
Design of Instruction Analyzer
with Semantic-Based Loop Unrolling

Mechanism in the Hyperscalar Architecture

Yi-Xuan Lu, Jih-Ching Chiu(&), Shu-Jung Chao, and Yong-Bin Ye

Department of Electric Engineering, National Sun Yat-Sen University,
Kaohsiung, Taiwan

b013011012@gmail.com,chiujihc@mail.ee.nsysu.edu.tw,

windy55367@gmail.com,zsefbvcx75321@gmail.com,

Abstract. Nowadays ILP processors can’t analyze the semantic information of
instruction thread to change instruction series automatically for increasing ILP
degree. High performance required programs such as image processing or
machine learning contain a lot of loop structure. Loop structure will be bounded
with the instruction number of one basic block. That cause processors are hard
to enhance the computing efficiency. The characteristics of the loop structure in
the program are as follows: (1) Instruction will be fetched from cache and be
decoded repeatedly. (2) The issued instructions are bounded by the loop body.
(3) There is data dependence between iterations. These factors will get worse the
poor ILP in the loop codes. In this paper, we propose an architecture called
semantic-based dynamic loop unrolling mechanism. The proposed architecture
can buffer the instruction series of nested loop, unroll it automatically by ana-
lyzing the instruction flow to find the loop body with the semantic of loop
instructions, store them to the instruction buffer, and dispatch them to target the
processor cores. The proposed architecture consists of three units: loop detect
unit (LDU), unrolling control unit (UCU) and loop unrolling unit (LUU). LDU
will parse the semantic of instructions to find the closed interval of the loop
body instructions. UCU will control LUU in the whole process. LUU will unroll
the loop based on the information collected by LDU. Loop controller will handle
the complementation overhead for branch miss prediction and the loop finish-up
codes. The verifications use ARM instructions generated by Keil lVision5
compiler. The results show that eliminating iteration dependence can improve
ILP by 140% to 180%.

Keywords: ILP of loop � Semantic of loop � Loop unrolling � Hyperscalar �
Nested loop

1 Introduction

Loop structures are the main portion of program [1]. The characteristics of the loop
structure are as follows: (1) Instruction will be fetched from cache and be decoded
again and again. (2) The repeat dependence of instructions in the loop body. (3) The
dependence relations between iterations. These factors will cause poor ILP in the

© Springer Nature Singapore Pte Ltd. 2019
C.-Y. Chang et al. (Eds.): ICS 2018, CCIS 1013, pp. 3–19, 2019.
https://doi.org/10.1007/978-981-13-9190-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9190-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9190-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9190-3_1&domain=pdf
https://doi.org/10.1007/978-981-13-9190-3_1

implementation of the loop for the super-scalar architecture. To improve the computing
efficiency of super-scalar architecture, and combine the characteristic of it. In this
paper, we propose an approach, called semantic analyzer for loop unrolling, which can
increase ILP of loops by parsing the semantics of instructions for collecting the
required information of loop unrolling. Loop structure has a specific ordering pattern in
machine codes, which produced by compiling it, by formulating the semantic of the
loop with the observations of this pattern, we can find the section of loop.

In this paper, we build a semantic-based dynamic loop unrolling mechanism on the
instruction analyzer in hyper-scalar architecture, we exploit the ILP for loop structures
by unrolling and eliminating iteration of the loop. The characteristics of the semantic-
based dynamic loop unrolling mechanism are as follows: (1) Parsing the semantic of
instructions to find the closed interval of the loop body instructions. (2) Promote the
ILP of loop instructions by eliminating its iteration dependence with an immediate
operation. (3) Analyzing the situation during loop unrolling and the relationship
between loops to achieve unrolling of a nested loop. (4) Update the data dependence
tag of instructions when the branch instruction is taken. (5) Flush the instructions which
should not be executed when the branch instruction taken happened. The concepts of
proposed architecture are shown in Fig. 1.

2 Related Work

In Hyper-scalar architecture [2–6], it allows the multi-core system to allocate the cores
in the system into a single processor system to accelerate of one program. The char-
acteristics of Hyper-scalar architecture are as follows: 1. It can group cores in processor
dynamically. 2. its architecture is high flexibility and scalability, 3. It can accelerate
single-threaded performance with several cores.

The instructions in Hyper-scalar architecture can be divided into two types as
follows by the dependence between them: 1. Intra-Dependence. 2. Inter-Dependence.
Hyper-scalar architecture solves Inter-Dependence by analyzing the dependence
between instructions dynamically and establishing a distributed system to exchange
information between cores.

Fig. 1. Concepts of semantic-based dynamic loop unrolling mechanism

4 Y.-X. Lu et al.

Figure 2 shows the architecture of Hyper-scalar. The Hyper-scalar architecture
dispatch instructions into cores based on the current hardware resources. To exchange
information from cores, Hyper-scalar architecture finds the data dependence of
instructions clearly by analyzing the relationship between instructions. In order to
communicate the information required by the instructions to each core correctly,
Hyper-scalar architecture proposed a distributed exchanging information system. It
adds information processing unit in each core, the unit is built to deal with the data
request from other cores and dispatch the request of the core itself to each core. By
connecting cores in the processor, an information exchanging network is built.

Hyper-scalar architecture analyzes the dependence of instructions by instruction
analyzer (IA). IA analyzes the relationship between instructions and generates the
dependence tag of instructions. Virtual shared register files (VSRF) deals with the
information exchanging between cores by dependence tag.

Comparing Hyper-scalar architecture and super-scalar architecture, both of them
can analyze the dependence of instructions, and dispatch the instruction which data are
prepared. By building an information exchanging system of cores, Hyper-scalar
architecture has a better performance than super-scalar architecture, but it still has a
poor performance when facing loop structure [7–10].

Fig. 2. Hyper-scalar architecture

Design of Instruction Analyzer with Semantic-Based Loop Unrolling Mechanism 5

3 Dynamic Loop Unrolling Mechanism

This paper proposed the dynamic loop unrolling mechanism based on semantic anal-
ysis of nested loop can analyze the semantic information of instructions and find the
interval of a loop. It can also unroll loop and dispatch to each core to improve the ILP
as Fig. 3 shows.

To represent the instruction flow of loop structure, we define six types of nodes:
Jump node, Normal node, Counting times node, Flag set node, Branch node, Initial
time node, shown as Fig. 4.

Observe instruction flow of loop, will find the law of compiler, shows as Fig. 5.
With the law, we can collect the information in each layer of loop.

3.1 System Architecture

The system architecture proposed by this paper shows as Fig. 6. It can be divided into
three parts:

3.1.1 Loop Detect Unit (LDU)
Loop detect unit located in the IA, it analyzes the information came from Pre-Decoder
to find the instruction interval of loop. When finding the interval of loop, it will record
the Loop Address Information into Loop Buffer inside itself. Loop detect unit compares
the instruction which was caught from Instruction Cache with detected loop interval, if

Fig. 3. Loop unrolling

Fig. 4. Six types of node

6 Y.-X. Lu et al.

the address is in the interval, it will record the instruction and its operand frame from
Pre-Decoder into Loop Instruction Table and Parsing Table.

When Loop Address Information was collected completely, loop-detect-unit will
compare the information with other loop’s address information to find nested loop

Fig. 5. The instructions of loop after compiled

Fig. 6. System architecture

Design of Instruction Analyzer with Semantic-Based Loop Unrolling Mechanism 7

structure in the instruction flow. Loop detect unit also record the relationship between
loops. After all information in the loop interval in the instruction flow is collected
completely, it will send a signal to unrolling control unit (UCU) and dispatch the
instruction and its operand frame to UCU according to its request.

3.1.2 Unrolling Control Unit (UCU)
Unrolling control unit is designed to deal with unrolling nested loop. It sends a data
request to loop detect unit to get instructions and its operand frame from Loop
Instruction Table and Parsing Table and dispatches to loop unrolling unit (LUU) before
start unrolling. The dynamic loop unrolling mechanism proposed by this paper divided
nested loop structure into inner layer loop and outer layer loop. Dynamic loop unrolling
mechanism unrolls the outer layer loop first to get the number of executions of outer
layer loop, then unrolls the inner layer loop continuously until the completed times of
unrolling equals to the number of executions of outer layer loop. Unrolling control unit
decides the number of unrolling loop according to the relationship between loops and
the unrolling condition.

3.1.3 Loop Unrolling Unit (LUU)
Loop unrolling unit is designed to deal with loop unrolling, it promotes ILP by
eliminating the iteration dependence. Loop unrolling unit detects and eliminates the
iteration dependence with eliminating iteration dependence unit, when getting the
parsed operand frame from UCU. After eliminating the iteration dependence, loop
unrolling unit will generate dependence tag and loop tag to record the execution times
of loop. The generated tag and instruction will be pushed into the instruction dispatch
queue, and wait to be dispatched to cores.

If unrolling is completed, dynamic loop unrolling mechanism needs to update the
data dependence of VSRF mapping table and memory tag mapping table in IA. It
updates the data dependence with loop VSRF mapping table and loop memory tag
mapping table in the loop unrolling unit.

3.2 Loop Detect Unit

Loop detect unit finds the loop interval in instruction flow by analyzing the semantic
information of instruction flow, and dispatches instructions and parsed operand frames
according to the request from UCU, the architecture shows as Fig. 7.

The semantic of loop structure in the instruction flow is detected as follow:
Step 1: When detect absolutely jump instruction in the instruction flow, then record

the jump address (JA) as loop start address (LS) and its jump target address (JTA) as
loop body end address (LBE), shows as Fig. 8. Get into the next step.

Step 2: When detect branch instruction in the instruction flow, then record the
branch address (BA) as loop end address (LE) and branch target address (BTA) as loop
body start address (LBS), shows as Fig. 9. Get into the next step.

8 Y.-X. Lu et al.

Step 3: If the information satisfies following conditions: JA < BTA < JTA < BA
and BTA = JA + 1. The interval between JTA and BTA is defined as a loop body,
shown as Fig. 10.

Each Loop Buffer contains two tables to store the instruction and its parsed operand
frame in the interval of the loop. (1). Loop Instruction Table:Record the machine code
of the instructions in the interval of loop. (2). Loop Parsing Table:Record the parsed
operand frame of the instructions in the interval of loop, shows as Fig. 11.

Fig. 7. Architecture of LDU

Fig. 8. Loop detecting-Step 1

Design of Instruction Analyzer with Semantic-Based Loop Unrolling Mechanism 9

3.3 Unrolling Control Unit

Unrolling control unit decides the number of loop by analyzing the signals from LDU
and the relationship between loops in unrolling table, the architecture shows as Fig. 12.

The dynamic loop unrolling mechanism proposed by this paper divides the nested
loop into outer layer and inner layer when unrolling it as Fig. 13 shows. Dynamic loop
unrolling mechanism unrolls the outer layer loop first to get the number of executions
of outer layer loop, then unrolls the inner layer loop continuously until the completed
times of unrolling equals to the number of executions of outer layer loop. Unrolling the
outer layer loop is for getting the number of executions. Therefore, UCU has to deal
with the information which will be dispatched to LUU.

Fig. 9. Loop detecting-Step 2

Fig. 10. The interval of loop

Fig. 11. The format in loop parsing table

10 Y.-X. Lu et al.

Take a two-layer nested loop, for example, its loop body contains a single
loop. Unrolling the interval of loop condition check to get the number of executions of
outer layer loop. To get the correct interval and loop information, when finding the loop
in the loop buffer is nested loop, change the loop body start address of outer layer loop
into the start address of its loop condition check as Fig. 14 shows.

Fig. 12. Architecture of UCU

Fig. 13. The structure of nested loop

Design of Instruction Analyzer with Semantic-Based Loop Unrolling Mechanism 11

Unrolling table is inside UCU, it records the unrolling process. Unrolling table
records the number of executions of outer layer loop as unrolling bound and records the
times of unrolling complete of inner layer loop as unrolling counter.

When the outer layer loop unrolls completely, UCU records the execution times in
the unrolling table by its LIN in the loop buffer. When inner layer loop unrolls com-
pletely, UCU records the times in the unrolling counter of unrolling table by its own
loop number, as Fig. 15 shows.

Fig. 14. The correction of nested loop

Fig. 15. Data updating in unrolling table

12 Y.-X. Lu et al.

3.4 Loop Unrolling Unit

Loop unrolling unit (LUU) decides the times of loop unrolling by available core
numbers. LUU generates the dependence tag of instructions and the dependence
eliminated iteration with immediate operation by the information collected after
unrolling finish. It also generates mapping tables to compensate for the dependence of
some instructions been aborted. Rearrange dispatch order of these instructions before
dispatch, the architecture shows as Fig. 16.

LUU deals with the data dependence between iterations by register renaming.
The RAW hazard of instructions in the internal loop might cause to get the incorrect
data dependence in this renaming method, example shows as Fig. 17.

Fig. 16. Architecture of LUU

Fig. 17. Register renaming between iterations

Design of Instruction Analyzer with Semantic-Based Loop Unrolling Mechanism 13

To deal with it, LUU find out those instructions with the RAW hazard of internal
loop and rename them later, shows as Fig. 18.

There are some situations may cause wrong data dependence mapping or memory
get the wrong data, hen unrolling loop. This paper proposed an architecture with
compensation mechanism to make sure the accuracy of data dependence mapping and
data writing into memory. The compensation mechanism has been divided into two
parts to deal with two situations which shown in Fig. 19.

1. The exceeding of loop execution times
2. Specific instruction flush

Since some instructions will be aborted, the data dependence tag of the instructions
after the instructions which be aborted might be wrong. To deal with it, we record the
data dependence mapping situation demarcated by the branch instruction. Those data
dependences are recorded in compensation tables such as Loop VSRF Mapping Table,
Loop M Tag Mapping Table and Specific Instruction Flush Table by adding the basic
value in Up-to-date Mapping Table to the offset tag of those tables which generated by
LUU, shows as Fig. 20.

The L tag records the iteration times of instructions. When the exceeding of loop
execution occurs, the mapping tables of IA will be updated by L tag before returning
dispatch right to IA.

Fig. 18. Register renaming between iterations

14 Y.-X. Lu et al.

(A) The exceeding of loop execution times

(B) Specific instruction flush

Fig. 19. Compensation mechanism

Fig. 20. Compensation tables

Design of Instruction Analyzer with Semantic-Based Loop Unrolling Mechanism 15

Memory Access Delay Buffer is designed to make sure memory data accuracy,
shows as Fig. 21. When memory load occurs, it will be searched first, and then get data
from memory if there is no data in it. The memory data will store data to Memory
Access Delay Buffer first and then store back to memory according to L tag when the
unrolling is done.

4 Simulation and Results

Simulation use C language to build a software simulation model to verify the imple-
mentation of semantic-based dynamic loop unrolling mechanism in the Hyper-scalar
architecture. The parameter of the simulation model is as shown in Table 1. And the
test programs generated by Keil-lVision-5 compiler are as shown in Fig. 22.

The results of instruction flow simulation shown in Fig. 23. The results show that
eliminating iteration dependence can improve ILP by 140% to 180%, because of the
redundant instructions generated during unrolling, performance improved 50% to
100%.

Fig. 21. Memory access delay buffer

16 Y.-X. Lu et al.

(B) Convolution

(C) AES-mix column

(A) Matrix multiplication

Fig. 22. The test program

Design of Instruction Analyzer with Semantic-Based Loop Unrolling Mechanism 17

(A) Convolution

(B) AES-mix column

(C) Matrix multiplication

(D) ILP promote ratio

(E) Performance promote ratio

Fig. 23. Simulation results

18 Y.-X. Lu et al.

5 Conclusion and Future Work

This paper proposes the semantic-based dynamic loop unrolling mechanism which is
based on the hyper-scalar architecture, it can detect and unroll the loop automatically. It
can also decide the unrolling time by core resource.

By eliminating iteration dependence and specific instruction flush can promote ILP
of loop. It also makes sure the accuracy of data dependence compensation mechanism.
By the result of software simulation, we know that the semantic-based dynamic loop
unrolling mechanism can increase the performance while executing loop. When facing
the unfixed repeated times of loop and the iteration with the branch instruction, this
architecture can also make sure the accuracy of data. In this mechanism, we unroll the
loops only according to how many cores resources there are. It may cause the
redundant instructions generated during unrolling. We must release the core resources
dynamically [11], so that its unrolling time will depend on how many times it used to
execute to increase the efficiency of the processors.

References

1. Rotenberg, S.B., Smith, J.E.: Trace cache: a low latency approach to high bandwidth
instruction fetching. In: Proceedings of the 29th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-29, pp. 24–34 (1996)

2. Chou, Y.-L.: Study of the hyperscalar multi-core architecture, Department of Electrical
Engineering National Sun Yat-Sen University (2011)

3. Su, D.-S.: Design of the execution-driven simulation environment for hyper-scalar
architecture, Department of Electrical Engineering National Sun Yat-Sen University (2008)

4. Chiu, J.-C., Chou, Y.-L., Chen, P.-K., Ding-Siang, S.: A unitable computing architecture for
chip multiprocessors. Comput. J. 54(12), 2033–2052 (2011)

5. Chen, P.-K.: ESL model of the hyper-scalar processor on a chip, Department of Electrical
Engineering National Sun Yat-Sen University (2007)

6. Chiu, J.-C., Huang, Y.-J., Ye, Y.-L.: Design of the optimized group management unit by
detecting thread parallelism on the hyperscalar architecture, National Computer Symposium,
December 2013

7. Yeh, T.Y., Marr, D.T., Patt, Y.N.: Increasing the instruction fetch rate via multiple branch
prediction and a branch address cache. In: 7th International Conference on Supercomputing,
pp. 67–76, July 1993

8. Dennis, J.B., Misunas, D.P.: A preliminary architecture for a basic data-flow processor. In:
Proceedings of the 2nd Annual Symposium on Computer Architecture, Houston, TX,
pp. 126–131, January 1975

9. Lerner, E.J.: Data-flow architecture. IEEE Spectr., 57–62 (1984)
10. Fisher, J.A., Faraboschi, P., Young, C.: Embedded Computing, A VLIW Approach to

Architecture, Compilers and Tools. Elsevier (2005)
11. Huang, Y.-J.: Design of the optimized group management unit by detecting thread

parallelism on the hyperscalar architecture, Department of Electrical Engineering National
Sun Yat-Sen University (2013)

Design of Instruction Analyzer with Semantic-Based Loop Unrolling Mechanism 19

	Design of Instruction Analyzer with Semantic-Based Loop Unrolling Mechanism in the Hyperscalar Architecture
	Abstract
	1 Introduction
	2 Related Work
	3 Dynamic Loop Unrolling Mechanism
	3.1 System Architecture
	3.1.1 Loop Detect Unit (LDU)
	3.1.2 Unrolling Control Unit (UCU)
	3.1.3 Loop Unrolling Unit (LUU)

	3.2 Loop Detect Unit
	3.3 Unrolling Control Unit
	3.4 Loop Unrolling Unit

	4 Simulation and Results
	5 Conclusion and Future Work
	References

