(x)
∣∣∣
b

a
= 0, the natural boundary condition.

Now, since η(x) is arbitrary, it follows from a well established result in calculus of
variations that

∂L

∂z
+ ABR

xD
α(x)
b

∂L

∂( ABC
a D

α(x)
x z(x))

= 0 (38)

Equation (38) is the Generalized Euler–Lagrange Equation GELE for the Fractional
Calculus Variation (FCV) problem defined in terms of the variable-order Atangana–
Baleanu Fractional Derivatives ABFD. Note that the Atangana–Baleanu derivatives
in the Caputo and Riemann–Liouville sense appears in the resulting differential
equations.

Example 1 Consider the following Lagrangian:

L = 1

2
(z + ABC

a D
α(x)
x z)2, (39)

then independent fractional Euler–Lagrange equation (38) is given by

z + ABR
xD

α(x)
b ( ABC

a D
α(x)
x z) = 0 (40)

Example 2 We consider now a fractional Lagrangian of the oscillatory system

L = 1

2
m( ABC

a D
α(x)
x z)2 − 1

2
kz2, (41)

where m the mass and k is constant. Then the fractional Euler–Lagrange equation is

m ABR
xD

α(x)
b ( ABC

a D
α(x)
x z) − kz = 0 (42)

This equation reduces to the equation of motion of the harmonic oscillator when
α(x) → 1.

3.1 Some Generalizations

In this section, we extend the results obtained in give some Theorem 3.1 to the
case of n variables z1(x), z2(x), ..., zn(x). We denote by Fn the set of all functions
which have continuous left ABC fractional derivative of order α(x) and right ABC
fractional derivative of order β for x ∈ [a, b] and satisfy the conditions

zi (a) = zia, zi (b) = zib, i = 1, 2, ..., n.
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The problem can be defined as follows: find the functions z1, z2, ..., zn fromFn , for
which the functional

J [z1, z2, ..., zn] =
∫ b

a
L
[
x, z1(x), z2(x), ..., zn(x),

ABC
a D

α(x)
x z1(x), ...,

ABC
a D

α(x)
x zn(x),

ABC
x D

α(x)
b z1(x), ...,

ABC
x D

α(x)
b zn(x)

]
dx

has an extremum,where L(x, z1, ..., zn, y1, ..., yn, w1, ..., wn) is a functionwith con-
tinuous first and second partial derivatives with respect to all its arguments. A neces-
sary condition for J [z1, z2, ..., zn] to admit an extremum is that z1(x), z2(x), ..., zn(x)
satisfy Euler–Lagrange equations:

∂L

∂zi
+ ABR

x D
α(x)
b

∂L

∂ ABC
a Dα(x)

x zi (x)
+ ABR

a D
α(x)
x

∂L

∂ ABC
x Dα(x)

b zi (x)
= 0, i = 1, 2, ..., n.

(43)

Example 3 Lets consider the system of two planar pendula, both of length l and
mass m, suspended from the same distance apart on a horizontal line so that they
are moving in the same plane. The fractional counter part of the Lagrangian is
L(t, z1, z2,

ABC
a D

α(z)
x z1,

ABC
x D

α(x)
b z2) =

1

2
m

[
( ABC

a D
α(x)
x z1)

2 + ( ABC
x D

α(x)
b z2)

2
]

− 1

2

mg

l
(z21 + z22). (44)

To obtain the fractional Euler–Lagrange equation, we use

∂L

∂z
+ ABR

x D
α(x)
b

∂L

∂ ABC
a D

α(x)
x z(x)

+ ABR
a D

α(t)
x

∂L

∂ ABC
x D

α(x)
b z(x)

= 0, . (45)

It follows that

ABR
xD

α(x)
b ( ABC

a D
α(x)
x z1) − g

l
x1 = 0, ABR

aD
α(x)
x ( ABC

x D
α(x)
b z2) − g

l
z2 = 0 (46)

These equation reduces to the equation of motion of the harmonic oscillator when
α(t) → 1.

z′′
1 + g

l
z1 = 0, z′′

2 + g

l
z2 = 0 (47)
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4 Fractional Variational Principles and Constrained
Systems in the Frame of Variable-Order
Atangana–Baleanu’s Derivatives

Lets now consider the following problem: Find the extremum of the functional

J [x] =
∫ b

a
L(x, z,ABCa Dα(x)

x z(x))dt,

subject to the dynamical constraint

ABC
a D

α(x)
x z(x) = φ(z),

with the boundary conditions

x(a) = xa, x(b) = xb.

In this case, we define the functional

S[x] =
∫ b

a
[L + λΦ]dx,

where
Φ(x, z, ABC

a D
α(x)
x z(x)) = φ(z) − ABC

a D
α(x)
x z(x) = 0

and λ is the Lagrange multiplier. Then Eq. (38) in this case takes the form

∂S

∂z
+ ABR

xD
α(x)
b

∂S

∂ ABC
a D

α(x)
x z(x)

= 0 (48)

which can be written as

∂L

∂z
+ ABR

xD
α(x)
b

∂L

∂ ABC
a D

α(x)
x z(x)

+ λ

[
∂Φ

∂z
+ ABR

xD
α(x)
b

∂Φ

∂ ABC
a D

α(x)
x z(x)

]
= 0

(49)

Example 4 Lets consider

J [z] =
∫ 1

0
(ABC0D

α(x)
x z(x))2dt,

with the boundary conditions



On Mittag-Leffler Kernel-Dependent Fractional Operators … 53

z(0) = 0, z(1) = 0,

∫ 1

0
zdx = 0,

∫ 1

0
xzdx = 1.

Then we have

S[z] =
∫ 1

0

[
(ABC0D

α(x)
x z(x))2 + λ1z + λ2xz

]
dx,

where λ1, λ2 are the Lagrange multipliers. Then Eq. (48) takes the form

ABR
xD

α(x)
1 (ABC0 Dα(x)

x z(x)) − 1

2
(λ1 + λ2x) = 0. (50)

5 Fractional Optimal Control Problem Involving
Variable-Order Atangana–Baleanu’s Derivatives

Find the optimal control v(t) for a that minimizes the performance index

J [v] =
∫ 1

0
F(z, v, x)dx, (51)

subject to the dynamical constraint

ABC
0D

α(x)
x z(x) = G(z, v, x), (52)

with the boundary conditions
z(0) = z0. (53)

where z(x) is the state variable, x represents the time, and F and G are two arbitrary
functions. Note that Eq. (51) may also include some additional terms containing state
variables at the end point. This term in not considered here for simplicity. When
α(x) = 1, the above problem reduces to the standard optimal control problem. To
find the optimal control we follow the traditional approach and define a modified
performance index.

Lets define the functional

J [z] =
∫ 1

0
[F(z, v, x) + λ(G(z, v, x) − ABC

0D
α(x)
x z(x))]dx, (54)

where λ is the Lagrange multiplier. The variations of Equation (54) give
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δJ [v] =
∫ 1

0

[∂F

∂z
δz + ∂F

∂v
δv + δλ(G(z, v, x) − ABC

0D
α(x)
x z(x)) (55)

+ λ

(
∂G

∂z
δz + ∂F

∂v
δv − δ( ABC

0D
α(x)
x z(x))

) ]
dx,

Using Eqs. (27), (55) becomes

∫ 1

0
λδ( ABC

0D
α(x)
x z(x))dx =

∫ 1

0
δz(x)( ABR

xD
α(x)
1 λ)dx, (56)

where δz(0) = 0 or λ(0) = 0, and λz(1) = 0 or λ(1) = 0. Because z(0) is specified,
we have δz(0) = 0, and since z(1) is not specified, we require λ(1) = 0. Using these
assumptions, Eqs. (55) and (56) become

δJ [v] =
∫ 1

0

[
δλ(G(z, v, x) − ABC

0D
α(x)
x z(x)) + δz[∂F

∂z
+ λ

∂G

∂z
− ABR

xD
α(x)
1 λ](57)

+ δv[∂F
∂v

+ λ
∂G

∂v
]
]
dx,

Since J [v] and consequently J (v)) is minimized, δz, δv, and δλ in Eq. (57) are
all equal to zero. This gives

ABC
0D

α(x)
x z(x) = G(z, v, x) (58)

ABR
xD

α(x)
1 λ = ∂F

∂z
+ λ

∂G

∂z
(59)

∂F

∂v
+ λ

∂G

∂v
= 0. (60)

and
z(0) = z0 and λ(1) = 0. (61)

Observe that Eq. (58) contains Left Atangana–Baleanu in Caputo sense FD,
whereas Eq. (59) contains Right Atangana–Baleanu in Caputo FD. This clearly indi-
cates that the solution of optimal control problems requires knowledge of not only
forward derivatives but also backward derivatives to count on the end conditions. In
classical optimal control theories, this issue is either not discussed or they are not
clearly stated. This is largely because the backward derivative of order 1 turns out to
be the negative of the forward derivative of order 1.

Example 5 Consider

J [v] = 1

2

∫ 1

0
[a(x)z2(x) + b(x)v2(x)]dx, (62)
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where a(x) ≥ 0, b(x) > 0, and,

ABC
0D

α(x)
x z(x) = c(x)z(x) + d(x)v. (63)

This linear system for α(t) = 1 and 0 < α(t) < 1 was considered before in the
literature and formulations and solution schemes for this systemwithin the traditional
Riemann–Liouville and Caputo derivatives are addressed in many books and articles
(see e.g. [2, 3]. Here, we discuss the same problem in the framework of Atangana–
Baleanu fractional derivatives. For 0 < α(t) < 1, the Euler–Lagrange Equations (58)
to (60) gives (63) and

ABR
xD

α(x)
1 λ = a(x)z(x) + c(x)λ, (64)

and
b(x)v(x) + d(x)λ = 0. (65)

From (63) and (65), we obtain

ABC
0D

α(x)
x z(x) = c(x)z(x) − b−1(x)d2(x)λ. (66)

Thus, z(x) and λ(x) can be computed from (64) and (66).

Example 6 Consider the following time-invariant problem.
Find the control v(x) which minimizes the quadratic performance index

J [v] = 1

2

∫ 1

0
[z2(z) + v2(x)]dx, (67)

subject to
ABC

0D
α(x)
x z(t) = −z + v, (68)

and the initial condition
z(0) = 1. (69)

Note that from (5), we have

a(x) = b(x) = −c(x) = d(x) = z0 = 1, (70)

and (64) and (65) read
ABR

t D
α(x)
1 λ = z − λ (71)

and
v + λ = 0. (72)
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6 Conclusions

In this work, we have tackled some types of optimal control problems in the presence
of the newly proposed nonlocal and nonsingular fractional derivatives that involve
Mittag-Leffler functions as kernels. In order to obtain Euler–Lagrange equations, we
exploited the techniques mentioned in several books and the fractional integration
by parts formulas. It turned out, the formulation shewed and the obtained equations
are analogous with the ones when the classical variation principles are used; but with
slight differences. That is, all the concepts of the classical calculus of variation can
be carried to fractional calculus of variation in the frame of either the traditional
fractional operators with singular kernels or the newly defined operators involving
nonsingular kernel. However, since there is a little advance that has been done in
the theory of fractional operators with variable order, there is no big progress in
the calculus of variation in the presence of such operators. Therefore, we believe in
the need of tackling such operators and that this work may initiate the interest of
researches and them as they can also be used in modeling some problems considered
in various fields of sciences.

Acknowledgements The second author would like to thank Prince Sultan University for funding
this work through research group Nonlinear Analysis Methods in AppliedMathematics (NAMAM)
group number RG-DES-2017-01-17.
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Analysis of 2-Term Fractional-Order
Delay Differential Equations

Sachin Bhalekar

Abstract The value of a state variable at past time usually affects its rate of change
at the present time. So, it is very natural to consider the delay while modeling the
real-life systems. Further, the nonlocal fractional derivative operator is also use-
ful in modeling memory in the system. Hence, the models involving delay as well
as fractional derivative are very important. In this chapter, we review the basic
results regarding the dynamical systems, fractional calculus, and delay differential
equations. Further, we analyze 2-term nonlinear fractional-order delay differential
equation Dαx + cDβ x = f (x, xτ ), with constant delay τ > 0 and fractional orders
0 < α < β < 1. We present a numerical method for solving such equations and
present an example exhibiting chaotic oscillations.

1 Introduction

Fractional differential equations involve a derivative of arbitrary order. These oper-
ators are usually nonlocal. Thus, one has to specify all the values from initial point
to evaluate fractional derivative (FD) of a function. This peculiarity of FD is very
useful while modeling memory and hereditary properties in the natural systems.

Researchers always have a flexibility to choose a fractional derivative among
various (inequivalent) definitions which perfectly suits their needs. Each of these
derivatives has its own importance and played an important role in the development
of Fractional Calculus. Few examples of FD include Riemann–Liouville derivative
[39], Caputo derivative [39], Grunwald–Letnikov derivative, Saigo derivative [33],
Agrawal derivative [1], and so on.

Various researchers have worked on the analysis of fractional-order differen-
tial equations (FDE). Existence and uniqueness of nonlinear nonautonomous FDEs
involving Riemann–Liouville derivative is discussed by Delbosco and Rodino [25].
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Daftardar-Gejji and Babakhani [20] presented the analysis of linear and nonlinear
systems of FDEs. Existence of positive solutions of different types of FDEs is dis-
cussed by Daftardar-Gejji and coworkers [4, 5, 19, 32]. Existence of solutions for
fractional-order boundary value problems is discussed by Ahmad and Nieto [2]. A
new iterative method is used by Bhalekar and Daftardar-Gejji [13] to analyze FDEs
with Caputo derivative.

Solving nonlinear FDEs is a challenging task due to the nonlocal nature of FDEs.
The analytical methods such as Adomian decomposition method and Daftardar-
Gejji-Jafari method are proved useful in finding local solutions of FDEs [12, 21]. On
the other hand, numerical methods, viz., Fractional Adam’s Method (FAM) [27] and
New Predictor-Corrector Method (NPCM) [23] provide solutions on larger intervals.

In this chapter, we discuss the dynamics of 2-term fractional-order nonlinear delay
differential equations.

2 Preliminaries

In this section, we discuss preliminaries of Dynamical Systems [3, 36], Fractional-
Order Dynamical Systems, and Delay Differential Equations.

2.1 Dynamical Systems

Dynamical Systems is a branch of Mathematics, which deals with qualitative and
quantitative analysis of various equations.

Definition 2.1 ([36]) An evolution rule that defines a trajectory as a function of a
single parameter (time) on a set of states (the phase space) is a dynamical system.

Examples: Differential equations (continuous dynamical systems), Maps (discrete
dynamical systems).

2.2 Stability Analysis of Continuous Dynamical Systems

Consider a system of ordinary differential equations

Ẋ = f (X), (1)

where X (t) ∈ R
n , f ∈ C1(E) and E is open set in Rn .
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2.2.1 Equilibrium Points

Constant (steady state) solution of system (1) is called as equilibrium point. Thus,
the equilibrium points are solutions of f (X) = 0.

An equilibrium point X∗ of system (1) is said to be

(i) Stable if nearby starting solutions stay nearby.
(ii) Asymptotically stable if it is stable and nearby starting solutions converge to X∗.
(iii) Unstable if it is not stable.

2.2.2 Linearization

Let X be a solution of system (1) starting in the neighborhood of equilibrium X∗.
Define Y = X − X∗. Using Taylor’s approximation, we get

Ẏ = Ẋ

= f (X) = f (X∗ + Y )

= f (X∗) + D f (X∗)Y.

The system
Ẏ = AY, (2)

where A = D f (X∗) (Jacobian of f evaluated at X∗) is called linearization of (1).

Definition 2.2 An equilibrium X∗ of (1) is said to be hyperbolic if no eigenvalue of
D f (X∗) has its real part equal to zero.

Definition 2.3 Anequilibrium is a sink (respectively, source) if all of the eigenvalues
of D f (X∗) have negative (respectively, positive) real parts. Hyperbolic equilibrium
is saddle if there is at least one eigenvalue with positive real part and at least one
eigenvalue with negative real part. Equilibrium is center if there are purely imaginary
eigenvalues.

Theorem 2.1 Hartman–Grobman Theorem: The behavior of a dynamical system
(1) in a domain near a hyperbolic equilibrium point is qualitatively the same as the
behavior of its linearization (2).

Thus, sinks are asymptotically stable and sources are unstable equilibrium points.

Example 2.1 Consider scalar autonomous equation ẏ = y(y − 1).

Equilibrium points are y1∗ = 0 and y2∗ = 1. Here f ′(0) = −1 < 0 and f ′(1) =
1 > 0. Thus, y1∗ is sink and y2∗ is source. The result is illustrated in Fig. 1.
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Fig. 1 Stability of ẏ = y(y − 1)

Example 2.2 Consider planar system ẋ = −x , ẏ = x2 + y.

Equilibrium point is X∗ = (0, 0). In this case,

D f (X) =
(−1 0
2x 1

)
. (3)

Eigenvalues of D f (0, 0) are −1 and 1. Therefore, origin is saddle point (cf. Fig. 2).

2.3 Chaos

Consider an autonomous system of nonlinear differential equations of order three or
higher. Solutions of these systems are called chaotic if they have following properties:
(i) The solution trajectories are bounded; (ii) The trajectories are aperiodic and (iii)
The oscillations in the trajectories never settle. In this case, the solutions are extremely
sensitive to initial conditions.

2.4 Delay Differential Equations

The differential equation which contains the delay term xτ = x(t − τ) is called as a
delay differential equation (DDE). The delay τ can be a constant, a function of time
t or of dependent variable x . The delay can also be used to model memory in the
system. Thus, the models involving FD and a delay are crucial.

These equations have found many applications in Control Theory [37, 41], Agri-
culture [28, 29], Chaos [7, 10, 22], Bioengineering [14, 15], and so on.
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Fig. 2 Vector-field of ẋ = −x , ẏ = x2 + y

Table 1 DDE versus ODE

Property ODE DDE

Equation ẋ = f (x) ẋ = f (x, xτ )

Initial condition x(0) = x0 x(t) = x0(t), −τ ≤ t ≤ 0

Dimension One-dimensional Infinite dimensional

Memory Cannot model memory Can model memory

Equilibrium x∗ f (x∗) = 0 f (x∗, x∗) = 0

Characteristic equation Polynomial λ = f ′(x∗) Transcendental equation λ = ∂1 f (x∗, x∗)
+∂2 f (x∗, x∗)e−λτ

Chaos Doesn’t exhibit Can exhibit

2.4.1 DDE Versus ODE

In Table 1, we discuss the difference between DDE and ODE. Note that ∂1 f and
∂2 f are partial derivatives of function f with respect to first and second variables,
respectively.
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2.5 Fractional Derivative

We consider the Caputo fractional derivative defined by [39, 40]

Dμ f (t) = dm

dtm
f (t), μ = m

= I m−μ dm f (t)

dtm
, m − 1 < μ < m, m ∈ IN . (4)

The Riemann–Liouville fractional integral of order α > 0 is

I α f (t) = 1
�(α)

∫ t
0 (t − τ)α−1 f (τ ) dτ, t > 0.

2.6 Stability of Fractional-Order Systems

Consider the fractional-order system

Dα1 x1 = f1(x1, x2, · · · , xn),

Dα2 x2 = f2(x1, x2, · · · , xn),

...

Dαn xn = fn(x1, x2, · · · , xn), (5)

where 0 < αi < 1 are fractional orders. If α1 = α2 = · · · = αn , then the system (5) is
called as a commensurate order system otherwise incommensurate order system. A
point p = (

x∗
1 , x∗

2 , · · · , x∗
n

)
is called an equilibrium point of system (5) if fi (p) = 0

for each i = 1, 2, · · · , n.

2.6.1 Asymptotic Stability of the Commensurate Fractional Ordered
System

Theorem 2.2 ([35, 43]) Consider α = α1 = α2 = · · · = αn in (5). An equilibrium
point p of the system (5) is locally asymptotically stable if all the eigenvalues of the
Jacobian matrix J = (

∂ j fi
)

evaluated at p satisfy the following condition:

|arg(Eig(J ))| > απ/2. (6)
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2.6.2 Asymptotic Stability of the Incommensurate Fractional Ordered
System

Theorem 2.3 ([26, 44]) Consider the incommensurate fractional ordered system
given by (5). Let αi = vi/ui , (ui , vi ) = 1, ui , vi be positive integers. Define M to be
the least common multiple of ui ’s. Define	(λ) = diag

([
λMα1 , λMα2 , · · · , λMαn

]) −
J. Then p is locally asymptotically stable if all the roots of the equation det (	(λ)) =
0 satisfy the condition |arg(λ)| > π/(2M).

This condition is equivalent to the following inequality:

π

2M
− mini {|arg(λi )|} < 0. (7)

Thus, an equilibriumpoint p of the system (5) is asymptotically stable if the condition
(7) is satisfied. The term π

2M − mini {|arg(λi )|} is called as the instability measure
for equilibrium points in fractional-order systems (IMFOS). Hence, a necessary
condition for fractional-order system (5) to exhibit chaotic attractor is [44]

IMFOS ≥ 0. (8)

Note that the condition (8) is not sufficient for chaos to exist.

2.7 Fractional DDEs

If the dynamical system involves fractional derivative as well as delay, then it will be
very useful in modeling real systems. The stability of linear time-invariant fractional
delay systems (LTIFDS) has been studied by many researchers [17, 26, 30, 31, 34,
38].

3 Review of Our Work

In 2010, Prof. Richard Magin (Department of Bioengineering, University of Illinois,
Chicago) and Prof. Dumitru Baleanu (Cankaya University, Ankara) discussed with
Prof. Varsha Gejji regarding the generalization of Bloch equation

d
→
M

dt
= γ

→
M × →

B − (Mz − M0)

T1
îz −

(
Mx̂ix + Mŷiy

)
T2

,

to include fractional order aswell as delay. The equationmodels the nuclearmagnetic
resonance (NMR)—the phenomena underlying magnetic resonance imaging (MRI).
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The model we developed was

T −α Dα Mx (t) = ω̃0My (t − τ) − Mx (t − τ)

T2
,

T −α Dα My(t) = −ω̃0Mx (t − τ) − My (t − τ)

T2
,

T −α Dα Mz(t) = M0 − Mz (t − τ)

T1
,

Mx (t) = 0, My(t) = 100, Mz(t) = 0, for t ≤ 0,

where
ω̃0 = ω0

T α−1 = (ω0T )T −α , 1
T

′
1

= 1
T α−1T1

= T
T1

T −α , 1
T

′
2

= 1
T α−1T2

= T
T2

T −α .

Though the system was linear, the exact solution was not possible. The numerical
method was also not available in the literature. So, we first developed the numerical
method [11].

We used this numerical method to analyze linear fractional-order Bloch equation
[14] and its generalization involving extended delay [15]. Further, we discussed tran-
sient chaos in nonlinear Bloch equation [16] and chaos in the same system involving
delay [6].

We also generalized some chaotic fractional-order dynamical systems to include
delay [10, 22]. We observed that the chaotic nature of the system depends on the
value of delay parameter.

We also observed some interesting things. In [7], we discussed fractional-order
Ucar system

Dαx(t) = δx(t − τ) − ε [x(t − τ)]3 . (9)

The two-scroll attractor is observed in the system for the range of fractional order
0.5 < α ≤ 1. For the range 0.2 ≤ α ≤ 0.5, the same system shows one-scroll attrac-
tor.

Recently, we used the new iterative method (NIM) to improve this numerical
method [23]. The new method called NPCM is proved to be more time efficient than
FAM.

The next step was to analyze stability. In the paper [8], the stability of Dα y(t) =
a f (y(t − τ)) − by(t) is discussed.

A more general case is studied in [9].

Theorem 3.1 ([9]) Suppose x∗ is an equilibrium solution of the generalized delay
differential equation Dαx(t) = g (x(t), x(t − τ)) , 0 < α ≤ 1 and a = ∂1g(x∗, x∗),
b = ∂2g(x∗, x∗).

1. If b ∈ (−∞,−|a|) then the stability region of x∗ in (τ, a, b) parameter space is
located between the plane τ = 0 and
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τ1(0) =
arccos

((
a cos( απ

2 )+
√

b2−a2 sin2( απ
2 )

)
cos απ

2 −a

b

)

(
a cos

(
απ
2

) +
√

b2 − a2 sin2
(

απ
2

))1/α .

The equation undergoes Hopf bifurcation at this value.
2. If b ∈ (−a,∞) then x∗ is unstable for any τ ≥ 0.
3. If b ∈ (a,−a) and a < 0 then x∗ is stable for any τ ≥ 0.

4 Multi-term Case

Multi-term equations are having physical importance. For example, application of
multi-term fractional-order equations to model “Oxygen delivery through capillary
to tissues” is given by Srivastava and Rai [42].

A cylindrical capillary of radiusR, containing solute, is considered for the physical
modeling. The rate of consumption by surrounding tissue is assumed as k(r, z, t).
The term Dα

t C indicates the subdiffusion process. The longitudinal diffusion is Dβ
t C .

The net diffusion of oxygen to tissues is Dα
t C − τ Dβ

t C , where τ is the time lag in
concentration of oxygen along the z-axis and 0 < β < α ≤ 1.

The general equation for conveying oxygen from the capillary to the surrounding
tissue is

Dα
t C − τ Dβ

t C = ∇ (d · ∇C) − k,

where C(r, z, t) is concentration of oxygen, d is diffusion coefficient of oxygen.

5 2-Term FDDE

We discuss the following 2-term FDDE:

Dαx + cDβ x = f (x, xτ ) , (10)

x(t) = φ(t), t ≤ 0, (11)

where 0 < α < β ≤ 1, τ > 0, and f is C1 on R
2.

Existence and uniqueness theorems for multi-term FDDEs are recently discussed
by Choudhary and Daftardar-Gejji [18].

If x∗ is an equilibrium (steady state) solution of (10) then Dαx∗ = Dβ x∗ = 0.
Thus, the equilibrium points are solutions of f (x∗, x∗) = 0.

The characteristic equation for this system in the neighborhood of an equilibrium
x∗ is given by



68 S. Bhalekar

λα + cλβ = a + bexp(−λτ), (12)

where a = ∂1 f (x∗, x∗) and b = ∂2 f (x∗, x∗) are partial derivatives of function f with
respect to first and second variables, respectively, evaluated at (x∗, x∗).

6 Stability Analysis

An equilibrium x∗ is asymptotically stable (respectively, unstable) if all (respectively,
at least one of) the roots of characteristic equation (12) have negative (respectively,
positive) real part. Thus, change in stability can occur if the eigenvalue λ crosses the
imaginary axis λ = ιv.

Substituting λ = ιv in the characteristic equation, we get

(ιv)α + c (ιv)β = a + bexp(−ιvτ). (13)

Equivalently,

vα cos
(απ

2

)
+ cvβ cos

(
βπ

2

)
− a = b cos(vτ) (14)

vα sin
(απ

2

)
+ cvβ sin

(
βπ

2

)
= −b sin(vτ). (15)

Equation (14) implies

τ = 1

v

[
2nπ ± arccos

(
vα cos(απ/2) + cvβ cos(βπ/2) − a

b

)]
.

We define critical values for τ as

τ+(n) = 1

v

[
2nπ + arccos

(
vα cos(απ/2) + cvβ cos(βπ/2) − a

b

)]

and

τ−(n) = 1

v

[
2nπ − arccos

(
vα cos(απ/2) + cvβ cos(βπ/2) − a

b

)]
.

Further, squaring and adding Eqs. (14) and (15), we get

v2α + c2v2β + 2cvα+β cos ((β − α)π/2) − 2avα cos (απ/2)

−2acvβ cos (βπ/2) + a2 − b2 = 0. (16)
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We have to solve equation (16) and substitute the obtained values in τ±(n) to find
critical values of delay τ .

6.1 Stable Region

Let us write λ = u + ιv. If du/dτ is negative on one critical curve and positive on
the nearest one then the stability region of equilibrium x∗ is located between these
two curves.

We differentiate characteristic equation (12) with respect to τ to obtain

dλ

dτ
= −λbexp(−λτ)

αλα−1 + cβλβ−1 + bτexp(−λτ)

= −λ
(
λα + cλβ − a

)
αλα−1 + cβλβ−1 + τ

(
λα + cλβ − a

) . (17)

Consider

dλ

dτ
|u=0 = −ιv

(
(ιv)α + c(ιv)β − a

)
α(ιv)α−1 + cβ(ιv)β−1 + τ

(
(ιv)α + c(ιv)β − a

)
= z1 + ιz2

z3 + ιz4

= z1z3 + z2z4
z23 + z24

+ ι
z2z3 − z1z4

z23 + z24
, (18)

where z1 = v
(
vα sin(απ/2) + cvβ sin(βπ/2)

)
, z2 = v

(
a − vα cos(απ/2) − cvβ

cos(βπ/2)), z3 = αvα−1 cos((α − 1)π/2) + cβvβ−1 cos((β − 1)π/2) + τvα

cos(απ/2) + τcvβ cos(βπ/2) − τa and z4 = αvα−1 sin((α − 1)π/2) + cβvβ−1

sin((β − 1)π/2) + τvα sin(απ/2) + τcvβ sin(βπ/2).
Along critical curve,

du

dτ
= Re

(
dλ

dτ
|u=0

)

= z1z3 + z2z4
z23 + z24

. (19)

The sign of du
dτ

is solely decided by

z1z3 + z2z4 = αv2α + c2βv2β − aαvα cos(απ/2)

−acβvβ cos(βπ/2) + cvα+ββ cos ((β − α)π/2)

+cvα+βα cos ((β − α)π/2) (20)
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7 Numerical Solution

In this section, we describe the numerical algorithm based on the new predictor–
corrector method (NPCM) [24] developed by Daftardar-Gejji, Sukale and Bhalekar.

Applying I β to Eq. (10), we get

x(t) = x0

(
1 + tβ−α

c�(β − α + 1)

)
− 1

c�(β − α)

∫ t

0
(t − s)β−α−1x(s)ds

+ 1

c�(β)

∫ t

0
(t − s)β−1 f (x(s), x(s − τ)) ds, (21)

where x0 = x(0).
We solve (21) in the interval [−τ, T ]. The interval [−τ, T ] is divided into k + N

subintervals such that the step-size h = T/N = τ/k. The nodes are described by
{tn = nh : n = −k,−k + 1, · · · , N }. We denote x j = x(t j ), a numerical approxi-
mation. If j ≤ 0 then x j = φ(t j ) and x(t j − τ) = x( jh − kh) = x j−k .

Using product trapezoidal quadrature formula, Eq. (21) can be discretized as

xn+1 = x0

(
1 + tβ−α

n+1

c�(β − α + 1)

)

−1

c

hβ−α

�(β − α + 2)

⎛
⎝xn+1 +

n∑
j=0

a j,n+1x j

⎞
⎠ (22)

+1

c

hβ

�(β + 2)

⎛
⎝ f (xn+1, xn+1−k) +

n∑
j=0

b j,n+1 f
(
x j , x j−k

)⎞⎠ ,

where

a j,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

nβ−α+1 − (n − β + α)(n + 1)β−α, if j = 0,
(n − j + 2)β−α+1 + (n − j)β−α+1

−2(n − j + 1)β−α+1, if 1 ≤ j ≤ n,

1, if j = n + 1.

(23)

b j,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

nβ+1 − (n − β)(n + 1)β, if j = 0,
(n − j + 2)β+1 + (n − j)β+1

−2(n − j + 1)β−α+1, if 1 ≤ j ≤ n,

1, if j = n + 1.

(24)

The three-term approximation of New Iterative Method gives the following
predictor–corrector method:
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Predictor Terms

x p
n+1 = x0

(
1 + tβ−α

n+1

c�(β − α + 1)

)
− 1

c

hβ−α

�(β − α + 2)

n∑
j=0

a j,n+1x j

+1

c

hβ

�(β + 2)

n∑
j=0

b j,n+1 f
(
x j , x j−k

)
, (25)

z p
n+1 = −1

c

hβ−α

�(β − α + 2)
x p

n+1 + 1

c

hβ

�(β + 2)
f
(
x p

n+1, xn+1−k
)
. (26)

Corrector Term

xc
n+1 = x p

n+1 − 1

c

hβ−α

�(β − α + 2)

(
x p

n+1 + z p
n+1

)

+1

c

hβ

�(β + 2)
f
(
x p

n+1 + z p
n+1, xn+1−k

)
.

8 Example

Consider the 2-term FDDE

Dαx + Dβ x = 4xτ

1 + x9
τ

− 2x, (27)

x(t) = 0.5, t ≤ 0, (28)

where 0 < α < β ≤ 1 and τ > 0. If α = β then Eq. (27) gets reduced to that studied
byBhalekar andDaftardar-Gejji [11].We setα = 0.8 = 4/5 andβ = 0.98 = 49/50.
Let M = LC M(5, 50) = 50.

8.1 Equilibrium Points and Stability

Equilibrium points of this system are x∗∗ = 0 and x∗ = 1.

Stability at τ = 0: The characteristic equation in the neighborhood of x∗ = 1 is
λα + λβ = −9 or s40 + s49 = −9, where s = λ1/M .

Therefore, min |Arg(s)| = 0.069 > π/(2M). This shows that x∗ = 1 is asymp-
totically stable at τ = 0. Similarly, it can be checked that x∗∗ = 0 is not stable at
τ = 0.
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Fig. 3 2-cycle at τ = 1.5
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Fig. 4 Period doubling τ = 2.1
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Fig. 5 Chaos τ = 2.2

Stability for τ > 0: If we solve (16) in the neighborhood of x∗ = 1 then we get
v = 3.70992. Substituting in (20), we get z1z3 + z2z4 = 38.5819. Therefore du

dτ
> 0

on all critical curves. The critical value τ+(0) = 0.5426, in this case. Hence, the
equilibrium x∗ = 1 is stable between 0 ≤ τ < 0.5426.

The necessary (but not sufficient) condition for existence of chaos in this system
is τ > 0.5426. In Fig. 3, the 2-cycle is observed for τ = 1.5. If we increase the value
of τ , then we get period doubling bifurcation (cf. Fig. 4) leading to chaos (cf. Fig. 5).

9 Conclusions

In this chapter, we have taken a review of fractional-order dynamical systems and
delay differential equations. We have analyzed a nonlinear autonomous delay differ-
ential equation involving two fractional-order derivatives. The stability of equilib-
rium points is discussed using analytical result. An illustrative example is provided to
verify the proposed theory. It is observed that the chaos cannot occur in the stability
region of the given equation.
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Stability Analysis of Two-Dimensional
Incommensurate Systems of
Fractional-Order Differential Equations

Oana Brandibur and Eva Kaslik

Abstract Recently obtained necessary and sufficient conditions for the asymptotic
stability and instability of the null solution of a two-dimensional autonomous lin-
ear incommensurate fractional-order dynamical system with Caputo derivatives are
reviewed and extended. These theoretical results are then applied to investigate the
stability properties of a two-dimensional fractional-order conductance-based neu-
ronal model. Moreover, the occurrence of Hopf bifurcations is also discussed, choos-
ing the fractional orders as bifurcation parameters. Numerical simulations are also
presented to illustrate the theoretical results.

1 Introduction

Due to the fact that fractional-order derivatives reflect both memory and hereditary
properties, numerous results reported in the past decades have proven that fractional-
order systems provide more realistic results in practical applications [7, 12, 15, 16,
24] than their integer-order counterparts.

Regarding the qualitative theory of fractional-order systems, stability analysis
is one of the most important research topics. The main results concerning stability
properties of fractional-order systems have been recently surveyed in [21, 31]. It is
worth noting that most investigations have been accomplished for linear autonomous
commensurate fractional-order systems. In this case, the well-knownMatignon’s sta-
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bility theorem [25] has been recently generalized in [32]. Analogues of the classical
Hartman–Grobman theorem, i.e., linearization theorems for fractional-order systems,
have been recently reported in [20, 34].

However, when it comes to incommensurate fractional-order systems, it is worth
noticing that their stability analysis has received significantly less attention than
their commensurate counterparts. Linear incommensurate fractional-order systems
with rational orders have been analyzed in [28]. Oscillations in two-dimensional
incommensurate fractional-order systems have been investigated in [8, 30]. BIBO
stability of systems with irrational transfer functions has been recently investigated
in [33]. Lyapunov functions were employed to derive sufficient stability conditions
for fractional-order two-dimensional nonlinear continuous-time systems [17].

Following these recent trends in the theory of fractional-order differential equa-
tions, necessary and sufficient conditions for the stability/instability of linear
autonomous two-dimensional incommensurate fractional-order systems have been
explored in [4, 5]. In the first paper [4], stability properties of two-dimensional sys-
tems composed of a fractional-order differential equation and a classical first-order
differential equation have been investigated. A generalization of these results has
been presented in [5], for the case of general two fractional-order systems with
Caputo derivatives. For fractional orders 0 < q1 < q2 ≤ 1, necessary and sufficient
conditions for the O(t−q1)-asymptotic stability of the trivial solutions have been
obtained, in terms of the determinant of the linear system’s matrix, as well as the ele-
ments a11 and a22 of its main diagonal. Sufficient conditions have also been explored
which guarantee the stability and instability of the system, regardless of the choice
of fractional orders q1 < q2. In this work, our first aim is to further extend the
results presented in [5] for any q1, q2 ∈ (0, 1], by exploring certain symmetries in
the characteristic equation associated to our stability problem. This leads to improved
fractional-order-independent sufficient conditions for stability and instability.

As an application, an investigation of the stability properties of a two-dimensional
fractional-order conductance-based neuronal model is presented, considering the
particular case of a FitzHugh–Nagumo neuronal model. Experimental results con-
cerning biological neurons [1, 23] justify the formulation of neuronal dynamics
using fractional-order derivatives. Fractional-order membrane potential dynamics
are known to introduce capacitive memory effects [35], proving to be necessary
for reproducing the electrical activity of neurons. Moreover, [11] gives the index of
memory as a possible physical interpretation of the order of a fractional derivative,
which further justifies its use in mathematical models arising from neuroscience.

2 Preliminaries

The main theoretical results of fractional calculus are comprehensively covered in
[18, 19, 29]. In this paper, we are concerned with the Caputo derivative, which
is known to be more applicable to real-world problems, as it only requires initial
conditions given in terms of integer-order derivatives.
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Definition 1 For a continuous function h, with h′ ∈ L1
loc(R

+), theCaputo fractional-
order derivative of order q ∈ (0, 1) of h is defined by

cDqh(t) = 1

Γ (1 − q)

∫ t

0
(t − s)−qh′(s)ds.

Consider the n-dimensional fractional-order system with Caputo derivatives

cDqx(t) = f (t, x) (1)

withq = (q1, q2, ..., qn) ∈ (0, 1)n and f : [0,∞) × R
n → R

n a continuous function
on thewhole domainof definition andLipschitz-continuouswith respect to the second
variable, such that

f (t, 0) = 0 for any t ≥ 0.

Letϕ(t, x0)denote the unique solutionof (1) satisfying the initial condition x(0) =
x0 ∈ R

n . The existence and uniqueness of the initial value problem associated to
system (1) is guaranteed by the properties of the function f stated above [9].

In general, the asymptotic stability of the trivial solution of system (1) is not of
exponential type [6, 14], because of the presence of thememory effect. Thus, a special
type of non-exponential asymptotic stability concept has been defined for fractional-
order differential equations [22], called Mittag-Leffler stability. In this paper, we are
concerned with O(t−α)-asymptotic stability, which reflects the algebraic decay of
the solutions.

Definition 2 The trivial solution of (1) is called stable if for any ε > 0 there exists
δ = δ(ε) > 0 such that for every x0 ∈ R

n satisfying‖x0‖ < δwehave‖ϕ(t, x0)‖ ≤ ε

for any t ≥ 0.
The trivial solution of (1) is called asymptotically stable if it is stable and there

exists ρ > 0 such that lim
t→∞ ϕ(t, x0) = 0 whenever ‖x0‖ < ρ.

Let α > 0. The trivial solution of (1) is called O(t−α)-asymptotically stable if it
is stable and there exists ρ > 0 such that for any ‖x0‖ < ρ one has:

‖ϕ(t, x0)‖ = O(t−α) as t → ∞.

3 Stability and Instability Regions

Let us consider the following two-dimensional linear autonomous incommensurate
fractional-order system:

{
cDq1x(t) = a11x(t) + a12y(t)
cDq2 y(t) = a21x(t) + a22y(t)

(2)
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where A = (ai j ) is a real two-dimensional matrix and q1, q2 ∈ (0, 1) are the frac-
tional orders of the Caputo derivatives. Using Laplace transform tools, the following
characteristic function is obtained:

ΔA(s) = det
(
diag(sq1 , sq2) − A

) = sq1+q2 − a11s
q2 − a22s

q1 + det(A).

where sq1 and sq2 represents the principal values (first branches) of the corresponding
complex power functions [10].

Based on the Final Value Theorem and asymptotic expansion properties of the
Laplace transform [3, 4, 10], the following necessary and sufficient conditions for
the global asymptotic stability of system (2) have been recently obtained [5]:

Theorem 1 1. Denoting q = min{q1, q2}, system (2) is O(t−q)-globally asymp-
totically stable if and only if all the roots of ΔA(s) are in the open left half-plane
(	(s) < 0).

2. If det(A) 
= 0 and ΔA(s) has a root in the open right half-place (	(s) > 0),
system (2) is unstable.

Our next aim is to analyze the distribution of the roots of the characteristic function
ΔA(s) with respect to the imaginary axis of the complex plane. For simplicity, for
(a, b, c) ∈ R

3, q1, q2 ∈ (0, 1] we denote:

Δ(s; a, b, c, q1, q2) = sq1+q2 + asq2 + bsq1 + c.

As in [5], we easily obtain the following result:

Lemma 1 If c < 0, the function s �→ Δ(s; a, b, c, q1, q2) has at least one positive
real root.

In the following, we assume c > 0 and we seek to characterize the following sets:

S(c) = {(a, b) ∈ R
2 : Δ(s; a, b, c, q1, q2) 
= 0, ∀ s ∈ C

+,∀ (q1, q2) ∈ (0, 1]2}
U (c) = {(a, b) ∈ R

2 : ∀ (q1, q2) ∈ (0, 1]2, ∃ s ∈ Int(C+) s.t. Δ(s; a, b, c, q1, q2) = 0}
Q(c) = Int

(
R
2 \ (Ac ∪Uc)

)

whereC+ = {s ∈ C : 	(s) ≥ 0} and (0, 1]2 = (0, 1] × (0, 1]. Based on Theorem 1
and the previous lemma, the link between the stability properties of system (2) and
the three sets defined above is given by

Proposition 1 1. If det(A) < 0, the trivial solution of system is unstable, regard-
less of the fractional orders (q1, q2) ∈ (0, 1]2.

2. If det(A) > 0, the trivial solution of system (2) is

a. asymptotically stable, regardless of the fractional orders (q1, q2) ∈ (0, 1]2
if and only if (−a11,−a22) ∈ S(det(A)).

b. unstable, regardless of the fractional orders (q1, q2) ∈ (0, 1]2 if and only if
(−a11,−a22) ∈ U (det(A)).
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c. asymptotically stable with respect to some (but not all) fractional orders
(q1, q2) ∈ (0, 1]2 if and only if (−a11,−a22) ∈ Q(det(A)).

Lemma 2 Let c > 0. The sets S(c), U (c) and Q(c) are symmetric with respect to
the first bisector in the (a, b)-plane.

Proof The statement results from the fact that Δ(s; a, b, c, q1, q2) = Δ(s; b, a, c,
q2, q1), for any (a, b, c) ∈ R

3 and (q1, q2) ∈ (0, 1]2. �

In the following, we give several intermediary lemmas which are obtained by
generalizing the results presented in [5]. As the proofs are built up in a similar
manner as in [5], they will be omitted.

Lemma 3 Let c > 0, q1, q2 ∈ (0, 1], q1 
= q2, and consider the smooth parametric
curve in the (a, b)-plane defined by

Γ (c, q1, q2) :
{
a = cρ1(q1, q2)ω−q2 − ρ2(q1, q2)ωq1

b = ρ1(q1, q2)ωq2 − cρ2(q1, q2)ω−q1
, ω > 0,

where

ρ1(q1, q2) = sin q1π
2

sin (q2−q1)π
2

, ρ2(q1, q2) = sin q2π
2

sin (q2−q1)π
2

.

The curveΓ (c, q1, q2) is the graph of a smooth, decreasing, convex bijective function
φc,q1,q2 : R → R in the (a, b)-plane.

Lemma 4 Let c > 0 and q1, q2 ∈ (0, 1].
a. If q1 
= q2, the function s �→ Δ(s; a, b, c, q1, q2) has a pair of pure imaginary

roots if and only if (a, b) ∈ Γ (c, q1, q2).
Al the roots of the function s �→ Δ(s; a, b, c, q1, q2) are in the open left half-plane
if and only if b > φc,q1,q2(a).

b. If q1 = q2 := q, the function s �→ Δ(s; a, b, c, q1, q2) has a pair of pure imagi-
nary roots if and only if (a, b) ∈ Λ(c, q), where Λ(c, q) is the line defined by

Λ(c, q) : a + b + 2
√
c cos

qπ

2
= 0.

Al the roots of the function s �→ Δ(s; a, b, c, q1, q2) are in the open left half-plane
if and only if a + b + 2

√
c cos qπ

2 > 0.

As a consequence of the previous lemma, the following characterization of the
set Q(c) is formulated:

Corollary 1 The set Q(c) in the (a, b)-plane is the union of all curves Γ (c, q1, q2),
for (q1, q2) ∈ (0, 1)2, q1 
= q2 and all lines Λ(c, q), for q ∈ (0, 1).
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Lemma 5 Let c > 0. The region

Ru(c) = {(a, b) ∈ R
2 : a + b + c + 1 ≤ 0} ∪ {(a, b) ∈ R

2 : a < 0, b < 0, ab ≥ c}

is included in the set U (c).

Proof Let (a, b) ∈ Ru(c). First, let us notice that Δ(1; a, b, c, q1, q2) = a + b +
c + 1. Hence, if a + b + c + 1 ≤ 0, it follows that for any (q1, q2) ∈ (0, 1]2, the
function s �→ Δ(s; a, b, c, q1, q2) has at least one positive real root in the interval
[1,∞). Therefore, (a, b) ∈ U (c).

On the other hand, if a < 0, b < 0 and ab ≥ c, as

Δ(s; a, b, c, q1, q2) = (sq1 + a)(sq2 + b) + c − ab

we see that for s0 = |a|1/q1 > 0,we haveΔ(s0; a, b, c, q1, q2) = c − ab ≤ 0.Hence,
for any (q1, q2) ∈ (0, 1]2, the function s �→ Δ(s; a, b, c, q1, q2) has at least one
strictly positive real root. It follows that (a, b) ∈ U (c). �

The following lemma is obtained as in [5]:

Lemma 6 Let c > 0. The region

Rs(c) = {(a, b) ∈ R
2 : a + b > 0, a > −min (1, c) , b > −min (1, c)}

is included in the set S(c).

Based on all previous results, the following conditions for the stability of system
(2) with respect to its coefficients and the fractional orders q1 and q2 are obtained
(Figs. 1 and 2):

Proposition 2 For the fractional-order linear system (2) with q1, q2 ∈ (0, 1], the
following holds:

1. If det(A) < 0, system (2) is unstable, regardless of the fractional orders q1, q2.
2. Assume that det(A) > 0 and q1, q2 ∈ (0, 1] are arbitrarily fixed and

q = min{q1, q2}. If q1 
= q2, let Γ = Γ (det(A), q1, q2), otherwise, if q1 = q2,
let Γ = Λ(det(A), q).

(a) System (2) isO(t−q)-asymptotically stable if and only if (−a11,−a22) is in
the region above Γ .

(b) If (−a11,−a22) is in the region below Γ , system (2) is unstable.

3. If det(A) > 0, the following sufficient conditions for the asymptotic stability and
instability of system (2), independent of the fractional orders q1, q2, are obtained:

(a) If a11 < min (1, det(A)), a22 < min (1, det(A)) and Tr(A) < 0, system (2)
is asymptotically stable, regardless of the fractional orders q1, q2 ∈ (0, 1].

(b) If Tr(A) ≥ det(A) + 1 or if a11 > 0, a22 > 0 and a12a21 ≥ 0, system (2) is
unstable, regardless of the fractional orders q1, q2 ∈ (0, 1].
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Fig. 1 Individual curvesΓ (c, q1, q2) (black) given byLemma3, for fixedvalues of c = 5,q1 = 0.6,
for different values of q2 in the range 0.02–1. The red/blue shaded regions represent the sets Ru(c)
and Rs(c), respectively. These curves represent the boundary of the fractional-order-dependent
stability region in each case
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Fig. 2 Curves Γ (c, q1, q2) given by Lemma 3, for fixed values of c = 5, q1 = 0.6, varying q2 from
0.01 (red curve) to 1 (violet curve) with step size 0.01. The red/blue shaded regions represent the
sets Ru(c) and Rs(c), respectively

The fractional-order-independent sufficient conditions for the asymptotic stabil-
ity/instability of system (2) obtained in Proposition 2 (point 3.) are particularly useful
in the case of the practical applications in which the exact values of the fractional
orders used in themathematicalmodeling are not knownprecisely.We conjecture that
in fact, these conditions are not only sufficient, but also necessary, i.e., Rs(c) = S(c)
and Ru(c) = U (c). The proof of necessity requires further investigation and consti-
tutes a direction for future research.

4 Investigation of a Fractional-Order Conductance-Based
Model

The FitzHugh–Nagumo neuronal model [13] is a simplification of the well-known
Hodgkin–Huxley model and it describes a biological neuron’s activation and deac-
tivation dynamics in terms of spiking behavior. In this paper, we consider a mod-
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ified version of the classical FitzHugh–Nagumo neuronal model, by replacing the
integer-order derivatives with fractional-order Caputo derivatives of different orders.
Mathematically, the fractional-order FitzHugh–Nagumo model is described by the
following two-dimensional fractional-order incommensurate system:

⎧⎨
⎩

cDq1v(t) = v − v3

3
− w + I

cDq2w(t) = r(v + c − dw)
(3)

where v represents the membrane potential, w is a recovery variable, I is an external
excitation current and 0 < q1 ≤ q2 ≤ 1. For comparison, a similar model has been
investigated by means of numerical simulations in [2].

Rewriting the second equation of system (3) it follows that:

cDq2w(t) = rd
( 1
d
v + c

d
− w

)
= φ(αv + β − w)

where φ = rd ∈ (0, 1), α = 1

d
and β = c

d
. Thus, system (3) is equivalent to the

following two-dimensional conductance-based model:

{
cDq1v(t) = I − I (v,w)
cDq2w(t) = φ(w∞(v) − w)

(4)

where I (v,w) = w − v + v3

3
and w∞(v) = αv + β is a linear function.

4.1 Branches of Equilibrium States

For studying the existence of equilibrium states of the fractional-order neuronal
model (4), we intend to find the solutions of the algebraic system

{
I = I∞(v)

w = w∞(v)

where

I∞(v) = I (v,w∞(v)) = w∞(v) − v + v3

3
= (α − 1)v + v3

3
+ β.

We observe that I∞ ∈ C1, lim
v→−∞ I∞(v) = −∞ and lim

v→∞ I∞(v) = ∞. Moreover,

I ′∞(v) = v2 + α − 1. Therefore, we can distinguish two cases: α > 1 and α < 1.
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The case α > 1 has been studied in [4] and corresponds to the existence of a unique
branch of equilibrium states. In this paper, we will focus on the case when α < 1.

For α < 1, the roots of the equation I ′∞(v) = 0 are vmax = −√
1 − α and vmin =√

1 − α. The function I∞ is increasing on the intervals (−∞, vmax] and [vmin,∞) and
decreasing on the interval (vmax, vmin).We denote Imax = I∞(vmax), Imin = I∞(vmin).

The function I∞ : (−∞, vmax] → (−∞, Imax ], is increasing and continuous, and
hence, it is bijective. We denote I1 = I∞|(−∞,vmax] the restriction of function I∞ to
the interval (−∞, vmax] and consider its inverse:

v1 : (−∞, Imax ] → (−∞, vmax], v1(I ) = I−1
1 (I ).

The first branch of equilibrium states of system (4) is composed of the points of
coordinates (v1(I ), n∞(v1(I ))), with I < Imax .

The second and the third branch of equilibrium states are obtained similarly:

I2 = I∞|(vmax,vmin), v2 : (Imin, Imax ) → (vmax, vmin), v2(I ) = I−1
2 (I )

I3 = I∞|[vmin,∞), v3 : [Imin,∞) → [vmin,∞), v3(I ) = I−1
3 (I ).

Remark 1 We have the following situations:

• If I < Imin or if I > Imax , then system (4) has an unique equilibrium state.
• If I = Imin or if I = Imax , then system (4) has two equilibrium states.
• If I ∈ (Imin, Imax ), then system (4) has three equilibrium states.

4.2 Stability of Equilibrium States

For the investigation of the stability of equilibrium states, we consider the Jaco-
bian matrix associated to system (4) at an arbitrary equilibrium state (v∗,w∗) =
(v∗,w∞(v∗)):

J (v∗) =
[
1 − (v∗)2 −1

φ α −φ

]

The characteristic equation at the equilibrium state (v∗,w∗) is

sq1+q2 − a11s
q2 − a22s

q1 + det(J (v∗)) = 0 (5)

where

a11 = 1 − (v∗)2

a22 = −φ < 0

Tr(J (v∗)) = 1 − (v∗)2 − φ
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det(J (v∗)) = φ · I ′
∞(v∗).

Considering α < 1, the following results are obtained.

Proposition 3 Any equilibrium state from the second branch of equilibrium states
(v2(I ),w∞(v2(I ))) (with I ∈ (Imin, Imax )) of system (4) is unstable, regardless of
the fractional order q1 and q2.

Proof Let I ∈ (Imin, Imax ) and v� = v2(I ) ∈ (vα, vβ). Then I ′∞(v�) < 0, so
det(J (v∗)) < 0. From Proposition 2 (point 1), the equilibrium state (v�,w�) =
(v2(I ),w∞(v2(I ))) is unstable, regardless of the fractional orders q1 and q2.

Proposition 4 Any equilibrium state (v�,w�) of system (4) belonging to the first
or the third branch with |v�| >

√
1 − φ is asymptotically stable, regardless of the

fractional order q1 and q2.

Proof Let (v�,w�) be an equilibrium state belonging to the first or the third branch of
equilibrium states such that |v∗| >

√
1 − φ. So Tr(J (v∗)) < 0 and a11 ≤ 1. More-

over, det(J (v∗)) > 0 > a22. We apply Proposition 2 (point 3a) and we obtain the
conclusion. �

Consider the following two subcases:

4.2.1 Case α ∈ (0, φ]

In this case, the second branch of equilibrium states is completely unstable, regardless
of the fractional orders q1 and q2 and for the first and third branch of equilibrium
states, the following result is obtained (see Fig. 3):

Corollary 2 Any equilibrium state belonging to the first and the third branch of
equilibrium states are asymptotically stable, regardless of the fractional orders q1
and q2

Proof Let (v�,w�) be an equilibrium state belonging to the first or the third branch of
equilibrium states. Then |v∗| >

√
1 − α >

√
1 − φ. From Proposition 4, we obtain

the conclusion. �

4.2.2 Case α ∈ (φ, 1)

In this case, we have the following situations (see Figs. 4 and 5):

• any equilibrium point belonging to the first or the third branch with |v∗| ≥ √
1 − φ

is asymptotically stable, regardless of the fractional orders q1 and q2;
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Fig. 3 Membrane potential (v∗) of the equilibrium states (v∗,w∗) of system (3) belonging to
the three branches (with parameter values: r = 0.08, c = 0.7, d = 4.2) with respect to the external
excitation current I and their stability: red/blue represents asymptotic stability/instability, regardless
of the fractional orders q1 and q2
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Fig. 4 Membrane potential (v∗) of the equilibrium state (v∗,w∗) of system (3) (with parameter val-
ues: r = 0.08, c = 0.7, d = 1.2) with respect to the external excitation current I and their stability:
red represents parts of the first and third branches of equilibrium states which are asymptotically
stable, regardless of the fractional orders q1 and q2; blue represents the second branch of equilibrium
states, which is an unstable region; green represents equilibrium states from the first or the third
branch of equilibrium states whose stability depends on the fractional orders q1 and q2

• any equilibrium point belonging to the second branch of equilibrium states is
unstable, regardless of the fractional orders q1 and q2;

• the stability of any equilibrium point belonging to the first branch of equilibrium
states with v∗ ∈ [−√

1 − φ,−√
1 − α] or to the third branch of equilibrium states

with v∗ ∈ [√1 − α,
√
1 − φ]will dependon the fractional ordersq1 andq2 (Fig. 6).



Stability Analysis of Two-Dimensional Incommensurate Systems … 89

Fig. 5 Stability regions (shaded) in the (q1, q2)-plane for equilibrium states (v∗,w∗) of system
(3) (with parameter values: r = 0.08, c = 0.7, d = 1.2), with different values of the membrane
potential v∗ between

√
1 − α ≈ 0.41 and

√
1 − φ ≈ 0.95. In each case, the part of the blue curve

strictly above the first bisector represents the Hopf bifurcation curve in the (q1, q2)-plane

5 Conclusions

In this work, recently obtained theoretical results concerning the asymptotic sta-
bility and instability of a two-dimensional linear autonomous system with Caputo
derivatives of different fractional orders have been reviewed and extended. As a
consequence, improved fractional-order-independent sufficient conditions for the
stability and instability of such systems have been obtained. Several open problems
are identified below, which require further investigation, in accordance to the recent
trends in the field of interest of fractional-order differential equations:

• Are the fractional-order-independent sufficient conditions for stability and insta-
bility identified in this work, also necessary?

• Complete characterization of the fractional-order-independent stability set and
fractional-order-independent instability set, respectively.

• Extension of these results to the case of two-dimensional systems of fractional-
order difference equations [26, 27] and to higher dimensional systems.

As an application, the second part of the paper investigated the stability proper-
ties of a fractional-order FitzHugh–Nagumo system. Moreover, numerical simula-
tions were provided, exemplifying the theoretical findings and revealing the possible
occurrence of Hopf bifurcations when critical values of the fractional orders are
encountered.
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�Fig. 6 Evolution of the state variables of system (3) (with parameter values: r = 0.08, c = 0.7,
d = 1.2 and I = 1.25) for different values of the fractional orders. In the first five graphs, the value
for fractional order q2 has been fixed 0.8 and the value of the fractional order q1 has been increased.
Observe that for q1 = 0.6 we have asymptotic stability and for q1 = 0.65 we have oscillations,
which means that between those values a Hopf bifurcation occurs. Moreover, we observe that as q1
is increased, the frequency of the oscillations increases
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Artificial Neural Network
Approximation of Fractional-Order
Derivative Operators: Analysis and DSP
Implementation

Pratik Kadam, Gaurav Datkhile and Vishwesh A. Vyawahare

Abstract Fractional derivative operators, due to their infinite memory feature, are
difficult to simulate and implement on software and hardware platforms. The avail-
able limited-memory approximation methods have certain lacunae, viz., numeri-
cal instability, ill-conditioned coefficients, etc. This chapter deals with the artificial
neural network (ANN) approximation of fractional derivative operators. The input–
output data of Grünwald–Letnikov and Caputo fractional derivatives for a variety of
functions like ramp, power law type, sinusoidal, Mittag-Leffler functions is used for
training multilayer ANNs. A range of fractional derivative order is considered. The
Levenberg–Marquardt algorithm which is the extension of back-propagation algo-
rithm is used for training the ANNs. The criterion of mean squared error between
the outputs of actual derivative and the approximations is considered for validation.
The trained ANNs are found to provide a very close approximation to the fractional
derivatives. These approximations are also tested for the values of fractional deriva-
tive order which are not part of the training data-set. The approximations are also
found to be computationally fast as compared to the numerical evaluation of fractional
derivatives. A systematic analysis of the speedup achieved using the approximations
is also carried out. Also the effect of increase in number of layers (net size) and
the type of mathematical function considered on the mean squared error is studied.
Furthermore, to prove the numerical stability and hardware suitability, the developed
ANN approximations are implemented in real time on a DSP platform.
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1 Introduction

The basic ideas of fractional calculus, the calculus dealing with derivatives and
integrals of arbitrary non-integer order, were proposed more than 300 years ago.
Riemann, Euler, Fourier, Liouville and Bode were some of the stalwarts who made
profound contributions to this area [1]. The differential equations with fractional
derivatives are called fractional differential equations (FDEs). The mathematical
theory of FDEs is quite matured [2, 3]. Scientists and engineers recognized the
importance of FDEs only during last 40 years, especially when it was observed that
the mathematical descriptions of some systems are more accurate if modeled using
FDEs. Also, the resultingmathematical models are quite compact and provide amore
realistic representation for processes with memory and spatial distribution. Further,
fractional-order (FO) models provide more degrees of freedom in the model while
an unlimited memory is also guaranteed in contrast to integer-order models with
limited memory [4, 5]. Some of the areas where FO models have been developed
are viscoelasticity, diffusion, Warburg impedance, nuclear reactor, and the voltage–
current relation of a semi-infinite lossy transmission line [6]. The theory of linear
and nonlinear FO systems is also very well developed [7, 8].

Fractional-order derivative operators, by definition, possess infinite memory. This
feature makes them very difficult to simulate/realize using the limited memory soft-
ware/physical hardware. This problem is usually circumvented by using the various
available continuous and discrete limited memory approximations (viz., Oustaloup’s
Recursive Approximation, Al-Alaoui, Tustin, CFE, etc.). All these techniques result
in a rational approximation (continuous- or discrete-time) of the FOderivative or inte-
gral operator. These approximations suffer from the following shortcomings/lacunae:

1. The approximations are valid for a particular value of fractional order of the
derivative or integral. The same approximation can not be used if there is a change
in the value of differentiation/integration order and a new approximate rational
transfer function is required.

2. The resulting integer-order transfer functions are generally ill-conditioned (poly-
nomial coefficients of very large value of the order of 1e70). This may lead to
computational instability and saturation of the implementation hardware.

3. These approximations may lead to internal instability.

It can be concluded that there is a need for an approach which can overcome the
aforementioned limitations. Here the artificial neural network approximations of FO
derivative operators are proposed.

There is a vast literature available on realization and implementation of FO oper-
ators and FO systems on various electronic hardware platforms. The DSP realization
of FO operators is proposed in [9], whereas [10] implements the Grünwald–Letnikov
and Caputo fractional derivative definitions on FPGA platform. The FO chaotic sys-
tem is widely implemented on various embedded platforms like FPGA, microcon-
troller, DSP, etc. The implementation of chaos and hyperchaos in FO chaotic systems
on FPGA is given in [11], whereas the control of chaotic system on FPGA is studied
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in [12]. The DSP realization of FO Lorenz system based on Adomian Decomposi-
tion method is proposed in [13]. All these attempts are based on the finite memory
rational integer-order approximations discussed earlier.

Study of the human brain goes back to 200 years ago. With the advent of modern
electronics, it was only natural to try to harness this thinking process. The concept
of artificial neural networks was a paradigm shift [14]. As their name implies, neural
networks take a cue from the human brain by emulating its structure. The neuron is
the basic structural unit of a neural network. In the human brain, a biological neuron
receives electrical impulses from numerous axons and dendrites which serves as a
input to the soma which is processing block of neuron. If there is enough aggregated
input to the neuron, it generates electrical pulses of signal to its output synapse acti-
vating different regions of human body [15]. An artificial neuron functions similarly.
A neuron receives a number of inputs that possess weights based on their impor-
tance. Similar to a real neuron, the weighted inputs are summed and output based
on a threshold function sent to every neuron downstream [16]. The application of
neural networks vast variety of domain from the classification, pattern recognition
problems [17] to abstract solution in business analytic [18] to solving problem in
finance [19].

There have been some attempts to combine the areas of fractional calculus and arti-
ficial neural networks. The dynamics of a FO ANN is discussed in [20]. The solution
of ordinary differential equation (ode) and partial differential equations (pde) with
ANN has been studied in [21]. Dynamics of FO neural network has been analyzed
in [20] and the stability study of these networks using LMI approach is reported
in [22]. Use of ANNs for solving FDEs is given in [23]. Design of unsupervised
fractional neural network model optimized with interior point algorithm for solving
Bagley–Torvik equation is given in [24]. Mittag-Leffler functions are very versatile
functions in the field of fractional control theory. A fractional-order neural network
system with time-varying delays and reaction-diffusion terms using impulsive and
linear controllers is presented in [25]. Introduction of fractional derivatives in fuzzy
control theory into cellular neural networks to dynamically enhance the coupling
strength and propose a fractional fuzzy neural network model with interactions with
Lyapunov stability principle is proposed in [26]. Stability of Riemann–Liouville
fractional-order neural networks with time-varying delays with Lyapunov stability
approach is studied in [27]. In [28] strength of fractional neural networks (FrNNs)
is exploited to find the approximate solutions of nonlinear systems based on Riccati
equations of arbitrary order.

This work explores the possibility of using artificial neural networks for the
approximation of FO derivative operators. A novel approach is proposed to real-
ize the Grünwald–Letnikov and Caputo fractional derivative operators with the help
of ANN. The proposed ANN approximations provide a close approximation to FO
derivative operators. Moreover, these have simple structures, are numerically stable,
and are easy to simulate and implement on any hardware platform.Most importantly,
an ANN approximation once designed can be used efficiently for a range of frac-
tional order. This is due to the universal approximation feature of neural networks.
The training of neural net is achieved using Levenberg–Marquardt algorithm [29].
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The validation is carried out in MATLAB environment, where numerical and ANN
approximation results are compared on the basis of relative error and computational
time. To prove the “ease of hardware implementation” claim, the proposed approx-
imations are realized on a digital signal processor (DSP TMS320F28335) platform
alongwith validation of results. It is shown that ANN approximations require smaller
computation time. Further, a detailed analysis of the effect of parameters like non-
integer order of FO derivative and number of hidden layers on the performance and
execution time of the proposed approximation is also carried out.

The salient contributions of the proposed work are as follows:
1. Design of ANN approximation of fractional-order derivatives with

Grünwald–Letnikov and Caputo definitions for a variety of signals like
exponential, power, sinusoidal, Mittag-Leffler. The approximations are
valid for a range of fractional derivative order.

2. Verification of numerical simulation of the proposed ANN approximations
with analytical solutions.

3. DSP implementation of the approximations.
4. Study of effect of variation in parameters like non-integer derivative order,

number of neurons and number of hidden layers on the performance of
approximations.

5. Reduction in computational time for hardware implementation of the ANN
approximation.

The chapter is organized as follows. Next section discusses the fundamentals
of fractional calculus and the definitions of fractional derivative operators. It also
gives a list of available continuous and discrete approximations of FO operators.
Section 3 introduces the basics of artificial neural network, multilayer NN models
and Levenberg–Marquardt algorithm. Simulation results are presented in Sect. 4.
The DSP implementation results of the designed ANN approximations are given in
Sect. 5. Section 6 provides a detailed analysis of the results and conclusion is given
in Sect. 7.

2 Fractional Calculus

In the last fewdecades, the calculus dealingwith derivative and integral operatorswith
non-integer order is gaining popularity amongmathematicians, physicists, engineers,
and researchers. The fractional calculus, as it is commonly known, has been found
to provide a very powerful mathematical tool for modeling a variety of real-world
and engineering systems. It has been also found useful in control theory. There are a
variety of definitions of a fractional integral or derivative and the well-known laws of
classical integer-order calculus cannot be extended straightforwardly to fractional-
order integro-differential operators (see [30, 31]).
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The fractional-order modeling of processes and systems is now a matured field
[32]. This involves the use of fractional differential equations (FDEs) for describing
various peculiar phenomena like anomalous diffusion [33], mechanics of heredi-
tary and polymeric materials [34, 35], and many more. An excellent reference [36]
presents the chronological development of fractional calculus both as an abstract
mathematical field and a mathematical tool for modeling and control. This chapter
uses the Caputo definition and Grünwald–Letnikov (GL) definition.

Caputo definition of fractional derivative is defined as [1, 37]:

aD
α
t f (t) = 1

Γ (n − α)

∫ t

a

f n(τ )

(t − τ)α−n+1
dτ, (1)

with a and t as the limits of the operation and α ∈ R, n − 1 < α < n, n ∈ Z
+, where

f n(τ ) is the nth-order derivative of the function f (t). Caputo fractional derivative
is found to be very useful for modeling as the physical initial conditions can be used
in the solution of FDEs. This greatly facilitates the analytical and numerical solution
of the corresponding fractional-order model.

The other fractional derivative used in this work is Grünwald–Letnikov (GL)
definition. Using the concept of short memory given in [37], it is defined as:

aD
α
t f (t) = lim

h→0
h−α

[ t−a
h ]∑

j=0

(−1) j αC j f (t − jh), (2)

where [x] means the integer part of x and αC j is the binomial coefficient. This
definition is generally used for the numerical calculations.

The fractional derivative operators are nonlocal in nature and therefore have to
be simulated and implemented in rational form. The continuous-time approxima-
tions have been obtained using evaluation, interpolation and curve fitting, whereas
Lubich’s formula, trapezoidal rule, etc., have been used to develop discrete-time
approximation. The popular approximation methods of FO operators are as follows:

1. Continuous-time Approximation

a. Continued fraction expansion (CFE) [38]
b. Carlson’s Method [39]
c. Matsuda’s Method [40]
d. Oustaloup’s Method [41]
e. Charef’s Method [42]

2. Discrete-time Approximation [43]

a. Tustin (Trapezoidal Rule or Bilinear Transform)
b. Simpson’s Rule
c. Euler (Rectangular Rule)
d. Al-Aloui’s Operator
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In addition to above approximations, the literature survey reveals that there are
many more discretization schemes for fractional-order derivative operators. These
includes Chen-Vinagre operator, Al-Alaoui Schneider Kaneshige Groutage (Al-
AlaouiSKG) operator, Schneider operator, Hsue operator, Barbosa operator, Maione
operator and many more. The detailed study of these operators is given in [43, 44].

3 Artificial Neural Networks

The neural network approach to computation has emerged in recent years to tackle
problems for which more conventional computational approaches have proven inef-
fective [45]. To a large extent, such problems arise when a computer is asked to
interface with the real world, which is difficult because the real world cannot bemod-
eled with concise mathematical expressions. This section discusses the fundamentals
of artificial neural networks, mathematical modeling of single neuron, multilayer
networks, and their learning algorithms like Error back propagation, Levenberg–
Marquardt algorithm.

3.1 McCulloch–Pitts Model

The early model of an artificial neuron was introduced by Warren McCulloch and
Walter Pitts in 1943 [16]. The McCulloch–Pitts neural model is also known as lin-
ear threshold gate as depicted in Fig. 1. It allows binary 0 (OFF) or 1 (ON) states
only, operates under assumption that system is discrete-time and there exist a full
synchronous operation of all neurons in larger networks. The input signal is con-
nected through synaptic connections having fixed weights and there is no interaction
among network neurons except for output signal flow [46]. Every single neuron
model consists of a set of inputs x1 j , x2 j , x3 j , ..., xnj with their respective weights
w1 j ,w2 j ,w3 j , ...,wnj and one output o j , where j indicates the neuron number. The
signal is unidirectional from input to output. The output of neuron is calculated in

Fig. 1 McCulloch–Pitts (MCP) neuron model [14]
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two steps. First step is to calculate the weighted sum of input which is the simple
sum of product operation denoted as net j . The second step is to find the output of
simple activation function ( f ). Thus the output can be defined mathematically as:

o j = f (net j ) or f (wT
j x j ), (3)

o j = f

(
m∑
i=1

xi jwi j

)
, (4)

The function f (wT
j x j ) is usually referred as activation function. Its domain is a set

of activation values of the neuron model. In early stages, the output o j was simply
in binary format more suitable for classification type problem because of the hard
limiting activation functions. But due to advancement in the field of mathematics,
researchers developed different types activation function [47] for different applica-
tion. The activation functions include as unipolar, bipolar, tansigmoidal, gaussian,
arctan, exponential, linear, multiquadratics, inverse multiquadratics, and lot more.
The applications include classification, curve fitting, pattern recognition, and many
more [48] depending upon the type of activation function used for triggering [47,
49].

The most popular activation functions for curve fitting problem are sigmoidal
or logistic, hyperbolic tangent and ReLu (Rectified linear units). Each of this has
unique feature in curve fitting problem. The sigmoidal is very conventional acti-
vation function and have major research literature available. Neural networks with
sigmoidal activation function are easy to implement on any conventional low-level
embedded platform and does not require device with high computational power.
Hence sigmoidal is most suitable for the comparative study for the proposed system.
The effect of activation function on learning rate of curve fitting problem is a very
vast topic and hence is not discussed in order to simplify the things. The effect of
activation on learning is discussed in [50].

3.2 Multilayer Neuron Model

The primary objective of this work is to utilize the curve fitting property of neural nets
in order to approximate the fractional derivative of some commonly used functions
[51]. A single layer neuron can approximate a single dimension smooth analytic
function, but is not able to perform multidimensional function fitting. The remedy
is to use multidimensional neural nets. Figure 2 shows a simple multilayer network.
The network can be classified into three parts. First is the input normalization (shown
in yellow), second is the hidden layer (shown in blue) with bipolar activation function
and third is the output layer (shown in orange) with linear activation function which
is suitable for curve fitting application [52].
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Fig. 2 Multilayer neuron model [14]

To express the ANN mathematically, consider the matrix operator (Γ ) for each
layer which maps the input space x to output space o j . The o j serves as input space
for the proceeding layer. The final output matrix o can be expressed as follows:

o = Γ [Wx], (5)

where W is weight matrix (also called as connection matrix):

W =

⎡
⎢⎢⎣
w11 w12 ... w1n

w21 w21 ... w2n

. . ... ...

wm1 wm1 ... wmn

⎤
⎥⎥⎦ , (6)

and

Γ [.] =

⎡
⎢⎢⎣
f (.) 0 ... 0
0 f (.) ... 0
. . ... ...

0 0 ... f (.)

⎤
⎥⎥⎦ . (7)

Note that the nonlinear activation function Γ (.) is a diagonal matrix operating in
component-wise fashion on the activation values net of each neuron of the given
layer.
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3.3 Error Back-Propagation Training (EBBT) Algorithm

The method to train neural nets is similar to the process of the human beings learning
any new task. Humans learn from their previous mistake and try to modify the
behavior for similar types of action in future. On the same note, a neural net starts
the training with arbitrary values. The learning then continues with a set of inputs and
the corresponding outputs. The weights of respective nodes are changed according
to the error between expected value and outcome. This process is repeated till the
overall error is minimized to certain value. This is known as back propogation or
delta learning rule [53].

Consider a pth neuron of kth layer of a multilayer neural network. Now the
weights of a single neuron are updated. This step is applied to entire network for
weight adjustment. The output of neuron is given by

netpk = Wpkxp,

opk = f (netpk), (8)

where Wpk is weight matrix of pth neuron of kth layer and xp are its inputs. The
expected output of neuron is dpk . To optimize the results and to design a closely
fitting network, the error between dpk and opk needs to be minimized. The mean
squared error is considered as cost function:

Ep = 1

2

K∑
k=1

(dpk − opk)
2. (9)

A single neuron is connected directly or indirectly to the output by multiple layers
or single layer of interlacing functions. To compute change in individual adjustment
weight due to error in output is given by

Δwjk = −η
∂Ep

∂wkj
. (10)

Taking derivative of (9) with respect to weight we get

∂Ep

∂wjk
= −

K∑
k=1

(dpk − opk).
∂opk

∂wjk
, (11)

where error Ep is defined in (9). The relation between weights and output of neuron
is given by (8). Thus,

∂opk

∂wjk
= ∂ f (netpk)

∂wjk
,

= ∂ f (netpk),

∂netpk
.
∂netpk
∂wjk

. (12)
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From (8) and (12), we get

∂netpk
∂wjk

= x j . (13)

Putting (11) and (13) into (10)

Δwjk = η

K∑
k=1

(dpk − opk) f
′
k(netk)x j . (14)

Expression (14) gives the change in individualweight after each iteration.Theprocess
is repeated till the overall error is reduced below the specified tolerance value.

3.4 Levenberg–Marquardt Algorithm

The Levenberg–Marquardt algorithm (LMA or just LM), also known as the damped
least-squares (DLS) method, is used to solve nonlinear least-squares problems [29].
It is a combination of Gradient Descent algorithm and Gauss–Newton method. The
basic cost function of optimization is same as mean squared error as given in (9).
Next, the algorithm is explained in details.

For given function the output is given by y, its expected output vector as ŷ of vector
of n parameters of set of m data points. Then the cost function (χ ) of goodness of fit
measure is given as

χ2 =
m∑
i=1

[
y − ŷ

]2
,

= (y − ŷ)TW (y − ŷ),

= yTWy − 2yTW ŷ + ŷT W ŷ, (15)

where W is diagonal matrix called as weight matrix given in (6) and is useful when
some particular point has more significance than others. In Gradient Descent or
steepest descent method, parameters are updated in opposite direction of gradient of
the objective function. This is similar to back propogation and is given by

∂χ2

∂p
= 2(y − ŷ)TW

∂

∂p
(y − ŷ),

= −2(y − ŷ)TW

[
∂y

∂p

]
,

= 2(y − ŷ)W J,



Artificial Neural Network Approximation … 103

where J is the Jacobian matrix of error with respect to change in parameters. The
parameter update is given by

Δw = α J TW (y − ŷ). (16)

In Gauss–Newton method, it is assumed that the objective function is quadratic near
the optimal region. Hence by applying Taylor expansion, we get

ŷ(p + h) ≈ ŷ(p) +
[
∂ ŷ

∂p

]
h = ŷ + Jh. (17)

Substituting this in (15) gives

χ2(p + h) ≈ yTWy + ŷT W ŷ − 2yTW ŷ − 2(y − ŷ)TW Jh + hT J TW Jh. (18)

The condition at optimal solution is ∂χ2

∂h = 0, which yields

[J TW J ]Δw = J TW (y − ŷ). (19)

The step size in LMA changes such that initially it follows gradient descent
algorithm with small step size. But as it reaches close to the optimal point it changes
update procedure as per Gauss–Newton method. The update in weights is given as

[J TW J + λdiag(J TW J )]Δw = J TW (y − ŷ). (20)

The steps involved in training of ANN are as follows [54]:
1. Decide the minimum MSE error (Emin), Maximum number of iteration,

performance index.
2. Initialize the weight matrix W .
3. Compute layer response using (8).
4. Compute the MSE for given epoch (E) using (9).
5. Compare calculated MSE (E) with Emin . If E ≤ Emin then stop the train-

ing, else continue.
6. Calculate change in weights using (20) and update weights wk+1 = wk +

δw.
7. Check for halting condition like number of iteration, performance index.

If reached these conditions then stop training, else go back to step 3.

At startup the weights are initiated with random values. All the data is normalized
in order to remove biasing toward single variable. The output is calculated with these
weights and compared with the reference values. The cumulative error of entire data-
set is calculated and is compared with the level of fitting (Higher the level of fitting,



104 P. Kadam et al.

lower will be cumulative error). If the error is below specified level the training
is terminated else changes in individual weights are calculated with the successive
weight updation formula (20). The halting conditions are checked: if not satisfied,
the algorithm repeats itself until maximum number of epochs have been encountered.
The transition from one method to another allow Levenberg–Marquardt algorithm
to reach local minimum faster as compared to individual algorithms.

4 Simulation Performance

In order to justify the performance of ANN for approximation of FO derivatives,
the proposed theory was simulated in MATLAB2015a environment. To create an
ANN which can mimic the fractional derivative of a given function, it is required to
train for standard input and output data-sets. The fundamental working principle of
neural network is analogous to human brain: it learns, adapts and evolves from its
mistake. Hence the neural nets are interpolative networks, they can perform verywell
for the operation point which lies within its training data-set, but their performance
for operating point outside training data-set is non-predictable. Thus the training
data-set needs to be accurate and covering wide range of possible input values. The
relationship between the time for training of ANN is inversely proportional to the
size of database, hence creating a training data-set too big or too small is not a good
option.

Considering all the prerequisites for generating training data-sets, numerical solu-
tions of Grünwald–Letnikov derivatives and Caputo derivatives are vectorized in
MATLAB. The functions used in this work are given in Table 1.

The fractional derivative order (α) is considered as a variable, therefore a single
network can calculate fractional derivative of different derivative orders. The train-
ing data-set consists of numerical values of variables which are given as inputs to
the neural network (time, derivative order, etc.). The inputs are created in nested
fashion in row vector format. The outputs for the same is also calculated and are also
arranged in a single row vector. Then the ANNs are trained with algorithm described
in Sect. 3.4. The process is repeated for different initial weights and compared with
the optimized results. The selection is done on the basis of cost function, i.e., Mean
squared error (9).

The network with lowest MSE is considered as the optimized network. The net-
work size of trained neural network is given as [m × n], where m is the number of
neurons in hidden layer and n is the number of hidden layers. The process is repeated

Table 1 Functions under study

FO derivative Functions

Grünwald–Letnikov derivatives t, tμ, sin(at), cos(at), eat ,1- and 2-parameter
Mittag-Leffler function

Caputo derivatives t, tμ, sin(at), cos(at), eat
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for network with increase in number of neurons or number of layers again till the
optimized solution is obtained within the range specified. The trained ANNs are
also tested for input parameters which are not part of their training data-set and are
checked for under-fitting, perfect fitting, and over-fitting.

4.1 Grünwald–Letnikov ANN Approximation

The simulation performance of a variety of functions mentioned in Table 1 for
GL derivative operation is shown in Fig. 3. The system parameter for simula-
tion are given in Table 2. The network size for which the simulation was done is

Fig. 3 GL ANN approximation with net size [10 × 3] a Fitting plot for f (t) = t , b Fitting plot
for f (t) = t0.7, c Fitting plot for f (t) = sin(2π5t), d Error plot for f (t) = t , e Error plot for
f (t) = t0.7, f Error plot for f (t) = sin(2π5t), g Fitting plot for f (t) = e−0.5t , h Fitting plot for
f (t) = 1-parameter MLF, i Fitting plot for f (t) = 2-parameter MLF, j Error plot for f (t) = e−0.5t ,
k Error plot for f (t) = 1-parameter MLF, i Error plot for f (t) = 2-parameter MLF
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Table 2 GL training and testing data

Case Parameter Values

Training Time interval 0:0.01:2

Range for α 0.1:0.01:0.9

Testing Net size [10 × 2], [05 × 3], [10 × 3]

[10 × 3], with good accuracy and faster response. The function under study are t ,
t0.7, sin(2π5t), e−0.5t , 1 − parameter MLF with α = 0.4 and 2 − parameter
MLF with α = 0.7, β = 0.25 whose derivative order α were 0.5, 0.5, 0.3, 0.6,
0.4 and 0.7 respectively. From Fig. 3 it can be seen that the ANNs were able to
approximate the GL derivative operator with negligible error.

4.2 Caputo ANN Approximation

The simulation of various function under study as mentioned in Table 1 for Caputo
derivative operation is shown in Fig. 4. The system parameter for simulation are
tabulated in Table 3. The function under study are t , t0.5, sin(2π4t), cos(2π4t) and
e−0.5t . The value of fractional derivative order is taken to be α = 0.2645, which is
not part of the training data-set. Also for the sinusoidal function, in Fig. 4h and k the
derivative order is 0.3816. Even though the derivative order is not part of training data-
set, it can be seen from error plot in Fig. 4 that the ANNs were able to approximate
Caputo derivative operator with very small error of order less than 10−3.

4.3 Time Performance of ANN over Numerical Solutions

The comparative analysis of the computational time required for the original
fractional-order derivative and its ANN approximation is carried out. For this, the
ANN approximations with optimized result were used. The simulations of the origi-
nal fractional derivative definitions and optimizedANNapproximationwere repeated
100 times. The speedup was calculated as follows:

Minimum Speedup = Minimum simulation time for numerical definition

Maximum simulation time for ANN approximation
,

Maximum Speedup = Maximum simulation time for numerical definition

Minimum simulation time for ANN approximation
,

Average Speedup = Average simulation time for numerical definition

Average simulation time for ANN approximation
.
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Fig. 4 Caputo ANN approximation with net size [10 × 3] a Fitting plot for f (t) = t , b Fitting
plot for f (t) = t0.5, c Fitting plot for f (t) = sin(2π4t), d Error plot for f (t) = t , e Error plot
for f (t) = t0.5, f Error plot for f (t) = sin(2π4t), g Fitting plot for f (t) = cos(2π4t), h Fitting
plot for f (t)sin(2π4t) = and α = 0.3816, i Fitting plot for f (t) = e−0.5t , j Error plot for f (t) =
cos(2π4t), k Error plot for f (t) = sin(2π4t) and α = 0.3816, i Error plot for f (t) = e−0.5t

Table 3 Caputo training and testing data

Case Parameter Values

Training Time interval 0:0.01:2

Range for α 0.1:0.01:0.4

Testing Net size [10 × 2], [05 × 3], [10 × 3]
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The speedup achieved by ANN approximation for GL and Caputo fractional
derivative operator are tabulated in Appendix. The machine used for calculation
was Intel(R) Core(TM) i3-4005U CPU 1.70GHz processor, 4.00 GB RAM, 64-bit
operating system on Windows OS platform. In order to optimize the simulation
performance of machine all the auxiliary process including internet, Wi-fi, system
application, etc., were terminated. The simulation was performed inMATLAB2015a
environment.

The procedure followed for the time performance calculation is as follows:

1. Initially the testing data-set is generated. If the step size for the training was h1,
then the testing data-set is created with step size h2 ≈ h1/10.

2. All the other processes/software were closed and the system was disconnected
from all peripherals.

3. The solution of fractional-order derivative for given function is calculated. The
MATLAB tic-toc command is used to calculate time required for the computa-
tion. This process is repeated 100 times and the results are stored in one single
dimensional array.

4. Similar process is repeated with ANN approximation of FO derivatives and the
results are stored in a single dimensional array.

5. In order to calculate the performance parameter, the time-array generated using
step 3 and 4 are used.

6. The process is repeated for different net size and the results are summarized and
discussed.

From Tables 6 and 7, it is observed that the ANNs are computationally faster than
numerical executions of the original definitions. Especially the ANNs are faster for
calculating Caputo derivative as compared to GL derivatives. The speed of ANN
approximations reduces if we increase number of layers or number of neurons. But
still the ANN performs significantly better than the conventional vectorized method
(numerical method).

5 Hardware Performance

To realize fractional derivative in digital environment we use different finite element
approximations. The higher the order the closer the approximation at cost of higher
calculation time. ANN allows us to realize the higher order approximation of frac-
tional derivative (it can be analytic solution or finite approximation) with very small
network of neurons thereby reducing the time of calculation. Once trained, neural
networks are very easy to implement on any hardware platform with addition and
multiplication functions, hence can be implemented on lower level hardware also.

In this section, the implementation of ANN approximations on DSP TMS320F-
28335 are discussed. The TMS320F28335 is Digital Signal Processor by Texas
Instruments with High Performance Static CMOS Technology. The clock speed
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Fig. 5 Hardware assembly DSP board interfaced with CCS

is 150MHz with 32-Bit CPU embedded with IEEE-754 Single-Precision Floating-
Point Up to 6 Event Capture Inputs Unit (FPU), allowing floating-point operations.
The trained networks from Sect. 4 are coded in serial sequential manner. Code Com-
poser Studio (CCS) v6.1.1 is used for coding and analysis. The number of samples
are kept same as that of used in validation in MATLAB environment. The results are
compared with numerical solution calculated in MATLAB.

Figure 5 shows the hardware assembly. The CCS was installed in computer
machine with Intel(R) Core(TM) i3-4005U CPU @1.70GHz with 64-bit Win-
dows8.1 Operating system. All the simulation and hardware results were processed
on the same platform.

The procedure followed to implement ANN approximations on DSP platform:

1. The numerical solutions are obtained inMATLAB andANN networks are trained
using the algorithm described in Sect. 3.4.

2. The weights of optimized network are exported to the parameters in DSP proces-
sor. The size of net, number of inputs, number of neurons in single layer, number
of layers are defined in CCS environment.

3. Value of derivative orders (α), which are not the part of training data-set are
chosen.

4. Output of input layer is calculated and successive outputs of neurons are calculated
in cascaded manner.

5. The process is repeated in nested fashion to calculate fractional derivative in
real-time environment.

6. The data is stacked in array format which is later exported to the PC.
7. Comparative study is carried out using MATLAB.
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Table 4 GL training and testing parameters

Case Parameter Values

Training Time interval 0:0.01:2

Range for α 0.1:0.01:0.9

Testing α [0.12345, 0.46375, 0.8537]

Net size [10 × 3]

5.1 DSP Implementation Results for Grünwald–Letnikov
Fractional Derivative

As discussed in Sect. 2 Grünwald–Letnikov definitions of fractional derivative is one
of the fundamental definition of fractional calculus [2]. Now the hardware imple-
mentation results for ANN approximation of GL fractional derivative will be pre-
sented for different function. The parameters for training and testing of GL derivative
approximation which are used for hardware implementation are listed in Table 4. The
networks were trained up to 2 decimal digit accuracy, whereas the value of α is with
4 decimal precision. Due to interpolative property of neural network even though
the ANN were not trained for given particular value gives very close approximated
results.

5.1.1 Example 1: Ramp Function

It is given by

f (t) = t, t ∈ [0, 2] .

The implementation details are given in Table 4. The DSP implementation results
are shown in Fig. 6. It can be seen that the output of ANN approximation exactly
matches with the analytical calculation for the three values of α that were not used
in training. The MSE is negligible.

5.1.2 Example 2: Power Law Type Function

It is given by

f (t) = tμ, μ = 0.7 t ∈ [0, 2] .

The implementation details are given in Table 4. The DSP implementation results
are shown in Fig. 7. It can be observed from the figure that the ANN approximates
the GL derivative operation very closely with very small MSE.



Artificial Neural Network Approximation … 111

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 6 Network performance for GL derivative for Dα t not used in training values of α a Network
fitting for α = 0.1234 b Network fitting for α = 0.46375 c Network fitting for α = 0.8537 d Error
curve for α = 0.1234 e Error curve for α = 0.46375 f Error curve for α = 0.8537

Fig. 7 Network performance forGLderivative for Dα t0.7 not used in training values ofα aNetwork
fitting for α = 0.1234 b Network fitting for α = 0.46375 c Network fitting for α = 0.8537 d Error
curve for α = 0.1234 e Error curve for α = 0.46375 f Error curve for α = 0.8537

5.1.3 Example 3: Sine and Cosine Functions

It is given by

f (t) = sin(2π5t) and f (t) = cos(2π5t).

The implementation details are given in Table 4. Both functions were approxi-
mated but the results for sinusoidal function only are shown for illustrative purpose.
The DSP implementation results are shown in Fig. 8. Even though the values of α
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Fig. 8 Network performance for GL derivative for Dαsin(2π5t) not used in training values of α a
Network fitting for α = 0.1234 bNetwork fitting for α = 0.46375 c Network fitting for α = 0.8537
d Error curve for α = 0.1234 e Error curve for α = 0.46375 f Error curve for α = 0.8537

were not a part of training set, due to interpolative property ofANN the approximation
is very accurate with minimal MSE.

5.1.4 Example 4: Mittag-Leffler Function

Mittag-Leffler Function is special type of entire function. It naturally occurs as a
solution of fractional-order derivatives and integrations. During last two decades,
this function has gained popularity among mathematics community due to its vast
potential in solving fractional-order differential equations used for modeling in biol-
ogy, physics, engineering, earth science, etc. [55]. Mathematically, MLF is defined
as 1-parameter Mittag-Leffler function:

Eα(t) =
∞∑
k=0

t k

Γ (1 + αk)
, αεC,�(α) > 0, zεC (21)

and its generalized form is given as 2-parameter Mittag-Leffler function:

Eα,β(t) =
∞∑
k=0

t k

Γ (β + αk)
, α, βεC,�(α) > 0,�(β) > 0, zεC (22)

where C is set of complex number.
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Fig. 9 Network performance for GL derivative for 2-parameter Mittag-Leffler Function (with
β = 0.3526) for α which are not part of the training set aNetwork fitting for α = 0.1234 bNetwork
fitting for α = 0.46375 cNetwork fitting for α = 0.8537 d Error curve for α = 0.1234 e Error curve
for α = 0.46375 f Error curve for α = 0.8537

The ANN approximation is designed for GL fractional derivative of 1- and 2-
parameter MLFs. The output of 2-parameter MLF is shown in Fig. 9. The training
range for ANN was 0.1 ≤ α ≤ 0.9 and 0.1 ≤ β ≤ 0.5. It can be deduced that the
ANN approximation of fractional derivative of complex function like Mittag-Leffler
with two input variable α and β is within the accuracy level of 10−6. Hence ANN
approximations can be used for practical implementation of fractional differentiation
of Mittag-Leffler type function.

5.2 DSP Implementation Results for Caputo Derivative

As discussed in Sect. 2, the Caputo definition of fractional derivative is one of the
fundamental definitions of fractional calculus [2]. Now the hardware implementa-
tion results for ANN approximation of Caputo fractional derivative are presented for
different function. The parameters for training, testing of Caputo derivative approx-
imation and hardware implementation are listed in Table 5. The order of derivative
is kept within the limit of 0.1–0.4.
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Table 5 Caputo training and testing parameters

Case Parameter Values

Training Time interval 0:0.01:2

Range for α 0.1:0.01:0.4

Testing α [0.12345, 0.2645, 0.3816]

Net size [10 × 3]
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Fig. 10 Network performance for Caputo derivative for Dα t not used in training values of α a
Network fitting for α = 0.1234 b Network fitting for α = 0.2645 c Network fitting for α = 0.3816
d Error curve for α = 0.1234 e Error curve for α = 0.2645 f Error curve for α = 0.3816

5.2.1 Example 1: Ramp Function

It is given by

f (t) = t, t ∈ [0, 2] .

The implementation details are given in Table 5. The DSP implementation results
are shown in Fig. 10. It should be noted that the output ofANNapproximation exactly
matches with the analytical calculation for the three values of α that were not used
in training. It is also seen that the MSE is negligible.

5.2.2 Example 2: Power Law Type Function

It is given by

f (t) = tμ, μ = 0.7 t ∈ [0, 2] .



Artificial Neural Network Approximation … 115

Time(sec)
0 0.5 1 1.5 2

FO
 d

er
iv

at
iv

e

0

0.2

0.4

0.6

0.8

1

1.2

α= 0.1234

Numerical output
ANN output

Time(sec)
0 0.5 1 1.5 2

Er
ro

r

×10-5

-10

-8

-6

-4

-2

0

2

4

Time(sec)
0 0.5 1 1.5 2

FO
 d

er
iv

at
iv

e

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
α= 0.2645

Time(sec)
0 0.5 1 1.5 2

Er
ro

r

×10-4

-1.5

-1

-0.5

0

0.5

1

Time(sec)
0 0.5 1 1.5 2

FO
 d

er
iv

at
iv

e

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
α= 0.3816

Time(sec)
0 0.5 1 1.5 2

Er
ro

r

×10-5

-8

-6

-4

-2

0

2

4

6

Fig. 11 Network performance for Caputo derivative for Dα t0.5 not used in training values of α a
Network fitting for α = 0.1234 b Network fitting for α = 0.2645 c Network fitting for α = 0.3816
d Error curve for α = 0.1234 e Error curve for α = 0.2645 f Error curve for α = 0.3816

The implementation details are given in Table 5. The DSP implementation results
are shown in Fig. 11. It is observed from the figure that the ANNs are able to
approximate Caputo derivation of power law type function within the MSE range
of 10−4 up to 10−6. Hence it can be concluded that numerically ANNs are able to
closely approximate the Caputo derivative operators.

5.2.3 Example 3: Sine and Cosine Functions

It is given by

f (t) = sin(2π4t) and f (t) = cos(2π4t).

The approximation was done for both sine and cosine signals. The results for sinu-
soidal function are presented. The implementation details are given in Table 5. From
Fig. 12, it can be deduced that the approximation of Caputo derivative of trigono-
metric functions is possible with ANN technique. The maximum error is of the order
10−4, whereas MSE is of order 10−6.

5.2.4 Example 4: Exponential Function

It is given by

f (t) = e−0.5t , t ∈ [0, 2] .
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Fig. 12 Network performance for Caputo derivative for Dαsin(2π4t) for untrained values of α

aNetwork fitting for α = 0.1234 bNetwork fitting for α = 0.2645 cNetwork fitting for α = 0.3816
d Error curve for α = 0.1234 e Error curve for α = 0.2645 f Error curve for α = 0.3816
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Fig. 13 Network performance for Caputo derivative for Dαe−0.5t not used in training values of α

aNetwork fitting for α = 0.1234 bNetwork fitting for α = 0.2645 cNetwork fitting for α = 0.3816
d Error curve for α = 0.1234 e Error curve for α = 0.2645 f Error curve for α = 0.3816

The implementation details are given in Table 5. From Fig. 13 it can inferred that the
ANN is able to approximate the Caputo derivative of any order between the training
set that is not part of training data-set. The error is negligibly small of the order of
10−4, which is good enough for practical implementation in real-time environment.
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Table 6 Time analysis of ANN with Grünwald–Letnikov derivatives. (Time is in seconds)
Size of net Max

time for
ANN

Min
time for
ANN

Avg
time for
ANN

Max
time for
GL

Min
time for
GL

Avg
time for
GL

Max
speedup

Min
speedup

Average
speedup

Example 1:
α = [0.1, 0.9]

Dα t

[10 × 1] 0.221 0.0115 0.0164 0.2692 0.1612 0.1688 23.3756 0.7295 10.2848

[05 × 2] 0.0211 0.0129 0.0141 0.2315 0.1614 0.1719 17.8852 7.6654 12.2223

[10 × 2] 0.0181 0.0156 0.0162 0.2223 0.1615 0.1676 14.2707 8.9342 10.319

[05 × 3] 0.0188 0.0157 0.0163 0.1805 0.1604 0.1649 11.5298 8.5504 10.1115

[10 × 3] 0.025 0.0196 0.0208 0.1921 0.1604 0.1679 9.791 6.4298 8.0624

[10 × 5] 0.0651 0.028 0.0338 0.4485 0.1599 0.1914 16.0021 2.4551 5.6637

Example 2:
α = [0.1, 0.9]

Dα t0.7

[10 × 1] 0.2627 0.0135 0.0225 0.3191 0.1892 0.236 23.69 8.39 10.47

[05 × 2] 0.0351 0.0153 0.0206 0.3199 0.1865 0.2362 20.88 9.04 11.44

[10 × 2] 0.0439 0.0188 0.0253 0.3141 0.1879 0.2523 16.68 7.42 9.97

[05 × 3] 0.0421 0.0182 0.0244 0.3507 0.1831 0.247 19.31 7.5 10.11

[10 × 3] 0.0476 0.0238 0.032 0.3278 0.1962 0.243 13.78 6.13 7.59

[10 × 5] 0.0655 0.034 0.0445 0.3217 0.1908 0.2433 9.47 4.29 5.47

Example 3a:
α = [0.1, 0.9]

sin(2π5t)

[10 × 1] 0.3853 0.013 0.025 0.3386 0.1858 0.2443 26.062 0.4822 9.77

[05 × 2] 0.0315 0.0131 0.0218 0.3553 0.1708 0.2485 27.0725 5.4245 11.39

[10 × 2] 0.0213 0.0156 0.017 0.1776 0.1585 0.1678 11.4176 7.4496 9.85

[05 × 3] 0.019 0.0156 0.0168 0.1828 0.159 0.1647 11.6887 8.3858 9.79

[10 × 3] 0.0326 0.0196 0.0229 0.2235 0.1584 0.1792 11.393 4.8597 7.82

[10 × 5] 0.0463 0.0278 0.0301 0.1808 0.1593 0.1645 6.4987 3.4406 5.47

Example 3b:
α = [0.1, 0.9]

cos(2π5t)

[10 × 1] 0.2077 0.0112 0.016 0.2351 0.1596 0.1635 20.9605 0.7686 10.2319

[05 × 2] 0.0179 0.0127 0.0132 0.1793 0.1595 0.164 14.0865 8.9281 12.3843

[10 × 2] 0.0223 0.0154 0.016 0.1734 0.1588 0.1624 11.2905 7.1233 10.1511

[05 × 3] 0.0174 0.0154 0.0159 0.1706 0.1596 0.1622 11.0615 9.1903 10.206

[10 × 3] 0.0269 0.0194 0.0203 0.1741 0.1593 0.1634 8.9745 5.9176 8.0487

[10 × 5] 0.0309 0.0277 0.0285 0.1681 0.1589 0.1619 6.0592 5.1481 5.6837

Example 4:
α = [0.1, 0.9]

Dαe−0.5t

[10 × 1] 0.2246 0.0113 0.0178 0.2352 0.1611 0.1791 20.8736 0.7174 10.0522

[05 × 2] 0.0233 0.0127 0.0144 0.265 0.1601 0.1762 20.8606 6.8575 12.2177

[10 × 2] 0.0274 0.0154 0.0172 0.2147 0.159 0.1687 13.9622 5.8021 9.8228

[05 × 3] 0.0219 0.0155 0.0169 0.1849 0.1602 0.1684 11.9488 7.3323 9.9366

[10 × 3] 0.0258 0.0196 0.0211 0.1806 0.1599 0.1683 9.1921 6.1987 7.9925

[10 × 5] 0.0354 0.028 0.0298 0.1809 0.1598 0.166 6.4577 4.5186 5.578

(continued)
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Table 6 (continued)
Size of net Max

time for
ANN

Min
time for
ANN

Avg
time for
ANN

Max
time for
GL

Min
time for
GL

Avg
time for
GL

Max
speedup

Min
speedup

Average
speedup

Example 5:
α = [0.1, 0.9]

DμEα(−t)

[10 × 1] 0.2047 0.0073 0.0178 10.3472 10.1819 10.2841 1408.6715 49.7476 577.584

[05 × 2] 0.0091 0.0083 0.0086 10.3333 10.1167 10.2373 1251.0447 1115.493 1188.7105

[10 × 2] 0.0106 0.0089 0.0094 11.4368 10.1048 10.3486 1285.8881 956.2055 1100.609

[05 × 3] 0.0114 0.0094 0.0099 12.8626 9.9005 10.8763 1366.9657 865.5357 1100.0548

[10 × 3] 0.0144 0.01 0.0105 11.1043 9.6992 9.9795 1109.4236 675.0052 951.0624

[10 × 5] 0.0243 0.0132 0.0141 12.0715 9.6858 10.0272 912.1519 397.9716 710.2943

Example 6:
α = [0.1, 0.9]
β = [0.1, 0.5]

DμEα,β (−t)

[10 × 1] 0.2385 0.0075 0.0206 2.2375 1.5526 1.8553 296.9263 6.5106 89.954

[05 × 2] 0.0094 0.0084 0.0088 1.5735 1.5443 1.5564 186.81 163.8847 177.5684

[10 × 2] 0.0101 0.0091 0.0094 1.6381 1.5469 1.5685 179.8173 152.7168 167.2176

[05 × 3] 0.0103 0.0098 0.01 1.6161 1.5422 1.5705 164.9284 149.7618 156.5101

[10 × 3] 0.0124 0.011 0.0114 1.7908 1.5483 1.5911 163.5087 124.4195 139.8641

[10 × 5] 0.0255 0.0145 0.0153 1.8109 1.5438 1.5892 124.5665 60.5899 104.0366

6 Result Analysis

The performance of ANN approximated GL derivative for different functions is pre-
sented in Table 6 and the error analysis is shown in Figs. 6, 7, 8, and 9. The speedup
from the data collected, the performance of ANN network for approximation of GL
derivative is analyzed. The effect of number of layers on MSE and on speedup in
calculations is analyzed and shown in Figs. 14 and 15, respectively. The performance
of Caputo derivative for different function is given in Table 7 and the error analysis
is shown in Figs. 10, 11, 12, and 13. The speedup from the data collected the per-
formance of ANN network for approximation of caputo derivative is analyzed. The
effect of number of layer on MSE and on speedup in calculations is analyzed and
shown in Figs. 16 and 17, respectively.

The error analysis for ANN approximation like MSE, standard deviation, and
variance for net size of [10 × 3] is summarized in Table 8. It can be deduced that the
ANN networks are approximating the GL and Caputo definition with very negligible
error.

1. The differences between ANN outputs and numerical solutions are very small.
The errors are of the order of 10−4 − 10−5. The plots for ANN approximation
and original definition of GL and Caputo FO derivatives almost coincide.

2. As the error between ANN solutions and numerical solution is close to zero.
Hence the MSE values and variance values are equal.
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Fig. 14 Effect of ANN layers on error of GL derivative a Dα t0.7 b Dα t c Dαcos(2π4t) d Dαe−0.5t

3. Mean squared error reduces as the number of layers between input and output
neurons of ANN are increased. There is an initial decrease in MSE as the number
of layers increases as seen from Figs. 14 and 16. But after a certain threshold,
there is no significant reduction in MSE with the increase in hidden layers.

4. The computational time for ANN network is much smaller than their numerical
solution. Even the minimum speedup noted gives sufficiently faster performance
for practical applications. See Tables 6 and 7.

5. Improvement in performance does not only depend on size of ANN network but,
mostly upon the type of function. For simple function like t, tμ, sin(t), etc., the
speedup recorded is small. But for complex function like eat , polynomial function,
Mittag-Leffler Function, etc., the speedup is large.

6. The weights of all the trained networks always lie between –10 and 10, hence
the system is numerically stable. The neural networks are interpolative systems,
hence as long as the input is bounded within the range of training data-set, the
output will always be bounded by the extremas of the output data-set used for the
training.
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Fig. 15 Effect of ANN Layers on speedup of GL Derivative a Dα t0.7 b Dα t c Dαcos(2π4t)
d Dαe−0.5t

7. The interpolative property of ANN makes it robust to any change in sampling of
signals. The sampling rate used for training and that of the data-set need not be
same.

Thus, the ANN approximations to FO derivatives can be considered as a power-
ful and efficient alternative to the presently available continuous and discrete-time
approximations.

7 Conclusion

A novel approach for approximation of Grünwald–Letnikov and Caputo definitions
of fractional derivatives is proposed. The input–output data of fractional derivatives of
various functions with different derivative orders is used for training the ANNs. The
resulting ANN approximations are verified using both simulation and DSP platform
implementation. It is shown that the computational time required for ANN approx-
imation is much lesser than the numerical implementation of fractional derivative
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Table 7 Time analysis of ANN with Caputo derivatives. (Time is in seconds)
Size of net Max

time for
ANN

Min
time for
ANN

Avg
time for
ANN

Max
time for
caputo

Min
time for
caputo

Avg
time for
caputo

Max
speedup

Min
speedup

Average
speedup

Example 1:
α = [0.1, 0.4]

Dα t

[10 × 1] 0.2056 0.0065 0.0108 13.5127 11.0283 12.3038 2064.1634 53.6424 1135.1255

[05 × 2] 0.0089 0.0076 0.0079 13.5127 11.0283 12.3038 1789.5392 1237.1672 1560.4588

[10 × 2] 0.0087 0.0081 0.0082 13.5127 11.0283 12.3038 1678.5455 1264.3752 1494.3919

[05 × 3] 0.0098 0.0088 0.009 13.5127 11.0283 12.3038 1536.7203 1121.6722 1372.375

[10 × 3] 0.0106 0.0095 0.0097 13.5127 11.0283 12.3038 1423.8915 1044.3646 1265.3708

[10 × 5] 0.0134 0.0128 0.0129 13.5127 11.0283 12.3038 1059.4452 821.1617 954.0566

Example 2:
α = [0.1, 0.4]

Dα t0.5 μ = 0.5

[10 × 1] 0.3003 0.0086 0.0159 49.0094 37.7902 42.9231 5689.221 125.843 2692.6945

[05 × 2] 0.0152 0.0096 0.0115 49.0094 37.7902 42.9231 5113.4126 2489.7942 3734.1837

[10 × 2] 0.0228 0.0104 0.0132 49.0094 37.7902 42.9231 4698.863 1659.1176 3252.9887

[05 × 3] 0.0175 0.0114 0.0124 49.0094 37.7902 42.9231 4306.3569 2160.569 3458.8496

[10 × 3] 0.0206 0.0125 0.0141 49.0094 37.7902 42.9231 3915.6971 1834.3295 3046.0334

[10 × 5] 0.0304 0.0165 0.0188 49.0094 37.7902 42.9231 2978.0945 1243.3373 2278.6191

Example 3a:
α = [0.1, 0.4]

Dαsin(2π4t)

[10 × 1] 0.2067 0.0065 0.0108 48.0211 34.1206 41.5817 7375.2998 165.096 3857.5078

[05 × 2] 0.0087 0.0076 0.0079 48.0211 34.1206 41.5817 6339.4894 3922.8094 5266.8347

[10 × 2] 0.0088 0.008 0.0082 48.0211 34.1206 41.5817 5988.519 3887.0387 5082.6847

[05 × 3] 0.0093 0.0088 0.0089 48.0211 34.1206 41.5817 5465.3227 3677.0003 4664.029

[10 × 3] 0.0103 0.0096 0.0097 48.0211 34.1206 41.5817 5024.9026 3323.8507 4281.5417

[10 × 5] 0.0136 0.0127 0.0129 48.0211 34.1206 41.5817 3793.3459 2506.643 3221.1382

Example 3b:
α = [0.1, 0.4]

Dαcos(2π4t)

[10 × 1] 0.2019 0.0065 0.0106 38.9906 34.3829 37.3661 5995.1726 170.3297 3518.9036

[05 × 2] 0.0089 0.0075 0.0077 38.9906 34.3829 37.3661 5214.3244 3873.1999 4864.9736

[10 × 2] 0.0089 0.008 0.0082 38.9906 34.3829 37.3661 4901.5898 3871.662 4558.5822

[05 × 3] 0.0096 0.0088 0.0091 38.9906 34.3829 37.3661 4412.7609 3567.7939 4125.9745

[10 × 3] 0.0108 0.0095 0.0098 38.9906 34.3829 37.3661 4085.9864 3189.1351 3828.3921

[10 × 5] 0.0134 0.0127 0.0129 38.9906 34.3829 37.3661 3073.0633 2565.4548 2894.9409

Example 4:
α = [0.1, 0.4]

Dαe−0.5t

[10 × 1] 0.2559 0.0072 0.0131 14.4644 11.9954 13.6968 2007.2498 46.8817 1043.2826

[05 × 2] 0.0143 0.0083 0.0102 14.4644 11.9954 13.6968 1747.6208 836.0134 1347.5892

[10 × 2] 0.0224 0.0087 0.0128 14.4644 11.9954 13.6968 1659.5928 535.9479 1068.533

[05 × 3] 0.0171 0.0095 0.012 14.4644 11.9954 13.6968 1526.6154 701.0453 1143.9065

[10 × 3] 0.0178 0.0103 0.0121 14.4644 11.9954 13.6968 1403.4061 675.0183 1134.5651

[10 × 5] 0.0237 0.0136 0.0154 14.4644 11.9954 13.6968 1066.1232 506.3818 890.5274
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Fig. 16 Effect of ANN layers on error of caputo derivative a Dα t0.5 b Dα t c Dαcos(2π4t) d
Dαe−0.5t

definitions. Further the effect of increase in the number of hidden layers on the
accuracy of approximation is also studied in details. The present work will greatly
facilitate the tasks of simulation and real-time implementation of fractional-order
systems and controllers.
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Fig. 17 Effect of ANN layers on speedup of caputo derivative a Dα t0.5 b Dα t c Dαcos(2π4t) d
Dαe−0.5t

Table 8 Error analysis of ANN approximation

Definition Error (MSE)

f1 = t f2 = tμ f3a =
sin(t)

f3b =
cos(t)

f4 =
e−0.5t

f5 =
MLF1

f6 =
MLF2

GL 5.21e-11 4.31e-11 1.10e-01 1.11e-01 1.15e-03 1.41e-02 3.12e-07

Caputo 4.83e-11 6.94e-10 1.63e-10 5.27e-06 7.51e-10 – –

Definition Error (standard deviation)

f1 = t f2 = tμ f3a =
sin(t)

f3b =
cos(t)

f4 =
e−0.5t

f5 =
MLF1

f6 =
MLF2

GL 7.21e-6 7.2184e-6 0.0843 0.0932 0.00378 3.20e-5 4.968e-4

Caputo 6.49e-6 3.45e-4 6.43e-4 7.38e-2 3.26e-4 – –

Definition Error (variance)

f1 = t f2 = tμ f3a =
sin(t)

f3b =
cos(t)

f4 =
e−0.5t

f5 =
MLF1

f6 =
MLF2

GL 5.21e-11 4.31e-11 1.10e-01 1.11e-01 1.15e-03 1.41e-02 3.12e-07

Caputo 4.83e-11 6.94e-10 1.63e-10 5.27e-06 7.51e-10 – –



124 P. Kadam et al.

References

1. Oldham, K.B., Spanier, J.: The Fractional Calculus. Dover Publications, USA (2006)
2. Podlubny, I.: Fractional Differential Equations. Academic, USA (1999)
3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory andApplications of Fractional Differential

Equations. Elsevier, Netherlands (2006)
4. Vyawahare, V., Nataraj, P.S.V.: Fractional-order Modeling of Nuclear Reactor: from Sub-

diffusive Neutron Transport to Control-oriented Models: A Systematic Approach. Springer
Singapore (2018)

5. Chen, Y., Petras, I., Xue, D.: Fractional order control - a tutorial. In: 2009 American Control
Conference, St. Louis, MO, pp. 1397–1411 (2009)

6. Vyawahare, V.A., Nataraj, P.S.V.: Analysis of fractional-order point reactor kinetics model
with adiabatic temperature feedback for nuclear reactor with subdiffusive neutron transport. In:
Obaidat, M.S. Ören, T., Kacprzyk, J., Filipe, J. (eds.) Simulation andModelingMethodologies,
Technologies and Applications, pp. 153–172. Springer International Publishing, Cham (2015)

7. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order Systems and
Control: Fundamentals and Applications. Springer, London Limited, UK (2010)

8. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Ger-
many (2011)

9. Singhaniya, N.G., Patil,M.D., Vyawahare, V.A.: Implementation of specialmathematical func-
tions for fractional calculus using DSP processor. In: 2015 International Conference on Infor-
mation Processing (ICIP), India, pp. 811–816 (2015)

10. Tolba, M.F., AbdelAty, A.M., Said, L.A., Elwakil, A.S., Azar, A.T., Madian, A.H., Ounnas, A.,
Radwan, A.G.: FPGA realization of Caputo and Grunwald-Letnikov operators. In: 2017 6th
International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessa-
loniki, Greece, pp. 1–4 (2017)

11. Li, Chunguang, Chen, Guanrong: Chaos and hyperchaos in fractional-order Rössler equations.
Phys. A: Stat. Mech. Its Appl. 341, 55–61 (2004)

12. Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos, Solitons
Fractals 22

13. Wang, Huihai, Sun, Kehui, He, Shaobo: Characteristic analysis and DSP realization of
fractional-order simplified Lorenz system based on Adomian decomposition method. Int. J.
Bifurc. Chaos 25(06), 1550085 (2015)

14. Zurada, J.M.: Introduction to Artificial Neural Systems, vol. 8. West St. Paul, India (1992)
15. Schmidhuber, Jrgen: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117

(2015)
16. Maren, A.J., Harston, C.T., Pap, R.M.: Handbook of Neural Computing Applications. Aca-

demic, New York (2014)
17. Bose, N.K., Liang, P.: Neural Network Fundamentals with Graphs, Algorithms and Applica-

tions. Series in Electrical and Computer Engineering. McGraw-Hill, New York (1996)
18. Wong, B.K., Bodnovich, T.A., Selvi, Y.: Neural network applications in business: a review and

analysis of the literature (1988-95). 19(04), 301–320 (1997)
19. Wong,B.K., Selvi, Y.:Neural network applications in finance: a review and analysis of literature

(1990–1996). Inf. Manag. 34(3), 129–139 (1998)
20. Kaslik, E., Sivasundaram, S.: Dynamics of fractional-order neural networks. In: The 2011

International Joint Conference on Neural Networks, pp. 611–618 (2011)
21. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial

differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)
22. Zhang, S., Yu, Y., Yu, J.: Lmi conditions for global stability of fractional-order neural networks.

IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2423–2433 (2017)
23. Pakdaman, M., Ahmadian, A., Effati, S., Salahshour, S., Baleanu, D.: Solving differential

equations of fractional order using an optimization technique based on training artificial neural
network 293(01), 81–95 (2017)



Artificial Neural Network Approximation … 125

24. Raja, M.A.Z., Samar, R., Manzar, M.A., Shah, S.M.: Design of unsupervised fractional neural
network model optimized with interior point algorithm for solving Bagley–Torvik equation.
Math. Comput. Simul. 132, 139–158 (2017)

25. Stamova, Ivanka, Stamov, Gani: Mittag-Leffler synchronization of fractional neural networks
with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.
Neural Netw. 96, 22–32 (2017)

26. Ma, W., Li, C., Wu, Y., Wu, Y.: Synchronization of fractional fuzzy cellular neural networks
with interactions. Chaos: Interdiscip. J. Nonlinear Sci. 27(10), 103106 (2017)

27. Zhang, H., Ye, R., Cao, J., Ahmed, A., Li, X., Wan, Y.: Lyapunov functional approach to
stability analysis of Riemann-Liouville fractional neural networks with time-varying delays.
Asian J. Control 12(35–42)

28. Lodhi, S., Manzar, M.A., Zahoor Raja, M.A.: Fractional neural network models for nonlinear
Riccati systems. Neural Comput. Appl. 1–20 (2017)

29. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical
Analysis, pp. 105–116. Springer, India (1978)

30. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional
differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

31. Heymans,N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential
equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45(5), 765–772 (2006)

32. Carpenteri, A., Mainardi, F. (eds.): Fractals and Fractional Calculus in ContinuumMechanics.
Springer, USA (1997)

33. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous
transport processes. J. Phys. A: Math. Gen. 30, 7277–7289 (1997)

34. Ross, B. (ed.): Fractional Calculus and its Applications: Proceedings of the International Con-
ference Held at the University of New Haven (USA), June 1974. Springer, USA (1975)

35. Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman Science and Tech-
nology, UK (1994)

36. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun.
Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

37. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and
Breach Science Publishers, Netherlands (1997)

38. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to dis-
cretizing fractional order derivativesan expository review. Nonlinear Dyn. 38(1–4), 155–170
(2004)

39. Carlson,G.,Halijak, C.:Approximation of fractional capacitors (1/s)∧(1/n) by a regular newton
process. IEEE Trans. Circuit Theory 11(2), 210–213 (1964)

40. Khoichi, M., Hironori, F.: H-∞ optimized waveabsorbing control: analytical and experimental
result. J. Guid., Control, Dyn. 16(6), 1146–1153 (1993)

41. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger
differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I: Fundam. Theory
Appl. 47(1), 25–39 (2000)

42. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity
function. IEEE Trans. Autom. Control. 37(9), 1465–1470 (1992)

43. Machado, J.A.: Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 4, 47–66
(2001)

44. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order
operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

45. Kumar, Satish: Neural Networks: A Classroom Approach. Tata McGraw-Hill Education, India
(2004)

46. Dayhoff, Judith E.: Neural Network Architectures: An Introduction. Van Nostrand Reinhold
Co., New York (1990)

47. Karlik, B., Olgac, A.V.: Performance analysis of various activation functions in generalized
MLP architectures of neural networks. Int. J. Artif. Intell. Expert. Syst. 1(4), 111–122 (2011)



126 P. Kadam et al.

48. Carpenter,G.A.:Neural networkmodels for pattern recognition and associativememory.Neural
Netw. 2(4), 243–257 (1989)

49. DasGupta, B., Schnitger,G.: The power of approximating: a comparison of activation functions.
In: Hanson, S.J., Cowan, J.D., Giles, C.L. (eds.) Advances in Neural Information Processing
Systems, vol. 5, pp. 615–622. Morgan-Kaufmann (1993)

50. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural net-
works. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research,
vol. 9, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 (2010). (PMLR)

51. Hornik, Kurt, Stinchcombe, Maxwell, White, Halbert: Multilayer feedforward networks are
universal approximators. Neural Netw. 2(5), 359–366 (1989)

52. Psaltis, D., Sideris, A., Yamamura, A.A.: A multilayered neural network controller. IEEE
Control Syst. Mag. 8(2), 17–21 (1988)

53. Buscema,Massimo: Back propagation neural networks. Substance UseMisuse 33(2), 233–270
(1998)

54. Karnin, E.D.: A simple procedure for pruning back-propagation trained neural networks. IEEE
Trans. Neural Netw. 1(2), 239–242 (1990)

55. Rogosin, Sergei: The role of the mittag-leffler function in fractional modeling. Mathematics
3(2), 368–381 (2015)



Theory of Fractional Differential
Equations Using Inequalities and
Comparison Theorems: A Survey

J. V. Devi, F. A. McRae and Z. Drici

1 Introduction

In this chapter, we present a survey of the qualitative theory pertaining to fractional
differential equations (FDEs) developed using differential inequalities and compari-
son theorems. Differential inequalities help in finding bounds for the solution of the
nonlinear fractional differential equation, and once the bounds are known the con-
structive techniques of Quasilinearization andMonotone Iterative Technique provide
the solution.

In Sect. 2, the basic concepts of lower and upper solutions are introduced and the
fundamental lemma needed in the comparison theorems is given. Next, the concept
of dominating component solution is introduced and existence results pertaining to
these solutions are stated.

Section 3 begins with a result relating the solutions of the Caputo and the
Riemann–Liouville differential equations. This is followed first by a result relat-
ing the solutions of fractional differential equations to those of ordinary differential
equations and then by a variation of parameters formula for solutions of perturbed
fractional differential equations in terms of solutions of ordinary differential equa-
tions. Next, a stability result using Dini derivatives is presented.
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Section 4 covers the concept of fractional trigonometric functions developed using
fractional differential equations. It also covers the generalization of these results to
fractional trigonometric-like functions.

Section 5 deals with impulsive fractional differential equations of two types,
impulsive fractional differential equations with fixedmoments of impulse and impul-
sive fractional differential equationswith variablemoments of impulse. For each type
of equation, an existence and uniqueness result is given. In the case of fixed moments
of impulse, the result presented was obtained using the Generalized Quasilineariza-
tion (GQL)method. Note that the Quasilinearization (QL)method is a special case of
the GQL method. See [8] for an existence and uniqueness result obtained using this
method. In the case of variable moments of impulse, the result was obtained using the
method of lower and upper solutions and the Monotone Iterative Technique (MIT).

Results pertaining to periodic boundary value problem of Caputo fractional
integro-differential equations form the content of Sect. 6.

2 Comparison Theorems, Existence Results, and
Component Dominating Solution

2.1 Basic Concepts

The comparison theorems in the fractional differential equations setup requireHolder
continuity [22–24]. Although this requirement was used to develop iterative tech-
niques such as themonotone iterative technique and themethod of quasilinearization,
there is no feasible way to check whether the functions involved are Holder continu-
ous. However, the comparison results can be obtained using the weaker condition of
continuity. In a subsequent paper [38], it was shown that the same results hold under
the less restrictive condition of continuity. Similarly, in [11], differential inequalities,
comparison theorems, and existence results were established under a continuity con-
dition for impulsive fractional differential equations. Since Lemma 2.3.1 in [24] is
essential in establishing the comparison theorems, we provide a sketch of the proof
of this result under this weaker hypothesis. The basic differential inequality theorems
and required comparison theorems are also stated.

We begin with the definition of the class Cp[[t0, T ],R].
Definition 2.1 m ∈ Cp[[t0, T ],R] means that m ∈ C[(t0, T ],R] and (t − t0)pm(t)
∈ C[[t0, T ],R] with p + q = 1

Definition 2.2 Form ∈ Cp[[t0, T ],R], the Riemann–Liouville derivative ofm(t) is
defined as

Dqm(t) = 1

�(p)

d

dt

t∫

t0

(t − s)p−1m(s)ds (2.1)
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Lemma 2.3 Let m ∈ Cp[[t0, T ],R]. Suppose that for any t1 ∈ [t0, T ] we have
m(t1) = 0 and, m(t) < 0 for t0 ≤ t < t1, then it follows that

Dqm(t1) ≥ 0.

Proof Consider m ∈ Cp[[t0, T ],R], such that m(t1) = 0 and m(t) < 0 for t0 ≤ t <

t1.
Since m(t) is continuous on (t0, T ], given any t1 such that t0 < t1 < T , there

exists a k(t1) > 0 and h > 0 such that

− k(t1)(t1 − s) ≤ m(t1) − m(s) ≤ k(t1)(t1 − s) (2.2)

for t0 < t1 − h ≤ s ≤ t1 + h < T . Set H(t) =
t∫
t0

(t − s)p−1m(s)ds and consider

H(t1) − H(t1 − h) =
t1−h∫
t0

[(t1 − s)p−1 − (t1 − h − s)p−1]m(s)ds +
ts∫

t1−h
(t1 − s)p−1

m(s)ds.

Let I1 =
t1−h∫
t0

[(t1 − s)p−1 − (t1 − h − s)p−1]m(s)ds and I2 =
t1∫

t1−h
(t1 − s)p−1

m(s)ds. Since t1 − s > t1 − h − s and p − 1 < 0, we have (t1 − s)p−1 < (t1 − h −
s)p−1.

This coupled with the fact that m(t) ≤ 0, t0 < t ≤ t1, implies that I1 ≥ 0. Now,

consider I2 =
t0∫

t1−h
(t1 − s)p−1m(s)ds. Using (2.2) and the fact that m(t1) = 0, we

obtain
m(s) ≥ −k(t1)(t1 − s),

and I2 ≥ −k(t1)
t1∫

t1−h
(t1 − s)pds = −k(t1)

h p+1

p + 1
, for s ∈ (t1 − h, t1 + h). Thus we

have

H(t1) − H(t1 − h) ≥ −k(t1)(h p+1)

p + 1

and

lim
h→0

[
H(t1) − H(t1 − h)

h
+ k(t1)h p+1

h(p + 1)

]
≥ 0.

Since p ∈ (0, 1), we conclude that
dH(t1)

dt
≥ 0, which implies that Dqm(t1)

≥ 0. �

We next state the fundamental differential inequality result in the set up of fractional
derivative, which is Theorem 2.3.2 in [24] with a weaker hypothesis of continuity.

Theorem 2.4 Let v,w ∈ Cp[[t0, T ],R], f ∈ C[[t0, T ] × R,R] and
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Dqv(t) ≤ f (t, v(t)),

Dqw(t) ≥ f (t, w(t)),

t0 < t ≤ T . Assume f satisfies the Lipschitz condition

f (t, x) − f (t, y) ≤ L(x − y), x ≥ y, L > 0. (2.3)

Then v0 ≤ w0, where v0 = v(t)(t − t0)1−q |t=t0 and w0 = w(t)(t − t0)1−q |t=t0 ,

implies v(t) ≤ w(t), t ∈ [t0, T ].
Now, we define the Caputo fractional derivative, which we need in Sect. 3.

Definition 2.5 The Caputo derivative, denoted by cDqu, is defined as

cDqu(t) = 1

�(1 − q)

t∫

t0

(t − s)−qu′(s)ds. (2.4)

If u(t) is Caputo differentiable, then we write u ∈ Cq [[t0, T ],R].
We now state the comparison theorem in terms of the Caputo derivative.

Theorem 2.6 Assume that m ∈ Cq [[t0, T ],R] and
cDqm(t) ≤ g(t,m(t)), t0 ≤ t ≤ T,

where g ∈ C[[t0, T ] × R,R]. Let r(t) be the maximal solution of the initial value
problem (IVP)

cDqu = g(t, u), u(t0) = u0, (2.5)

existing on [t0, T ] such that m(t0) ≤ u0. Then, we have m(t) ≤ r(t), t0 ≤ t ≤ T .

The results in Sects. 2.2 and 2.3 are taken from [39].

2.2 Dominating Component Solutions of Fractional
Differential Equations

Consider the IVP for the Caputo differential equation given by

cDqx = f (t, x), (2.6)

x(t0) = x0, (2.7)

for 0 < q < 1, f ∈ C[[t0, T ] × R
n,Rn].
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If x ∈ Cq [[t0, T ],Rn] satisfies (2.6) and (2.7) then it also satisfies the Volterra
fractional integral equation

x(t) = x0 + 1

�(q)

t∫

t0

(t − s)q−1 f (s, x(s))ds, (2.8)

for t0 ≤ t ≤ T .

Next, we present a class of functions that are possible solutions of the IVP of
FDEs, and which under certain conditions satisfy the relations

cDq+|x(t)| ≤ |cDqx(t)|

and
Dq+|x(t)| ≤ |Dqx(t)|,

where cDq+
is the Caputo Dini derivative and Dq+

is the Riemann–Louiville (RL)
fractional Dini derivative, which are defined as follows.

Definition 2.7 The Caputo fractional Dini derivative of a function x(t) is defined as

cDq+
x(t) = 1

�(1 − q)

t∫

t0

(t − s)−q D+x(s)ds

where D+ is the usual Dini derivative defined in [25]. For more details on fractional
Dini derivatives, see [21, 24].

Definition 2.8 The RL fractional Dini derivative is defined as

Dq+
x(t) = 1

�(1 − q)
D+

t∫

t0

(t − s)−q x(s)ds.

Definition 2.9 A continuous function x : I → R
n is said to be a dominating com-

ponent function (DCF) if there exists i ∈ {1, 2, . . . , n} such that |x j (s)| ≤ xi (t) and
|x ′

j (t)| ≤ x ′
i (t) for all t ∈ I = [t0, T ], j = 1, 2, . . . , n.

Definition 2.10 Acontinuous function x : I → R
n is said to be aweaklydominating

component function (WDCF) if there exists i ∈ {1, 2, . . . , n} such that |x ′
j |(t)| ≤

x ′
i (t) for all t ∈ I, j = 1, 2, . . . , n.

Remark 2.11 Every DCF is a WDCF. For example, x(t) = (
√
t, t)), t ∈ [1, 2] is a

DCF and a WDCF whereas x(t) = (
1

2
t2,

−1

2
t,

−1

3
t, t), t ∈ [1, 2], is a WDCF.
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Definition 2.12 By a weakly dominating component solution of the IVP (2.6) and
(2.7), we mean a weakly dominating component function which satisfies the IVP
(2.6) and (2.7).

We now state a comparison theorem in terms of the Caputo fractional Dini deriva-
tive. Note that it is essential to use Dini derivatives when we use an absolute value
function or a norm function.

Theorem 2.13 Assume that f ∈ C[[I × R
n,Rn] and satisfies the relation

| f (t, x)| ≤ g(t, |x |), (2.9)

where g ∈ C[[I × R+,R+]. Let r(t) be the maximal solution of the scalar Caputo
FDE

cDqu = g(t, u), u(t0) = u0. (2.10)

If x(t) is the weakly dominating solution of the IVP (2.6) and (2.7), then

|x(t, t0, x0)| ≤ r(t, t0, u0),

t ∈ I provided |x0| ≤ u0.

Proof Setm(t) = |x(t)| for t ∈ I . Then, using the definition of the Caputo fractional
Dini derivative and the fact that x(t) is WDCF of (2.6) and (2.7), we get

cDq+
m(t) = cDq+|x(t)|

= 1

�(1 − q)

t∫

t0

(t − s)−q D+|x(s)|ds,

≤ 1

�(1 − q)

t∫

t0

(t − s)−q |x ′(s)|ds,

= 1

�(1 − q)

t∫

t0

(t − s)−q max
j

|x ′
j (s)|ds,

≤ 1

�(1 − q)

t∫

t0

(t − s)−q x ′
i (s)ds,

≤ max
j

| 1

�(1 − q)

t∫

t0

(t − s)−q x ′
j (s)ds|

= |cDqx(t)| = | f (t, x(t))| ≤ g((t, |x(t)|) = g((t,m(t)).

Now, with m(t0) = |x0|, the conclusion follows from the hypothesis and the appli-
cation of Theorem 2.6, which yields
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|x(t, t0, x0)| ≤ r(t, t0, x0), t ∈ I.

Thus, the proof is complete. �

Remark 2.14 If n = 1, the above theorem states that the result holds if the solution
belongs to the set of all increasing functions. In this case, one can observe that the
Caputo FDE

cDqx = Lx, x(t0) = x0

has a solution, the Mittag-Leffler function, which is also a weakly dominating com-
ponent solution.

2.3 Dominating Component Solutions for
Riemann–Liouville FDE

Consider the IVP given by

Dqx = f (t, x) (2.11)

x(t0) = x0 = x(t)(t − t0)
1−q |t=t0 (2.12)

where f ∈ C[I × R
n,Rn].

For the sake of completeness we give the following definitions from [24].

Definition 2.15 Let 0 < q < 1 and p = 1 − q. The function space Cp[[t0, T ],Rn]
= {u ∈ C[[(t0, T ],Rn] and (t − t0)pu(t) ∈ C[[t0, T ],Rn]}
Definition 2.16 A function x(t) is said to be a solution of the IVP (2.11) and (2.12)
if and only if x ∈ Cp[[(t0, T ],Rn], Dqx(t) exists and x(t) is continuous on [t0, T ]
and satisfies the relations (2.11) and (2.12).

Definition 2.17 A function x(t) is said to be dominating component solution of the
IVP (2.11) and (2.12) if x(t) is a dominating component function and further satisfies
the IVP (2.11) and (2.12).

Theorem 2.18 Assume that f in (2.11) satisfies

| f (t, x(t)| ≤ g((t, |x(t)|), (2.13)

where g ∈ C[I × R+,R+]. Let r(t) be the maximal solution of the scalar Riemann–
Liouville FDE

Dqu = g((t, u), u(t0) = u0 = u(t)(t − t0)
1−q |t=t0 (2.14)

Further, if x(t) is the dominating component solution of (2.11) and (2.12) then,
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|x(t, t0, x0| ≤ r(t, t0, u
0),

t ∈ I, provided |x0| ≤ u0.

Proof Set m(t) = |x(t)|, t ∈ I . Using the definition of the RL fractional derivative
and the fact that x(t) is a dominating component function, we get

Dq+
m(t) = 1

�(1−q)
D+

t∫
t0

(t − s)−q |x(s)|ds

= 1
�(1−q)

D+
t∫
t0

(t − s)−q xi (s)ds

= 1
�(1−q)

d
dt

t∫
t0

(t − s)−q xi (s)ds

= fi (t, x(t))
= | f (t, x(t))|
≤ g(t, |x(t)|) = g(t,m(t)).

Then,with m(t0) = |x0|, a result for Riemann–Liouville FDEs, parallel to Theorem
2.6, yields

|x(t, t0, x0)| ≤ r(t, t0, x
0),

t ∈ I. �

Remark 2.19 Note that, in case of Riemann–Liouville FDE, for n = 1, we need the
solutions to be positive and also increasing. Thus, it is clear that Riemann–Liouville
FDEs are more complex than Caputo FDEs.

Next, we give criteria that will guarantee the existence of a dominating component
solution for Riemann–Liouville FDE (2.11) and (2.12). Since, as will be shown in
Sect. 3, any result that holds for solutions of Riemann–Liouville FDE also holds for
solutions of the corresponding Caputo FDE, we obtain a sufficiency condition for
the Riemann–Liouville FDEs to have a dominating component solution.

Theorem 2.20 Suppose that f ∈ C1[I × R
n,Rn] in (2.11) is a dominating

component-bounded function, that is, there exists an i ∈ {1, 2, 3 . . . , n} such that

| f j (t, x)| ≤ fi (t, x) < M (2.15)

| d
dt

f j (t, x)| ≤ d

dt
fi (t, x) (2.16)

where (t, x) ∈ I × R
n, j = 1, 2, 3 . . . , n. Further, for the above fixed i assume the

following criteria hold

(i) x0i = max{x01 , x02 , x03 , . . . , x0n } and |x0j | < x0i , j = 1, 2, 3, . . . , n. (2.17)

(ii) For every neighborhood of t0, the following relation holds
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(t − t0) fi (t, x
0) > x0i (1 − q) (2.18)

(iii) For all j �= i , the following relations hold in every neighborhood of t0,

fi (t0, x
0) + f j (t0, x

0) ≥ (1 − q)

(t − t0)
(x0i + x0j ), (2.19)

f j (t0, x
0) − fi (t0, x

0) ≤ (1 − q)

(t − t0)
(x0i − x0j ). (2.20)

Then, there exists a dominating component solution for the IVP of Riemann–Liouville
FDE (2.11) and (2.12).

3 The Variational Lyapunov Method and Stability Results

Next, we give a relation between ordinary differential equations (ODEs) and frac-
tional differential equations (FDEs), then present the variation of parameters formula
for FDEs in terms of ODEs. This is an important result, as obtaining the variation
of parameters formula for FDEs in terms of fractional derivatives is still an open
problem. Then, we present a stability result using the variational Lyapunov method.
In order to establish the above results, a relation between the solutions of Caputo and
Riemann–Liouville fractional differential equations is needed, which we give in the
next section.

3.1 Relation Between the Solutions of Caputo and
Riemann–Liouville Fractional Differential Equations

In this section, we begin with a relation between the solutions of Caputo FDEs and
those of Riemann–Liouville FDEs. This relation leads to the observation that the
solutions of Caputo FDEs have the same properties as the solutions of the Riemann–
Liouville FDEs [11].

Consider theCaputo fractional differential equation and the correspondingVolterra
integral differential equation given by

cDqx(t) = F(t, x), x(t0) = x0 (3.1)

x(t) = x0 + 1

�(q)

t∫

t0

(t − s)q−1F(s, x(s))ds. (3.2)

The aforementioned relation is established by observing that
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cDqx(t) = Dq [x(t) − x(t0)]. (3.3)

Setting y = x − x0, we have

cDq y = Dqx = F(t, x) = F(t, y + x0)

which gives
cDq y = F̂(t, y) (3.4)

and
y0 = [x(t) − x0](t − t0)

1−q |t=t0 = 0, (3.5)

The integral equation corresponding to (3.4) and (3.5) is given by

y(t) = 1

�(q)

t∫

t0

(t − s)q−1 F̂(s, y(s))ds. (3.6)

Suppose y(t) is a solution of the Volterra fractional integral equation (3.6). Then y(t)
also satisfies the corresponding Riemann–Liouville fractional differential equation
(3.4). Letting y(t) = x(t) − x0, we obtain

x(t) = x0 + 1

�(q)

t∫

t0

(t − s)q−1F(s, x(s))ds,

which implies that x(t) satisfies the integral equation (3.2) and hence is a solution
of both the Caputo fractional differential equation and its corresponding Volterra
integral equation.

Thus, a givenCaputo FDE can be transformed into aRiemann–Liouville FDE, and
hence solutions of Caputo fractional differential equations have properties similar to
the properties of solutions of Riemann–Liouville fractional differential equations.

3.2 Relation Between Ordinary Differential Equations
and Fractional Differential Equations

The method of variation of parameters provides a link between unknown solutions
of a nonlinear system and the known solutions of another nonlinear system, and,
as such, is a useful tool for the study of the qualitative behavior of the unknown
solutions.

We now present a relation between ODEs and FDEs which was developed in
[24]. Then, we use the variation of parameters formula to link the solutions of the
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two systems. Using this relation and the properties of the solutions of ODEs, which
are relatively easy to find, the properties of the solutions of the corresponding FDEs
can be investigated.

Consider the IVP

Dqx = f (t, x), x0 = x(t)(t − t0)
q |t=t0 , (3.7)

where f ∈ C[([t0, T ] × R
n,Rn), x ∈ Cp([t0, T ],Rn), Dqx is the Riemann–

Liouville fractional differential operator of order q, 0 < q < 1, 1 − q = p, and
assume the existence and uniqueness of the solution x(t, t0, x0) of (3.7).

To obtain a relation between fractional and ordinary differential equations, we
tentatively write

x(t) = x(s) + φ(t − s), t0 ≤ s ≤ T, (3.8)

with the function φ(t − s) to be determined. Substituting this expression in the
Riemann–Liouville fractional differential equation, we get

Dqx(t) = 1

�(p + 1)

d

dt

t∫

t0

(t − s)p−1[x(t) − φ(t − s)]ds

= 1

�(p + 1)

d

dt
[x(t)(t − t0)p] − η(t, p,φ).

(3.9)

where

η(t, p,φ) = 1

�(p + 1)

d

dt
[

t∫

t0

(t − s)p−1φ(t − s)ds]. (3.10)

Setting y(t) = x(t)(t − t0)p

�(1 + p)
, where x(t) is any solution of IVP (3.7), we arrive at

the IVP for ordinary differential equation, namely,

y′(t) = dy

dt
= F(t, y(t)) + η(t, p,φ), y(t0) = x0 (3.11)

where
F(t, y) = f (t, �(1 + p)y(t)(t − t0)

−p). (3.12)

We consider the unperturbed system

y′(t) = F(t, y(t)), y(t0) = x0, (3.13)

and the perturbed system (3.11) and use perturbation theory to obtain the estimates
of |y(t)|. The nonlinear variation of parameters formula is also a very useful tool
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to study perturbation theory. It was developed for fractional differential equation in
terms of ordinary differential equations in [24] and is presented below.

Suppose Fy(t, y) exists and is continuous on [t0, T ] × R
n . It is known, (see The-

orem 2.5.3 in [25]), that the solution y(t, t0, x0) of IVP (3.13) satisfies the identity

∂

∂t0
y(t, t0, x

0) + ∂

∂x0
y(t, t0, x

0)F(t0, x0) ≡ 0, (3.14)

where
∂

∂t0
y(t, t0, x0) and

∂

∂x0
y(t, t0, x0)F(t0, x0) are solutions of the linear system

z′ = Fy(t, y(t, t0, x
0))z,

with the corresponding initial conditions z(t0) = −F(t0, x0) and z(t0) = I , the iden-
tity matrix. Using this information, the nonlinear variation of parameters formula for
the solutions of IVP (3.11) was obtained. Setting p(s) = y(t, s, z(s)), where z(t) is
the solution of the perturbed IVP (3.11), and using (3.13) we have

d

ds
p(s) = ∂

∂t0
y(t, s, z(s)) + ∂

∂x0
y(t, s, z(s))[F(s, z(s)) + η(s, t0,φ0)]

= ∂

∂x0
y(t, s, z(s))η(s, t0,φo).

Integrating from t0 to t yields the desired nonlinear variation of parameters formula,
which links the solutions of the fractional differential equation to the solutions of the
generated ordinary differential equation:

z(t, t0, x
0) = y(t, t0, x

0) +
t∫

t0

∂

∂x0
y(t, s, z(s))η(s, t0,φ0)ds.

3.3 Variational Lyapunov Method and Stability

In order to present the stability results, the Caputo fractional Dini derivative of the
Lyapunov function is defined using the Grunwald–Letnikov fractional derivative,
taking advantage of the series in its definition.

Definition 3.1 The Grunwald–Letnikov (GL) fractional derivative is defined as

Dq
0 x(t) = lim

h→0+
nh=t−t0

1

hq

n∑
r=0

(−1)r qCr x(t − rh) (3.15)

or
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Dq
0 x(t) = lim

h→0+

1

hq
xqh (t),

where

xqh (t) = 1

hq

n∑
r=0

(−1)r qCr x(t − rh)

= 1

hq
[x(t) − S(x, h, r, q)]

(3.16)

with

S(x, h, r, q) =
n∑

r=1

(−1)r+1
qCr x(t − rh). (3.17)

Now, using (3.15) we define the GL fractional Dini derivative by

Dq
0+x(t) = lim sup

h→0+

1

hq

n∑
r=0

(−1)r qCr x(t − rh). (3.18)

Since the Caputo fractional derivative and GL fractional derivative are related by the
equation

cDqx(t) = Dq
0 [x(t) − x(t0)],

we define the Caputo fractional Dini derivative by

cDq
+x(t) = Dq

0+[x(t) − x(t0)]. (3.19)

Consider the Caputo differential equation

cDqx = f (t, x), x(t0) = x0. (3.20)

Then, using relations (3.19) and (3.20), we get

f (t, x) = lim sup
h→0+

1

hq

n∑
r=0

(−1)r qCr [x(t − rh) − x0]

= lim sup
h→0+

1

hq
[x(t) − x0 − S(x, h, r, q)]

where S(x, h, r, q) =
n∑

r=1
(−1)r+1

qCr [x(−rh) − x0]. This yields

S(x, h, r, q) = x(t) − x(t0) − hq f (t, x) − ε(hq)], (3.21)

where
ε(hq)

hq
→ 0 as h → 0. The definition of the Caputo fractional Dini derivative

for the Lyapunov function is given below.
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Definition 3.2 Let V ∈ C[R+ × S(ρ),R+] where S(ρ) = {x : |x | < ρ}. Let
V (t, x) be locally Lipschitzian in x . The Grunwald–Letnikov fractional Dini deriva-
tive of V (t, x) is defined by

Dq
0+V (t, x) = lim sup

h→0+

1

hq
[V (t, x) −

n∑
r=1

(−1)r+1
qCrV (t − rh, S(x, h, r, q))]

where S(x, h, r, q) = x(t) − hq f (t, x) − ε(hq) with
ε(hq)

hq
→ 0 as h → 0. Then,

the Caputo fractional Dini derivative of V (t, x) is defined as

cDq
+V (t, x) = lim sup

h→0+

1

hq
[V (t, x) − V (t − h, x − hq f (t, x)) − V (t0, x0)].

Definition 3.3 The zero solution of (3.1) is said to be

(i) stable if for every ε > 0 and t0 ∈ R+, there exists δ = δ(ε, t0) > 0 such that for
any x0 ∈ R

n the inequality |x0| < δ implies |x(t; t0, x0)| < ε for t ≥ t0;
(ii) uniformly stable if for every ε > 0, there exists δ = δ(ε) > 0 such that, for t0 ∈

R+, x0 ∈ R
n with |x0| < δ, the inequality |x(t; t0, x0)| < ε holds for t ≥ t0;

(iii) uniformly attractive if for β > 0 and for every ε > 0 there exists T = T (ε) > 0
such that for any t0 ∈ R+, x0 ∈ R

n with |x0| < β, the inequality |x(t; t0, x0)| <

ε holds for t ≥ t0 + T ;
(iv) uniformly asymptotically stable if the zero solution is uniformly stable and

uniformly attractive.

Now we present a comparison theorem, which uses the variation of parameters for-
mula and relate the solutions of a perturbed system to the known solutions of an
unperturbed system in terms of the solution of a comparison scalar fractional differ-
ential equation.

Consider the two fractional differential systems given by

cDq y = f (t, y), y(t0) = y0, (3.22)
cDqx = F(t, x), x(t0) = x0 (3.23)

where f, F ∈ C[R+ × S(ρ),Rn], and assume the following assumption relative to
system (3.22).
(H) The solutions y(t, t0, x0) of (3.22) exist for all t ≥ t0, are unique and continuous
with respect to the initial data, and |y(t, t0, x0| is locally Lipschitzian in x0.

Let |x0| < ρ and suppose that |y(t, t0, x0)| < ρ for t0 ≤ t ≤ T . For any V ∈
C[R+ × S(ρ),R+] and for any fixed t ∈ [t0, T ], we define the Grunwald–Letnikov
fractional Dini derivative of V by
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Dq
0+V (s, y(t, s, x))

= lim sup
h→0+

1

hq
{V (s, y(t, s, x)) −

n∑
r=1

(−1)r+1
qCrV (s − rh, s − hq F(s, x))}.

The Caputo fractional Dini derivative of the Lyapunov function V (s, y(t, s, x)),
for any fixed t ∈ [t0, T ], any arbitrary point s ∈ [t0, T ] and x ∈ R

n , is given by

cDq
+V (s, y(t, s, x))

= lim sup
h→0+

1

hq
{V (s, y(t, s, x)) − V (s − h, y(t, s − h, x − hq F(s, x)))},

where

V (s − h, y(t, s − h, x − hq F(s, x)))

=
n∑

r=1

(−1)r+1
qCr V (s − rh, y(t, s − rh, x − hq F(s, x))).

Theorem 3.4 Assume that assumption (H) holds. Suppose that

(i) V ∈ C[R+ × S(ρ),R+], V (t, x) is locally Lipschitzian in x with Lipschitz con-
stant L > 0, and for t0 ≤ s ≤ t and x ∈ S(ρ),

cDq
+V (s, y(t, s, x)) ≤ g(s, V (s, y(t, s, x)); (3.24)

(ii) g ∈ C[R2+,R] and the maximal solution r(t, t0, u0) of

cDqu = g(t, u), u(t0) = u0 ≥ 0 (3.25)

exists for t0 ≤ t ≤ T .
Then, if x(t) = x(t, t0, x0) is any solution of (3.23), we have V (t, x(t, t0, x0)) ≤
r(t, t0, u0), t0 ≤ t ≤ T , provided V (t0, y(t, t0, x0)) ≤ u0.

The following stability result is an application of Theorem 3.4.

Theorem 3.5 Assume that (H) holds and condition (i) of Theorem 3.4 is satisfied.
Suppose that g ∈ C[R2,R], g(t, 0) = 0, f (t, 0) = 0, F(t, 0) = 0 and for (t, x) ∈
R+ × S(ρ),

b(|x |) ≤ V (t, x) ≤ a(|x |)

a, b ∈ K = {c ∈ C[[0, ρ),R+] : c(0) = 0 and c is monotonically increasing}. Fur-
ther suppose that the trivial solution of (3.22) is uniformly stable and u ≡ 0 of (3.25)
is asymptotically stable. Then, the trivial solution of (3.23) is uniformly asymptoti-
cally stable.
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4 Fractional Trigonometric Functions

It is well known that trigonometric functions play a vital role in understanding physi-
cal phenomena that exhibit oscillatory behavior. The generalization of trigonometric
functions has beenmade through differential equations. In this section,we give a brief
summary of the work done in order to introduce fractional trigonometric functions
and their generalizations through fractional differential equations of a specific type
[35]. Fractional hyperbolic functions and their generalizations are also described in
a similar fashion in [36].

Consider the following αth order homogeneous fractional initial value with
Caputo derivative

cDαx(t) + x(t) = 0, 1 < α < 2, t ≥ 0, (4.1)

x(0) = 1, cDqx(0) = 0, where α = 2q, 0 < q < 1. (4.2)

The general solution of (4.1) and (4.2) is given by c1x(t) + c2y(t), where c1 and c2
are arbitrary constants, and where x(t) and y(t) are infinite series solutions of the
form

x(t) =
∞∑
k=0

(−1)
k
t2kq

�(1 + 2kq)
, y(t) =

∞∑
k=0

(−1)
k
t (2k+1)q

�(1 + (2k + 1)q)
, t ≥ 0, 0 < q < 1.

We designate these series by cosq t and cosq t , respectively. Then,

cosq t =
∞∑
k=0

(−1)
k
t2kq

�(1 + 2kq)
, (4.3)

sinq t =
∞∑
k=0

(−1)
k
t (2k+1)q

�(1 + (2k + 1)q)
, (4.4)

which we denote Mq
2,0(t) and Mq

2,1(t), respectively, for future convenience. Observe
that if q = 1, cosq t = cos t and sinq t = sin t . Using the FDE (4.1) and the initial
condition (4.2), one can prove the following properties of x(t) and y(t):

(1) x2(t) + y2(t) = 1, t ≥ 0
(2) x(t) and y(t) have at least on zero in R+.
(3) The zeros of x(t) and y(t) interlace each other, i.e., between any two consecutive

zeros of y(t) there exists one and only one zero of x(t).
(4) For t ≥ 0 and η ≥ 0

y(t + η) = y(t)x(η) + y(η)x(t)

x(t + η) = x(t)x(η) + y(η)y(t)
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(5) x(t) is an even function, but for q �= 1, y(t) is not an odd function
(6) Euler’s Formulae:

The solutions of FDE (4.1) can also be expressed as Eq(i tq) and Eq(−i tq)
where ±i are the roots of λ2 + 1 = 0. Eq(−i tq) can be expressed in terms of
Mq

2,0(t) and Mq
2,1(t) as

(i) Eq(i tq) = 1 − t2q∑
(1+2q)

+ t4q

�(1+4q)
− · · · + i

(
tq∑

(1+q)
− t3q

�(1+3q)
+ . . .

)
,

= Mq
2,0(t) + iMq

2,1(t)

(i i) Eq(−i tq) = 1 − t2q

�(1+2q)
+ t4q

�(1+4q)
− · · · − i

(
tq

�(1+q)
− t3q

�(1+3q)
+ . . .

)
.

= Mq
2,0(t) − iMq

2,1(t)

Thus, Mq
2,0(t) = 1

2
(Eq(i tq) + Eq(−i tq)), and

Mq
2,1(t) = 1

2i
(Eq(i tq) − Eq(−i tq)), t ∈ R

+.

The following theorem generalizes the notion of fractional trigonometric functions
using an αth order fractional differential equation of the type considered in (4.1).

Theorem 4.1 Consider the αth order fractional IVP of the form

cDαx(t) + x(t) = 0, x(0) = 1, cDqx(0) = 0, . . . , cD(n−1)q x(0) = 0 (4.7)

where n < α < n + 1, with α = nq, 0 < q < 1, n fixed.
The general solution of this equation is given by c1x1(t) + c2x2(t) + · · · + cnxn(t)

where c1, c2, . . . , cn are arbitrary constants and x1(t), x2(t), . . . , xn(t) are infinite
series of the form

x1(t) =
∞∑
k=0

(−1)
k
t nkq

�(1 + nkq)

x2(t) =
∞∑
k=0

(−1)
k
t (nk+1)q

�(1 + (nk + 1)q)
...

...
...

xn(t) =
∞∑
k=0

(−1)
k
t nk+(n−1))q

�(1 + (nk + (n − 1))q)
,

which are denoted by Mq
n,0(t), Mq

n,1(t), . . . , Mq
n,n−1(t), respectively.

More generally, let

Mq
n,r (t) =

∞∑
k=0

(−1)
k
t (nk+r)q

�(1 + (nk + r)q)
, n ∈ N , t ≥ 0.
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These are the n linearly independent solutions of the Caputo FDE (4.7).

Let x1(t), x2(t), . . . , xn(t) be n solutions of the nth order Caputo FDE for t ∈ R
+.

Then, the Wronskian W (t) of the n solutions is defined as

W (t) =

∣∣∣∣∣∣∣∣∣∣∣

x1 x2 · · · xn
−xn x1 · · · xn−1

−xn−1 −xn · · · xn−2
...

...
...

...

−x2 −x3 · · · x1

∣∣∣∣∣∣∣∣∣∣∣
(t).

Theorem 4.2 Let x1(t), x2(t), . . . , xn(t) be n solutions of (4.7). Then, these solu-
tions are linearly independent on R+ if and only if W (t) �= 0 for every t ∈ R+.

Finally, we give the addition formula of the solutions of (4.7) for η ≥ 0 and t ≥ 0,

Mq
n,r (t + η) =

r∑
k=0

Mq
n,k(t)M

q
n,r−k(η) −

n−1∑
k=r+1

Mq
n,k(t)M

q
n,n+r−k(η).

5 Impulsive Differential Equations

It is well established that many evolutionary processes exhibit impulses, which are
perturbations whose duration is negligible compared to the duration of the process.
Thus, differential equations with impulses are appropriate mathematical models for
the study of physical phenomena exhibiting sudden change. As fractional differential
equations are considered better models of processes that havememory and hereditary
properties, it is natural to use FDEs with impulses to study perturbations or sudden
changes in these systems.

In this section, we present known existence and uniqueness results for impulsive
fractional differential equation with both fixed and variable moments of impulse.

In both cases, we use the theory of inequalities and comparison theorems, the
method of lower and upper solutions and the iterative methods of quasilinearization
(QL) andmonotone iterative technique (MIT). In order to illustrate this approach, we
present an existence and uniqueness result for impulsive FDEs using the generalized
QL method for fixed moments of impulse and using the method lower and upper
solutions and the MIT for variable moments of impulse.

5.1 FDE with Fixed Moments of Impulse

We begin with the basic notation and a definition of the solution of a FDE with fixed
moments of impulse and then proceed to the generalized QL method.
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Definition 5.1 Let 0 ≤ t0 < t1 < t2 < · · · < tk < . . . and tk → ∞ as k → ∞. Then
we say that h ∈ PCp[R+ × R

n,Rn] if h : (tk−1, tk] × R
n → R

n isCp-continuous on
(tk−1, tk] × R

n and for any x ∈ R
n

lim
(t,y)→(t+k ,x)

h(t, y) = h(t+k , x)

exists for k = 1, 2, . . . , n − 1.

Definition 5.2 Let 0 ≤ t0 < t1 < t2 < · · · < tk < . . . and tk → ∞ as k → ∞. Then
we say that h ∈ PCq [R+ × R

n,Rn] if h : (tk−1, tk] × R
n → R

n isCq -continuous on
(tk−1, tk] × R

n and for any x ∈ R
n

lim
(t,y)→(t+k ,x)

h(t, y) = h(t+k , x)

exists for k = 1, 2, . . . , n − 1.

Consider the impulsive Caputo fractional differential system defined by

⎧⎨
⎩

cDqx = f (t, x), t �= tk,
x(t+k ) = Ik(x(tk)), k = 1, 2, . . . , n − 1,
x(t0) = x0,

(5.1)

where f ∈ PC[[t0, T ] × R
n,Rn], Ik : Rn → R

n, k = 1, 2, . . . , n − 1.

Definition 5.3 By a solution x(t, t0, x0) of system (5.1), wemean a PCq continuous
function x ∈ PCq [[t0, T ],Rn], such that

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0(t, t0, x0), t0 ≤ t ≤ t1,
x1(t, t1, x

+
1 ), t1 ≤ t ≤ t2,

·
·
·
xk(t, tk, x

+
k ), tk < t ≤ tk+1,

·
·
xn−1(t, tn−1, x

+
n−1), tn−1 < t ≤ T,

(5.2)

where 0 ≤ t0 < t1 < t2 < · · · < tn−1 ≤ T and xk(t, tk, x
+
k ) is the solution of the fol-

lowing fractional initial value problem

cDq
x = f (t, x),

x+
k = x(t+k ) = Ik(x(tk))

.

Definition 5.4 α,β ∈ PCq [[t0, T ],R] are said to be lower and upper solutions of
equation (5.1), if and only if they satisfy the following inequalities:
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⎧⎨
⎩

cDqα ≤ f (t,α) + g(t,α), t �= tk,
α(t+k ) ≤ Ik(α(tk)), k = 1, 2, 3, . . . , n − 1,

α(t0) ≤ x0,
(5.3)

and ⎧⎨
⎩

cDqβ ≥ f (t,β) + g(t,β), t �= tk,
β(t+k ) ≥ Ik(β(tk)), k = 1, 2, 3, . . . , n − 1,

β(t0) ≥ x0,
(5.4)

respectively.

We first state two lemmas [9] that are needed to prove the main theorem.

Lemma 5.5 The linear, nonhomogeneous impulsive Caputo initial value problem

⎧⎨
⎩

cDqx = M(x − y) + f (t, y) + g(t, y), t �= k,
x(t+k ) = (Ik(x(tk)), k = 1, 2, . . . , n − 1,
x(t0) = x0,

has a unique solution on the interval [t0, T ].
Lemma 5.6 Suppose that

(i) α0(t) and β0(t) are lower and upper solutions of the hybrid Caputo fractional
differential equation (5.1).

(ii) α1(t) and β1(t) are the unique solutions of the following linear, impulsive
Caputo initial value problems,

⎧⎨
⎩

cDqα1 = f (t,α0) + fx (t,α0)(α − α0) + g(t,α0) + gx (t,β0)(α1 − α0), t �= tk ,
α1(t

+
k ) = Ik(α0(tk)), k = 1, 2, 3, . . . , n − 1,

α1(t0) = x0,
(5.5)

and

⎧⎨
⎩

cDqβ1 = f (t,β0) + fx (t,α0)(β1 − β0) + g(t,β0) + gx (t,β0)(β1 − β0), t �= tk ,
β1(t

+
k ) = Ik(β0(tk)), k = 1, 2, 3, . . . , n − 1,

β1(t0) = x0,
(5.6)

respectively;
(iii) Ik(x) is nondecreasing function in x for each k = 1, 2, 3, . . . , n − 1;
(iv) fx , gx are continuous and Lipschitz in x on [t0, T ].
Then, α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t) on [t0, T ].
We now state the main result.

Theorem 5.7 Assume that

(i) f, g ∈ PC[t0, T ] × R,R] and α0,β0 ∈ PCq [[t0, T ],R] are lower and upper
solutions of (5.1) such that α0(t) ≤ β0(t), t ∈ [t0, T ];
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(ii) fx (t, x) exists, is increasing in x for each t, f (t, x) ≥ f (t, y) + fx (t, y)(x −
y), x ≥ y and | fx (t, x) − fx (t, y| ≤ L1|x − y|, and further suppose that
gx (t, x) exists, is decreasing in x for each t, g(t, x) ≥ g(t, y) + gx (t, y)(x −
y), x ≥ y and |gx (t, x) − gx (t, y| ≤ L2|x − y|;

(iii) Ik is increasing and Lipschitz in x for each k = 1, 2, 3, . . . , n − 1.

Then, there exist monotone sequences {αn}, {βn} such that αn → ρ,βn → r, as
n → ∞, uniformly and monotonically to the unique solution ρ = r = x of (5.1) on
[t0, T ], and the convergence is quadratic.

Remark 5.8 Observe that if we set Ik ≡ 0 for all k, then (5.1) reduces to a Caputo
fractional differential equation, for which the generalized quasilinearization for this
type of equations has been studied in [24], under the assumption of a Holder conti-
nuity. However, Theorem 5.7, with Ik ≡ 0, shows that those results also hold with
the weakened hypothesis of Cq -continuity.

5.2 Impulsive Differential Equation with Variable Moments
of Impulse

Consider a sequence of surfaces {Sk} given by Sk : t = τk(x), k = 1, 2, 3, . . . ; τk :
R → R such that τk(x) < τk+1(x) and

lim
k→∞τk(x) = ∞. Then, the impulsive Caputo

FDE with variable moments of impulse is given by

cDqx = f (t, x), t �= τk(x)
x(t+) = x(t) + Ik(x(t)), t = τk(x).

}
(5.7)

where f : R+ × � → R,� ⊂ R is an open set, τk ∈ C[�, (0,∞)], Ik(x(t)) =
�(x(t)) = x(t+) − x(t−), and Ik ∈ C[�,R], k = 1, 2, 3, . . . .

In this case, the moments of impulse depend on the solutions satisfying tk =
τk(x(tk)), for each k. Thus, solutions starting at different points will have different
points of discontinuity. Also, a solution may hit the same surface Sk : t = τk(x)
several times and we shall call such a behavior “pulse phenomenon”. In addition,
different solutions may coincide after some time and behave as a single solution
thereafter. This phenomenon is called “confluence”.

In order to construct the method of lower and upper solutions in the given inter-
val, we have to ensure that the solution does not exhibit a pulse phenomenon. The
following theorem gives a simple set of sufficient conditions for any solution to meet
each surface exactly once and shows the interplay between the functions f, τk , and
Ik [14]. In the rest of the section,we shall assume that the solution of (5.7) exists for
t ≥ t0 and is Cp continuous.

Theorem 5.9 Assume that

(i) f ∈ C[[t0, T ] × �,R], t0 ≥ 0, Ik ∈ C[�,R], τk ∈ C[�, (0,∞)], is linear
and bounded, and τk(x) < τk+1(x) for each k;
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(ii) (a)
∂τk(x)

∂x
f (t, x) <

(t − t̃)p

�(p + 1)
, whenever t = τk(x(t, t̃, x̃)),

(b)

(
∂τk

∂x
(x + s Ik(x))

)
Ik(x) < 0, and

(c)

(
∂τk

∂x
(x + s Ik−1(x))

)
Ik−1(x) ≥ 0, 0 ≤ s ≤ 1, x + Ik(x) ∈ � whenever

x ∈ �.

Then, every solution x(t) = x(t, t0, x0) of IVP (5.7), such that 0 ≤ t0 < τ1(x0),meets
each surface Sk exactly once.

Next, we consider the following initial value problem:

cDqx = f (t, x), t �= τ (x),
x(t+) = x(t) + I (x(t)), t = τ (x)
x(t+0 ) = x0,

(5.8)

where f ∈ C[J × R,R], I ∈ C[R,R], and τ ∈ Cq [R, (0,∞)], with J = [t0, T ],
t0 ≥ 0, τ (x) is linear of the form λ0x + λ1, λ0 ∈ R

+, λ1 ∈ R, and τ (x) is increas-
ing.

The lower and upper solutions of (5.8) are defined as follows:

Definition 5.10 A function v ∈ Cp[J,R] is said to be a lower solution of (5.8) if it
satisfies the following inequalities

cDqv ≤ f (t, v), t �= τ (v(t)),
v(t+) ≤ v(t) + I (v(t)), t = τ (v(t))
v(t+0 ) ≤ x0,

(5.9)

Definition 5.11 A function w ∈ Cp[J,R] is said to be an upper solution of (5.8), if
it satisfies the following inequalities

cDqw ≥ f (t, w), t �= τ (w(t)),
w(t+) ≥ w(t) + I (w(t)), t = τ (w(t))
w(t+0 ) > x0,

(5.10)

The following result is the fundamental inequality theorem in the theory of Caputo
fractional differential inequalities with variable moments of impulse [13].

Theorem 5.12 Assume that

(i) v,w ∈ Cp[J, R] are lower and upper solutions of (5.8), respectively;
(ii) f ∈ C[J × R,R], I ∈ C[R,R], τ ∈ Cq [R, (0,∞)], τ is linear and increas-

ing;
(iii) τx (v + s I (v))I (v) < 0, t = τ (v(t)), 0 ≤ s ≤ 1;
(iv) τx (w + s I (w))I (w) > 0, t = τ (w(t)), 0 ≤ s ≤ 1;
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(v) τx (v) f (t, v) <
(t − t1)p

p
, whenever t = τ (v(t, t1, v1)), where v(t, t1, v1) is the

lower solution of (5.8) starting at (t1, v1), t1, t ∈ J ;
(vi) τx (w) f (t, w) >

{
(t − t1)p

p

}
, whenever t = τ (w(t, t1, w1)), where w(t, t1,

w1) is the upper solution of (5.8) starting at (t1, w1), t1, t ∈ J.
(vii) f (t, x) − f (t, y) ≤ L(x − y), x ≥ y, L > 0.

Then, v(t0) ≤ w(t0) implies v(t) ≤ w(t), t0 ≤ t ≤ T .

Next, we state an existence result based on the existence of upper and lower solutions.

Theorem 5.13 Let v,w ∈ Cp[J,R] be lower and upper solutions of (5.8), respec-
tively, such that v(t) ≤ w(t) on J . Suppose that w(t) hits the surface S : t = τ (x)
only once at t = t∗ ∈ (t0, T ] and w(t∗) < w(t+∗ ). Also, assume

(i) f ∈ C[J × R,R], τ ∈ Cq [R, (0,∞)], τ is linear and increasing for v(t) ≤
x ≤ w(t), t ∈ J ;

(ii) τx (x + s I (x))I (x) < 0, 0 ≤ s ≤ 1, t = τ (x), v(t) ≤ x ≤ w(t), t ∈ J ;
(iii) τx (x) f (t, x) <

(t − t1)p

p
whenever t = τ (x(t, t1, x1)), v(t) ≤ x ≤ w(t), t,

t1 ∈ J,
(iv) For any (t, x) such that t = τ (x), v(t) ≤ x ≤ w(t) implies v(t) ≤ x+ ≤ w(t),

t ∈ J.

Then, there exists a solution x(t) of (5.8) such that v(t) ≤ x(t) ≤ w(t) on J .

The method of upper and lower solutions, described previously, gives a theoretical
result, namely, the existence of a solution of (5.8) in a closed sector, whereas the
monotone iterative technique is a constructive method, which gives a sequence that
converges to a solution of (5.8). In the case of impulsive Caputo fractional differ-
ential equations with variable moments of impulsive, this practical method involves
working with sequences of solutions of a simple linear Caputo fractional differential
equation of order q, 0 < q < 1, with variable moments of impulse. This result is
given in the following theorem [12].

Theorem 5.14 Assume that

(i) v0, w ∈ PCp[J,R] are lower and upper solutions of (5.8) respectively, such
that v0(t) ≤ w(t) on J , and w(t) hits the surface S : t = τ (x) only once
at t = t∗ ∈ (t0, T ] and w(t∗) < w(t+∗ ), f ∈ C[J × R,R], I ∈ C[R,R], τ ∈
Cq [R, (0,∞)] and τ (x) is linear and increasing for v0(t) ≤ x ≤ w(t), t ∈ J ;

(ii) τx (x + s I (x))I (x) < 0, 0 ≤ s ≤ 1, t = τ (x), v0(t) ≤ x ≤ w(t), t ∈ J ;
(iii)

∂τ

∂x
f (t, x) <

(t − t1)p

p
, whenever t = τ (x(t, t1, x1)), v0(t) ≤ x ≤ w(t);

(iv) f (t, x) − f (t, y) ≥ −M(x − y), v0(t) ≤ y ≤ w(t), t ∈ J, M > 0;
(v) for any (t, x) such that t = τ (x), v0(t) ≤ x ≤ w(t) implies v0(t) ≤ x+ ≤

w(t), t ∈ J ,

Then, there exists a monotone sequence {vn} such that vn → ρ as n → ∞ monoton-
ically on J . Also, ρ is the minimal solution of (5.8).
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6 Fractional Integro-Differential Equations

It is well known that integro-differential equations are used to mathematically model
physical phenomena,where past information is necessary to understand the present.
On the other hand, fractional differential equations play an important role in studying
processes that havememory and hereditary properties. Fractional integro-differential
equations combine these two topics. In this section, we present a summary of
results involving periodic-boundary value problems (PBVP) for fractional integro-
differential equations using inequalities and comparison theorems [37].

Consider the following Caputo fractional integro-differential equation

cDqu = f (t, u, I qu) (6.1)

u(0) = u0, (6.2)

where f ∈ C[J × R × R
+,R], u ∈ C1[J,R], J = [0, T ],

and I qu(t) = 1

�(q)

t∫

0

(t − s)q−1u(s)ds. (6.3)

The following theorem gives the explicit solution of the linear Caputo fractional
integro-differential initial value problem.

Theorem 6.1 Letλ ∈ C1([0, T ],R). The solution of cDqλ(t) = Lλ(t) + MIqλ(t)
is given by

λ(t) =
∞∑
n=0

∞∑
k=0

n+kCkMnLk2n+kλ(0)

�[(2n + 1)q + 1] t (2n+1)q

where L , M > 0.

The following comparison theorem is needed to prove the main result.

Theorem 6.2 Let J = [0, T ], f ∈ C[J × R × R
+,R], v, w ∈ C1[J,R] and sup-

pose that the following inequalities hold for all t ∈ J .

cDqv(t) ≤ f (t, v(t), I qv(t)), v(0) ≤ u0 (6.4)
cDqw(t) ≥ f (t, w(t), I qw(t)), w(0) ≥ u0. (6.5)

Suppose further that f (t, u(t), I qu(t)) satisfies the following Lipschitz-like condi-
tion,

f (t, x, I q x) − f (t, y, I q y) ≤ L(x − y) + M(I q x − I q y), (6.6)

for x ≥ y, L , M > 0. Then, v(0) ≤ w(0) implies that u(t) ≤ w(t), 0 ≤ t ≤ T .
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Corollary 6.3 Let m ∈ C1[J,R] be such that

cDqm(t) ≤ L m(t) + MIqm(t), m(0) = m0 ≤ 1,

then
m(t) ≤ λ(t)

for 0 ≤ t ≤ T, L , M > 0; λ(0) = 1 and λ(t) =
∞∑
n=0

∞∑
k=0

n+kCkMnLk2n+k

�[(2n + 1)q + 1] t
(2n+1)q .

Proof We have
cDqm(t) ≤ L m(t) + MIqm(t),
cDqλ(t) + 2L λ(t) + 2MIqλ(t)

≥ Lλ(t) + MIqλ(t),
for m(0) = m0 ≤ 1 = λ(0).

Hence, from Theorem 6.2 we conclude that m(t) ≤ λ(t), t ∈ J. �

The result in the above corollary is true even if L = M = 0, which we state below.

Corollary 6.4 Let cDqm(t) ≤ 0 on [0, T ]. If m(0) ≤ 0 then m(t) ≤ 0, t ∈ J.

Proof By definition of cDqm(t) and by hypothesis,

cDqm(t) = 1

�(1 − q)

t∫

0

(t − s)−qm ′(s)ds ≤ 0,

which implies that m ′(t) ≤ 0, on [0, T ]. Therefore m(t) ≤ m(0) ≤ 0 on [0, T ]. The
proof is complete. �

Next, we present a result which uses the generalized monotone iterative technique
in order to obtain minimal and maximal solutions of the Caputo fractional integro-
differential equation

cDqu = F(t, u, I qu) + G(t, u, I qu), (6.7)

with the boundary condition

g(u(0), u(T )) = 0, (6.8)

where F,G ∈ C[J × R × R
+,R], u ∈ C1[J,R].

Definition 6.5 Let v0, w0 ∈ C1[J,R]. Then v0 and w0 are said to be coupled lower
and upper solutions of Type I of (6.7) and (6.8) if
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cDqv0(t) ≤ F(t, v0(t), I qv0(t)) + G(t, w0(t), I qw0(t)),
g(v0(0), v0(T )) ≤ 0

(6.9)

cDqw0(t) ≤ F(t, w0(t), I qw0(t)) + G(t, v0(t), I qv0(t)),
g(w0(0), w0(T )) ≥ 0

(6.10)

The monotone iterative technique for (6.7) and (6.8) was developed using
sequences of iterates which are solutions of linear fractional integro-differential
initial value problems. Since the solution of a linear Caputo fractional differential
equation is unique, the sequence of iterates is a unique sequence converging to a
solution of (6.7) and (6.8). In this approach,it is not necessary to prove the existence
of a solution of the Caputo fractional integro-differential equation as it follows from
the construction of the monotone sequences.

In the following theorem, coupled lower and upper solutions of Type I are used to
obtainmonotone sequences which converge uniformly andmonotonically to coupled
minimal and maximal solutions of (6.7) and (6.8).

Theorem 6.6 Suppose that

(i) v0, w0 are coupled lower and upper solutions of Type I for (6.7) and (6.8) with
v0(t) ≤ w0(t) on J;

(ii ) the function g(u, v) ∈ C[R2,R] is nonincreasing in v for each u, and there
exists a constant M > 0 such that

g(u1, v) − g(u2, v) ≤ M(u1 − u2),

for v0(0) ≤ u2 ≤ u1 ≤ w0(0), v0(T ) ≤ v ≤ w0(T );
(i i i ) F,G ∈ C[J × R × R+,R] and F(t, x1, x2) is nondecreasing in x1 for each

(t, x2) ∈ J × R+ and is nondecreasing in x2 for each (t, x1) ∈ J × R; Fur-
ther, G(t, y1, y2) is nonincreasing in y1 for each (t, y2) ∈ J × R+ and is non-
increasing in y2 for each (t, y1) ∈ J × R.

Then, the iterative scheme given by

cDqvn+1 = F(t, vn, I qvn) + G(t, wn, I qwn),

vn+1(0) = vn(0) − 1

M
g(vn(0), vn(T ))

cDqwn+1 = F(t, wn, I qwn) + G(t, vn, I qvn),

wn+1(0) = wn(0) − 1

M
g(wn(0), wn(T )),

yields two monotone sequences {vn(t)} and {wn(t)} such that

v0 ≤ v1 ≤ · · · ≤ vn ≤ wn ≤ · · · ≤ w1 ≤ w0.
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Further, vn → ρ and wn → r in C1[J,R], uniformly and monotonically, such that
ρ and r are,respectively, the coupled minimal and maximal solutions of (6.7) and
(6.8), that is, ρ and r satisfy the coupled system

cDqρ = F(t, ρ, I qρ) + G(t, r, I qr),
g(ρ(0), ρ(T )) = 0,

cDqr = F(t, r, I qr) + G(t, ρ, I qρ),

g(r(0), r(T )) = 0.

7 Conclusion

Our aim in this chapter was to give a brief survey of the qualitative theory of frac-
tional differential equations developed using the fundamental concepts of differen-
tial inequalities and comparison theorems, as well as constructive monotone iterative
methods. The results presented here constitute only a representative sample of the
work done using these tools. For additional results see, for example, Abbas and
Bechohra [1], Agarwal et al. [3–6], Jankowski [16–20], Lin et. al. [26], Nanware
[29], Sambadham et al. [31, 32], Vatsala et al. [10, 30, 33, 34], Wang et al. [40–44],
Yakar et al. [45, 46], and Zhang [46].

Themain results in Sects. 2 and 3 are fromDevi et al. [38, 39], Drici et al. [11] and
Lakshmikantham et al. [22–24]. The main result in Sect. 4 is from Devi et al. [35].
The main results in Sect. 5 are from Giribabu et al. [12–14] and Devi and Radhika
[8, 9]. The result in Sect. 6 is from Devi and Sreedhar [37].
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Exact Solutions of Fractional Partial
Differential Equations by Sumudu
Transform Iterative Method

Manoj Kumar and Varsha Daftardar-Gejji

Abstract Developing analytical methods for solving fractional partial differential
equations (FPDEs) is an active area of research. Especially, finding exact solutions
of FPDEs is a challenging task. In the present chapter, we extend Sumudu transform
iterative method to solve a variety of time and space FPDEs as well as systems of
them. We demonstrate the utility of the method by finding exact solutions to a large
number of FPDEs.

1 Introduction

Nonlinear fractional partial differential equations (FPDEs) play an important role
in science and technology as they describe various nonlinear phenomena especially
dealing with memory. To obtain physical information and deeper insights into the
physical aspects of the problems, one has to find their exact solutions which usually
is a difficult task. For solving linear FPDEs, integral transformmethods are extended
successfully [1, 2]. Various decomposition methods have been developed for solv-
ing the linear and nonlinear FPDEs such as Adomian decomposition method (ADM)
[3], Homotopy perturbation method (HPM) [4], Daftardar-Gejji and Jafari method
(DJM) [5–8], and so on. Further, combinations of integral transforms and decom-
position methods have proven to be useful. A combination of Laplace transform
and DJM (Iterative Laplace transform method) has been developed by Jafari et al.
[9]. A combination of HPM and Sumudu transform yields homotopy perturbation
Sumudu transform method [10]. Similarly, a combination of Sumudu transform and
ADM termed as Sumudu decomposition method has been developed [11]. Recently,
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Sumudu transform iterative method (STIM), which is a combination of Sumudu
transform and DJM has been introduced and applied for solving time-fractional
Cauchy reaction–diffusion equation [12]. Further, a fractional model of nonlinear
Zakharov–Kuznetsov equations also has been solved using STIM [13].

In this chapter, we extend STIM to solve time and space FPDEs as well as systems
of them. A variety of problems have been solved using the STIM. In some cases,
STIM yields an exact solution of the time and space FPDEs as well as systems of
them which can be expressed in terms of the well-knownMittag-Leffler functions or
fractional trigonometric functions. Further, it has been observed that semi-analytical
techniques with Sumudu transform require less CPU time to calculate the solutions
of nonlinear fractional models, which are used in applied science and engineering.
STIM is a powerful technique to solvedifferent classes of linear andnonlinear FPDEs.
STIM can reduce the time of computation in comparison to the established schemes
while preserving the accuracy of the approximate results.

The organization of this chapter is as follows: In Sect. 2, we give basic definitions
related to fractional calculus and Sumudu transform. In Sect. 3, we extend STIM for
time and space FPDEs. In Sect. 4, we apply extended STIM to solve various time
and space FPDEs. Further, in Sect. 5 we extend STIM for system of time and space
FPDEs. In Sect. 6, we apply extended STIM for system of time and space FPDEs.
Conclusions are summarized in Sect. 7.

2 Preliminaries and Notations

In this section, we give some basic definitions, notations, and properties of the frac-
tional calculus ([1, 14]), which are used further in this chapter.

Definition 2.1 Riemann–Liouville fractional integral of order α > 0, of a real-
valued function f (t) is defined as

Iα
t f (t) = 1

�(α)

∫ t

0
(t − s)α−1 f (s)ds.

Definition 2.2 Caputo derivative of order α > 0 (n − 1 < α < n), n ∈ N of a real-
valued function f (t) is defined as

dα

dtα
f (t) = I n−α

t

[dn f (t)

dtn

]
,

=
{

1
�(n−α)

∫ t
0 (t − s)n−α−1 dn f (s)

dsn ds, n − 1 < α < n,
dn f (t)
dtn , α = n.
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Note:

1. dαc
dtα = 0, where c is a constant.

2. For �α� = n, n ∈ N,

dαt p

dtα
: =

{
0, i f p ∈ 0, 1, 2, ..., n − 1,

�(p+1)
�(p−α+1) t

p−α, i f p ∈ N and p ≥ n, or p /∈ N and p > n − 1.

Definition 2.3 Riemann–Liouville time-fractional integral of orderα > 0, of a real-
valued function u(x, t) is defined as

Iα
t u(x, t) = 1

�(α)

∫ t

0
(t − s)α−1u(x, s)ds.

Definition 2.4 The Caputo time-fractional derivative operator of order α > 0 (m −
1 < α < m),m ∈ N of a real-valued function u(x, t) is defined as

∂αu(x, t)

∂tα
= I m−α

t

[∂mu(x, t)

∂tm

]
,

=
{

1
�(m−α)

∫ t
0 (t − y)m−α−1 ∂mu(x,y)

∂ym dy, m − 1 < α < m,
∂mu(x,t)

∂tm , α = m.

Similarly, theCaputo space fractional derivative operator ∂βu(x,t)
∂xβ of orderβ > 0 (m −

1 < β < m),m ∈ N can be defined.
Note that: In the present chapter, fractional derivative ∂lβu(x,t)

∂xlβ , l ∈ N is taken as
the sequential fractional derivative [15], i.e.,

∂lβu

∂xlβ
= ∂β

∂xβ

∂β

∂xβ
...

∂βu

∂xβ︸ ︷︷ ︸
l−times

Definition 2.5 Mittag-Leffler function with two parameters α and β is defined as

Eα,β(z) =
∞∑
k=0

zk

�(αk + β)
, Re(α) > 0, z,β ∈ C.

Note that:

1. The α−th order Caputo derivative of Eα(atα) is

dα

dtα
Eα(atα) = aEα(atα), α > 0, a ∈ R.

2. Generalized fractional trigonometric functions for �α� = n are defined as [16]
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cosα(λtα) = �[Eα(iλtα)] =
∞∑
k=0

(−1)kλ2k t (2k)α

�(2kα + 1)
,

sinα(λtα) = �[Eα(iλtα)] =
∞∑
k=0

(−1)kλ2k+1t (2k+1)α

�((2k + 1)α + 1)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

3. The Caputo derivative of fractional trigonometric functions are defined as

dα

dtα
cosα(λtα) = −λ sinα(λtα),

dα

dtα
sinα(λtα) = λ cosα(λtα).

⎫⎪⎬
⎪⎭

Definition 2.6 ([17]) The Sumudu transform over the set of functions A = { f (t) | ∃
M, τ j > 0, j = 1, 2, such that | f (t)| < Me|t |/τ j i f t ∈ (−1) j × [0,∞)} is defined
as

S[ f (t)](ω) = F(ω) =
∫ ∞

0

1

ω
e− t

ω f (t)dt =
∫ ∞

0
e−t f (ωt)dt, ω ∈ (−τ1, τ2).

Definition 2.7 ([17]) The inverse Sumudu transform of F(ω) is denoted by f (t),
and defined by the following integral:

f (t) = S−1[F(ω)] = 1

2πi

∫ z+i∞

z−i∞
1

ω
e

t
ω F(ω)dω,

where �(1/ω) > z and z ∈ C.

One of the basic properties of Sumudu transform is

S
[ tα

�(α + 1)

]
= ωα, α > −1. (1)

Sumudu inverse transforms of ωα is defined as

S−1[ωα] = tα

�(α + 1)
, α > −1. (2)

Note that the Sumudu transform of Caputo time fractional derivative of f (x, t)
of order γ > 0 is [18]

S
[∂γ f (x, t)

∂tγ

]
= ω−γS[ f (x, t)] −

m−1∑
k=0

[
ω−γ+k ∂k f (x, 0)

∂t k

]
,

m − 1 < γ ≤ m, m ∈ N.

⎫⎪⎪⎬
⎪⎪⎭

(3)
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3 STIM for Time and Space FPDEs

In this section, we extend STIM [12] for solving time and space FPDEs.
We consider the following general time and space FPDE:

∂γu

∂tγ
= F

(
x, u,

∂βu

∂xβ
, ...,

∂lβu

∂xlβ

)
, m − 1 < γ ≤ m,

n − 1 < β ≤ n, l,m, n ∈ N,

⎫⎬
⎭ (4)

along with the initial conditions

∂ku(x, 0)

∂t k
= hk(x), k = 0, 1, 2, ...,m − 1, (5)

where F
(
x, u, ∂βu

∂xβ , ..., ∂lβu
∂xlβ

)
is a linear/nonlinear operator and u = u(x, t) is the

unknown function.
Taking the Sumudu transform of both sides of Eq. (4) and simplifying, we get

S[u(x, t)] =
m−1∑
k=0

[
ωk ∂ku(x, 0)

∂t k

]
+ ωγS

[
F

(
x, u,

∂βu

∂xβ
, ...,

∂lβu

∂xlβ

)]
. (6)

The inverse Sumudu transform of Eq. (6) leads to

u(x, t) = S−1
( m−1∑

k=0

[
ωk ∂ku(x, 0)

∂t k

])
+ S−1

[
ωγS

(
F

(
x, u,

∂βu

∂xβ
, ...,

∂lβu

∂xlβ

))]
.

(7)

Equation (7) can be written as

u(x, t) = f (x, t) + N
(
x, u,

∂βu

∂xβ
, ...,

∂lβu

∂xlβ

)
, (8)

where

f (x, t) = S−1
( m−1∑

k=0

[
ωk ∂ku(x, 0)

∂t k

])
,

N
(
x, u,

∂βu

∂xβ
, ...,

∂lβu

∂xlβ

)
= S−1

[
ωγS

(
F

(
x, u,

∂βu

∂xβ
, ...,

∂lβu

∂xlβ

))]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)

here f is known function and N is a linear/nonlinear operator.
Functional equations of the form (8) can be solved by the DGJ decomposition

method introduced by Daftardar-Gejji and Jafari [5].
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DJM represents the solution as an infinite series:

u =
∞∑
i=0

ui , (10)

where the terms ui are calculated recursively. The operator N can be decomposed
as

N
(
x,

∞∑
i=0

ui ,
∂β(

∑∞
i=0 ui )

∂xβ
, ...,

∂lβ(
∑∞

i=0 ui )

∂xlβ

)
= N

(
x, u0,

∂βu0
∂xβ

, ...,
∂lβu0
∂xlβ

)

+
∞∑
j=1

(
N

(
x,

j∑
i=0

ui ,
∂β(

∑ j
i=0 ui )

∂xβ
, ...,

∂lβ(
∑ j

i=0 ui )

∂xlβ

))

−
∞∑
j=1

(
N

(
x,

j−1∑
i=0

ui ,
∂β(

∑ j−1
i=0 ui )

∂xβ
, ...,

∂lβ(
∑ j−1

i=0 ui )

∂xlβ

))
.

(11)

S−1
[
ωγS

(
F

(
x,

∞∑
i=0

ui ,
∂β(

∑∞
i=0 ui )

∂xβ
, ...,

∂lβ(
∑∞

i=0 ui )

∂xlβ

))]

= S−1
[
ωγS

(
F

(
x, u0,

∂βu0
∂xβ

, ...,
∂lβu0
∂xlβ

))]

+
∞∑
j=1

S−1
[
ωγS

(
F

(
x,

j∑
i=0

ui ,
∂β(

∑ j
i=0 ui )

∂xβ
, ...,

∂lβ(
∑ j

i=0 ui )

∂xlβ

))]

−
∞∑
j=1

S−1
[
ωγS

(
F

(
x,

j−1∑
i=0

ui ,
∂β(

∑ j−1
i=0 ui )

∂xβ
, ...,

∂lβ(
∑ j−1

i=0 ui )

∂xlβ

))]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

Using Eqs. (10), (12) in Eq. (8), we get

∞∑
i=0

ui = S−1
( m−1∑

k=0

[
ωk ∂ku(x, 0)

∂t k

])
+ S−1

[
ωγS

(
F

(
x, u0,

∂βu0
∂xβ

, ...,
∂lβu0
∂xlβ

))]

+
∞∑
j=1

(
S−1

[
ωγS

(
F

(
x,

j∑
i=0

ui ,
∂β(

∑ j
i=0 ui )

∂xβ
, ...,

∂lβ(
∑ j

i=0 ui )

∂xlβ

))]

−S−1
[
ωγS

(
F

(
x,

j−1∑
i=0

ui ,
∂β(

∑ j−1
i=0 ui )

∂xβ
, ...,

∂lβ(
∑ j−1

i=0 ui )

∂xlβ

))])
.
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We define the recurrence relation as follows:

u0 = S−1
( m−1∑

k=0

[
ωk ∂ku(x, 0)

∂t k

])
,

u1 = S−1
[
ωγS

(
F

(
x, u0,

∂βu0
∂xβ

, ...,
∂lβu0
∂xlβ

))]
,

ur+1 = S−1
[
ωγS

(
F

(
x,

r∑
i=0

ui ,
∂β(

∑r
i=0 ui )

∂xβ
, ...,

∂lβ(
∑r

i=0 ui )

∂xlβ

))]

− S−1
[
ωγS

(
F

(
x,

r−1∑
i=0

ui ,
∂β(

∑r−1
i=0 ui )

∂xβ
, ...,

∂lβ(
∑r−1

i=0 ui )

∂xlβ

))]
,

f or r ≥ 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

The r-term approximate solution of Eqs. (4), (5) is given by u ≈ u0 + u1 + · · · +
ur−1. For the convergence of DJM, we refer the reader to [19].

4 Illustrative Examples

In this section, we solve various nonlinear time and space FPDEs using STIMderived
in Sect. 3.

Example 4.1 Consider the following time and space fractional equation

∂αu

∂tα
=

(∂βu

∂xβ

)2 − u
(∂βu

∂xβ

)
, t > 0, α,β ∈ (0, 1], (14)

along with the initial condition

u(x, 0) = 3 + 5

2
Eβ(xβ). (15)

Taking the Sumudu transform of both sides of Eq. (14), we get

S
[∂αu

∂tα

]
= S

[(∂βu

∂xβ

)2 − u
(∂βu

∂xβ

)]
.

Using the property (3) of Sumudu transform, we get

S[u(x, t)] = u(x, 0) + ωα
(
S
[(∂βu

∂xβ

)2 − u
(∂βu

∂xβ

)])
. (16)

Now taking the inverse Sumudu transform of both sides of Eq. (16)
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u(x, t) = S−1[u(x, 0)] + S−1
(
ωα

(
S
[(∂βu

∂xβ

)2 − u
(∂βu

∂xβ

)]))
.

Using the recurrence relation (13)

u0 = S−1[u(x, 0)] = 3 + 5

2
Eβ(xβ),

u1 = S−1
(
ωα

(
S
[(∂βu0

∂xβ

)2 − u0
(∂βu0

∂xβ

)]))
= −15tαEβ(xβ)

2�(α + 1)
,

u2 = S−1
(
ωα

(
S
[(∂β(u0 + u1)

∂xβ

)2 − (u0 + u1)
(∂β(u0 + u1)

∂xβ

)]))
,

− S−1
(
ωα

(
S
[(∂βu0

∂xβ

)2 − u0
(∂βu0

∂xβ

)]))
,

= 45t2αEβ(xβ)

2�(2α + 1)
,

u3 = −135t3αEβ(xβ)

2�(3α + 1)
,

u4 = 405t4αEβ(xβ)

2�(4α + 1)
,

...

Hence, the series solution of Eq. (14) along with the initial condition (15) is given
by

u(x, t) = 3 + 5

2
Eβ(xβ) − 15tαEβ(xβ)

2�(α + 1)
+ 45t2αEβ(xβ)

2�(2α + 1)
− 135t3αEβ(xβ)

2�(3α + 1)

+ 405t4αEβ(xβ)

2�(4α + 1)
− · · · .

This leads to the following closed-form solution:

u(x, t) = 3 +
[5
2
Eα(−3tα)

]
Eβ(xβ),

which is the same as obtained in [20].

Example 4.2 Consider the following time space fractional heat equation:

∂αu

∂tα
= ∂β

∂xβ

(
u

∂βu

∂xβ

)
, t > 0, α,β ∈ (0, 1], (17)

with the initial condition
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u(x, 0) = a + bxβ, a, b ∈ R. (18)

Taking the Sumudu transform of both sides of Eq. (17), we get

S
[∂αu

∂tα

]
= S

[ ∂β

∂xβ

(
u

∂βu

∂xβ

)]
,

=⇒ S[u(x, t)] = u(x, 0) + ωα
(
S
[ ∂β

∂xβ

(
u

∂βu

∂xβ

)])
,

=⇒ u(x, t) = S−1[u(x, 0)] + S−1
(
ωα

(
S
[ ∂β

∂xβ

(
u

∂βu

∂xβ

)]))
.

Now using the recurrence relation (13)

u0 = S−1[u(x, 0)] = a + bxβ,

u1 = S−1
(
ωα

(
S
[ ∂β

∂xβ

(
u0

∂βu0
∂xβ

)]))
,

= b2(�(β + 1))2
tα

�(α + 1)
,

ui = 0, ∀ i ≥ 2.

Hence, the solution turns out to be:

u(x, t) = a + bxβ + b2(�(β + 1))2
tα

�(α + 1)
.

Example 4.3 Consider the following time and space fractional thin film equation

∂αu

∂tα
= −u

(∂4βu

∂x4β

)
+ η

(∂βu

∂xβ

)(∂3βu

∂x3β

)
+ ζ

(∂2βu

∂x2β

)2
, t > 0 α,β ∈ (0, 1], (19)

along with the initial condition

u(x, 0) = a + bxβ + cx2β + dx3β, a, b, c, d ∈ R. (20)

Taking the Sumudu transform of both sides of Eq. (19), we get

S
[∂αu

∂tα

]
= S

[
− u

(∂4βu

∂x4β

)
+ η

(∂βu

∂xβ

)(∂3βu

∂x3β

)
+ ζ

(∂2βu

∂x2β

)2]
.

After simplification, we get

u(x, t) = S−1[u(x, 0)]
+ S−1

(
ωαS

[
− u

(∂4βu

∂x4β

)
+ η

(∂βu

∂xβ

)(∂3βu

∂x3β

)
+ ζ

(∂2βu

∂x2β

)2])
.
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In view of the recurrence relation (13),

u0 = S−1[u(x, 0)] = a + bxβ + cx2β + dx3β, (21)

u1 = S−1
(
ωαS

[
− u0

(∂4βu0
∂x4β

)
+ η

(∂βu0
∂xβ

)(∂3βu0
∂x3β

)
+ ζ

(∂2βu0
∂x2β

)2])
,

= bηd�(β + 1)�(3β + 1)tα

�(α + 1)
+ ηcd�(2β + 1)�(3β + 1)tαxβ

�(α + 1)�(β + 1)

+ ηd2�(3β + 1)2tαx2β

�(α + 1)�(2β + 1)
+ c2ζ�(2β + 1)2tα

�(α + 1)

+ 2cζd�(2β + 1)�(3β + 1)tαxβ

�(α + 1)�(β + 1)
+ ζd2�(3β + 1)2tαx2β

�(α + 1)�(β + 1)2
. (22)

u2 = η2cd2�(2β + 1)�(3β + 1)2t2α

�(2α + 1)
+ 2ζ2d3�(2β + 1)�(3β + 1)3t2αxβ

�(2α + 1)�(β + 1)3

+ η2d3�(3β + 1)3t2αxβ

�(2α + 1)�(β + 1)
+ 4ηcζd2�(2β + 1)�(3β + 1)2t2α

�(2α + 1)

+ ηζd3�(2β + 1)�(3β + 1)3t2αxβ

�(2α + 1)�(β + 1)3
+ 2ηζd3�(3β + 1)3t2αxβ

�(2α + 1)�(β + 1)

+ 2cζ2d2�(2β + 1)2�(3β + 1)2t2α

�(2α + 1)�(β + 1)2

+ 2ηζ2d4�(2α + 1)�(2β + 1)�(3β + 1)4t3α

�(α + 1)2�(3α + 1)�(β + 1)2

+ η2ζd4�(2α + 1)�(3β + 1)4t3α

�(α + 1)2�(3α + 1)

+ ζ3d4�(2α + 1)�(2β + 1)2�(3β + 1)4t3α

�(α + 1)2�(3α + 1)�(β + 1)4
, (23)

u3 = η3d4�(3β + 1)4t3α

�(3α + 1)
+ η2ζd4�(2β + 1)�(3β + 1)4t3α

�(3α + 1)�(β + 1)2

+ 2η2ζd4�(3β + 1)4t3α

�(3α + 1)
+ 2ηζ2d4�(2β + 1)�(3β + 1)4t3α

�(3α + 1)�(β + 1)2
, (24)

ui = 0 ∀ i ≥ 4. (25)

Hence, we obtain the exact solution of Eqs. (19), (20) as

u(x, t) =
∞∑
i=0

ui ,

where u′
i s are given in Eqs. (21)–(25).
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Example 4.4 Consider the following time and space fractional-dispersive Boussi-
nesq equation

∂2αu

∂t2α
= ∂2βu

∂x2β
− η

∂2β(u2)

∂x2β
− ζ

∂4β(u2)

∂x4β
− μ

∂6β(u2)

∂x6β
, t > 0, α,β ∈ (0, 1],

(26)

where η = 4[ζ − 4μ], ζ and μ are constants, along with the initial conditions

u(x, 0) = a + b sinβ(xβ) + c cosβ(xβ), ut (x, 0) = 0, a, b, c ∈ R. (27)

Taking the Sumudu transform of both sides of Eq. (26), we get

S
[∂2αu

∂t2α

]
= S

[∂2βu

∂x2β
− η

∂2β(u2)

∂x2β
− ζ

∂4β(u)2

∂x4β
− μ

∂6β(u)2

∂x6β

]
.

Using the property (3) of Sumudu transform, we get

S[u(x, t)] = u(x, 0)

+ ω2α
(
S
[∂2βu

∂x2β
− η

∂2β(u2)

∂x2β
− ζ

∂4β(u)2

∂x4β
− μ

∂6β(u)2

∂x6β

])
. (28)

Taking the inverse Sumudu transform of both sides of Eq. (28)

u(x, t) = S−1[u(x, 0)]
+ S−1

(
ω2α

(
S
[∂2βu

∂x2β
− η

∂2β(u2)

∂x2β
− ζ

∂4β(u)2

∂x4β
− μ

∂6β(u)2

∂x6β

]))
.

Using the recurrence relation (13), we get

u0 = S−1[u(x, 0)] = a + b sinβ(xβ) + c cosβ(xβ),

u1 = S−1
(
ω2α

(
S
[∂2βu0

∂x2β
− η

∂2β(u20)

∂x2β
− ζ

∂4β(u0)2

∂x4β
− μ

∂6β(u0)2

∂x6β

]))

= t2α(6a(ζ − 5μ) − 1)(b cosβ(xβ) + c sinβ(xβ))

�(2α + 1)
.

u2 = t4α(1 − 6a(ζ − 5μ))2(b cosβ(xβ) + c sinβ(xβ)

�(4α + 1)
,

u3 = t6α(6a(ζ − 5μ) − 1)3(b cosβ(xβ) + c sinβ(xβ))

�(6α + 1)
,

...
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Hence, the series solution of Eqs. (26), (27) converges to

u(x, t) = a + b sinβ(xβ)E2α(δt2α) + c cosβ(xβ)E2α(δt2α),

where δ = (6a(ζ − 5μ) − 1).

Example 4.5 Consider the following general time–space fractional diffusion–
convection equation

∂αu

∂tα
=

(∂βu

∂xβ

)2(∂ f (u)

∂u

)
+ f (u)

∂2βu

∂x2β
− ∂βu

∂xβ

(∂g(u)

∂u

)
, t > 0,α,β ∈ (0, 1],

(29)

where f, g are the functions of u. Here we consider some particular cases:
Case 1: Let f (u) = u, g(u) = k1 = constant, then Eq. (29) reduces to

∂αu

∂tα
=

(∂βu

∂xβ

)2 + u
∂2βu

∂x2β
, (30)

along with the initial condition

u(x, 0) = a + bxβ, (31)

Taking the Sumudu transform of both sides of Eq. (30), we get

S
[∂αu

∂tα

]
= S

[(∂βu

∂xβ

)2 + u
∂2βu

∂x2β

]
.

Using the property (3) of Sumudu transform

S[u(x, t)] = u(x, 0) + ωαS
[(∂βu

∂xβ

)2 + u
∂2βu

∂x2β

]
. (32)

Taking inverse Sumudu transform of both sides of Eq. (32)

u(x, t) = S−1[u(x, 0)] + S−1
(
ωαS

[(∂βu

∂xβ

)2 + u
∂2βu

∂x2β

])
. (33)

Using the recurrence relation (13), we get

u0 = S−1[u(x, 0)] = a + bxβ,

u1 = S−1
(
ωαS

[(∂βu0
∂xβ

)2 + u0
∂2βu0
∂x2β

])
= b2�(β + 1)2tα

�(α + 1)
,

ui = 0 ∀ i ≥ 2.
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Hence, the exact solution of (30), (31) is given by

u(x, t) = a + b2�(β + 1)2tα

�(α + 1)
+ bxβ .

Case 2: Let f (u) = ηu and g(u) = ζ
2u

2, where η and ζ are constants and η = ζ
2 ,

then Eq. (29) reduces to

∂αu

∂tα
= η

(∂βu

∂xβ

)2 + ηu
∂2βu

∂x2β
− ζu

∂βu

∂xβ
, (34)

along with the initial condition

u(x, 0) = a + bEβ(xβ), a, b ∈ R. (35)

Taking the Sumudu transform of both sides of Eq. (34)

S
[∂αu

∂tα

]
= S

[
η
(∂βu

∂xβ

)2 + ηu
∂2βu

∂x2β
− ζu

∂βu

∂xβ

]
.

Using the property (3) of Sumudu transform, we get

S[u(x, t)] = u(x, 0) + ωαS
[
η
(∂βu

∂xβ

)2 + ηu
∂2βu

∂x2β
− ζu

∂βu

∂xβ

]
. (36)

Taking inverse Sumudu transform of both sides of Eq. (36)

u(x, t) = S−1[u(x, 0)] + S−1
(
ωαS

[
η
(∂βu

∂xβ

)2 + ηu
∂2βu

∂x2β
− ζu

∂βu

∂xβ

])
.

Using the recurrence relation (13), we get

u0 = S−1[u(x, 0)] = a + bEβ(xβ),

u1 = S−1
(
ωαS

[
η
(∂βu0

∂xβ

)2 + ηu0
∂2βu0
∂x2β

− ζu0
∂βu0
∂xβ

])
,

= − Eβ(xβ)abζtα

2�(α + 1)
,

u2 = Eβ(xβ)a2bζ2t2α

4�(2α + 1)
,

u3 = − Eβ(xβ)a3bζ3t3α

8�(3α + 1)
,

...
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Hence, the series solution of Eqs. (34), (35) is given by

u(x, t) = a + bEβ(xβ) − Eβ(xβ)abζtα

2�(α + 1)
+ Eβ(xβ)a2bζ2t2α

4�(2α + 1)

− Eβ(xβ)a3bζ3t3α

8�(3α + 1)
+ ...,

which is equivalent to the following closed from:

u(x, t) = a + bEβ(xβ)Eα(−a
ζ

2
tα).

5 STIM for System of Time and Space FPDEs

In this section we extend STIM to solve system of time and space fractional PDEs.
Consider the following system of time and space FPDEs:

∂γi ui
∂tγi

= Gi

(
x, ū,

∂β ū

∂xβ
, ...,

∂lβ ū

∂xlβ

)
, mi − 1 < γi ≤ mi ,

i = 1, 2, ..., q, n − 1 < β ≤ n, mi , l, n, q ∈ N,

⎫⎬
⎭ (37)

along with the initial conditions

∂ j ui (x, 0)

∂t j
= gi j (x), j = 0, 1, 2, ...,mi − 1, (38)

where ū = (u1, u2, ..., uq) and Gi

(
x, ū, ∂β ū

∂xβ , ..., ∂lβ ū
∂xlβ

)
is a linear/nonlinear operator.

After taking the Sumudu transform of both sides of Eq. (37) and using Eq. (38),
we get

S[ui (x, t)] =
mi−1∑
j=0

[
ω jgi j (x)

]
+ ωγi S

[
Gi

(
x, ū,

∂β ū

∂xβ
, ...,

∂lβ ū

∂xlβ

)]
. (39)

The inverse Sumudu transform of Eq. (39) yields the following system of equations:

ui (x, t) = S−1
( mi−1∑

j=0

[
ω jgi j (x)

])

+ S−1
[
ωγi S

(
Gi

(
x, ū,

∂β ū

∂xβ
, ...,

∂lβ ū

∂xlβ

))]
, i = 1, 2, ..., q. (40)
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Equation (40) is of the following form:

ui (x, t) = fi (x, t) + Mi

(
x, ū,

∂β ū

∂xβ
, ...,

∂lβ ū

∂xlβ

)
, (41)

where

fi (x, t) = S−1
( mi−1∑

j=0

[
ω jgi j (x)

])
,

Mi

(
x, ū,

∂β ū

∂xβ
, ...,

∂lβ ū

∂xlβ

)
= S−1

[
ωγi S

(
Gi

(
x, ū,

∂β ū

∂xβ
, ...,

∂lβ ū

∂xlβ

))]
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(42)

Here fi is known function andMi is a linear/nonlinear operator. Functional equations
of the form (41) can be solved by the DJM decomposition method introduced by
Daftardar-Gejji and Jafari [5]. The DJM represents the solution as an infinite series:

ui =
∞∑
j=0

u( j)
i , 1 ≤ i ≤ q, (43)

where the terms u( j)
i are calculated recursively.

Note that henceforth we use the following abbreviations:

ū( j) = (u( j)
1 , u( j)

2 , ..., u( j)
q ),

r∑
j=0

ū( j) =
( r∑

j=0

u( j)
1 ,

r∑
j=0

u( j)
2 , ...,

r∑
j=0

u( j)
q

)
, r ∈ N ∪ {∞},

∂kβ(
∑r

j=0 ū
( j))

∂xkβ
=

(∂kβ(
∑r

j=0 u
( j)
1 )

∂xkβ
,
∂kβ(

∑r
j=0 u

( j)
2 )

∂xkβ
, ...,

∂kβ(
∑r

j=0 u
( j)
q )

∂xkβ

)
, k ∈ N.

The operator Mi can be decomposed as

Mi

(
x,

∞∑
j=0

ū( j),
∂β(

∑∞
j=0 ū

( j))

∂xβ
, ...,

∂lβ(
∑∞

j=0 ū
( j))

∂xlβ

)
=

Mi

(
x, ū(0),

∂β ū(0)

∂xβ
, ...,

∂lβ ū(0)

∂xlβ

)
+

∞∑
p=1

(
Mi

(
x,

p∑
j=0

ū( j),
∂β(

∑p
j=0 ū

( j))

∂xβ
, ...,

∂lβ(
∑p

j=0 ū
( j))

∂xlβ

))
−

∞∑
p=1

(
Mi

(
x,

p−1∑
j=0

ū( j),
∂β(

∑p−1
j=0 ū

( j))

∂xβ
, ...,

∂lβ(
∑p−1

j=0 ū
( j))

∂xlβ

))
. (44)
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Therefore,

S−1
[
ωγi S

(
Gi

(
x,

∞∑
j=0

ū( j),
∂β(

∑∞
j=0 ū

( j))

∂xβ
, ...,

∂lβ(
∑∞

j=0 ū
( j))

∂xlβ

))]

= S−1
[
ωγi S

(
Gi

(
x, ū(0),

∂β ū(0)

∂xβ
, ...,

∂lβ ū(0)

∂xlβ

))]

+
∞∑
p=1

S−1
[
ωγi S

(
Gi

(
x,

p∑
j=0

ū( j),
∂β(

∑p
j=0 ū

( j))

∂xβ
, ...,

∂lβ(
∑p

j=0 ū
( j))

∂xlβ

))]

−
∞∑
p=1

S−1
[
ωγi S

(
Gi

(
x,

p−1∑
j=0

ū( j),
∂β(

∑p−1
j=0 ū

( j))

∂xβ
, ...,

∂lβ(
∑p−1

j=0 ū
( j))

∂xlβ

))]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(45)

Using Eqs. (43), (45) in Eq. (41), we get

∞∑
j=0

u( j)
i = S−1

(mi−1∑
j=0

[
ω jgi j (x)

])
+ S−1

[
ωγi S

(
Gi

(
x, ū(0),

∂β ū(0)

∂xβ
, ...,

∂lβ ū(0)

∂xlβ

))]

+
∞∑
p=1

(
S−1

[
ωγi S

(
Gi

(
x,

p∑
j=0

ū( j),
∂β(

∑p
j=0 ū

( j))

∂xβ
, ...,

∂lβ(
∑p

j=0 ū
( j))

∂xlβ

))]

−S−1
[
ωγi S

(
Gi

(
x,

p−1∑
j=0

ū( j),
∂β(

∑p−1
j=0 ū( j))

∂xβ
, ...,

∂lβ(
∑p−1

j=0 ū( j))

∂xlβ

))])
.

(46)

We define the recurrence relation as follows:

u(0)
i = S−1

( mi−1∑
j=0

[
ω jgi j (x)

])
,

u(1)
i = S−1

[
ωγi S

(
Gi

(
x, ū(0),

∂β ū(0)

∂xβ
, ...,

∂lβ ū(0)

∂xlβ

))]
,

u(m+1)
i = S−1

[
ωγi S

(
Gi

(
x,

m∑
j=0

ū( j),
∂β(

∑m
j=0 ū

( j))

∂xβ
, ...,

∂lβ(
∑m

j=0 ū
( j))

∂xlβ

))]

− S−1
[
ωγi S

(
Gi

(
x,

m−1∑
j=0

ū( j),
∂β(

∑m−1
j=0 ū( j))

∂xβ
, ...,

∂lβ(
∑m−1

j=0 ū( j))

∂xlβ

))]
,

f or m ≥ 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(47)

Them-term approximate solution of Eqs. (37), (38) is given by ui ≈ u(0)
i + u(1)

i +
· · · + u(m−1)

i or ui ≈ ui0 + ui1 + · · · + ui(m−1).
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6 Illustrative Examples

In this section, we solve nonlinear system of time and space FPDEs using STIM
derived in Sect. 5.

Example 6.1 Consider the following system of time and space fractional Boussinesq
PDEs (t > 0, 0 < α1,α2,β ≤ 1):

∂α1u1
∂tα1

= −∂βu2
∂xβ

,

∂α2u2
∂tα2

= −m1
∂βu1
∂xβ

+ 3u1
(∂βu1

∂xβ

)
+ m2

∂3βu1
∂x3β

, (48)

along with the following initial conditions:

u1(x, 0) = a + bxβ, u2(x, 0) = c, a, b, c ∈ R. (49)

Taking the Sumudu transform on both sides of Eq. (48)

S
[∂α1u1

∂tα1

]
= S

[
− ∂βu2

∂xβ

]
,

S
[∂α2u2

∂tα2

]
= S

[
− m1

∂βu1
∂xβ

+ 3u1
(∂βu1

∂xβ

)
+ m2

∂3βu1
∂x3β

]
.

In view of (3), we get

S[u1(x, t)] = u1(x, 0) + ωα1 S
[

− ∂βu2
∂xβ

]
,

S[u2(x, t)] = u2(x, 0) + ωα2 S
[

− m1
∂βu1
∂xβ

+ 3u1
(∂βu1

∂xβ

)
+ m2

∂3βu1
∂x3β

]
. (50)

Taking the inverse Sumudu transform on both sides of Eq. (50)

u1(x, t) = S−1[u1(x, 0)] + S−1
(
ωα1 S

[
− ∂βu2

∂xβ

])
,

u2(x, t) = S−1[u2(x, 0)]
+ S−1

(
ωα2 S

[
− m1

∂βu1
∂xβ

+ 3u1
(∂βu1

∂xβ

)
+ m2

∂3βu1
∂x3β

])
. (51)

The recurrence relation (47) yields

u10 = S−1[u1(x, 0)] = a + bxβ,

u20 = S−1[u2(x, 0)] = c,
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u11 = S−1
(
ωα1 S

[
− ∂βu20

∂xβ

])
= 0,

u21 = S−1
(
ωα2 S

[
− m1

∂βu10
∂xβ

+ 3u10
(∂βu10

∂xβ

)
+ m2

∂3βu10
∂x3β

])
,

= 3ab�(β + 1)tα2

� (α2 + 1)
+ 3b2�(β + 1)tα2xβ

� (α2 + 1)
− bm1�(β + 1)tα2

� (α2 + 1)
,

u12 = −3b2�(β + 1)2tα1+α2

� (α1 + α2 + 1)
,

u22 = 0,

u13 = 0,

u23 = −9b3�(β + 1)3tα1+2α2

� (α1 + 2α2 + 1)
,

u1i = 0, i ≥ 4,

u2i = 0, i ≥ 4.

Hence, the exact solution of the system (48) along with the initial conditions (49) is
given by

u1(x, t) = u10 + u11 + u12 + u13,

= a − 3b2�(β + 1)2tα1+α2

� (α1 + α2 + 1)
+ bxβ,

u2(x, t) = u20 + u21 + u22 + u23,

= c + 3ab�(β + 1)tα2

� (α2 + 1)
− 9b3�(β + 1)3tα1+2α2

� (α1 + 2α2 + 1)

+ 3b2�(β + 1)tα2xβ

� (α2 + 1)
− bm1�(β + 1)tα2

� (α2 + 1)
.

When a = e, b = 2, and c = 3/2, this solution is the same as obtained using invariant
subspace method in [21].

Example 6.2 Consider the following two-coupled time and space fractional diffusion
equations:

∂α1u1
∂tα1

= ∂2βu1
∂x2β

+ μ
∂β

∂xβ

(
u2

∂βu2
∂xβ

)
+ ξu22,

∂α2u2
∂tα2

= ∂2βu2
∂x2β

+ η
∂2βu1
∂x2β

+ ζu1 + δu2, t > 0, 0 < α1,α2,β ≤ 1, (52)

where μ, ξ, η, ζ, δ are arbitrary constants, μ and ξ are not simultaneously zero, we
consider ξ = −2μλ2, ζ = ηκ2, along with the initial conditions
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u1(x, 0) = a cosβ(κxβ) + b sinβ(κxβ), u2(x, 0) = cEβ(−λxβ), a, b, c, λ, κ ∈ R.

(53)

Taking the Sumudu transform on both sides of Eq. (52)

S
[∂α1u1

∂tα1

]
= S

[∂2βu1
∂x2β

+ μ
∂β

∂xβ

(
u2

∂βu2
∂xβ

)
+ ξu22

]
,

S
[∂α2u2

∂tα2

]
= S

[∂2βu2
∂x2β

+ η
∂2βu1
∂x2β

+ ζu1 + δu2
]
. (54)

After using the property (3) of Sumudu transform, we get

S[u1(x, t)] = u1(x, 0) + ωα1S
[∂2βu1

∂x2β
+ μ

∂β

∂xβ

(
u2

∂βu2
∂xβ

)
+ ξu22

]
,

S[u2(x, t)] = u2(x, 0) + ωα2 S
[∂2βu2

∂x2β
+ η

∂2βu1
∂x2β

+ ζu1 + δu2
]
.

Taking the inverse Sumudu transform

u1(x, t) = S−1[u1(x, 0)] + S−1
(
ωα1S

[∂2βu1
∂x2β

+ μ
∂β

∂xβ

(
u2

∂βu2
∂xβ

)
+ ξu22

])
,

u2(x, t) = S−1[u2(x, 0)] + S−1
(
ωα2 S

[∂2βu2
∂x2β

+ η
∂2βu1
∂x2β

+ ζu1 + δu2
])

.

Using the recurrence relation (47), we get

u10 = S−1[u1(x, 0)] = a cosβ(κxβ) + b sinβ(κxβ),

u20 = S−1[u2(x, 0)] = cEβ(−λxβ),

u11 = S−1
(
ωα1 S

[∂2βu10
∂x2β

+ μ
∂β

∂xβ

(
u20

∂βu20
∂xβ

)
+ ξu220

])
,

= −aκ2tα1 cosβ(κxβ)

� (α1 + 1)
− bκ2tα1 sinβ(κxβ)

� (α1 + 1)
,

u21 = S−1
(
ωα2 S

[∂2βu20
∂x2β

+ η
∂2βu10
∂x2β

+ ζu10 + δu20
])

,

= cδtα2Eβ(−λxβ)

� (α2 + 1)
+ cλ2tα2Eβ(−λxβ)

� (α2 + 1)
,

u12 = aκ4t2α1 cosβ(κxβ)

� (2α1 + 1)
+ bκ4t2α1 sinβ(κxβ)

� (2α1 + 1)
,

u22 = cδ2t2α2Eβ(−λxβ)

� (2α2 + 1)
+ 2cδλ2t2α2Eβ(−λxβ)

� (2α2 + 1)
+ cλ4t2α2Eβ(−λxβ)

� (2α2 + 1)
,
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u13 = −aκ6t3α1 cosβ(κxβ)

� (3α1 + 1)
− bκ6t3α1 sinβ(κxβ)

� (3α1 + 1)
,

u23 = cδ3t3α2Eβ(−λxβ)

� (3α2 + 1)
+ 3cδ2λ2t3α2Eβ(−λxβ)

� (3α2 + 1)
+ 3cδλ4t3α2Eβ(−λxβ)

� (3α2 + 1)

+ cλ6t3α2Eβ(−λxβ)

� (3α2 + 1)
,

...

Hence, the series solution of two-coupled time and space fractional diffusion system
(52), (53) converges to the following closed form:

u1(x, t) = [a cosβ(κxβ) + b sinβ(κxβ)]Eα1(−κ2tα1),

u2(x, t) = cEα2 [(δ + λ2)tα2 ]Eβ(−λxβ).

Example 6.3 Consider the following two-coupled time and space fractional PDE:

∂αu1
∂tα

= ∂β

∂xβ

(∂4βu1
∂x4β

+ ηu2
∂βu2
∂xβ

)
+ ζu22,

∂αu2
∂tα

= ∂4βu1
∂x4β

+ δu1 + τu2, t > 0, 0 < α,β ≤ 1, (55)

here η, ζ, δ, τ all are arbitrary constants, η and ζ are not simultaneously zero (taking
ζ = −2η), along with the initial conditions

u1(x, 0) = bEβ(−xβ), u2(x, 0) = dEβ(−xβ), b, d ∈ R. (56)

Taking the Sumudu transform on both sides of Eq. (55)

S
[∂αu1

∂tα

]
= S

[ ∂β

∂xβ

(∂4βu1
∂x4β

+ ηu2
∂βu2
∂xβ

)
+ ζu22

]
,

S
[∂αu2

∂tα

]
= S

[∂4βu1
∂x4β

+ δu1 + τu2
]
.

After using the property (3) of Sumudu transform, we get

S[u1(x, t)] = u1(x, 0) + ωαS
[ ∂β

∂xβ

(∂4βu1
∂x4β

+ ηu2
∂βu2
∂xβ

)
+ ζu22

]
,

S[u2(x, t)] = u2(x, 0) + ωαS
[∂4βu1

∂x4β
+ δu1 + τu2

]
. (57)

Taking the inverse Sumudu transform on both sides of Eq. (57)



Exact Solutions of Fractional Partial Differential Equations … 177

u1(x, t) = S−1[u1(x, 0)] + S−1
(
ωαS

[ ∂β

∂xβ

(∂4βu1
∂x4β

+ ηu2
∂βu2
∂xβ

)
+ ζu22

])
,

u2(x, t) = S−1[u2(x, 0)] + S−1
(
ωαS

[∂4βu1
∂x4β

+ δu1 + τu2
])

. (58)

In view of the recurrence relation (47)

u10 = S−1[u1(x, 0)] = Eβ(−xβ),

u20 = S−1[u2(x, 0)] = Eβ(−xβ),

u11 = S−1
(
ωαS

[ ∂β

∂xβ

(∂4βu10
∂x4β

+ ηu20
∂βu20
∂xβ

)
+ ζu220

])
,

= −bEβ(−xβ)tα

�(α + 1)
,

u21 = S−1
(
ωαS

[∂4βu10
∂x4β

+ δu10 + τu20
])

,

= bδEβ(−xβ)tα

�(α + 1)
+ bEβ(−xβ)tα

�(α + 1)
+ dτEβ(−xβ)tα

�(α + 1)
,

u12 = bEβ(−xβ)t2α

�(2α + 1)
,

u22 = bδτEβ(−xβ)t2α

�(2α + 1)
− bδEβ(−xβ)t2α

�(2α + 1)
+ bτEβ(−xβ)t2α

�(2α + 1)

− bEβ(−xβ)t2α

�(2α + 1)
+ dτ 2Eβ(−xβ)t2α

�(2α + 1)
,

u13 = −bEβ(−xβ)t3α

�(3α + 1)
,

u23 = bδτ 2Eβ(−xβ)t3α

�(3α + 1)
− bδτEβ(−xβ)t3α

�(3α + 1)
+ bδEβ(−xβ)t3α

�(3α + 1)
+ bτ 2Eβ(−xβ)t3α

�(3α + 1)

− bτEβ(−xβ)t3α

�(3α + 1)
+ bEβ(−xβ)t3α

�(3α + 1)
+ dτ 3Eβ(−xβ)t3α

�(3α + 1)
,

u14 = bEβ(−xβ)t4α

�(4α + 1)
,

u24 = bδτ 3Eβ(−xβ)t4α

�(4α + 1)
− bδτ 2Eβ(−xβ)t4α

�(4α + 1)
+ bδτEβ(−xβ)t4α

�(4α + 1)

− bδEβ(−xβ)t4α

�(4α + 1)
+ bτ 3Eβ(−xβ)t4α

�(4α + 1)
− bτ 2Eβ(−xβ)t4α

�(4α + 1)
+ bτEβ(−xβ)t4α

�(4α + 1)

− bEβ(−xβ)t4α

�(4α + 1)
+ dτ 4Eβ(−xβ)t4α

�(4α + 1)
,

...
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Hence, the series solution of two-coupled time and space fractional PDE (55) along
with the initial conditions (56) converges to

u1(x, t) = bEα(−tα)Eβ(−xβ), τ �= 1, (59)

u2(x, t) =
(
dEα(τ tα) + b

( 1 + δ

1 + τ

)[
Eα(τ tα) − Eα(−tα)

])
Eβ(−xβ). (60)

Note: For α = β = 1, the solutions (59), (60) match with as discussed in [22].

Example 6.4 Consider the following time and space fractional system of PDEs:

∂α1u1
∂tα1

= ∂3βu22
∂x3β

+ η
∂2β

∂x2β

(
u21

∂βu2
∂xβ

)
,

∂α2u2
∂tα2

= ∂3βu21
∂x3β

+ ζ
∂2β

∂x2β

(
u22

∂βu1
∂xβ

)
, t > 0, 0 < α1,α2,β ≤ 1, (61)

where η, ζ �= 0 are arbitrary constants, along with the initial conditions

u1(x, 0) = a + bxβ, u2(x, 0) = c + dxβ, a, b, c, d ∈ R. (62)

Taking the Sumudu transform on both sides of Eq. (61)

S
[∂α1u1

∂tα1

]
= S

[∂3βu22
∂x3β

+ η
∂2β

∂x2β

(
u21

∂βu2
∂xβ

)]
,

S
[∂α2u2

∂tα2

]
= S

[∂3βu21
∂x3β

+ ζ
∂2β

∂x2β

(
u22

∂βu1
∂xβ

)]
.

Using the property (3) of Sumudu transform, we get

S[u1(x, t)] = u1(x, 0) + ωα1 S
[∂3βu22

∂x3β
+ η

∂2β

∂x2β

(
u21

∂βu2
∂xβ

)]
,

S[u2(x, t)] = u2(x, 0) + ωα2 S
[∂3βu21

∂x3β
+ ζ

∂2β

∂x2β

(
u22

∂βu1
∂xβ

)]
. (63)

Taking inverse Sumudu transform on both sides of Eq. (63)

u1(x, t) = S−1[u1(x, 0)] + S−1
(
ωα1 S

[∂3βu22
∂x3β

+ η
∂2β

∂x2β

(
u21

∂βu2
∂xβ

)])
,

u2(x, t) = S−1[u2(x, 0)] + S−1
(
ωα2 S

[∂3βu21
∂x3β

+ ζ
∂2β

∂x2β

(
u22

∂βu1
∂xβ

)])
.

In view of the recurrence relation (47) we get

u10 = S−1[u1(x, 0)] = a + bxβ,

u20 = S−1[u2(x, 0)] = c + dxβ,
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u11 = S−1
(
ωα1 S

[∂3βu220
∂x3β

+ η
∂2β

∂x2β

(
u210

∂βu20
∂xβ

)])
,

= ηb2d�(β + 1)�(2β + 1)tα1

� (α1 + 1)
,

u21 = S−1
(
ωα2 S

[∂3βu210
∂x3β

+ ζ
∂2β

∂x2β

(
u220

∂βu10
∂xβ

)])
,

= ζbd2�(β + 1)�(2β + 1)tα2

� (α2 + 1)
,

u1n = 0, n ≥ 2,

u2n = 0, n ≥ 2.

Thus, the exact solution of the fractional system (61) along with initial conditions
(62) is given by

u1(x, t) = a + bxβ + ηb2d�(β + 1)�(2β + 1)tα1

� (α1 + 1)
,

u2(x, t) = c + dxβ + ζbd2�(β + 1)�(2β + 1)tα2

� (α2 + 1)
.

7 Conclusions

Sumudu transform iterative method is developed by combining Sumudu transform
and DJM [5]. This approach is suitable for getting exact solutions of time and space
FPDEs and as well as systems of them.We demonstrate its applicability by solving a
large number of nontrivial examples.Although the combination of Sumudu transform
with other decomposition methods such as HPM and ADM has been proposed in the
literature [10, 11], the combination of Sumudu transform with DJM gives better and
more efficient method as we do not need to construct homotopy or find Adomian
polynomials.
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