
Dynamic Key Management Scheme in IoT

Po-Wen Chi1(B) and Ming-Hung Wang2

1 Department of Computer Science and Information Engineering,
National Taiwan Normal University, Taipei, Taiwan, R.O.C.

neokent@gapps.ntnu.edu.tw
2 Department of Information Engineering and Computer Science,

Feng Chia University, Taichung, Taiwan, R.O.C.
mhwang@fcu.edu.tw

Abstract. While IoT becomes more and more popular, security
becomes an important issue when IoT deployment. Considering there
are lot of mobile device, it is frequent for member joining and leav-
ing. Therefore, traditional key agreement schemes are not suitable for
dynamic IoT environments. In this paper, we propose a dynamic key
management scheme to avoid key update overhead when membership
changing.

Keywords: Internet of Things (IoT) · Group key management

1 Introduction

IoT (Internet of Things) has enabled a large number of connected devices to
communicate with each other inside a private network, e.g., factory, farm, school,
etc. These devices transit sensor records, machine status, and even sensitive
data. Thus, security issues raised in communication between devices have become
crucial and need to be addressed. Currently, many systems have leveraged the
public key infrastructure to achieve a secure data transmission. However, in
a private IoT, the computation power may be insufficient to support the key
management of such a large number of individual machines with different keys.
Moreover, there are more and more wearable devices and these devices move
around with people. So we need a new key management scheme to support the
dynamic member environment.

In this study, we propose to a dynamic key management scheme for IoT. We
divide sensors into three groups. One group is for mobile sensors and other two
groups are for static sensors. The difference between these two static sensors
is their computational power. For example, when a traveler checks in a hotel,
he may get a lightweight device which can access other hotel facilities. The
device belongs to the first group. When the user enters a room, the device can
access other room’s field agents through a control unit. The control unit belongs
to group 2 and field agents belong to group 3. In this paper, we move most
heavy computational works to the static and powerful node to support other
c© Springer Nature Singapore Pte Ltd. 2019
C.-Y. Chang et al. (Eds.): ICS 2018, CCIS 1013, pp. 559–566, 2019.
https://doi.org/10.1007/978-981-13-9190-3_62

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9190-3_62&domain=pdf
https://doi.org/10.1007/978-981-13-9190-3_62


560 P.-W. Chi and M.-H. Wang

power constrained nodes’ membership changing. We show that this scheme can
decrease key update requirements even under frequent group 1 node handover
events.

2 Background and Related Work

In this section, we briefly introduce the background techniques used in our
scheme and some related works in this topic.

2.1 Blom’s Key Pre-distribution Scheme [3]

Blom proposed a key pre-distribution scheme that allows any two nodes to find
a secret key between them. Given total n nodes, one node does not require to
store n−1 keys for other nodes. Instead, the node only takes O(λ) memory space
where λ is much smaller than n. The trade-off is that Blom’s scheme is not fully
resilient against the node capture attack. If an attacker compromises more than
λ modes, the attacker can crack the system can get the pairwise key between any
two nodes. This is called λ-secure. Blom’s key pre-distribution scheme includes
three phases which are briefly introduced as follows.

1. Environment Setup. Given total node number n, the trusted authority,
which will be called key server later, first creates a generating matrix G of
size (λ + 1) × n. λ is a security parameter described above. This matrix G is
public information. Any λ+1 columns of G must be linearly independent. This
can be done through a Vandermonde matrix1. The key server first selects a
prime q where q > n and then randomly picks a primitive element s of GF (q)
to generate the matrix.

2. Key Space Setup. The key server randomly generates a symmetric matrix
D of size (λ + 1) × (λ + 1) over GF (q). D is kept secret and is not disclosed
to any nodes. The key server calculates A = (D · G)T . For a node i, the key
server distributes i-th row of A to the node.

3. Pairwise Key Agreement. Suppose node i and node j want to come out
a pairwise secret key. Since D is symmetric, we can show that A · G is also
symmetric. The proof is as follows.

A · G = (D · G)T · G = GT · DT · G = GT · D · G = GT · AT = (A · G)T .

Node i calculates ki,j , which indicates the element located on i-th row and
j-th column of the matrix A · G. Note that node i can derive ki,j with i-th
row of A. Node j calculates kj,i of A · G similarly. Since A · G is a symmetric
matrix, we can have ki,j = kj,i and therefore ki,j can be used as the pairwise
key.

1 In Blom’s work, it is not required to use a Vandermonde matrix. Here we use the
Vandermonde matrix for convenience and the storage issue.



Dynamic Key Management Scheme in IoT 561

In 2005, Du et al. applied this idea with a random key distribution idea
to build a sensor key management scheme [4]. In this paper, we base Blom’s
key pre-distribution work to build a dynamic key management scheme for IoT.
Because of the dynamic characteristic in IoT, λ-security is not acceptable. So
we enhance Blom’s work to support more than λ changes in IoT.

2.2 Related Works

There are lots of works regarding secure and efficient key management in IoT
and sensor networks. When considering the membership changing issue, most
researchers use group key management to update keys efficiently. Logical Key
Hierarchy (LKH) [5] is one of the most common group key management scheme.
LKH uses a tree structure to represent users and their own keys. The update
process takes O(log n) messages for n users. One way function tree is another
efficient group key management scheme based on the tree architecture [2]. Park et
al. proposed a group key management based on Chinese Remainder Theorem so
that one encryption key can be used for multiple decryption keys [6]. Abdmeziem
et al. separate devices into several groups to reduce key update overhead [1].
Veltri et al. decrease membership changing overhead through time partitioning
techniques [7].

Unlike the above techniques, in this paper we drop the group key idea and
use dynamic key generation concept for applying dynamic IoT environments. So
in our scheme, the key update process is not necessary.

3 Proposed Scheme

In this section, we will introduce our scheme and show how it works when han-
dling membership changes. First, we give an overview of the proposed scheme.
Then we introduce the attack model. In Sect. 3.3, we show how the dynamic key
agreement works. Finally, we use the dynamic key agreement approach to build
a IoT key management system.

3.1 Overview

Our proposed scheme is a two-tier key management architecture with three dif-
ferent roles, user, broker and device. The user is an entity that will move
around and handover between brokers. The broker is an entity that is located
in a fixed-position and will not join or leave the system. The broker is in charge
of forwarding data between users and devices. Here the broker is semi-trusted
which implies the broker cannot read the content of packets that it relays. The
device is an entity that is also on a fixed position and belongs to some broker.
When a user wants to communicate with a device, the user needs to transfer data
to the broker first and the broker then sends data to the device. Each device
belongs to different functional group, like the temperature sensor, the humidity
sensor, the door lock, the IP camera and so on. All entities have their own unique



562 P.-W. Chi and M.-H. Wang

identity in their role groups. There is an additional entity called Key Distribu-
tion Center (KDC) which is in charge of key management. The overall system
model is shown in Fig. 1.

Fig. 1. System model.

In this model, there are three pairwise keys, K1,K2,K3. They are used to
protect the communication channels between the user and the broker, the broker
and the device and the user and the device respectively. The dotted line in Fig. 1
implies the logical channel. When sending data to some device, the user will
encrypt data through K1 and K3 and send the cipher to the broker. The broker
then decrypts the cipher with K1, re-encrypts with K2 and forwards the new
cipher to the device. The device finally derives data after decryption with K2

and K3.
Note that in this paper, the user also includes mobile devices, like wearable

sensors.

3.2 Attacker Model

The attacker’s goal is to get data access right without proper permission. For
example, the attacker can be an outsider who is not allowed to get data but tries
to decrypt data. Another example is that the attacker is a compromised device
that attempts to get data which should be secret to it. In this case, undoubtedly,
the compromised device can legally get data that it has right to access. So this
case will not be considered as a successful attack.

3.3 Dynamic Pairwise Key Agreement Approach

In our system model, there will be three pairwise keys for three different channels.
Here we just focus on the pairwise key agreement mechanism and the next
subsection will show how this approach can be used to build a key management
system in IoT. In this approach, we divide nodes into two groups and members
belong to these two groups want to communicate with others. One group support
dynamic membership while the other group is more static. There are five phases
in this approach and are described below.



Dynamic Key Management Scheme in IoT 563

1. Setup(λ,m, n). Given two groups that have m and n members respectively.
For simplicity, we call them group 1 and group 2. Let m is greater than n.
KDC first creates a generating matrix G of size (λ+1)× (m′ +n) where m′ is
much smaller than m. Any λ+1 columns of G must be linearly independent.
KDC finds a transformation function ρ that maps from m to m′. We can use
a hash function as the transformation function. KDC selects a prime q where
q > n and then randomly picks a primitive element s of GF (q). The matrix
will be:

G =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
s s2 s3 · · · sm+n

s2 (s2)2 (s3)2 · · · (sm+n)2
...

sλ (s2)λ (s3)λ · · · (sm+n)λ

⎤
⎥⎥⎥⎥⎥⎦

.

Each node only needs one element s to record G.
2. Key Space Setup. KDC randomly generates a symmetric matrix D of size

(λ + 1) × (λ + 1) over GF (q) with that all elements on the main diagonal
are zeros. D is kept secret and is not disclosed to others. KDC also picks a
pseudo random function σ. σ is secret to group 1 but is well known to group
2. KDC calculates A = (D ·G)T . For node i in group 2, KDC distributes i-th
row of A and σ to the node i. For a node j in group 1, KDC gets (ρ(j)+n)-th
row of A as v. Then KDC calculates v′ as follows:

v′
k = vk + σ(j, k) · (sρ(j)+n)k,∀k = 0, . . . , λ.

KDC distributes v′ to the node j. This implies every node j in group 1 has
its own unique secret matrix Dj where the element on the main diagonal is
σ(j, k),∀k = 0, . . . , λ. Other elements are same with those in D. For simplicity,
we use Aj to indicate (Dj · G)T .

3. Pairwise Key Agreement. Suppose node j in group 1 and node i in group
2 want to come out a pairwise secret key. Since Dj is symmetric, we can show
that Aj · G is also symmetric:

Aj · G = (Dj · G)T · G = GT · DT
j · G = GT · Dj · G = GT · AT

j = (Aj · G)T .

Node i calculates kρ(j)+n,i, which indicates the element located on (ρ(j)+n)-
th row and i-th column of the matrix Aj · G. As for node i in group 2, node
i needs to calculate i-th row of Aj , v’, from i-th row of A, v, as follows:

v′
k = vk + σ(j, k) · (si)k,∀k = 0, . . . , λ.

So node i can get ki,ρ(j)+n of the matrix Aj · G. Because the matrix Aj · G
is symmetric, ki,ρ(j)+n = kρ(j)+n,i and therefore node i and node j can share
the same key.

4. User Joining. Here we focus on group 1 member joining. KDC assigns a
new identity to the member and distributes the key space information for the
new comer as described in the Key Space Setup phase. Note that existing
deployed nodes do not need to do any changes.



564 P.-W. Chi and M.-H. Wang

5. User Leaving. Here we focus on group 1 member leaving. KDC simply
broadcasts the node identity to the whole system. When the group 2 node
receives the identity, it will simply add the identity to its revocation list.
The group 2 member will reject the key agreement process with the group 1
member whose identity is on the revocation list.

In this pairwise key agreement approach, it is easily shown that computa-
tional cost required by the group 1 member is less than the group 2 member
since the group 2 member needs additional λ + 1 pseudo random functions. The
group 1 membership changing event costs almost nothing since the deployed
environment does not require the key update process.

3.4 IoT Key Management Scheme

In our system model, there are three roles as shown in Fig. 1. In general, the
user is dynamic while other two roles are static. That is, users join and leave fre-
quently. As for the other two roles, they seldom changes once deployed. Besides,
the broker is often more powerful than other two and the number of the user
group is overwhelming.

K1,K2,K3 are established from the approach described in Sect. 3.3. Note
that there are three independent environments for three keys. According to the
above characteristics, for K1 and K2, we make the broker in charge of the heavy
computational work, which means the broker group is group 2 defined in the
previous subsection. So the user and the device will not use too much computa-
tional power on pairwise key establishment. As for the K3, since there are more
users than devices, we prefer the device is group 2 and the user is group 1. To
ease the device’s computational burden, in our design, we make the broker to
calculate σ(j, k) · (si)k,∀k = 0, . . . , λ in the K3 environment for the device. The
broker attaches these elements to data when forwarding data to the device. That
is, KDC puts σ of K3 to the broker instead of the device. This can move some
computational works to a more powerful entity. Note that the broker does not
have any secret information D of K3 and therefore it is impossible for the broker
to derive the pairwise key K3.

4 Evaluation

In this section, we discuss the computational overhead of our proposed scheme.
We also discuss the probability of collusion attacks.

4.1 Computational Overhead

In this subsection, we will evaluate the computational costs required in our
scheme. We implement our scheme on an Intel i7-7700 CPU including the user
node, the group node and the device node. Though it is much more powerful
than most IoT devices, here we just check the time difference. Since K1,K2,K3

are from the same agreement scheme, here we just focus on K1.



Dynamic Key Management Scheme in IoT 565

First, we check the pairwise key establishment part. Note that we do not
care the environment setup phase and the key space setup phase run by KDC
because KDC is much more powerful than other nodes and the setup process is
infrequent. The evaluation result is shown in Fig. 2a. Group 1 is the user group
and group 2 is the broker group. We can see that the group 1 node takes less
computation time than the group 2 node. The reason is that group 2 node needs
to recover the user’s secret matrix from D. We use AES as our pseudo random
function in our implementation. Note that the target group 1 number will not
affect the computation time because it depends on O(λ) instead of the mapping
target group size.

Next, we compare the membership changing overhead in KDC between our
method and LKH. The comparison result is presented in Fig. 2b. In the LKH
scheme, when a node joins or leaves, existing nodes needs to update their keys
related to the changing node. That is, given totally n nodes, KDC in LKH needs
to encrypt log(n) times. As for our proposed scheme, KDC simply broadcasts
the leaving node identity when a group 1 node leaves. For the node joining event,
KDC distributes key agreement information to the newly coming node without
informing existing nodes. That is, no encryption is required when membership
changing. So the KDC computational cost in our scheme is almost zero.

(a) Pairwise key agreement. (b) Membership changing.

Fig. 2. Computational overhead.

4.2 Collusion Attack Analysis

In this subsection, we discuss how the collusion attack affect our key management
system. There are three keys in our system and they are established through the
same agreement approach. So here we just use K1 as an example for analysis.
Here are two groups here, the user group and the device group. Since any λ + 1
columns of the matrix G are linearly independent, an attacker must capture
more than λ + 1 nodes with the same secret matrix D to recover D. However,
since every node in the user group has its own secret, all colluded nodes cannot
get secrets of other nodes.

Suppose one node in the broker group is compromised. That is, the secret
pseudo random permutation function σ is released to an attacker. Because in our
scheme, the user node identity is mapped to a smaller target group through a



566 P.-W. Chi and M.-H. Wang

mapping function ρ, compromising one user node implies compromising all user
nodes that map to the same target. Given the target group size m′ and a security
parameter λ. Suppose m′ is much smaller than m, which is the user group size.
The probability that all K1 pairwise keys are broken with n compromised user
nodes and one compromised broker node is

P (n) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −
λ∑

k=1

1
m′n (Cm′

k · kn), n > λ, λ < m′

1
m′n

m′∑
k=0

(−1)k · Cm′
k · (m′ − k)n, n > m′, λ ≥ m′

.

5 Conclusion and Future Work

In this paper, we propose an IoT pairwise key management scheme that supports
partially dynamic membership which means this system supports only some kind
of devices joining or leaving. The overhead of membership changing costs less
than other existing techniques. Considering some practical scenarios, we believe
that the proposed scheme is suitable for the IoT environment.

Our next step will focus on the membership changing handling of the other
group. Though in our construction, the proposed approach can support up to λ
nodes leaving, it cannot support node joining2. Besides, λ may not be enough in
a dynamic environment. We will try to solve this problem to make the scheme
more applicable.

References

1. Abdmeziem, M.R., Tandjaoui, D., Romdhani, I.: A decentralized batch-based group
key management protocol for mobile internet of things (DBGK). In: 2015 IEEE
International Conference on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing, pp. 1109–1117, October 2015

2. Balenson, D., McGrew, D., Sherman, A.: Key management for large dynamic groups:
One-way function trees and amortized initialization (1999)

3. Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T.,
Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39757-4 22

4. Du, W., Deng, J., Han, Y.S., Varshney, P.K., Katz, J., Khalili, A.: A pairwise key
predistribution scheme for wireless sensor networks. ACM Trans. Inf. Syst. Secur.
8(2), 228–258 (2005)

5. Harney, H.: Logical key hierarchy protocol. SMUG, March 1999
6. Park, M.H., Park, Y.H., Jeong, H.Y., Seo, S.W.: Key management for multiple

multicast groups in wireless networks. IEEE Trans. Mobile Comput. 12(9), 1712–
1723 (2013)

7. Veltri, L., Cirani, S., Busanelli, S., Ferrari, G.: A novel batch-based group key man-
agement protocol applied to the internet of things. Ad Hoc Netw. 11(8), 2724–2737
(2013)

2 Of course, users can prepare a larger pool for new coming nodes.

https://doi.org/10.1007/3-540-39757-4_22

	Dynamic Key Management Scheme in IoT
	1 Introduction
	2 Background and Related Work
	2.1 Blom's Key Pre-distribution Scheme 10.1007sps3sps540sps39757sps4sps22
	2.2 Related Works

	3 Proposed Scheme
	3.1 Overview
	3.2 Attacker Model
	3.3 Dynamic Pairwise Key Agreement Approach
	3.4 IoT Key Management Scheme

	4 Evaluation
	4.1 Computational Overhead
	4.2 Collusion Attack Analysis

	5 Conclusion and Future Work
	References




