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Abstract. Scene recognition is one of the hallmark tasks in computer
vision, as it provides rich information beyond object recognition and
action recognition. It is easy to accept that scene images from the same
class always include the same essential objects and relations, for example,
scene images of “wedding” usually have bridegroom and bride next to
him. Following this observation, we introduce a novel idea to boost the
accuracy of scene recognition by mining essential scene sub-graph and
learning a bi-enhanced knowledge space. The essential scene sub-graph
describes the essential objects and their relations for each scene class.
The learned knowledge space is bi-enhanced by global representation on
the entire image and local representation on the corresponding essential
scene sub-graph. Experimental results on the constructed dataset called
Scene 30 demonstrate the effectiveness of our proposed method.
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1 Introduction

Scene recognition is one of the most challenging tasks in image classification and
various scene recognition methods have been proposed over the past decades
[3,12,15,21-23,25,26,29]. To deal with large intra-class variance caused by nui-
sance factors such as pose, viewpoint and occlusion, it normally requires two
stages for a scene recognition solution, that is, scene representation and scene
classification.

Scene representation aims to fully use all the information of scene images to
extract discriminative features. It explores not only the generalized characteris-
tics in the same category but also the distinctive characteristics among different
categories. The representation methods can be mainly classified into two cate-
gories, hand-crafted and deeply-learned representations. In early studies, hand-
crafted representation was popular due to its simplicity and low computational
cost. These methods only capture low-level information, such as texture and
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structure of the information. In recent works, deeply-learned feature extraction
methods exploit high-level semantic information in scene images by using Con-
volutional Neural Networks (CNNs).

In this paper, we propose an effective scene recognition framework, which
firstly extracts the essential scene sub-graph for each scene class, then learns a
classifier to distinguish different scene classes by learning a bi-enhanced knowl-
edge space. The whole work is based on the scene images and their corresponding
scene graphs. The main contributions of our work are summarized as follows:

— We propose a novel framework to extract discriminative representation from
both entire image and essential scene sub-graph for scene recognition. The
learned bi-enhanced knowledge space is proved to be useful for classification.

— This work explores a pioneer study on learning knowledge graph, i.e. essen-
tial scene sub-graph, for scene recognition. The proposed approach has great
potential for other categorization tasks, while enables people to think about
how knowledge graph can better drive current tasks.

The rest of the paper is organized as follows. Section 2 briefly reviews related
work. The proposed framework including the essential scene sub-graph mining
and the bi-enhanced knowledge space learning is described in Sect.3. Experi-
mental results are reported and discussed in Sect. 4, followed by the conclusion
in Sect. 5.

2 Related Work

In this section, we briefly review the related work on scene representation and
scene classification.

Scene representation is the most important step in scene recognition task,
which aims to extract discriminative features from scene images. GIST [15],
which is one of hand-crafted global features, lexicographically converts an entire
scene image into a high-dimensional feature vector, but fails to exploit local
structure information in scenes, especially the indoor scenes with complex spa-
tial layouts. Methods focusing on local features, such as OTC [14] and CEN-
TRIST [22], firstly describe the structure pattern of each local patch and then
combine the statistics of all patches into a concatenated feature vector. Recently,
as Convolutional Neural Networks (CNNs) have made remarkable progress on
image recognition, deeply-learned methods have been widely adopted. Gong et
al. [7] proposed a multi-scale orderless pooling (MOP) method to extract fully-
connected features on image local patches. While these methods have achieved
encouraging performance, a largely overlooked aspect is the role of the scale
and its relation with the feature extractor in a multi-scale scenario. Herranz
et al. [8] adapted the feature extractor to each particular scale, which com-
bined ImageNet-CNNs [17] and Places-CNNs [29] to improve classification per-
formance. However, the essential objects and their relations are still not fully uti-
lized, while much information extracted from patches is redundant. Furthermore,
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most of the recent methods need to produce the proposal of each objects, which
push the computational costs too high when dealing with large scale dataset.

Over the past decades, many methods have been proposed for scene classifi-
cation [2,6,16,19,20,27,28] and can be categorized into two groups: generative
models and discriminative models. Generative models usually adopt hierarchical
Bayesian to express various relations in a complex scene, such as Markov random
fields (MRF) [6], hidden Markov model (HMM) [19] and latent Dirichlet alloca-
tion (LDA) [1]. However, these models need to build complex probabilistic graph
model and require high computational cost. The discriminative models extract
feature descriptors from images and then encode them into a fixed length vector
for classification. The typical classifiers include logistic regression and support
vector machine (SVM) [2]. Especially, the SVM classifier has been widely used
for scene classification. Object bank (OB) [13] and deformable part based model
(DPM) [5] are representative examples of training a feature classifier for scene
classification. Unlike the generative models, the parameters of discriminative
models are easy to learn for feature classification.
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Fig. 1. Overview of proposed framework. The model consists of: (1) essential scene
sub-graph mining; (2) bi-enhanced knowledge space learning for scene recognition.

3 Our Approach

Our proposed framework is illustrated in Fig. 1, which contains two key stages:
essential scene sub-graph mining and bi-enhanced knowledge space learning.
Firstly, we adopt a statistical method to mine the essential scene sub-graph
for each scene class. Next, the bi-enhanced knowledge space is sought for scene
image recognition by iteratively learning representations from essential scene
sub-graph and entire image. In this section, we present the details of the proposed
framework.
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3.1 Essential Scene Sub-graph Mining

The scene graph is a graph of each scene image to describe all the objects,
attributes and inter-object relations. Our approach attempts to mine the essen-
tial scene sub-graph by using the similarity between the scene graphs from the
same class.

For essential scene sub-graph mining, we statistically analyze the frequencies
of objects for each scene. Firstly, we count the occurring frequencies of all object
sets for each scene class. Next, we choose object sets with the highest frequen-
cies and size varying from 1 to 6 for each scene class. Lastly, we calculate the
percentages of images including all the objects in above selected object sets for
each scene class, and then the average of them for all the scene classes. Taking
the scene of “tennis game” as an example, after counting the occurring frequen-
cies of all object sets in all “tennis game” scene images, we obtain that tennis
player surfacing out when object set size is 1 and 98.5% of images include it.
Similarly, tennis player, tennis court is selected when object set size is 2, with
76.4% of images include them. More details on essential scene sub-graph mining
are shown in Algorithm 1.

Algorithm 1. Essential Scene Sub-graph Mining

Input: Image set C; in the j-th scene class.

Output: Essential scene sub-graph(objects set OA]» that contains relations) for the j-th scene class
1: Initiate k[m][m] = 0 and a empty dictionary D;

2: for i =0 to N(C;) do
3 while ¢; has object do
4 S;.add(object)

5 end while
6: for object in S; do

7 if object not in D;.Keys() then
8 Djlobject] = Djlobject] + 1
9

: else
10: Djlobject] = 1
11: end if
12: end for
13: end for

14: pick Oy, = {01, 02,,,0m} from the top of D;
15: for n =0 to N(C;), i =0tom, =0 tom do
16: if (04,0;) has edge then

17: k[i][l) = k[i[I] + 1

18: end if

19: end for

20: if set(i,l,p,q) == 3 then

21: return O;=(01,02,03),(02 is the repeat object)
22: else N

23: return O;=(0;,0;,0p)

24: end if

3.2 Bi-enhanced Knowledge Space Learning

This section aims to illustrate the learning of a knowledge space that saves
useful and discriminative features from entire images and essential scene sub-
graph. The structure of the whole model is shown in Fig.2. It includes three
parts: (1) object-stacked network, which learns features from essential scene
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Fig. 2. Tlustration of the bi-enhanced knowledge space learning. () is the object-
stacked network and (2) describes the global network. The whole figure demonstrates
an iterative process for knowledge space learning.

sub-graph enhanced by global representation, (2) global scene network, which
learns features from the entire image enhanced by object-stacked representation,
and (3) bi-enhanced knowledge space optimization, which iteratively seeks the
knowledge space from both object-stacked representation learning and global
representation learning.

Inspired by Huang et al. [9] and considering the structure of essential scene
sub-graph, we adopt an object-stacked network to process three objects and
the relations in essential scene sub-graph as shown in Fig. 2. The object-stacked
network contains three separate convolutional blocks, a concentrated layer which
is adopted to combine the three-stream features, a 1 x 1 convolutional layer which
is to reduce dimension, and a fully-connected layer which is utilized to build a
knowledge space. The objective function is in Eq. (1):

m
wmin > (1701, 012,01) = hle) )+ AW 1)

i=1
where W and b are the weight and bias of the layers in network, respectively, m is
the number of all the scene images, f(+) is the output of the first fully-connected
layer f6 from object-stacked network, h(c;) is the global representation of image
¢; which is learned from global network. o;,, 0;,,0;, are the objects of essential
scene sub-graph cropped from image ¢; and h(-) is the output of the first fully-
connected layer from global scene network, \||W]|? is regularization term. Note
that the object 0;, which has relations to other two objects o0;,, 0, is fed into the
second stream. For example, for the scene of “tennis game”, the essential objects
are man, court and racket. The relations from essential scene sub-graph are the
man holding the racket and the man stands on the court. Obviously, man has
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the relations to both court and racket, and is inputted into the second stream. If
the image does not contain all three essential objects, we set the value of missing
object as 0.

Recall that our task is a classification problem, we add another 2 fully-
connected layers and softmax layer after fc6. The final objective function is
expressed in Eq. (2)

m m
I‘I}Vi,?’y ; Hf(oh » Oy Ois) - h(cl)H + €A| |W| |2 -4 ;(yl log(T(Oil ) Oig) 0i3)) (2)
where £ is used to determine whether to join regularization, v and 0 are the
parameters introduced to reduce the difference between the two losses that we
set 0.01 and 1. y; is the label of image ¢;, T(-) is the output of final softmax
layer in object-stacked network.

Similar to object-stacked network, we adopt a CNN model to learn global
representation as shown in Fig. 2. It contains five convolutional blocks, two fully-
connected layers and a softmax layer for classification. The dimension of the first
fully-connected layer is equal to the dimension of representation from object-
stacked network. The objective function is shown in Eq. (3):

Igvi,rjlaz [1A(ci) = f(0iys 06 01| + AW = B (yilog(H(ei)) — (3)
’ i=1

i=1

where H(-) is the output of final softmax layer in global scene network. The
parameters « and [ are utilized to balance these two losses, and p controls
whether to use regularization term. The meaning of the remaining parameters
is the same as before. We use mini-batch stochastic gradient descent (SGD)
to optimize Eq. (3). When Eq. (3) reaches an optima, we obtain the global
representation enhanced by object-stacked representation.

Based on the above mentioned two networks, an iterative process between
them is adopted. The iterative process is initiated by object-stacked network
with cross-entropy cost function instead of global representations. Next, at each
iteration, we update object-stacked representations by optimizing Eq. (2) which
is enhanced with global representations, and then adjust global representations
by optimizing Eq. (3) which is enhanced with object-stacked representations.
The knowledge space is optimized iteratively until convergence. For test, we
only employ the trained global network to predict the scene class.

4 Experiments

This section demonstrates the effectiveness of the learned bi-enhanced knowledge
space on Scene 30.

4.1 Datasets and Implementation

To better demonstrate the proposed method in large scale dataset, we construct
Scene 30 from Visual Genome [10]. The constructed Scene 30 contains 4608 color
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images of 30 different scenes including both indoor and outdoor scenes. The
number of images varies across categories with at least 50 images per category.
Each image has a corresponding scene graph. There are 10,034 objects and 30,000
types of relations in total in Scene 30. We split 85% of each class from the entire
dataset for training and the rest as test set. The object-stacked network and
global scene network are implemented using the open-source package Keras [4].
We adopt the VGG-16 model pre-trained in ImageNet [18]. In object-stacked
network, the cropped object patches are resized to 128 x 128, and the input
of global scene network are warped to a 224 x 224. The features of scene and
object-stacked network are extracted from the layer of fc6.

4.2 Result and Comparison

Table 1 shows the comparison results. From the table, we can see that the accu-
racy of the classification increased from 82.51% to 88.29% after two iteration
cycles. Moreover, through the bi-enhanced knowledge space learning, global
network and object-stacked network capture more meaningful and discrimina-
tive information. The accuracy of the classification in object-stacked network
increased from 89.60% to 90.32%. Similarly, the accuracy of the global network
also increased from 82.51% to 86.71% and then to 88.29% under the supervision
of local essential objects features.

Table 1. Recognition performance Table 2. Recognition performance com-
comparisons in different iterations parisons on Scene 30
Methods Accuracy Methods Accuracy
VGG-16 [18] 82.51% AlexNet [11] 72.40%
OSN-iterl 89.60% VGG-16 [18] 82.51%
OSN-iter2 90.32% PlaceNet205 (AlexNet) [29] | 72.19%
OSN-iter2 fc6 + SVM | 87.57% PlaceNet365 (AlexNet) [24] | 76.56%
GN-iterl 86.71% PlaceNet205 (VGG-16) [29] | 86.77%
GN-iter2 + SVM 87.43% PlaceNet365 (VGG-16) [24] | 86.67%
GN-iter2 88.29% HybridNet (AlexNet) [29] | 73.54%
HybridNet (VGG-16) [24] |87.08%
Our fc6 + SVM 87.43%
Ours 88.29%

We then evaluate our proposed methods on Scene 30 and compare it with
several recent CNN based methods. Table 2 records the recognition accuracy of
our approach and other methods where we achieve the highest recognition rate.
The method named “Our fc6 + SVM” extracts the feature in fc6 and trains
a SVM for classification. The method named “Ours” directly utilizes the global
network to predict the scene class. From the table, we have following 3 observa-
tions. (1) VGG-16 outperforms AlexNet. For example, VGG-16 in PlaceNet 365
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is 10.11% higher than AlexNet. Therefore, we choose VGG-16 as a basic model.
(2) the essential scene sub-graph is beneficial to scene recognition. The accuracy
of our approach is 1.52% higher than PlaceNet 365 (VGG-16) and 1.21% higher
than HybridNet 1365 (VGG-16). (3) The logistic regression is better than SVM
for scene classification. We analyze that our model is an end to end framework
for testing, while the SVM extracts the fc6 feature and then is optimized for
classification.

5 Conclusion

In this paper, we propose a novel framework to learn the discriminative repre-
sentations from both entire scene image and essential scene sub-graph. In future
work, we will focus on utilizing the probability graph model to mine the essen-
tial scene sub-graph, such as Markov random fields (MRF [6]), and build a more
accurate relationship between the scene image and objects.
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