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Chapter 2
HBV Genome and Life Cycle

Jie Wang, Hongxin Huang, Yongzhen Liu, Ran Chen, Ying Yan, Shu Shi, 
Jingyuan Xi, Jun Zou, Guangxin Yu, Xiaoyu Feng, and Fengmin Lu

Abstract Chronic hepatitis B virus (HBV) infection remains to be a serious threat 
to public health and is associated with many liver diseases including chronic hepa-
titis B (CHB), liver cirrhosis, and hepatocellular carcinoma. Although nucleos(t)ide 
analogues (NA) and pegylated interferon-α (Peg-IFNα) have been confirmed to be 
efficient in inhibiting HBV replication, it is difficult to eradicate HBV and achieve 
the clinical cure of CHB. Therefore, long-term therapy has been recommended to 
CHB treatment under the current antiviral therapy. In this context, the new antiviral 
therapy targeting one or multiple critical steps of viral life cycle may be an alterna-
tive approach in future. In the last decade, the functional receptor [sodium- 
taurocholate cotransporting polypeptide (NTCP)] of HBV entry into hepatocytes 
has been discovered, and the immature nucleocapsids containing the non- or par-
tially reverse-transcribed pregenomic RNA, the nucleocapsids containing double- 
strand linear DNA (dslDNA), and the empty particles devoid of any HBV nucleic 
acid have been found to be released into circulation, which have supplemented the 
life cycle of HBV. The understanding of HBV life cycle may offer a new instruction 
for searching the potential antiviral targets, and the new viral markers used to moni-
tor the efficacy of antiviral therapy for CHB patients in the future.

1  Introduction

Hepatitis B virus (HBV) belongs to Hepadnaviridae family and is the causative fac-
tor of chronic hepatitis B (CHB). Worldwide, 257 million people are chronically 
infected with HBV, and 887,000 people annually die of HBV infection-related end-
stage liver disease, such as liver cirrhosis, liver failure, and liver cancer [1–3]. 
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Currently, there are two kinds of antiviral agents used for CHB treatment, including 
nucleos(t)ide analogues (NA) and pegylated interferon (Peg-IFN-α), and neither of 
them can directly target and efficiently clear the covalently closed circular DNA 
(cccDNA) which persists in the nuclei of the infected hepatocytes [4, 5]. Since 
cccDNA is the main cause that CHB is difficult to cure, the eradication of cccDNA 
is an ideal goal for the cure of CHB. Unfortunately, it is almost impossible via the 
currently available antiviral therapies. Alternatively, the functional cure, a state 
characterized with serum HBsAg loss, has been suggested. Since functional cure is 
also difficult to achieve, the long-term NA therapy has been recommended in almost 
all the guidelines for CHB management [6–9]. However, the long-term therapy may 
bring a series of problems, such as side effects, costs, and compliance.

Recent discoveries allow a better understanding of HBV life cycle and pave the 
way for identifying the multiple new therapeutic targets for CHB, as well as provide 
the new viral markers for guiding the clinical practice. Firstly, the HBV entry inhibi-
tors are being developed after the discovery of NTCP as a major functional receptor 
of HBV infection [10–12]. Meanwhile, the approaches specifically targeting 
cccDNA are being explored in experimental models when the gene editing tech-
nologies discovered, such as the systems of zinc-finger nucleases, TAL effector 
nucleases, and CRISPR-associated (cas) nucleases [13–20]. Moreover, other antivi-
ral agents for CHB treatment are being developed, such as the uses of RNA interfer-
ence to inhibit HBV replication, capsid assembly modulators (CAMs) to inhibit 
pgRNA encapsidation and block HBV DNA synthesis, and immune modulatory 
therapies [21–29]. In the future, the combination of the current and the newly devel-
oped antiviral agents targeting the different steps of viral life cycle may be an alter-
native approach for achieving the eradication of HBV infection and the clinical cure 
of CHB. Besides, several serum viral markers, including hepatitis B core-related 
antigen (HBcrAg), HBV RNA, and dslDNA, are going to be the potential viral 
markers for monitoring the efficacy and prognosis of antiviral therapy for CHB 
patients [30–39].

2  HBV Genome

HBV has a genome of approximately 3.2 kb and partially double-stranded, relaxed 
circular DNA (rcDNA) which is composed of a complete coding minus strand (−) 
and an incomplete noncoding plus strand (+) with a fixed 5' end and a variable-size 
3′ end [40, 41]. As shown in Fig. 2.1, the relaxed circular configuration of HBV 
genome is maintained by the cohesive end regions containing two direct repeats 
(DRs) of 11 nucleotides (TTCACCTCTGC) termed DR1 (nt 1824–1834) and DR2 
(nt 1590–1600) [42]. Both DR1 and DR2 play the important roles in viral replica-
tion, and the integration of HBV DNA sequences into host cell genome [43]. The 
coding minus strand contains four overlapping open reading frames (ORFs) 
(preC/C, P, preS/S, and X), four promoters [core promoter (CP, 1613-1849) consists 
of the upper regulatory region (URR, nt1613-1742) and the basic core promoter 

J. Wang et al.



19

(BCP, nt 1742-1849), PreS1 promoter (SP I, nt 2718-2808), PreS2 promoter (SP II, 
nt 2983-3210), and X promoter (XP, nt 1171-1361)], and two enhancers [Enhancer 
I (EN I, nt 957-1361) and Enhancer II (EN II, nt 1685-1773)], as well as polyade-
nylation [poly(A)] signal (nt 1916-1921) [44, 45]. Under the regulation of four pro-
moters and two enhancers, the 3.5, 2.4, 2.1, and 0.7 kb polyadenylated HBV RNAs 
are generated, respectively [46, 47].

The preC/C ORF and P ORF overlap each other partially: the former encodes 
hepatitis B e antigen (HBeAg) and core protein, and the latter is responsible for the 
synthesis of HBV DNA polymerase (P protein). Core protein and P protein are 
translated from pregenomic RNA (pgRNA), while HBeAg is translated from pre-
core mRNA. Both pgRNA and precore mRNA are transcriptionally regulated by CP 
in which the URR regulates the promoter activity and the BCP regulates the tran-
scriptions of both pgRNA and precore mRNA [48, 49]. Core protein self-assembles 
to form the viral capsid and binds with cccDNA to participate in its epigenetic 
modifications [50], while P protein consists of four pivotal domains including ter-
minal protein (TP) domain, spacer region, reverse transcriptase (RT) domain, and 

Fig. 2.1 The circular diagram of HBV genome. The locations of ORFs and important regula-
tory elements refer to genotype C HBV genome [45, 46]. XP, X promoter; SP I, PreS1 promoter; 
SP II, PreS2 promoter; BCP, Basic core promoter; CP, Core promoter; EN I, Enhancer I; EN II, 
Enhancer II; DR1, Direct repeat 1; DR2, Direct repeat 2; Poly(A), Polyadenylation
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RNase H domain, which is anchored on the 5′ terminus of the minus-strand DNA 
and has many functions in the viral life cycle, such as viral RNA binding, pgRNA 
encapsidation, protein priming, reverse transcriptase activity, DNA polymerase 
activity, and RNase H activity [51–54]. The precursor of HBeAg undergoes proteo-
lytic processing in the endoplasmic reticulum (ER) and generates the mature HBeAg 
[55]. Although HBeAg is not essential for the viral replication and infection, such a 
secretory protein has immune regulatory functions. For example, HBeAg can inhibit 
host innate immunity and mediate immune evasion by inducing T cell tolerance [56, 
57]. The preS/S ORF is located within P ORF and uses three different in-frame 
AUG start codons to encode three envelope glycoproteins including large (L), mid-
dle (M), and small (S) surface antigens (HBsAg). L-HBsAg is translated from the 
2.4 kb HBV RNA transcriptionally regulated by SP I, and the latter two envelope 
glycoproteins are translated from 2.1 kb HBV RNA transcriptionally regulated by 
SP II [58]. The X ORF encoding X protein (HBx) is the smallest ORF and overlaps 
with P ORF. HBx is translated from the 0.7 kb HBV RNA which is transcriptionally 
regulated by XP (Figs. 2.1 and 2.2).

In addition to the promoter elements, the expressions of these viral genes are also 
modulated by two enhancer elements, EN I and EN II. EN I is located between ORF 
S and X and is consisted of a 5′ modulatory element, a central core domain with 
actual enhancer activity and a 3′ domain that overlaps with X ORF [59, 60]. EN II 
is located at the upstream of CP and partially overlaps with BCP and URR, which 
comprises region IIA and IIB potent enhancer elements [47, 48]. Both EN I and EN 
II have the ability to upregulate the activities of the HBV promoters in an orientation- 
independent manner, in which EN I preferentially upregulates the activities of CP/
BCP and XP but has a modest effect on the activities of SP I and SP II, while EN II 
preferentially upregulates the activities of the SP I, SP II, and XP [48, 49, 61, 62].

3  Viral Entry

HBV is highly species-specific and hepatotropic. This species specificity is partly 
dependent on the expression pattern of HBV entry receptors. As shown in Fig. 2.3, 
HBV has been identified to firstly attach to heparan sulfate proteoglycans (HSPGs) 
on hepatocyte membrane with low affinity, which is mediated by the antigenic loop 
(AGL) present in the S domain of all HBsAg [63]. Subsequently, PreS1 region of 

Fig. 2.2 The linear diagram of HBV genome
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L-HBsAg, predominantly the 2-48 N-terminal amino acids (aa), binds to NTCP on 
the basolateral membrane of hepatocytes with high affinity [64]. The myristoylation 
of the N-terminal PreS1 facilitates virus infection through enhancing the capability 
of receptor recognition [65–67]. NTCP composed of 349 aa is a conjugated bile 
acid transporter, and the aa 84-87 and 157-165 of NTCP are critical for viral entry 
into hepatocytes [10, 68]. Next, the viruses are internalized through endocytosis, 
including the caveolae- and clathrin-mediated endocytosis [69–71]. The subsequent 
endosomes are translocated by a common vesicle traffic pathway relying on cyto-
skeleton and are regulated by Rab, small guanosine triphosphatases of the Ras 
superfamily, to deliver the endosomes to different cellular compartments [72, 73].

Fig. 2.3 HBV life cycle. (a): The entrance of HBV Dane particles into hepatocyte via the binding 
of L-HBsAg to NTCP and binding of S-HBsAg to HSPG on the membrane of hepatocyte. (b): The 
release of nucleocapsid and the transportation of nucleocapsid into nucleus where the uncoating 
takes place. (c): The release of rcDNA from the nucleocapsid into nucleus of hepatocyte. (d): The 
conversion of rcDNA to cccDNA which serves as the template for viral transcription. (e): The 
transcriptions of cccDNA to HBV RNAs. (f): The translations of HBV RNAs result in the produc-
tions of HBeAg, core protein, P protein, L-HBsAg, M-HBsAg, S-HBsAg, and HBx protein. 
(g):The binding of P protein to ε region of pgRNA and the recruitment of core proteins to assemble 
nucleocapsid. (h): The reverse transcription and the synthesis of HBV minus (−)-strand DNA 
using pgRNA as the template. (i): The accurate translocation of P protein and the synthesis of HBV 
plus (+)-strand DNA. (j): The envelopment of the nucleocapsid via MVB transport pathway. (k): 
Secretion of virions and subviral particles. (l): Incorrect translocation of P protein resulting in 
formation of dslDNA and the integration of dslDNA into the host genome. (m): Nuclear transloca-
tion and uncoating of newly formed nucleocapsids to replenish cccDNA pool
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During this process, the translocation of vesicle is accompanied by a pH decrease 
from about 6.2 in early endosomes to approximate 5.5 in late endosomes, resulting 
in the fusion of the viral envelope with the endosomal membrane to release nucleo-
capsids [74]. However, pH-independent entry and sequential endosomal sorting 
seems to be the major determinants in the infection of duck hepatitis B virus 
(DHBV) [75]. Besides, the cholesterol on viral membrane is required for the above 
endosomal escape of the virus into the cytosol [76]. The nucleocapsids are trans-
ported by motor proteins along microtubules toward the nucleus [77]. The nucleo-
capsids are directed to nucleus pore complex (NPC) by nuclear localization sequence 
(NLS) of core proteins and then are arrested at the nuclear basket by Nup153, a 
component of NPC [78, 79]. Finally, the nucleocapsids disassemble, followed by 
HBV rcDNA and some core proteins releasing into nucleus [80].

4  The Conversion of rcDNA to cccDNA

Once rcDNA enters the nucleus, it will go through a series of biochemical steps to 
be converted to covalently closed circular DNA (cccDNA), which is the crucial 
intermediate that serves as the template of HBV replication during HBV life cycle 
(Fig. 2.3) [81]. Many host factors, such as DNA repair devices, participate in the 
conversion of rcDNA to cccDNA [82, 83]. Firstly, P protein anchored on the 5′ 
terminus of the minus-strand HBV DNA may be removed by human tyrosyl DNA 
phosphodiesterase-2 (TDP2) which is a host repair enzyme that can remove topoi-
somerase (TOP)-DNA covalent complexes [84–87]. Except for TDP2, this deprot-
einization reaction may also be achieved by an endonucleases-mediated nucleolytic 
pathway [87]. Meanwhile, a capped and 18 nucleotide-long RNA oligomer at the 5′ 
end of plus-strand DNA and the 9 or 10 nucleotide-long terminally redundant seg-
ment (r sequence) at the 5′ end of minus-strand DNA are removed by flap structure- 
specific endonuclease 1 (FEN1) which specifically cleaves the 5′-flap structure 
formed by RNA oligomer or r sequence [88–90]. However, other host factors other 
than FEN1 may also participate in removing the flap structure in rcDNA [90]. Next, 
the plus-strand DNA which is variable in length is extended not only by P protein 
but also host cellular polymerases, such as DNA polymerase κ (POLK) [88, 91, 92]. 
POLK is a key host cellular polymerase supporting HBV infection, while other host 
DNA polymerases, such as DNA polymerase L (POLL) and H (POLH), also partici-
pate in this step [92]. Finally, to converse rcDNA to cccDNA, both linear strands are 
mainly ligated by host cellular DNA ligase (LIG) 1 and 3 after the extension of 
plus-strand DNA [93]. Besides, LIG4 has been considered to participate in the for-
mation of cccDNA from double-strand linear DNA (dslDNA) through the nonho-
mologous end joining (NHEJ) DNA repair pathway [93–95].

Once formed, cccDNA will be organized into a chromatin-like viral minichro-
mosome and modified by host histone proteins, such as H3 and H4 histone proteins, 
as well as nonhistone proteins like viral HBx, core protein, and host epigenetics- 
related proteins, whereas the nucleosome spacing (repeat length) is 180 bp which is 
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different from the 200 bp repeat length for the chromatin of eukaryotic cells [96, 
97]. HBV cccDNA can be epigenetically modified to regulate viral replication and 
viral gene expression, including DNA methylation and histone modifications [98].

5  The Expressions of Viral RNAs and Proteins

After rcDNA is being converted to cccDNA in the nucleus of hepatocyte, cccDNA 
is used as the template of HBV replication and then transcribed into the 3.5 kb, 
2.4 kb, 2.1 kb, and 0.7 kb HBV RNAs [46, 81, 99–101]. As shown in Fig. 2.3, there 
are two kinds of the 3.5 kb HBV RNAs, the precore mRNA and pgRNA. The pre-
core mRNA is mainly transcribed from 1783 nt of HBV genome and is longer than 
pgRNA which mainly transcribed from 1818 nt [102]. HBV RNAs share the same 
3′ end terminus using a classic poly(A) signal “UAUAAA” (nt 1916-1921) (Fig. 2.1) 
[36, 38, 46]. However, there is another cryptic poly(A) signal “CAUAAA” within 
the X ORF (nt 1788-1793), which can lead to the productions of the truncated HBV 
RNAs (trRNA) [38, 103].

As mentioned above, the transcriptions of HBV RNAs are regulated by four 
promoters (CP, SP I, SP II, and XP) and two enhancers (EN I and EN II) [101, 104]. 
CP is consist of BCP and URR. BCP contains four serial TATA-like box, in which 
the three ahead are used to control the transcription of precore mRNA and the fourth 
one is used for controlling the transcription of pgRNA [105, 106]. URR is consist of 
a positive regulatory element (nt 1613-1636) and a negative regulatory element 
(1636–1742), both of which regulate the transcriptional activity of BCP [107–109]. 
SP I initiates the transcription of 2.4 kb mRNA, and SP II initiates the transcription 
of 2.1 kb mRNA [110]. XP initiates the transcription of 0.7 kb HBV RNA [111]. EN 
I promotes the transcriptions of precore mRNA, pgRNA and 0.7 kb HBV RNAs, but 
has a modest effect on the transcriptions of the 2.4 kb and 2.1 kb HBV RNAs, while 
EN II preferentially promotes the transcriptions of the 2.4 kb, 2.1 kb, and 0.7 kb 
HBV RNAs [48, 49].

HBV pgRNA can be spliced by the formation of spliceosome which could 
remove introns like the cellular machineries [112, 113]. Just like the intron of het-
erogeneous nuclear RNA (hnRNA) which is composed a 5′ donor site (“GU”), a 3′ 
acceptor site (“AG”), a branch site (usually “A” base), and a polypyrimidine tract 
[113], the deleted HBV pgRNA sequences are also mainly shown a GU-AG manner 
[114]. The most abundant HBV pgRNA splicing variant is termed as SP1, with 
nearly one third of the HBV genome deleted (from nt 2447 to 489) [112]. There are 
also other forms of spliced pgRNA utilizing the different 5′ donor site and 3′ accep-
tor site [112]. Interestingly, the spliced pgRNAs can also be encapsidated and sub-
sequently reversed transcribed [115–118]. Moreover, SP1 can be translated into 
HBV splicing-generated protein (HBSP) which is reported to influence cell viabil-
ity, proliferation, and migration, as well as the TNF-α signaling pathway 
[119–123].
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Subsequently, HBV RNAs are translocated into cytoplasm [99]. As shown in 
Fig. 2.4, the precore mRNA is firstly translated to precore polypeptide, of which the 
first 19 amino acids in the N-terminal region is a signal peptide trafficking precore 
polypeptide to the ER where the signal peptide and the 34 amino acids of C-terminal 
domain are removed to form the mature HBeAg [57, 124]. The mature HBeAg can 
be released directly into circulation [46]. Meanwhile, a part of pgRNAs are trans-
lated to core protein and P protein, and the other parts of pgRNAs are encapsulated 
into the nucleocapsid and serve as the templates for viral replication. The 2.4 kb 
HBV RNA is translated to L-HBsAg, and the 2.1 kb HBV RNA is translated to M- 
and S-HBsAg. Once L-, M-, and S-HBsAg are synthesized at ribosome, they will be 
sorted into the ER for processing and then be transferred to the Golgi apparatus for 
further processing. Subsequently, these HBsAg can form two kinds of subviral par-
ticles [125, 126]. The predominant subviral particles are spherical particles with a 
diameter of approximately 20 nm, which mainly contain S-HBsAg and are secreted 
via the Golgi pathway of host cells [125, 127, 128]. The other subviral particles are 
less numerous filamentous particles (almost 1% of the spherical particles) with a 
diameter of approximately 22 nm, which contain a majority of S-HBsAg proteins 
and equal amounts of M- and L-HBsAg [125, 127–131]. Unlike spherical particles, 
filamentous particles are secreted by the host cell endosomal sorting complexes 
required for transport (ESCRT) and the multivesicular bodies (MVB) pathway 
[132]. Besides, the 0.7 kb HBV RNA is translated to HBx [99, 133, 134]. HBx is a 
multifunctional protein that is known to activate viral and host gene transcriptions, 
affect DNA repair processes, as well as regulate cell growth and death [135, 136].

6  Viral Capsid Assembly, Reverse Transcription,  
and rcDNA Formation

P protein recognizes the epsilon (ε) stem-loop including a bulge and an apical loop 
near the 5′ end of pgRNA, which is the encapsidation signal of pgRNA. A P-ε ribo-
nucleoprotein (RNP) complex is formed by structural alterations of both pgRNA 
and P protein [137–140]. Meanwhile, chaperones and ATP may assist the RNP 
complex to be the right conformation for the subsequent encapsidation, and the 

Fig. 2.4 The linear diagram of HBV RNAs and viral proteins
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priming reaction occurs at this stage [141–143]. The RNP complex is recognized 
and encapsidated by core protein dimers to form core particles before or after the 
priming reaction, and the subsequent reverse transcription occurs inside the core 
particles [140]. However, there may be some other packaging signal-like RNA 
motifs termed as preferred site (PS) for core protein binding in pgRNA, which are 
found by RNA SELEX assays and share a purine-rich loop recognition motif- 
RGAG (R = purine) [144].

The hydroxyl group of tyrosine (Tyr) in the TP domain of P protein covalently 
binds with the first deoxyribonucleotide in the bulge region of ε stem-loop near the 
5′ end of pgRNA to initiate the reverse transcription (Fig. 2.5a) [140, 145–148]. 
Next, the first four (TGAA) or three nucleotides (GAA) of the nascent minus-strand 
DNA are originated from the bulge region of ε stem-loop, followed by translocating 
the oligomer covalently linked to the P protein from ε stem-loop to the DR1 at the 
3′ terminus of pgRNA and leading to the elongation of minus-strand DNA (Fig. 2.5b) 
[149–151]. Except for the Tyr residue in TP domain, the YMDD motif in RT domain 
of P protein are also required for the priming activity and are important to cova-
lently link the first deoxyribonucleotide [146–148].

It is proposed that the primer-P protein complex is arranged through a cis-acting 
element termed Phi (φ) and located between DR2 and 3′ DR1 which is  complementary 

Fig. 2.5 The diagram for the formations of rcDNA and dslDNA from pgRNA. (a): HBV P 
protein-mediated priming at the ɛ region near the 5′ end of the pgRNA to initiate the reverse tran-
scription process. (b): The first template translocation of the nascent DNA primer from ɛ to DR1 
near the 3′ end of pgRNA. (c): The synthesis of minus-strand DNA and pgRNA digestion mediated 
by RNaseH domain of P protein. (d): The second template translocation of the pgRNA primer 
from DR1 to DR2 in the synthesis of plus-strand DNA. (e): The synthesis of plus-strand DNA 
toward 5′ end of minus-strand DNA and the third template translocation of the nascent plus-strand 
DNA from the 5′ end to the 3′ end of minus-strand DNA. (f): The formation of rcDNA in progeny 
virus with partial plus-strand DNA. (g): The formation of dslDNA through in situ priming of plus- 
strand DNA at the 3′ end of minus-strand DNA
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to the half of 5′ ε stem-loop, thus the 5′ ε stem-loop and 3’ DRI are held in close 
proximity [152, 153]. In addition, another cis-acting element termed omega (ω) 
locates at the downstream of 3′ DR1 and can anneal with φ, which is also thought 
to be important for minus-strand DNA synthesis [154]. Following the first translo-
cation or switch, P protein extends the minus-strand to the 5′ end of pgRNA. During 
the minus-strand elongation, the RNase H domain of P protein degrades pgRNA 
concomitantly from the pgRNA-DNA complex, whereas an oligoribonucleotide 
(16-18 ribonucleotides) of 5′ terminal pgRNA is reserved when the synthesis of 
minus-strand DNA terminated at the 5′ end of pgRNA (Fig.  2.5c) [155–157]. 
Notably, since the location of DR1 is within the large terminal redundancy of 
pgRNA, the de novo synthesized 3′ terminal minus-strand also has a terminal redun-
dancy termed r sequence, which plays an important role in the plus-strand DNA 
synthesis [158].

The oligoribonucleotide of the 5′ end capped-pgRNA serves as the primer for 
plus-strand DNA synthesis [156, 159]. The capped-RNA oligomer (RNA primer) 
encompassing the DR1 sequence translocates (second switch) to the complemen-
tary DR2 sequences at the 5′ end of minus-strand and starts the synthesis of plus- 
strand (Fig. 2.5d) [156, 159, 160]. Once the plus-strand extends to the 5′ end of 
minus-strand DNA, the third translocation or switch from the 5′ end to the 3 ′ end 
of the minus-strand DNA will take place to continue the plus-strand DNA synthesis 
and form rcDNA (Fig. 2.5e and f) [54, 160]. Alternatively, without the successful 
second translocation, the RNA primer may remain at the 3′ end of minus-strand 
DNA and carry out the in situ priming of plus-DNA to form dslDNA (Fig. 2.5g) 
[54]. The dslDNA is preferred to be integrated into the host genome and then serves 
as the transcription template for HBsAg, whereas its production is a minor pathway 
with an occurring frequency of about 5%-20% under the normal conditions [161, 
162]. Besides, several studies suggest that other cis-acting sequences in the minus- 
strand DNA may also participate to help spatially juxtapose through base pairing for 
plus-strand DNA synthesis [163, 164].

7  Viral Budding

The rc- or dslDNA containing core particles are termed as nucleocapsids. Some of 
nucleocapsids shuttle back to the nucleus to maintain a relatively stable pool of 
cccDNA, and other nucleocapsids are enveloped by HBV envelope glycoproteins 
(Fig.  2.3) [165–167]. For the latter process, two cytoplasmic domains (matrix 
domains, MDs) of Golgi-processed HBsAg in the MVB membrane contact with 
nucleocapsids, and such contacts will order the envelope proteins into a tightly 
packed formation in the MVB membrane and subsequently drive the inward bud-
ding process [125]. Since MD1 is located at the boundary between preS1 and 
preS2 in L-HBsAg (aa 103 to 124), and MD2 is located at the C-terminal half of the 
cytoplasmic loop between transmembrane domain (TM) 1 and 2 in S-HBsAg, it is 
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indicated that both L- and S-HBsAg are necessary for the inward budding while 
M-HBsAg is not essential [168–172]. Finally, the inward-budded nucleocapsids are 
sorted into the ESCRT complexes of host cell to catalyze the membrane fission and 
subsequently release outside the cell [131].

As shown in Fig. 2.3, except for the mature nucleocapsids, the immature nucleo-
capsids containing the non- or partially reverse transcribed pgRNA may also be 
enveloped and secreted in a similar way to the mature nucleocapsids [34, 35, 173, 
174]. Besides, the empty capsids, referring to the capsids devoid of any form of 
HBV nucleic acid due to the core dimers failing to package HBV pgRNA, can also 
be enveloped by contacting with MD2 of S-HBsAg and released outside the cell as 
empty virions. Unlike the mature nucleocapsids, core proteins in empty capsids are 
mostly phosphorylated and may be the aberrant core proteins [126, 144, 175, 176].

In addition, it has been reported that the naked capsids can also be directly 
released outside the cell, which may be depended on the interaction between the 
HBV core particles and the Bro1 domain of Alix which act as a regulator of capsid 
releasing but independent of the ESCRT machinery (Fig. 2.3). However, the detail 
mechanism of this pathway has not been elucidated yet [177–179].

8  Conclusion

With an enveloped 3.2 kb rcDNA genome, HBV belongs to Hepadnaviridae family 
[180]. HBV particles enter hepatocytes through a high-affinity binding of the myris-
toylated viral preS1 to NTCP and a low-affinity binding of S-HBsAg to HSPG [10, 
127, 181]. Subsequently, rcDNA enters into the nucleus and is converted to cccDNA, 
which persists as a minichromosome to transcribe HBV RNAs through the cellular 
transcription machinery. Among HBV RNAs, pgRNA is reverse transcribed to form 
HBV minus-strand DNA and encodes core protein and P protein. The assembly of 
viral capsid is initiated by binding of P protein to pgRNA, and then the encapsidated 
pgRNA is reverse transcribed to minus-strand DNA, followed by incompletely syn-
thesizing the plus-strand DNA to form rcDNA [182]. The synthesized rcDNAs can 
either re-enter the nucleus to replenish cccDNA pool or be enveloped and released 
as viral particles [165, 183]. Except for rcDNA, dslDNA is generated when failing 
to translocate the RNA primer, which is often integrated into the host genome using 
the host enzymes [184, 185]. The integrated viral DNA fragments are frequently 
ended at the DR-1/2 regions of HBV genome [186, 187]. Since the intact ORF of S 
gene is present in the integrated viral DNA fragments, HBsAg can also be expressed 
from the integrated HBV DNA fragments [127, 188, 189]. Accordingly, HBsAg can 
be produced by either cccDNA or the integrated HBV DNA, and it has been reported 
that HBsAg may majorly originate from the integrated HBV DNA  in HBeAg- 
negative HBV-infected individuals [127, 190, 191].

Like the nucleocapsids containing rcDNA, the nucleocapsids containing RNA, 
and the nucleocapsids containing dslDNA, the immature nucleocapsids and the 
empty particles may also be enveloped and released by ESCRT-dependent pathway 
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in MVB, which provides supplement to the traditional HBV life cycle (Fig. 2.3). 
These new discoveries of HBV life cycle may provide the new viral markers used 
for predicting the efficacy of antiviral therapy and offer the instructions for develop-
ing the new antiviral approaches.
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