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Abstract. Convolutional Neural Networks (ConvNets) are increasingly being
used for medical image diagnostic applications. In this paper, we compare two
transfer learning approaches - Deep Feature classification and Fine-tuning
ConvNets for Diagnosing Breast Cancer malignancy. BreaKHis dataset is used
to benchmark our results with ResNet-50, InceptionV2 and DenseNet-169 pre-
trained models. Deep feature classification accuracy ranges from 81% to 95%
using Logistic Regression, LightGBM and Random Forest classifiers. Fine-
tuned DenseNet-169 model accuracy outperformed all other classification
models with 99.25 ± 0.4%.
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1 Introduction

In 2015, Out of 2.4 million cases of Breast Cancer in the US, 523,000 deaths were
reported. In the US, it is estimated that approximately 260,000 new cases of invasive
breast cancer will be diagnosed in 2018 [1, 2], with about 40,920 women mortali-
ties. Worldwide, Breast cancer claims the maximum mortality rates among all cancer
diseases afflicting women.

Early screening and diagnosis can improve treatment and survival rates [47]. Initial
screening is generally done by breast palpation and regular check-ups using mam-
mography or ultrasound imaging, followed by detailed diagnosis with breast tissue
biopsy and histopathology analysis and clinical screening. Hematoxylin and eosin
(H&E) stained biopsy tissues are analyzed under the microscope for various parameters
like nuclear atypia, tubules, and mitotic counts. Visual identification using H&E
stained biopsies is non-trivial, tedious and can be exceedingly subjective, with average
diagnostic concordance between pathologists approximately 75% [3]. Whole slide
imaging (WSI) scanners are increasingly being used for digitizing histopathology slides
enabling automated image processing and machine-learned methods for image
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enhancement, normalization, localization of the tissue, segmentation, quantitative
analysis, detection, and diagnosis.

Convolution neural networks [4–8, 49] are the de-facto choice for researchers in
this field and have outperformed conventional machine learning algorithms in many
other medical image applications [9–12] including diabetic retinopathy, bone diseases
detection [44], bone fracture detection [45, 46], pneumonia detection, etc. Deep net-
works require large training data to generalize though and publicly available annotated
breast cancer datasets are small, thereby needing special methods to be viable. Data
augmentation techniques like flipping, rotation, patching etc. and transfer learning
approaches are promising. Conventional machine learning with handcrafted [13–17]
features for Medical Imaging diagnosis doesn’t generalize in the real world due to
variations in tissue preparation, staining and slide digitization which has a significant
impact on the tissue/image appearance. Pre-trained deep networks [18] have been used
as a feature extractor in many real world applications for Diabetic Retinopathy [19],
Handwritten digits recognition [20, 21], image retrieval [22, 23], Remote sensing [24,
42], Mammography breast cancer image classification [25, 26].

In ICIAR 2018 [27] Grand Challenge, 400 microscopy and whole-slide images
from the BreAst Cancer Histology (BACH) extended dataset were classified into
normal, benign, in-situ carcinoma and invasive carcinoma. Rakhlin et al. [28] report
deep feature classification with multiple pre-trained deep networks, with the best
accuracy of 93.8% on this dataset. Also, Rakhlin et al. [28] report that deep feature
classification outperforms fine-tuning approach on ICIAR 2018 Grand Challenge
dataset.

Habibzadeh et al. [29] use fine-tuning on pre-trained Inception (V1, V2, V3, and
V4) and ResNet (V1 50, V1 101, and V1 152) to classify H&E stained microscopy
images from BreaKHis dataset as benign or malignant. Their best-reported result for
classifying into benign and malignant is from ResNet V1 101 with fine-tuning all layers
with 98.4% confidence. Despite a lot of studies available on transfer learning and fine-
tuning ConvNets [30], and to the best of our knowledge, we find no literature evalu-
ating or comparing these two approaches, pre-trained deep feature classification and
fine-tuning ConvNets on the same Breast Cancer dataset. In this paper, we evaluate
these two approaches using BreaKHis dataset [31].

2 Dataset

The dataset we have used is the Breast Cancer Histopathological Database (BreaKHis)
[31] which has 7,909 microscopic images of breast biopsy images collected from 82
patients across multiple magnifying factors (40x, 100x, 200x, and 400x). This dataset
has two classes, 2480 benign and 5429 malignant images. Height and width of each
image are 700 � 460 pixels, 3-channel RGB, 8-bit depth in each channel, PNG format.
This dataset was provided to us by Fabio et al. [31] from the P&D Laboratory, Parana,
Brazil (Table 1).
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3 Data Augmentation and Pre-preprocessing

Data augmentation is an important step to create diverse, supplemented training dataset
from small datasets to train deep networks. The training images are augmented by
flipping the images along their horizontal and vertical axes and also rotating them by
90, 180, 270°. In the pre-processing step, the Mean image is calculated by averaging
the images and the mean image is subtracted from all train and test images for
brightness normalization. After mean subtraction, all the images are resized to
(224 � 224 � 3), recommended image size for InceptionV2, ResNet-50, and
DensNet-169 architectures.

4 Methods

4.1 Deep Feature Extraction and Classification

We used Pre-trained deep networks trained on ImageNet [32] – a dataset for object
recognition for 1000 object classes and trained on 1.2 Million images. These pre-
trained ConvNet models are used as generalized feature extractors since the top layers
extract discriminant features like edges, textures etc. By removing the last fully con-
nected output layer from the pre-trained deep network and extract feature vectors called
Deep Features from the truncated network. The similar approach was used in [48].
These Deep Features are then used as input to standard classifiers like Random Forest,
Logistic Regression etc., this is known as Deep Feature Extraction and Classification.

We use standard pre-trained DenseNet-169 [33], ResNet-50 [34] and InceptionV2
[35] networks from Keras distribution [36] trained on ImageNet. These pre-trained
networks are used as fixed deep feature extractors for the breast cancer dataset by
removing the last fully-connected (bottleneck features) and softmax classifier layers.

The extracted deep feature vectors (CNN codes) - InceptionV2 (1 � 38400),
ResNet-50 (1 � 2048), DenseNet-169(1 � 94080) are then classified by traditional
machine learning classifiers. We split the dataset 70% for training, 30% for testing. We
build three different machine learning model to classify the deep features using Logistic
Regression [37], LightGBM [38] and Random [39] Forest. The models were trained on
NVIDIA Quadro K630 GPU [43] (Fig. 1 and Table 2).

Table 1. Image distribution by magnification factor and class [31]

Magnification Benign Malignant Total

40x 652 1,370 1,995
100x 644 1,437 2,081
200x 623 1,390 2,013
400x 588 1,232 1,820
Total 2,480 5,429 7,909
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4.2 DenseNet-169 Fine Tuning

Fine-tuning is another promising transfer learning technique for medical image clas-
sification, Habibzadeh et al. [29] report fine-tuned ResNet classification accuracy of
98.7% and Spanhol et al. report 90.0% accuracy using AlexNet fine-tuning. A con-
tinuation of these techniques, we select DenseNet-169 [33] to fine-tune, since they are
easier and faster to train with no loss of accuracy due to improved gradient flow as
compared to other networks [40, 41]. We took DenseNet-169 pre-trained on ImageNet,
freeze the top layers because they capture universal features, remove the last softmax
layer and replace it with an output sigmoid layer (binary classification). We fine-tune
the last layer with small learning rate on cancer images as shown in Fig. 2. The dataset
is divided into three parts, training (60%), validation (20%) and testing (20%). In the
training phase, the data augmentation is applied to increase the training images. We use
Stochastic Gradient Descent (SGD) optimizer with - learning rate = 0.0005, decay =
1e�6 and Momentum = 0.9. Each epoch operates on a batch of 16 images that are
randomly sampled from the training set and the network is trained for 12 epochs. The
models are trained on NVIDIA Quadro K630 GPU [43].

Deep Features

Classifier

Removed

Input

Fig. 1. Deep feature classification flow chart

Table 2. Classifier with model parameters

Classifier Model parameters

Logistic
regression

Multi class = one-vs-rest, L2 normalization and Lib-Linear optimizer,
Regularization Parameters = 0.95

LightGBM Boosting = Gradient Boosting Decision Tree, Learning Rate = 0.07,
bagging fraction = 0.95, feature fraction = 0.7, Metric = Binary Log Loss,
number of boosting iterations = 2000

Random forest Criterion = Gini impurity measure, maximum depth = 2, minimum
samples split = 2, minimum samples leaf = 1, maximum features = sqrt
(no.features)
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5 Results

We report standard classification metrics including classification accuracy, F1 score,
Sensitivity (SN) & Specificity (SP). Sensitivity (SN) also called True Positive Rate,
measures the proportion of actual positives (malignant) that are correctly identified as
such, and represents the model’s ability to not overlook actual positives (malignant)
(Tables 3 and 4).
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Fig. 2. DenseNet-169 fine-tuning

Table 3. Accuracy of deep features classification in percentage

Model Magnification Logistic
regression

Light GBM Random forest

ResNet50 40x 94.01 93.24 88.10
100x 93.34 92.85 73.17
200x 95.04 94.34 87.64
400x 94.96 93.24 88.46

DenseNet-169 40x 94.12 92.54 86.36
100x 92.43 92.04 88.23
200x 92.12 93.09 90.90
400x 91.97 91.58 89.10

Inception V2 40x 91.05 90.71 82.19
100x 88.93 87.51 81.43
200x 88.76 88.91 82.23
400x 87.42 86.01 81.11
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Specificity (SP) also called the True Negative Rate, on the other hand, measures the
proportion of actual negatives (benign) that are correctly identified as such, and rep-
resents the model’s ability to not overlook actual negatives (benign). ResNet-50 with
Logistic Regression classifier consistently outperforms other deep feature classification
models across all magnification factors. Higher magnification factors perform poorly
for deep feature classification method. Fine-tuned DenseNet-169 with last layer tuning
demonstrated the best accuracy among all models with 99.25 – 0.4% (Figs. 3, 4 and
Tables 5, 6).

Table 4. Accuracy of DenseNet-169 fine-tuned model

Magnification Accuracy in %

40x 99.60
100x 99.81
200x 99.40
400x 98.68

80.00%
82.00%
84.00%
86.00%
88.00%
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100.00%
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Fine-tuning Dense Net

Fig. 3. Overall classification accuracies for deep feature classification and fine-tuned DenseNet-
169. In Figure, we select logistic regression accuracies of all deep features to compare with the
DenseNet-169 fine-tuned model result, as it outperforms other classifiers. We visualize fine-
tuning approach performs better compare to Deep feature classifiers for all the magnification.
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Fig. 4. ROC curve of 400x magnification image, (a) ResNet-50 feature with LightGBM
classifier, (b) DenseNet-169 feature with logistic regression, (c) Inception V2 feature with
LightGBM classifier, (d) DenseNet-169 fine-tuning

Table 5. F1 score, specificity (SP) and sensitivity (SN) for deep feature classification

Model Data Logistic regression Light GBM Random forest
F1 score SN SP f1 score SN SP F1 score SN SP

ResNet-50 40x 0.94 0.89 0.94 0.93 0.85 0.93 0.88 0.5 0.96
100x 0.93 0.89 0.96 0.92 0.78 0.95 0.73 0.21 0.97
200x 0.95 0.91 0.95 0.94 0.88 0.94 0.87 0.38 0.98
400x 0.94 0.89 0.94 0.93 0.86 0.93 0.88 0.5 0.96

DenseNet 169 40x 0.94 0.81 0.96 0.92 0.72 0.96 0.86 0.36 0.97
100x 0.92 0.78 0.94 0.92 0.76 0.95 0.88 0.50 0.97
200x 0.92 0.94 0.77 0.93 0.96 0.75 0.90 0.67 0.93
400x 0.91 0.83 0.90 0.91 0.77 0.93 0.89 0.68 0.93

Inceptionv2 40x 0.91 0.76 0.92 0.90 0.64 0.94 0.82 0.06 0.98
100x 0.88 0.67 0.90 0.87 0.64 0.91 0.81 0.02 0.99
200x 0.88 0.67 0.90 0.88 0.62 0.92 0.82 0.03 0.99
400x 0.87 0.62 0.90 0.86 0.58 0.90 0.81 0.01 0.99
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6 Conclusion

In this paper, we benchmark two transfer learning approaches using popular pre-trained
networks namely ResNet, Inception and DenseNet for Breast Cancer Benign/Malignant
classification. Deep Features extracted from pre-trained ResNet-50 and logistic
regression classifier performs better among all the deep network feature classification
and the accuracy is 94 ± 1%. In another experiment, a continuation of the literature
[29], fine-tuned the DenseNet-169 with strong data augmentation. The average accu-
racy of the DenseNet-169 fine-tuned model is 99.3% and it is an improvement of 3% to
5% higher than the deep network feature classification and shows better performance
compared to other proposals in literature.

As per the study [28], Deep feature classification performs better when the dataset
is small. Our experiment presents that Fine-tuning approach with strong augmentation
techniques outperforms deep feature classification when the dataset size is moderate or
large. The outcomes are expected to be more comprehensively evaluated in the future
considering DenseNet-169 fine-tuned model will be used for semantic segmentation on
whole-slide histopathology images.
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