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Chapter 3
The Regulation of HBV Transcription 
and Replication

Claudia E. Oropeza, Grant Tarnow, Abhayavarshini Sridhar, Taha Y. Taha, 
Rasha E. Shalaby, and Alan McLachlan

Abstract  Hepatitis B virus (HBV) is a major human pathogen lacking a reliable 
curative therapy. Current therapeutics target the viral reverse transcriptase/DNA 
polymerase to inhibit viral replication but generally fail to resolve chronic HBV 
infections. Due to the limited coding potential of the HBV genome, alternative 
approaches for the treatment of chronic infections are desperately needed. An alter-
native approach to the development of antiviral therapeutics is to target cellular gene 
products that are critical to the viral life cycle. As transcription of the viral genome 
is an essential step in the viral life cycle, the selective inhibition of viral RNA syn-
thesis is a possible approach for the development of additional therapeutic modali-
ties that might be used in combination with currently available therapies. To address 
this possibility, a molecular understanding of the relationship between viral tran-
scription and replication is required. The first step is to identify the transcription 
factors that are the most critical in controlling the levels of HBV RNA synthesis and 
to determine their in vivo role in viral biosynthesis. Mapping studies in cell culture 
utilizing reporter gene constructs permitted the identification of both ubiquitous and 
liver-enriched transcription factors capable of modulating transcription from the 
four HBV promoters. However, it was challenging to determine their relative impor-
tance for viral biosynthesis in the available human hepatoma replication systems. 
This technical limitation was addressed, in part, by the development of non-
hepatoma HBV replication systems where viral biosynthesis was dependent on 
complementation with exogenously expressed transcription factors. These systems 
revealed the importance of specific nuclear receptors and hepatocyte nuclear factor 
3 (HNF3)/forkhead box A (FoxA) transcription factors for HBV biosynthesis. 
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Furthermore, using the HBV transgenic mouse model of chronic viral infection, the 
importance of various nuclear receptors and FoxA isoforms could be established 
in  vivo. The availability of this combination of systems now permits a rational 
approach toward the development of selective host transcription factor inhibitors. 
This might permit the development of a new class of therapeutics to aid in the treat-
ment and resolution of chronic HBV infections, which currently affects approxi-
mately 1 in 30 individuals worldwide and kills up to a million people annually.

1  �Introduction

Hepatitis B virus (HBV) infects man and great apes [1–11]. Viral tropism is restricted 
to the hepatocytes within the liver of the host [12–17]. HBV biosynthesis within the 
liver is noncytopathic [17–19]. However, the cellular immune response to HBV anti-
gens synthesized during infection and presented at the cell surface of these hepato-
cytes in the context of human leukocyte antigens (HLA) results in cell death by 
T-cell-mediated cytotoxicity, compensating liver regeneration and associated fibro-
sis [18, 19]. In long-term chronic carriers where these processes have occurred for 
many years, cirrhosis and end-stage liver diseases can occur [18, 19]. Furthermore, 
chronic HBV carriers are at much greater risk of developing hepatocellular carci-
noma (HCC) [18–21]. Liver cirrhosis and HCC are associated with significant mor-
bidity and mortality [22]. It is estimated that approximately one in three individuals 
in the world will be infected with HBV in their lifetime, resulting in about 1 in 30 
individuals currently being chronic carriers [23, 24]. This translates into approxi-
mately 248 million chronic HBV carriers worldwide today and an associated yearly 
mortality due to HBV-associated disease of about 600,000 individuals [22–24]. 
Therefore, HBV is a major public health concern, which currently lacks any thera-
pies capable of efficiently resolving chronic infection [25, 26]. Current therapies are 
limited to type 1 interferons and nucleoside analog drugs, which modulate the 
immune response and inhibit the HBV reverse transcriptase/DNA polymerase, 
respectively [25, 26]. As these long-term therapies are generally used to limit disease 
progression [25, 26], there is an urgent need for additional therapeutic modalities 
capable of resolving chronic HBV infections within a limited treatment time period.

2  �Transcription of the HBV Genome

The cloning and sequencing of HBV genomic DNA identified four open reading 
frames within the viral 3.2kbp genome [27–30]. Here, the sequence coordinates of 
the HBVayw subtype (genotype D [27, 31]) will be used, but the overall genome 
organization is essentially identical for all replication-competent viral genomes 
despite modest nucleotide and amino-acid differences among the various genotypes 
(subtypes) [27–30]. The core or nucleocapsid open reading frame encodes the hepa-
titis B early and core antigens, HBeAg and HBcAg, respectively (Fig. 3.1) [1, 32]. 
HBeAg is synthesized from the first translation initiation codon of the nucleocapsid 
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212 amino-acid open reading frame [33–37]. The first 19 amino-terminal hydropho-
bic signal sequence residues are cleaved by the signal peptidase as the precore 
sequence is translocated into the endoplasmic reticulum [33, 36–39]. Subsequently, 
the 34 carboxyl-terminal arginine-rich nuclear localization sequence residues are 
cleaved from the HBeAg precursor by a furin protease in the Golgi apparatus [33, 
40–42]. This results in the secretion of a 36 kDa HBeAg protein comprising a dimer 
of the 159 amino-acid polypeptide generated as a result of the amino- and carboxyl-
terminal cleavage events of the product of the complete nucleocapsid open reading 
frame [43, 44]. The 21 kDa HBcAg polypeptide is synthesized from the second in-
frame translation initiation codon of the nucleocapsid open reading frame, which 
can assemble to generate the viral capsid comprising 120 dimers [33, 45–48].

Fig. 3.1  Organization of the HBV genome. The circular HBV genome (subtype ayw) is 3182 
nucleotides in length. The position of nucleotide coordinates 800 (0.8), 1600 (1.6), 2400 (2.4), and 
3182 (3.2/0.0) are indicated. (A) The viral open reading frames (ORFs) are represented by black 
arrows. Orientation is N terminal to C-terminal for the PS (presurface), S (surface), X (X-gene), 
PC (precore), C (core), and P (polymerase) ORFs. The direction of transcription (>) from (B) the 
large surface antigen promoter (PSp), (C) the major surface antigen promoter (Sp), (D) the 
enhancer 1/X gene promoter (Enh1/Xp), and (E) the enhancer 2/core or nucleocapsid promoter 
(Enh2/Cp) is shown. Abundant 3.5-kb and 2.1-kb HBV transcripts are indicated by the solid green 
and blue arrows and the relatively rare 2.4-kb and 0.7-kb transcripts are indicated by the broken 
brown and purple arrows, respectively. The four transcripts terminate at the single polyadenylation 
site located around nucleotide coordinate 1940
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The surface antigen open reading frame encodes the viral envelope proteins 
(Fig. 3.1) [1, 27, 33]. There are three in-frame translation initiation codons within 
this open reading frame, which are translated to produce the large, middle, and 
major surface antigen proteins, HBsAg [1, 27, 33]. The large surface antigen pro-
tein, p39/gp43, includes the 108 amino acid preS1, 55 amino acid preS2, and 226 
amino acid major surface antigen domains, whereas the middle surface antigen pro-
tein, gp33/gp36, includes only the pres2 and major surface antigen domains [33, 49, 
50]. The major surface antigen, p25/gp28, is translated from the third initiation 
codon and encodes the carboxyl-terminal 226 amino acids of the surface antigen 
open reading frame [33, 51–53]. All three HBsAg translation products are partially 
glycosylated at asparagine 146 of the major surface antigen open reading frame, 
whereas asparagine 4 of the pres2 domain present in the middle surface antigen 
polypeptide is completely glycosylated [54–57]. This gives rise to the six different 
forms of the HBsAg polypeptide present in the virus particles [58].

The HBV viral genome encodes two additional open reading frames. The HBV 
reverse transcriptase/DNA polymerase open reading frame encodes a 94 kDa polypep-
tide with three major domains (Fig. 3.1) [27]. The amino-terminal domain of this open 
reading frame encodes the terminal protein, which serves as the primer for HBV minus-
strand DNA synthesis [59–63]. The middle domain encodes the reverse transcriptase/
DNA polymerase activity, while the carboxyl-terminal domain encodes for the RNaseH 
activity responsible for the degradation of the viral pregenomic RNA during the pro-
cess of minus-strand DNA synthesis [64–71]. The smallest open reading frame in the 
viral genome codes for a 154 amino-acid polypeptide, HBxAg (Fig. 3.1) [27]. The 
17 kDa X-gene open reading frame encodes a protein that is essential for productive 
viral infection in vivo and has been ascribed a large variety of functions when assayed 
under various conditions [72–75]. Currently, it is unclear which, if any, of these func-
tions explains the requirement for this protein for productive infection in vivo.

Analysis of the HBV viral transcripts during natural infection of humans and 
chimpanzees has been modest due to the limited availability of liver samples. 
However, two predominant viral transcripts of 3.5 kb and 2.1 kb have been detected 
during natural infection (Fig. 3.1) [12–16]. Furthermore, analysis of viral transcripts 
present in cells transfected with HBV genomic DNA and HBV transgenic mice has 
permitted a more detailed analysis of the transcripts derived from viral genomes. In 
addition to the major transcripts, two additional unspliced HBV RNAs of 2.4 and 
0.7 kb have been routinely described in a variety of systems that can support viral 
biosynthesis (Fig. 3.1) [76–89]. The 3.5 kb HBV transcripts identified by RNA filter 
hybridization analysis represent two distinct transcripts, the precore and pregenomic 
RNAs, as determined by 5′-end mapping studies, which differ by approximately 36 
nucleotides (Fig. 3.2) [76–78, 90]. The 3.5 kb HBV precore RNA initiates at a clus-
ter of sites centered at approximately nucleotide coordinate 1785 and its translation 
from the initiation codon at nucleotide 1816 results in the synthesis of HBeAg [76–
78, 90]. The 3.5 kb HBV pregenomic or core RNA initiates at a cluster of sites 
centered at approximately nucleotide coordinate 1821 and its translation from the 
initiation codon at nucleotide 1903 results in the synthesis of HBcAg [76–78, 90]. 
The 3.5  kb HBV pregenomic RNA is also translated from an internal initiation 
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codon at nucleotide 2309, which results in the synthesis of the viral reverse tran-
scriptase/DNA polymerase polypeptide although this presumably occurs at a much 
lower frequency than translation of the HBcAg polypeptide [65, 91, 92]. In this 
manner, the structural HBcAg is synthesized at a level much greater than the viral 
polymerase, which supports efficient viral biosynthesis. Furthermore, the HBV 
polymerase recognizes the RNA stem/loop/bulge structure, epsilon (ε), at the 5′-end 
of the 3.5 kb pregenomic RNA as it is being translated from the ribosome and forms 
a ribonucleoprotein complex, which is encapsidated by HBcAg to generate imma-
ture core particles [69, 93–95]. Within these immature core particles, the viral poly-
merase reverse transcribes the 3.5 kb pregenomic RNA to generate the mature core 
particle containing the 3.2 kb relaxed circular HBV DNA genome [93, 94]. Mature 
core particles can bind to envelope antigen, HBsAg, located within the membrane of 
the endoplasmic reticulum and subsequently bud into the lumen to be secreted from 
the hepatocytes by transit through the Golgi apparatus [96–101]. Alternatively, 
mature capsids can cycle viral genomes back into the nucleus to amplify and/or 
replenish the pool of HBV covalently closed circular DNA (HBV cccDNA) that 
represents the template for transcription by the host RNA polymerase II [79, 102].

The 2.1  kb HBV transcripts identified by RNA filter hybridization analysis 
appear to initiate synthesis at a cluster of locations positioned between nucleotide 
coordinates 3156 and 8, as determined by 5′-end mapping studies (Fig. 3.2) [76–78, 
103]. As a consequence of the heterogeneous nature of the transcription start sites 
and their proximity to the preS2 initiation codon at nucleotide coordinate 3174, the 
2.1 kb HBV surface antigen RNA is translated to a rather modest degree from the 
preS2 initiation codon at nucleotide coordinate 3174 to produce limited amounts of 
the middle HBsAg polypeptide and is robustly translated from the initiation codon 
at nucleotide coordinate 157 to produce large quantities of the major surface antigen 
protein [76–78, 103]. The minor 2.4 kb HBV presurface RNA initiates at a cluster 
of sites centered at approximately nucleotide coordinate 2809 and its translation 
from the initiation codon at nucleotide 2850 results in the synthesis of a limited 
amount of the large surface antigen polypeptide [76–78]. Consequently the large, 
middle, and major HBsAg polypeptides are synthesized at appropriate ratios to sup-
port the synthesis of virus particles, which require the large surface antigen poly-
peptide, plus orders of magnitude more subviral particles, which are present in the 
sera of infected individuals [58]. The 0.7 kb HBV X-gene RNA, which has been 
observed in some cell culture systems, HBV transgenic mice, and infected liver tis-
sues, appears to initiate at multiple sites spanning nucleotide coordinates 1157 and 
1340 and its translation from the initiation codon at nucleotide 1376 could result in 
the synthesis of the HBV X-gene polypeptide [89, 104–106]. The X-gene-encoded 
protein product has not been convincingly demonstrated in natural infection 
although antibodies to this polypeptide have been detected in the sera of chronic 
HBV carriers [89, 107]. Therefore, it is not apparent if the HBV X-gene polypeptide 
is encoded by its own transcript during natural infection, translated from one or 
more of the larger HBV RNAs by internal ribosome entry, or translated from a 
minor spliced HBV transcript. For all of the HBV transcripts, polyadenylation of 
the viral RNAs occurs between nucleotide coordinates 1936 and 1943, mediated in 
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part by the nonconventional polyA recognition sequence, 5′-UAUAAA-3′, located 
between nucleotide coordinates 1918 and 1923 [85, 103].

3  �Cis-Acting Transcriptional Regulatory Sequence Elements 
and Trans-Acting DNA-Binding Proteins

The cloning of the HBV genome and the mapping of the transcripts suggested that 
there were likely to be four transcriptional regulatory regions controlling viral RNA 
synthesis. With the extensive use of reporter gene constructs and transfection analy-
sis utilizing both hepatoma and nonheptoma cell lines, the cis-acting transcriptional 
regulatory sequence elements within the viral genome were mapped in detail by 
deletion and mutational analysis (Fig.  3.2). Sequences of 70–240 nucleotides 

Fig. 3.2  (continued) receptor–binding site direct repeat sequence 5′-AGGTCA-3′ are indicated 
with arrows. The underlined sequences in the enhancer 1/X-gene promoter region indicate the 
location of the CCAAT/enhancer-binding protein-binding sites (C/EBP) [139], the p53 tumor sup-
pressor gene product–binding site (p53) [140], the interferon regulatory factor–binding site (IRF) 
[141], the nuclear factor 1–binding sites (NF1) [142, 143], the forkhead box protein A/hepatocyte 
nuclear factor 3–binding sites (FOXA/HNF3) [144, 145], the hepatocyte nuclear factor 4–binding 
site (HNF4) [127], the retinoid X receptor plus the peroxisome proliferator-activated receptor het-
erodimer–binding site (RXR:PPAR) [127, 128, 146], the COUPTF-binding site (COUPTF) [120, 
127], the RFX1-binding site (RFX1) [127, 147, 148], the activator protein 1–binding site (AP1) 
[143], the cyclic AMP response element–binding protein-binding site (CREB) [149], and the acti-
vating transcription factor 2–binding site (ATF2) [149]. The underlined sequences in the enhancer 
2/core promoter region represent the RFX1-binding site (RFX1) [108], the Sp1-binding sites (Sp1) 
[109], the CCAAT/enhancer-binding protein-binding site (C/EBP) [110, 111], the retinoid X 
receptor plus the farnesoid X receptor heterodimer–binding site (RXR:FXR) [115–118], the liver 
receptor homolog 1/fetoprotein transcription factor–binding sites (LRH1/FTF) [112–114], the 
hepatic leukemia factor–binding site (HLF) [113], the E4BP4-binding site (E4BP4) [119], the 
hepatocyte nuclear factor 4–binding sites (HNF4) [120, 121], the forkhead box protein A/hepato-
cyte nuclear factor 3–binding sites (FOXA/HNF3) [122], the retinoid X receptor plus the peroxi-
some proliferator-activated receptor heterodimer–binding site (RXR:PPAR) [120], the COUPTF 
binding site (COUPTF) [120, 123, 124], the estrogen-related receptor (ERR) [117, 125], and the 
TATA-box-binding protein (TBP) site [126]. The underlined sequences in the intragenic core gene 
region spanning nucleotide coordinates 2110 to 2200 sequence indicate the location of the Sp1-
binding sites (Sp1), the forkhead box protein A/hepatocyte nuclear factor 3–binding site (FOXA/
HNF3), and the hepatocyte nuclear factor 4–binding site (HNF4). The underlined sequences in the 
large surface antigen promoter region indicate the location of the hepatocyte nuclear factor 1–bind-
ing sites (HNF1) [129, 130], the forkhead box protein A/hepatocyte nuclear factor 3–binding site 
(FOXA/HNF3) [131], the Sp1-binding sites (Sp1) [132], and the TATA-box-binding protein (TBP) 
site [133]. The underlined sequences in the major surface antigen promoter region indicate the 
location of the forkhead box protein A/hepatocyte nuclear factor 3–binding sites (FOXA/HNF3) 
[134], the nuclear factor 1–binding site (NF1) [135, 136], the Sp1-binding sites (Sp1) [137], and 
the nuclear factor Y–binding site (NF-Y) [138]. The approximate positions of the major transcrip-
tion start sites are indicated by solid circles plus arrows indicating the direction of transcription. 
The transcription polyadenylation signal sequence, 5′-UAUAAA-3′, and the sights of polyadenyl-
ation for the viral RNAs are indicated with open and closed boxes, respectively. The protein trans-
lation initiation codons for the seven HBV polypeptides are indicated with solid triangles
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10                  30                  50                  70                  90
●▬▬► .         .         .         .         .         .         .         .         .

AATTCCACAACCTTCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGA
TTAAGGTGTTGGAAGGTGGTTTGAGACGTTCTAGGGTCTCACTCTCCGGACATAAAGGGACGACCACCGAGGTCAAGTCCTTGTCATTTGGGACAAGACT

110                 130                 150                 170                 190
.         .         .         .     .      ▼▼▼.         .         .         .         .

CTACTGCCTCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTT
GATGACGGAGAGGGAATAGCAGTTAGAAGAGCTCCTAACCCCTGGGACGCGACTTGTACCTCTTGTAGTGTAGTCCTAAGGATCCTGGGGAAGAGCACAA

210                 230                 250                 270                 290
.         .         .         .         .         .         .         .         .         .

ACAGGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGTGT
TGTCCGCCCCAAAAAGAACAACTGTTCTTAGGAGTGTTATGGCGTCTCAGATCTGAGCACCACCTGAAGAGAGTTAAAAGATCCCCCTTGATGGCACACA

310                 330    350                 370                 390
.         .         .         .         .         .         .         .         .         .

CTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTTTATCA
GAACCGGTTTTAAGCGTCAGGGGTTGGAGGTTAGTGAGTGGTTGGAGAACAGGAGGTTGAACAGGACCAATAGCGACCTACACAGACGCCGCAAAATAGT

410                 430                 450                 470                 490
.         .         .         .         .         .         .         .         .         .

TCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGGATCCTCAAC
AGAAGGAGAAGTAGGACGACGATACGGAGTAGAAGAACAACCAAGAAGACCTGATAGTTCCATACAACGGGCAAACAGGAGATTAAGGTCCTAGGAGTTG

510                 530                 550             570                 590
.         .         .         .         .         .         .         .         .         .

AACCAGCACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGGACGGAAATTGCACC
TTGGTCGTGCCCTGGTACGGCCTGGACGTACTGATGACGAGTTCCTTGGAGATACATAGGGAGGACAACGACATGGTTTGGAAGCCTGCCTTTAACGTGG

610                 630                 650                 670                 690
.         .         .         .         .         .         .         .         .         .

TGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTACTAGTGCCATTTGTTCAGT
ACATAAGGGTAGGGTAGTAGGACCCGAAAGCCTTTTAAGGATACCCTCACCCGGAGTCGGGCAAAGAGGACCGAGTCAAATGATCACGGTAAACAAGTCA

710                 730                 750                 770                 790
.         .         .         .         .         .         . .         .         .

GGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAGCATCTTGAGTCCCTTTTTACCGCT
CCAAGCATCCCGAAAGGGGGTGACAAACCGAAAGTCAATATACCTACTACACCATAACCCCCGGTTCAGACATGTCGTAGAACTCAGGGAAAAATGGCGA

810                 830                 850                 870                 890
.         .         .         .         .         .         .         .         .         .

GTTACCAATTTTCTTTTGTCTTTGGGTATACATTTAAACCCTAACAAAACAAAGAGATGGGGTTACTCTCTAAATTTTATGGGTTATGTCATTGGATGTT
CAATGGTTAAAAGAAAACAGAAACCCATATGTAAATTTGGGATTGTTTTGTTTCTCTACCCCAATGAGAGATTTAAAATACCCAATACAGTAACCTACAA

910                 930               950                 970                 990
.         .         .         .         .         .         .         .         .         .

ATGGGTCCTTGCCACAAGAACACATCATACAAAAAATCAAAGAATGTTTTAGAAAACTTCCTATTAACAGGCCTATTGATTGGAAAGTATGTCAACGAAT
TACCCAGGAACGGTGTTCTTGTGTAGTATGTTTTTTAGTTTCTTACAAAATCTTTTGAAGGATAATTGTCCGGATAACTAACCTTTCATACAGTTGCTTA

1010                1030                1050                1070                1090
.         .         .         .         .         .         .         .         .         .

TGTGGGTCTTTTGGGTTTTGCTGCCCCTTTTACACAATGTGGTTATCCTGCGTTGATGCCTTTGTATGCATGTATTCAATCTAAGCAGGCTTTCACTTTC
ACACCCAGAAAACCCAAAACGACGGGGAAAATGTGTTACACCAATAGGACGCAACTACGGAAACATACGTACATAAGTTAGATTCGTCCGAAAGTGAAAG

C/EBP                                                 p53 IRF

Fig. 3.2  Nucleotide sequence of the HBV genomic DNA (subtype ayw) showing the location of 
the transcription factors binding to the enhancer 1/X-gene promoter, enhancer 2/core promoter 
region, the intragenic core gene sequence, the large surface antigen promoter, and the major sur-
face antigen promoter [27]. The nucleotide coordinates are derived from the GenBank database 
(ID: V01460). The orientation of the direct repeat sequences homologous to the consensus nuclear 
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1110                1130                1150                1170                1190
.         .         .       ˂▬▬▬▬▬ ˂▬▬▬▬▬ .         .         .         .         .

TCGCCAACTTACAAGGCCTTTCTGTGTAAACAATACCTGAACCTTTACCCCGTTGCCCGGCAACGGCCAGGTCTGTGCCAAGTGTTTGCTGACGCAACCC
AGCGGTTGAATGTTCCGGAAAGACACATTTGTTATGGACTTGGAAATGGGGCAACGGGCCGTTGCCGGTCCAGACACGGTTCACAAACGACTGCGTTGGG
NF1 FOXA HNF4          RFX1             NF1 FOXA AP1 C/EBP

RXR PPAR                                        ATF2 CREB
COUPTF

1210                1230                1250                1270                1290
.         .         .         .         .         .         .         .         .         .

CCACTGGCTGGGGCTTGGTCATGGGCCATCAGCGCATGCGTGGAACCTTTTCGGCTCCTCTGCCGATCCATACTGCGGAACTCCTAGCCGCTTGTTTTGC
GGTGACCGACCCCGAACCAGTACCCGGTAGTCGCGTACGCACCTTGGAAAAGCCGAGGAGACGGCTAGGTATGACGCCTTGAGGATCGGCGAACAAAACG

NF1                         

1310                1330                1350                1370                1390
●▬▬►0.7kb X RNA     .         .         .         .         .     ▼▼▼ .         .  .

TCGCAGCAGGTCTGGAGCAAACATTATCGGGACTGATAACTCTGTTGTCCTATCCCGCAAATATACATCGTTTCCATGGCTGCTAGGCTGTGCTGCCAAC
AGCGTCGTCCAGACCTCGTTTGTAATAGCCCTGACTATTGAGACAACAGGATAGGGCGTTTATATGTAGCAAAGGTACCGACGATCCGACACGACGGTTG

1410                1430                1450                1470                1490
.         .       .         .         .         .         .         .         .         .

TGGATCCTGCGCGGGACGTCCTTTGTTTACGTCCCGTCGGCGCTGAATCCTGCGGACGACCCTTCTCGGGGTCGCTTGGGACTCTCTCGTCCCCTTCTCC
ACCTAGGACGCGCCCTGCAGGAAACAAATGCAGGGCAGCCGCGACTTAGGACGCCTGCTGGGAAGAGCCCCAGCGAACCCTGAGAGAGCAGGGGAAGAGG

1510                1530                1550                1570           1590
.         .         .         .         .         .         .         .         .         .

GTCTGCCGTTCCGACCGACCACGGGGCGCACCTCTCTTTACGCGGACTCCCCGTCTGTGCCTTCTCATCTGCCGGACCGTGTGCACTTCGCTTCACCTCT
CAGACGGCAAGGCTGGCTGGTGCCCCGCGTGGAGAGAAATGCGCCTGAGGGGCAGACACGGAAGAGTAGACGGCCTGGCACACGTGAAGCGAAGTGGAGA

1610      1630                1650                1670                1690  ˂▬▬▬▬▬
.         .         .         .      ▬▬▬▬▬> . ˂▬▬▬▬▬ ˂▬▬▬▬▬ . ▬▬▬▬▬> ˂▬▬▬▬▬ .

GCACGTCGCATGGAGACCACCGTGAACGCCCACCAAATATTGCCCAAGGTCTTACATAAGAGGACTCTTGGACTCTCAGCAATGTCAACGACCGACCTTG
CGTGCAGCGTACCTCTGGTGGCACTTGCGGGTGGTTTATAACGGGTTCCAGAATGTATTCTCCTGAGAACCTGAGAGTCGTTACAGTTGCTGGCTGGAAC

RFX1             Sp1            C/EBP C/EBP        HNF4                FOXA
LRH1 ERR HLF RXR  FXR LRH1

E4BP4
1710                1730                1750                1770                1790

.         .         .         .         .      ▬▬▬▬▬> ▬▬▬▬▬>.˂▬▬▬▬▬ .    ●▬▬►3.5kb PC RNA
AGGCATACTTCAAAGACTGTTTGTTTAAAGACTGGGAGGAGTTGGGGGAGGAGATTAGGTTAAAGGTCTTTGTACTAGGAGGCTGTAGGCATAAATTGGT
TCCGTATGAAGTTTCTGACAAACAAATTTCTGACCCTCCTCAACCCCCTCCTCTAATCCAATTTCCAGAAACATGATCCTCCGACATCCGTATTTAACCA

FOXA Sp1         Sp1          HNF4                           TBP
COUPTF

PPAR    RXR    FXR
LRH1 ERR

1810                1830                1850                1870                1890
.     ▼▼▼ .●▬▬►3.5kb C RNA . .         .         .         .         .         .

CTGCGCACCAGCACCATGCAACTTTTTCACCTCTGCCTAATCATCTCTTGTTCATGTCCTACTGTTCAAGCCTCCAAGCTGTGCCTTGGGTGGCTTTGGG
GACGCGTGGTCGTGGTACGTTGAAAAAGTGGAGACGGATTAGTAGAGAACAAGTACAGGATGACAAGTTCGGAGGTTCGACACGGAACCCACCGAAACCC

1910                1930                1950                1970                1990
▼▼▼ .       □□□□□□ .     ■■■■■■■■poly(A)sites .   .         .         .         .

GCATGGACATCGACCCTTATAAAGAATTTGGAGCTACTGTGGAGTTACTCTCGTTTTTGCCTTCTGACTTCTTTCCTTCAGTACGAGATCTTCTAGATAC
CGTACCTGTAGCTGGGAATATTTCTTAAACCTCGATGACACCTCAATGAGAGCAAAAACGGAAGACTGAAGAAAGGAAGTCATGCTCTAGAAGATCTATG

2010                2030                2050                2070                2090
.         .         .         .         .         .         .         .         .         .

CGCCTCAGCTCTGTATCGGGAAGCCTTAGAGTCTCCTGAGCATTGTTCACCTCACCATACTGCACTCAGGCAAGCAATTCTTTGCTGGGGGGAACTAATG
GCGGAGTCGAGACATAGCCCTTCGGAATCTCAGAGGACTCGTAACAAGTGGAGTGGTATGACGTGAGTCCGTTCGTTAAGAAACGACCCCCCTTGATTAC
Sp1

2110                2130               2150                2170                2190
.         .         .         .         .         .         .         . ▬▬▬▬▬> ▬▬▬▬▬> .

ACTCTAGCTACCTGGGTGGGTGTTAATTTGGAAGATCCAGCGTCTAGAGACCTAGTAGTCAGTTATGTCAACACTAATATGGGCCTAAAGTTCAGGCAAC
TGAGATCGATGGACCCACCCACAATTAAACCTTCTAGGTCGCAGATCTCTGGATCATCAGTCAATACAGTTGTGATTATACCCGGATTTCAAGTCCGTTG

Sp1                                                FOXA HNF4

Fig. 3.2  (continued)
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2210                2230                2250                2270                2290
.         .         .         .         .         .         .         .         .         .

TCTTGTGGTTTCACATTTCTTGTCTCACTTTTGGAAGAGAAACAGTTATAGAGTATTTGGTGTCTTTCGGAGTGTGGATTCGCACTCCTCCAGCTTATAG
AGAACACCAAAGTGTAAAGAACAGAGTGAAAACCTTCTCTTTGTCAATATCTCATAAACCACAGAAAGCCTCACACCTAAGCGTGAGGAGGTCGAATATC

2310                2330                2350                2370                2390
▼▼▼ .         .         .         .  .         .         .         .         .

ACCACCAAATGCCCCTATCCTATCAACACTTCCGGAGACTACTGTTGTTAGACGACGAGGCAGGTCCCCTAGAAGAAGAACTCCCTCGCCTCGCAGACGA
TGGTGGTTTACGGGGATAGGATAGTTGTGAAGGCCTCTGATGACAACAATCTGCTGCTCCGTCCAGGGGATCTTCTTCTTGAGGGAGCGGAGCGTCTGCT

2410                2430                2450                2470                2490
.         .         .         .         .         .         .         .         .         .

AGGTCTCAATCGCCGCGTCGCAGAAGATCTCAATCTCGGGAATCTCAATGTTAGTATTCCTTGGACTCATAAGGTGGGGAACTTTACTGGGCTTTATTCT
TCCAGAGTTAGCGGCGCAGCGTCTTCTAGAGTTAGAGCCCTTAGAGTTACAATCATAAGGAACCTGAGTATTCCACCCCTTGAAATGACCCGAAATAAGA

2510                2530                2550                2570                2590
.         .         .         .         .         .         .         .         .         .

TCTACTGTACCTGTCTTTAATCCTCATTGGAAAACACCATCTTTTCCTAATATACATTTACACCAAGACATTATCAAAAAATGTGAACAGTTTGTAGGCC
AGATGACATGGACAGAAATTAGGAGTAACCTTTTGTGGTAGAAAAGGATTATATGTAAATGTGGTTCTGTAATAGTTTTTTACACTTGTCAAACATCCGG

2610                2630                2650                2670                2690
.         .         .         .         .         .         .         .         .         .

CACTCACAGTTAATGAGAAAAGAAGATTGCAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACC
GTGAGTGTCAATTACTCTTTTCTTCTAACGTTAACTAATACGGACGGTCCAAAATAGGTTTCCAATGGTTTATAAATGGTAACCTATTCCCATAATTTGG

2710                2730                2750                2770                2790
.         .         .    .         .         .         .         .         .         .

TTATTATCCAGAACATCTAGTTAATCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACAT
AATAATAGGTCTTGTAGATCAATTAGTAATGAAGGTTTGATCTGTGATAAATGTGTGAGATACCTTCCGCCCATATAATATATTCTCTCTTTGTTGTGTA

HNF1                      FOXA Sp1         TBP

2810                2830                2850                2870                2890
●▬▬►2.4kb PS RNA     .         .         ▼▼▼ .         .         .         .         .

AGCGCCTCATTTTGTGGGTCACCATATTCTTGGGAACAAGATCTACAGCATGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCAC
TCGCGGAGTAAAACACCCAGTGGTATAAGAACCCTTGTTCTAGATGTCGTACCCCGTCTTAGAAAGGTGGTCGTTAGGAGACCCTAAGAAAGGGCTGGTG

2910                2930                2950                2970                2990
.         .         .         .         .         .         .         .         .         .

CAGTTGGATCCAGCCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAG
GTCAACCTAGGTCGGAAGTCTCGTTTGTGGCGTTTAGGTCTAACCCTGAAGTTAGGGTTGTTCCTGTGGACCGGTCTGCGGTTGTTCCATCCTCGACCTC

FOXA NF1

3010                3030                3050                3070                3090
.         .         .         . .         .         .         .         .         .

CATTCGGGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC
GTAAGCCCGACCCAAAGTGGGGTGGCGTGCCTCCGGAAAACCCCACCTCGGGAGTCCGAGTCCCGTATGATGTTTGAAACGGTCGTTTAGGCGGAGGACG

Sp1                                              Sp1

3110                3130                3150                3170                
.         .         .         .         .        ●▬▬►2.1kb S RNA▼▼▼ ●▬▬►.

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTGG
GAGGTGGTTAGCGGTCAGTCCTTCCGTCGGATGGGGCGACAGAGGTGGAAACTCTTTGTGAGTAGGAGTCCGGTACGTCACC

NF-Y                    Sp1 Sp1

Fig. 3.2  (continued)
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located upstream of the transcription start sites for each of the viral transcripts were 
shown to correspond to the enhancer/promoter regions governing the levels of RNA 
synthesis. The 200 base pair region located between nucleotide coordinates 1600 
and 1800 bound both ubiquitous (RFX1, SP1, COUPTF, ERR, and TBP) and liver-
enriched (C/EBP, LRH1, HNF4, RXR, FXR, FOXA and PPAR) transcription fac-
tors, which contributed to the level of the nucleocapsid or core promoter activity 
that directs the expression of the HBV 3.5 kb precore and pregenomic RNAs encod-
ing the HBeAg and HBcAg polypeptides [108–128]. The 70 base pair region located 
between nucleotide coordinates 2720 and 2790 bound both ubiquitous (SP1 and 
TBP) and liver-enriched (FOXA and HNF1) transcription factors, which contribute 
to the level of the presurface antigen promoter activity that directs the expression of 
the HBV 2.4 kb presurface antigen RNA encoding the large surface antigen [129–
133]. The 240 base pair region located between nucleotide coordinates 2910 and 
3150 bound both ubiquitous (NF1, SP1 and NF-Y) and liver-enriched (FOXA) tran-
scription factors, which contributed to the level of the surface antigen promoter 
activity that directs the expression of the HBV 2.1 kb surface antigen RNAs encod-
ing the middle and major surface antigens [134–138]. Similarly, the 220 base pair 
region located between nucleotide coordinates 1020 and 1240 bound both ubiqui-
tous (p53, IRF, NF1, COUPTF, RFX1, AP1, CREB, and ATF2) and liver-enriched 
(C/EBP, FOXA, HNF4, RXR and PPAR) transcription factors, which contributed to 
the level of the X-gene promoter activity that may direct the expression of the HBV 
0.7  kb X-gene RNAs encoding the X-gene polypeptide [120, 127, 139–149]. 
Furthermore, the X-gene and core promoter regions can act as enhancer sequences, 
enhancer 1 and 2, respectively, under certain circumstances leading to increased 
transcription from the other HBV promoters [104, 112, 113, 145, 146, 150–168]. 
The enhancer function of the X-gene and core promoter regions may be important 
for the coordinated liver-specific expression of the HBV transcripts. Similarly, the 
contribution of individual transcription factors to multiple HBV promoter activities 
may also control the coordinate expression of the various transcripts at levels appro-
priate for viral biosynthesis. For example, FOXA binds to and regulates expression 
from all four HBV promoters to various extents [131]. However, the large surface 
antigen promoter is considerably weaker than the other HBV promoters due, in part, 
to its limited number of transcription factor–binding sites [166]. This ensures that 
limiting amounts of the large surface antigen are synthesized and hence prevents the 
inhibition of viral secretion due to the overproduction of surface antigen tubules that 
can limit viral envelope secretion [33, 49, 169].

The mapping of the cis-acting promoter sequences permitted the identification of 
regulatory sequence elements that were transcriptionally active only in hepatoma 
cells and not in nonhepatoma cells [87, 90, 105, 136, 150, 151, 158, 159, 164, 166, 
167, 170–180]. These regulatory elements bound liver-enriched transcription fac-
tors, whereas the promoter regulatory elements that were transcriptionally active in 
both cell types bound more ubiquitously expressed transcription factors. 
Combinations of DNaseI footprinting and electrophoretic mobility shift assays 
(EMSAs) using cell extracts and purified factors permitted the identification of many 
of the trans-acting transcription factors binding to the HBV promoter regulatory 
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sequence elements [109, 120–122, 124, 129–134, 136, 137, 150, 157, 161, 165, 170, 
177, 178, 181–186]. Functional validation of the roles of the identified DNA binding 
proteins in governing the activities of the HBV promoter was evaluated using trans-
fection analysis of wild-type and mutant HBV reporter gene constructs in the pres-
ence of exogenously expressed transcription factors [109, 120, 121, 124, 129, 131, 
133, 137, 157, 178, 183, 184, 186, 187]. These studies led to a relatively comprehen-
sive map of the HBV enhances/promoters and the functional importance of the tran-
scription factors that bind to these regulatory sequence elements (Fig. 3.2). Despite 
generating a relatively comprehensive map of the cis-acting regulatory sequence 
elements governing viral RNA synthesis and the trans-acting factors that bound to 
them, it remained unclear what the relative importance of the various identified tran-
scription factors might be for HBV biosynthesis, either in cell culture or in vivo.

4  �Role of Liver-Enriched Transcription Factors in HBV 
Transcription, Replication, and Tissue Tropism

The mapping of transcription factor–binding sites to the viral promoters permitted 
their role in controlling HBV RNA synthesis to be evaluated in the context of viral 
replication. A significant limitation of these studies arose, because robust viral rep-
lication could only be observed in a very limited number of hepatoma cell lines 
where all the necessary factors for HBV biosynthesis were present [76, 80, 82, 188]. 
This meant that the effects of exogenously expressed transcription factors on viral 
transcription were typically rather modest [115, 189]. Furthermore, it was challeng-
ing to map these modest effects to specific transcription factor–binding sites by 
mutational analysis, in part, because of the redundancies in the transcriptional regu-
lation of HBV RNA synthesis and the potential effects of mutations on the viral-
coding capacity or cis-acting sequences involved in the regulation of viral replication. 
The use of short interfering RNA (siRNA) technologies to reduce specific transcrip-
tion factor abundances in hepatoma cells also has limited utility because of the 
functional redundancies in the DNA-binding proteins regulating HBV biosynthesis. 
For these reasons, it became necessary to develop additional approaches to study the 
effects of specific transcription factors on HBV RNA synthesis, and consequently 
viral replication.

HBV does not replicate in nonhepatoma cells, presumably because these cells lack 
the specific transcription factors necessary to support the synthesis of the 3.5 kb RNA 
from the viral core promoter [189, 190]. The suggestion was supported by the obser-
vation that viral 3.5 kb pregenomic RNA synthesis driven by the cytomegalovirus 
(CMV) immediate early promoter was sufficient to support robust HBV replication 
in nonhepatoma cells [191]. These findings suggested that complementation of HBV 
genomic DNA with the appropriate liver-enriched transcription factors in nonhepa-
toma cells represented an approach to identifying the roles of specific transcription 
factors in the synthesis of HBV 3.5 kb pregenomic RNA and hence viral replication 
[189]. Indeed, this approach identified nuclear receptors as the sole class of transcrip-
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tion factors capable of robustly activating viral RNA and DNA syntheses in nonhepa-
toma cells [117, 189]. This approach indicated that HNF4, RXR, PPAR, FXR, and 
LRH1 represented liver-enriched nuclear receptors capable of supporting viral bio-
synthesis in nonhepatoma cells and hence likely contributed in a significant manner 
to the hepatocyte-specific tropism of HBV [117, 189]. The suggestion that HBV 
tropism is determined at the level of HBV 3.5 kb pregenomic RNA transcription is 
strongly supported by the tissue-specific expression pattern observed in the HBV 
transgenic mouse model of chronic viral infection [17]. In this model, viral transcrip-
tion and biosynthesis are largely restricted to tissues where these transcription factors 
are highly expressed with lower levels of transcription being observed in tissues 
where these transcription factors are expressed at more modest levels [17, 192].

The development of the nonhepatoma cell system for the analysis of the tran-
scriptional regulation of HBV biosynthesis identified nuclear receptors as the only 
transcription factors capable of supporting viral biosynthesis in this system [117, 
189]. Furthermore, most of the activity was shown to map to the proximal nuclear 
receptor binding site located within the core promoter region [117, 189]. However, 
it was unclear what the role of the other liver-enriched transcription factors known 
to bind to the viral promoters might be in governing HBV transcription and replica-
tion. To date, none of the other liver-enriched transcription factors, except FoxA/
HNF3, have been shown to modulate HBV biosynthesis in nonhepatoma cells 
[189]. In the nonhepatoma cell viral biosynthesis system, FoxA/HNF3 has been 
shown to antagonize nuclear receptor–mediated HBV transcription and replication 
[189, 191]. FoxA-/HNF3-mediated reduction in viral biosynthesis involves both 
HBeAg-mediated inhibition of HBV biosynthesis, possibly by reducing the effi-
ciency of capsid assembly, plus inhibition of RNA elongation presumably by inter-
fering with RNA polymerase II transcription through the viral promoters located 
within the DNA regions encoding the HBV 3.5 kb pregenomic RNA [191].

5  �Redundant Functions for Nuclear Receptors in HBV 
Biosynthesis

The use of the nonhepatoma cell system permitted the identification of multiple 
nuclear receptors capable of supporting HBV biosynthesis due to their ability to bind 
to the viral nucleocapsid promoter and direct the expression of the HBV 3.5 kb pre-
genomic RNA [117, 189]. These observations may, in part, explain the difficulties in 
determining which transcription factors contribute most to HBV transcription in 
hepatoma cells and hepatocytes in vivo [118, 125, 193–195]. Differentiated hepa-
toma cells express a variety of liver-enriched transcription factors and support HBV 
transcription and replication [76, 80, 82, 188]. Consequently, ectopic expression of 
liver-enriched transcription factors can only enhance HBV transcription to a modest 
extent [115, 189]. Furthermore, reduction or elimination of any specific transcription 
factor involved in HBV RNA synthesis also only has a very modest effect as there are 
additional transcription factors capable of substituting for the loss of any particular 
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transcription factor [196]. This situation has also been observed in vivo where indi-
vidual nuclear receptor-null HBV transgenic mice have displayed only modest per-
turbations in HBV biosynthesis. Specifically, the PPARα-null HBV transgenic mice 
displayed wild-type levels of HBV RNA and DNA under control conditions but 
failed to show enhanced biosynthesis when challenged with PPARα agonists [192, 
193]. In contrast, liver-specific HNF4-null HBV transgenic mice displayed a com-
plete loss of viral biosynthesis, indicating that this nuclear receptor was a major 
determinant of the developmental expression of HBV RNA [195]. However, early 
neonatal loss of HNF4 expression affects the abundance of additional nuclear recep-
tors (and liver-enriched transcription factors), which are potentially critical for robust 
HBV RNA synthesis [197], making it unclear the degree to which HNF4 plays a 
direct or indirect role in the developmental regulation of HBV expression [195].

FXR has also been implicated in the regulation of HBV biosynthesis [115, 117, 
118]. However, treatment of HBV transgenic mice with bile acids has only a very 
limited effect on viral biosynthesis [196]. This effect was not dependent upon inhi-
bition by the corepressor, small heterodimer partner (SHP), as SHP-null HBV trans-
genic mice have a similar phenotype to their wild-type controls whether or not they 
were fed a diet supplemented with bile acids [196]. The redundant function of mul-
tiple nuclear receptors may explain these observations [117, 196]. In the nonhepa-
toma cell system, HNF4 and FXR are both capable of independently activating 
HBV biosynthesis [117]. In the presence of HNF4, FXR can only modestly modu-
late HBV biosynthesis accounting for the in vivo observations [196]. Therefore, the 
development of the nonhepatoma cell–based HBV replication system has permitted 
the reconstitution of viral biosynthesis and the demonstration of the redundant 
mechanisms, which probably operate in vivo to govern the level of viral transcrip-
tion under different physiologically relevant conditions [196, 198].

6  �Regulation of HBV Biosynthesis by Transcriptional 
Coactivators and Corepressors

The development of the nonhepatoma cell HBV replication system permitted a 
more detailed investigation of the potential roles of coactivator and corepressor pro-
teins in the regulation of HBV transcription and replication [118, 125, 194, 199–
201]. These studies demonstrated that the coactivators, PGC1α, CBP, SRC1, and 
PRMT1, and the corepressor, SHP, were all capable of modulating HBV transcrip-
tion to some degree depending on cellular context [118, 125, 194, 199, 200]. 
Furthermore, the observation that PGC1α and SHP could modulate the nuclear 
receptor–dependent HBV biosynthesis in nonhepatoma cells further indica ted the 
potential importance of various nuclear receptors in the transcriptional regulation of 
viral biosynthesis [118, 125, 194, 199, 200].

Examination of PGC1α-dependent HBV biosynthesis in the nonhepatoma cell 
line, HEK293T, in the absence of exogenously expressed nuclear receptors revealed 
two major aspects of the transcriptional regulation of viral DNA synthesis [200]. 
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First, PGC1α acted as an adapter molecule for the recruitment of additional coacti-
vators in the absence of exogenously expressed nuclear receptors in this particular 
cell line [200]. This indicated that the endogenous coactivators present in HEK293T 
cells that were unrelated to the PGC1 family of coactivators were unable to activate 
HBV 3.5 kb RNA synthesis independently of PGC1α [200]. Therefore, the recruit-
ment of additional coactivators was PGC1-dependant and mutational analysis sug-
gested that PGC1 was recruited to the HBV nucleocapsid promoter, at least in part, 
through endogenous nuclear receptors present in HEK293T cells [200]. In addition 
to serving as an adaptor molecule for the recruitment of additional coactivator pro-
teins, PGC1α enhanced HBV transcription in HEK293T cells such that these cells 
could now support robust viral replication [200]. Detailed analysis of the mecha-
nism governing this observation demonstrated that the concentration of HBcAg 
passed a critical threshold necessary for core dimers to cooperatively form viral 
capsids (Fig. 3.3) [200, 202, 203]. Therefore, this cell culture system demonstrated 
compelling evidence that very modest changes in HBV 3.5 kb pregenomic RNA 
synthesis that led to less than a two-fold increase in HBcAg were, nonetheless, 
associated with a dramatic increase in viral DNA synthesis [200]. This finding 
showed the absence of a linear relationship between core protein synthesis and 
capsid-associated HBV biosynthesis, which is a critical observation that should be 
considered when evaluating the transcriptional regulation of viral replication.

The observation that the activities of coactivators and corepressors, which were 
shown to modulate HBV biosynthesis, are responsive to changes in metabolic cel-
lular states led to the suggestion that viral transcription and replication might be 
modulated by the physiological state of the cell [201]. Indeed, based on these types 
of observations, the term “metabolovirus” was suggested to describe the potential 
relationship between HBV biosynthesis and the metabolic state of the cell [204]. 
This suggestion is supported by the observations that PGC1α activity is enhanced 
in vivo by fasting [198, 205–208] and SHP activity is induced by bile acids [196, 
209–211], demonstrating a direct relationship between metabolic challenges and 
coactivator and corepressor activities. However, despite these observations, there is 
very limited evidence linking metabolic perturbations to changes in specific coacti-
vator- or corepressor-mediated changes in HBV biosynthesis in either hepatoma 
cell lines or animal models of chronic viral infection [116, 196, 198, 201]. This may 
reflect the lack of importance of this form of regulation of HBV biosynthesis or the 
presence of multiple compensating mechanisms that maintain the homeostatic regu-
lation of viral RNA and DNA as the relative abundances of coactivators and core-
pressor activities change in response to altering physiological conditions.

7  �Transcriptional Regulation of HBV Replication In Vivo

As HBV animal infection models are essentially limited to man, chimpanzees, and 
tree shrews [3, 4, 7, 212–215], a detailed understanding of the transcriptional regula-
tion of HBV replication in vivo has been very challenging. None of the available 
models of HBV infection are suitable to investigate the in  vivo relevance of the 
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Fig. 3.3  The HBV replication cycle showing the intracellular pathway for the synthesis and secre-
tion of HBV, HBsAg, and HBeAg polypeptides. (a) Lower levels of the HBV pregenomic 3.5 kb 
RNA preclude cytoplasmic dimer oligomerization, immature capsid formation, and hence HBV 
DNA synthesis. (b) Modestly higher levels of the HBV pregenomic 3.5 kb RNA permit cytoplas-
mic dimer oligomerization, immature capsid formation, and hence HBV DNA synthesis
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transcriptional regulation of viral biosynthesis revealed in cell culture analysis. The 
small animal models of hepadnavirus infection including the woodchuck hepatitis 
virus (WHV) and the duck hepatitis B virus (DHBV) are also not useful models to 
understand the transcriptional regulation of HBV biosynthesis in vivo as the tran-
scription of both WHV and DHBV is regulated in a distinct manner from HBV 
[216–218]. For all these reasons, the HBV transgenic mouse model of chronic HBV 
infection represents the most relevant and tractable small animal model for the study 
of the transcriptional regulation of HBV biosynthesis in  vivo [17, 219]. In this 
model, a single replication competent HBV genome comprising 1.3 copies of the 
HBVayw DNA sequence has been incorporated into the mouse germline [17]. 
Consequently, every cell in the HBV transgenic mouse carries the viral transgene, 
which obviates the species barrier associated with viral infection. Furthermore, the 
HBV transgene is highly transcribed only in the tissues expressing the liver-enriched 
transcription factors identified in cell culture studies to control viral RNA synthesis 
[17, 192, 220]. Therefore, it appears that the HBV transgenic mouse model is a sys-
tem that probably reflects quite closely the transcriptional regulation of HBV bio-
synthesis observed in the liver during natural infection. Furthermore, in the absence 
of any alternative in vivo model system for the investigation of the transcriptional 
regulation of HBV biosynthesis, it is appropriate to utilize this system to support 
findings in cell culture. As many of the observations in cell culture have been vali-
dated in the HBV transgenic mouse model, it is reasonable to assume that they prob-
ably reflect, in part, the situation in natural infection under certain circumstances.

A concern regarding the HBV transgenic mouse model was the absence of 
nuclear HBV cccDNA and hence the possibility that aspects of the viral life cycle in 
addition to infection were absent from this system [17]. The alternative explanation 
for the absence of HBV cccDNA was that cycling of capsids back to the nucleus 
was not preferred as a result of the high level of surface antigen expression and the 
large surface antigen in particular that is essential for capsid envelopment and virion 
secretion through the endoplasmic reticulum to the Golgi apparatus secretion sys-
tem [221]. Based on this assumption, the HNF1α-null HBV transgenic mouse was 
created and analyzed [79, 222]. HNF1α regulates the level of expression from the 
large surface antigen promoter, so loss of HNF1α should be associated with a reduc-
tion in the level of HBV 2.4 kb RNA and hence translation of the large surface 
antigen polypeptide [129, 223]. This was predicted to lead to a reduction in virion 
production and the recycling of newly synthesized capsids to the nuclei [102, 224]. 
Interestingly, intracellular viral replication intermediates increased within the livers 
of HNF1α-null HBV transgenic mice despite very limited effects on HBV RNA 
synthesis [79]. Most interestingly, HBV cccDNA was readily apparent in these 
mice, demonstrating that recycling of capsids occurs in this HBV transgenic mouse 
model of chronic infection [79]. Furthermore, enhanced levels of viral replication 
were observed despite very limited changes in HBV transcription, supporting the 
contention that small changes in viral RNAs can be associated with large effects on 
DNA replication intermediates [79, 200].

As analysis in nonhepatoma cells indicated that nuclear receptors were major 
determinants of viral tropism, because they were critical for HBV 3.5 kb prege-
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nomic RNA synthesis [189], it was of interest to determine their role in the in vivo 
regulation of HBV biosynthesis. Initially, PPARα-null HBV transgenic mice were 
characterized [193]. These mice displayed no major effect on HBV biosynthesis, 
indicating that PPARα did not contribute to viral transcription and replication under 
normal physiological conditions [193]. However, activation of PPARα by the ago-
nists, clofibric acid and Wy-14,643, enhanced HBV biosynthesis in the liver of wild 
type but not PPARα-null HBV transgenic mice [193]. This finding demonstrated 
that activated PPARα can enhance the basal level of HBV biosynthesis observed in 
HBV transgenic mice [193]. As plasticizers and some drugs used to treat hypertri-
glyceridemia can activate PPARα, it seems possible that exposure to these com-
pounds might affect viral loads and disease state of chronic HBV carriers due to 
their effects on viral biosynthesis [225, 226]. Furthermore, it was noted that the 
effect of PPARα activation in the HBV transgenic mouse activated viral DNA syn-
thesis considerably more than RNA synthesis, suggesting that modest increases in 
transcription in vivo may be associated with much larger increase in viral replica-
tion as also recently observed in cell culture [193, 200].

Liver-specific HNF4α-null HBV transgenic mice died by postnatal day 15 [227]. 
The absence of HNF4α expression in the livers of these mice was associated with a 
dramatic loss in the increase in HBV biosynthesis observed during early neonatal 
development [227]. As HNF4α is a major contributor to the liver-specific transcrip-
tional network that defines the hepatocyte phenotype [197], it is not clear if the 
effect of HNF4α on HBV biosynthesis is direct or indirect. However, the in vivo loss 
of HBV RNA and DNA synthesis associated with the absence of HNF4α expression 
is consistent with a direct role for this nuclear receptor in viral biosynthesis, as 
observed in the nonhepatoma replication system [189]. Furthermore, the observed 
increase in the developmental expression of HNF4α correlates with a similar devel-
opmental increase in HBV biosynthesis, supporting its potentially direct role in viral 
transcriptional regulation in vivo [189, 197]. However, the developmental expres-
sion HNF4α in the liver also supports the expression of additional transcription 
factors including LRH1, RXRα, FXRα, and FoxA2, which are also important regu-
lators of HBV transcription and replication [189, 197]. If any of these transcription 
factors are critical determinants of viral biosynthesis, the effects of HNF4α on HBV 
RNA and DNA synthesis in vivo might be indirect rather than direct [189, 197].

Analysis of the liver-enriched transcription factors capable of complementing 
HBV transcription in nonhepatoma cells indicated that only nuclear receptors could 
independently activate HBV biosynthesis [117, 189]. This raised the interesting 
issue of the role of the other liver-enriched transcription factors in HBV biosynthe-
sis in this system. Only FoxA/HNF3 modulated nuclear receptor-mediated biosyn-
thesis in this system [189]. Indeed, it appeared that FoxA mediated its effects by 
preferentially reducing the expression of the HBV 3.5 kb pregenomic RNA at the 
level of transcriptional elongation, presumably due to its binding to the presurface, 
surface, X-gene and nucleocapsid promoters that are intragenic with respect to the 
transcription of the pregenomic RNA [191]. To address the in  vivo relevance of 
these observations, HBV biosynthesis was determined in the liver-specific FoxA2/
HNF3β-overexpressing HBV transgenic mouse [228]. As observed in the nonhepa-
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toma cells, overexpression of FoxA2/HNF3β in the liver of the HBV transgenic 
mouse resulted in a dramatic reduction in HBV biosynthesis [228]. In this case, a 
large decrease in HBV replication was associated with a more modest reduction in 
viral transcription [228]. This observation suggests that the viral biosynthesis in the 
HBV transgenic mouse is positioned such than the small changes in HBV RNA 
synthesis result in limited effects on core polypeptide synthesis, which, due to the 
cooperative nature of capsid assembly, have a dramatic effect on capsid-dependent 
reverse transcription of pregenomic RNA in a manner similar to that recently 
reported in cell culture [200].

Since FoxA/HNF3 overexpression in the HBV transgenic mouse was associated 
with the loss of viral replication, it was of interest to determine the in vivo effect of 
the loss of FoxA/HNF3 on HBV biosynthesis [198, 220]. The FoxA3/HNF3γ-null 
HBV transgenic mouse displayed a very limited phenotype, suggesting that the 
other FoxA/HNF3 isoforms in the liver were either compensating for the loss 
FoxA3/HNF3γ or FoxA3/HNF3γ was relatively unimportant for HBV biosynthesis 
[198]. Consequently, a FoxA/HNF3-deficient HBV transgenic mouse expressing 
only a single FoxA3/HNF3γ allele was generated and characterized [220]. This 
mouse was viable and displayed no overt phenotype despite biliary epithelial cell 
proliferation, stellate cell activation, and bridging fibrosis within the liver [220, 
229]. However, HBV transcription and replication were essentially absent within 
the liver [220]. Indeed, the HBV transgene had been permanently transcriptionally 
silenced due to DNA methylation of its non-CpG island sequences [220]. This 
observation indicated that the pioneer transcription factor, FoxA/HNF3, was essen-
tial for the demethylation of the HBV transgene during liver development and this 
may account, in part, for the observed increase in HBV biosynthesis during postna-
tal liver maturation [220, 227]. Further studies are required to determine when 
FoxA/HNF3 marks the HBV genome for demethylation during liver development 
and whether this process involves active demethylation by ten-eleven translocation 
(TET) methylcytosine dioxygenase-mediated oxidation of the 5-methylcytosine 
residues or passive demethylation involving DNA methyltransferase (DNMT) inhi-
bition in the presence of chromosome replication [230]. Regardless of the mecha-
nism of action of FoxA/HNF3, these observations suggest that targeting FoxA/
HNF3 at the appropriate stage of liver development might lead to permanent DNA 
methylation and inactivation of HBV cccDNA as a transcriptional template neces-
sary for viral biosynthesis and hence might represent a therapeutic target for the 
resolution of neonatal (and possibly adult) chronic infections.

8  �Conclusions

HBV is a significant human pathogen responsible for approximately 600,000 
deaths annually [22–24]. Current therapies are not curative and nucleoside-analog 
drugs target a single viral protein, the HBV reverse transcriptase/DNA poly-
merase, leading to the selection of drug-resistant variants [231, 232]. Additional 
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therapeutic targets are urgently needed to address this unmet need. Unfortunately, 
due to the small size of the viral genome and hence limited coding capacity, there 
are only a very limited number of HBV proteins that might serve as potential 
additional targets for the development of antiviral therapeutics. The HBV core 
antigen is a potential target and compounds affecting capsid assembly and/or 
function have been identified, but, to date, they have not been developed into 
therapeutic modalities [233–238].

Given the challenges with the development of antiviral therapeutics targeting 
viral proteins, an alternative approach is to target cellular gene products that are 
vital for the viral life cycle but are dispensable at some level for host viability. In 
this regard, our current understanding of the transcriptional regulation of HBV bio-
synthesis offers some cellular therapeutic targets that might potentially be exploited 
for the development of antiviral compounds. Nuclear receptors are ligand-depen-
dent transcription factors governing the level of HBV 3.5  kb pregenomic RNA 
synthesis. Antagonists targeting HNF4α, PPARα, FXRα, or LRH1 could poten-
tially lead to a reduction in HBV biosynthesis especially if viral transcription is 
reduced to a level where HBcAg dimers are expressed below the level required to 
support capsid assembly [200]. The limitations of nuclear receptors as antiviral 
targets include the functional redundancy resulting from multiple nuclear receptors 
governing HBV 3.5 kb pregenomic RNA synthesis and the possible undesirable 
effects on host metabolic function associated with their reduced activities, which 
might induce cellular toxicity. Targeting FoxA transcription factors at the appropri-
ate developmental stage might be more challenging but potentially more therapeu-
tically beneficial. Transient inhibition of FoxA activity during early neonatal 
development could potentially lead to the DNA methylation of viral genomes trans-
mitted from mother to child at birth. This could lead to the transcriptional inactiva-
tion of the HBV cccDNA, which effectively and permanently terminates viral 
biosynthesis with the functional eradication of the viral replication intermediate 
that is refractory to current therapeutic modalities. The major challenge with this 
approach is the difficulty in effectively targeting FoxA while limiting any possible 
long-term negative effects on normal cellular and tissue physiology. Regardless of 
these challenges, the study of the transcriptional regulation of HBV biosynthesis 
has revealed several interesting aspects of both HBV and liver developmental biol-
ogy while indicating a number of potential approaches to the development of novel 
therapeutic modalities targeting host gene products. Going forward, it is hoped that 
combinations of current and future therapies might result in effective treatments, 
leading to the resolution of chronic HBV infections and ultimately the worldwide 
eradication of this devastating human pathogen.
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