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Abstract Analysis of recent publications in Green Analytical Chemistry shows the
current trends and future needs in this area. The main issues are related to search for
cheaper, more efficient, more accurate, greener and miniaturized alternatives. Minia-
turization is perhaps, the most notable current trend in analytical chemistry. Rapid
developments and improvements in instrumentation have led to an impressive range
of benchtop technology and portable devices. In addition, an important issue that has
been explored by many authors is metrics of Green Analytical Chemistry, such as
Analytical Eco-Scale or Green Analytical Procedure Index. Implementation of inter-
disciplinary methods is an emerging trend in Green Analytical Chemistry. Employ-
ment of multicriteria decision analysis, a technique which is used in environmental
management, to Green Analytical Chemistry is a very popular and common trend.
Another important issue that will determine the future of GreenAnalytical Chemistry
is education and popularization of this concept in the society. This chapter summa-
rizes contemporary problems and gives the future perspectives of Green Analytical
Chemistry.
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15.1 Introduction

The importance and scope of use of analytics and bioanalytics are constantly growing
due to the need to obtain reliable analytical information about the processes taking
place in various material objects of different origins and their composition. At this
point, one can ask yourself howmany known chemical compounds may be present in
the tested samples. The answer to this question can be found in Chemical Abstracts.
The relevant data are summarized in Table 15.1. The number of chemical compounds
whose basic properties are known is constantly growing.

Two groups of chemists are responsible for this:

• chemists employed in laboratories and industrial facilities where research on new
synthesis processes and the production of various types of chemicals on an increas-
ingly larger scale are carried out,

• chemical analysts who develop new analytical procedures and use control and
measurement instruments ensuring the ability to detect, identify and quantify an
increasinglywider range of analytes at a lower and lower level of content in samples
characterized by complex and often variable composition of the matrix.

The increase of the tonnage production and the variety of chemicals produced (in
pure form or in the form of appropriate chemical products) makes the human habitat
increasingly saturated with chemical compounds. Thus, the immediate human envi-
ronment is often referred to as a chemosphere. The OECD report provides relevant
data and forecasts on the growth in the production of chemicals and the increase in
global population growth (Fig. 15.1). According to these data, the manufacturing
of chemical products increases by 3% annually when there is a 0.77% increase in
population density. Taking the above into account, the need arose to develop a new

Table 15.1 Information on the numbers of existing chemical compounds as well as chemical
reactions based on Chemical Abstracts

02.12.2014 09.09.2015 22.04.2016 17.08.2017 07.08.2018

Number of known
chemical
substances (organic
and inorganic)

65,844,568 66,324,359 66,644,872 67,273,974 67,752,102

Number of known
chemical reactions
(single-step and
multi-step)

76,343,169 82,348,277 88,175,941 100,490,924 110,147,030

Number of
chemical
compounds
available in trade

86,820,549 104,517,210 110,378,650 131,745,000 146,466,171

Number of
chemical
compounds subject
to legal regulations

312,274 344,630 345,575 387,170 389,931
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Fig. 15.1 Schematic representation of the relationship between employment growth andproduction
of chemicals based on the OECD report [1]

philosophy regarding meeting the social demand for various types of chemical prod-
ucts. It is related to the implementation of the concept of sustainable development.

When satisfying the consumption needs of the human population, the protection
of the environment against degradation and rapacious exploitation must be taken into
account, as well as protection of health and life of employees involved in various
stages of the process of manufacturing consumer goods. The change in philosophy
described above is illustrated on the diagram shown in Fig. 15.2.

This approach to the process of manufacturing consumer goods is described in the
form of rules of conduct. Literature provides information on the following principles:

• 12 Principles of Green Chemistry [2]
• 12 Principles of Green Chemical Technology [3]
• 12 Principles of Green Chemical Engineering [4].

Fig. 15.2 Schematic
presentation of the premises
constituting the basis for
changing the way of activity
of chemists and technologists
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For the descriptive assessment of activities related to the introduction to the ana-
lytical practice of the concept of sustainable development, the 3R concept [5] is
used:

• Reduce
• Replace
• Recycle.

Another code of conduct is the ten eco-commandments for earth citizens devel-
oped by prof. Menke Gluckert [6].

In addition to these general rules of conduct regarding chemistry and chemical
technology, the principles of Green Analytical Chemistry [7] were published, and
later also the principles of particular groups of analytical techniques, such as green
chromatography or green spectroscopy techniques. The implementation of the prin-
ciples of green chemistry and Green Analytical Chemistry is the reason why the set
of criteria for the selection of analytical methodology, which can be used to per-
form a specific analytical task, must be expanded. All those who are involved in the
development of newmethodologies (procedures) are aware that the following criteria
should be taken into consideration:

• Accuracy,
• Precision,
• Selectivity,
• Detection limits.

If the principles of Green Analytical Chemistry are taken into consideration,
the impact on the environment and human health becomes the fifth parameter in
the assessment of the usefulness of analytical procedures [8]. The heart of Green
Analytical Chemistry is schematically presented in Fig. 15.3.

Fig. 15.3 The heart of
Green Analytical Chemistry
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15.2 Current Trends in Green Analytical Chemistry

Analysis of recent publications concerning Green Analytical Chemistry shows the
current trends and future needs in this area. Articles published since 2018 have
focused mostly on improvements of analytical procedures aiming at greening the
selected steps of the analytical process. These improvements include:

• using an alternative, more environmentally friendly solvents [9–18],
• greening extraction procedures [19–30],
• promoting multi-analyte techniques [31–35],
• reducing reagent volume by application of miniaturized techniques [22, 36–39],
• introducing new components as stationary and mobile phases in chromatography
[40, 41],

• eliminating sample treatment [32, 42–46],
• simplifying analytical protocols [47, 48],
• greening sample digestion [49] and derivatization [50],
• using mathematical modelling and chemometrics in greener analytical methods
[51, 52].

Some authors have also recently reported on the development of new meth-
ods [53–58] or have promoted non-destructive analytical methods [59] and natural
reagents [60].

One of the current trends in Green Analytical Chemistry is developing simple
and cheap methods for the qualitative and/or quantitative determination of different
analytes and parameters that are useful for certain applications. An example of this
approach is paper-based analytical devices that can be used in pharmaceutical sci-
ences in gene delivery formulations [61] and determination of amino acids in gym
supplements [62]. They can also be used in food chemistry for the determination of
antioxidant capacity of tea and vegetable oils [63, 64]. Food adulteration is another
area where simple green methods can be employed. Digital images and chemomet-
ric tools were successfully used for quantification of fat content in chicken burgers
[65]; whereas, liquid–liquid microextraction coupled with mobile phone-based pho-
tometric detection was used for the determination of anionic surfactants in milk [66].
Sitanurak et al. [67] proposed using the paper-based device for quantification of
hypochlorite in bleach and disinfectants. An interesting green alternative to conven-
tional analytical methods was proposed byKiwfo et al. [68] who used a noodle-based
analytical device as copper (Cu2+) and acid–base assay.

An important issue that has been explored by many authors since 2012 is the
metrics of Green Analytical Chemistry. The first tool proposed for the assessment
of the greenness of analytical procedures was Analytical Eco-Scale developed by
Gałuszka et al. [7]. Both the use and introduction of new metrics were the topic of
numerous studies in 2018 [33, 69–74].

Implementation of interdisciplinary methods is an emerging trend in Green Ana-
lytical Chemistry. Tobiszewski and Orłowski [75] employed multicriteria decision
analysis, a technique which is used in environmental management, to Green Ana-
lytical Chemistry. Combining method development in the pharmaceutical analysis
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(a quality by design approach) with Green Analytical Chemistry has recently been
postulated by Saroj et al. [76].

15.3 Future Directions of Development of New Analytical
Procedures and Measuring Instruments

In many research and R&D centres, work is underway to develop new analytical pro-
cedures designed for studying various types of material objects. In these procedures,
improvements are beingmade at the stages of detection, separation, identification and
quantification of the broadest possible spectrum of analytes. As mentioned before,
these new methodological solutions should undergo an assessment of environmen-
tal nuisance and impact on the health and life of analytical staff. For this purpose,
various tools are used to obtain qualitative or quantitative information about the
pro-environmental nature of the proposed methodological solution.

An analysis of literature datamight be the basis for distinguishing the development
directions of new analytical solutions that to a greater or lesser extent meet the
requirements resulting from the principles of Green Analytical Chemistry:

• searching for new non-matrix techniques for preparing samples for analysis,
• introduction of new types of solvents to the analytical practice (the so-called green
solvents), the impact of which does not have an adverse effect on either the envi-
ronment or the health and life of analysts,

• application of additional factors affecting the acceleration of the reaction or the
extraction process,

• development of new types of control and measurement devices ensuring the pos-
sibility of performing in situ tests (without time delay),

• new solutions in the so-called direct analytical techniques. Such solutions are par-
ticularly attractive because the analysis of the tested material does not require
any sample preparation. Table 15.2 presents basic information about the differ-
ent groups of measuring instruments that can be used for direct detection and/or
determination of analytes,

• the use of reagents produced from renewable raw materials,
• development of remote measurement techniques (remote sensing). Information
on the morphological classification of remote sensing methods is presented in
Table 15.3.

In the field of remote sensing techniques, both passive and active devices are used.
The latter are equipped with their own sources of radiation, while the operation of the
former is based on the use of radiation from external sources (e.g. solar radiation).
In practice, active devices have a broader scope of application.

Table 15.4 summarizes information on three analytical techniques equipped with
monochromatic radiation sources.
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Table 15.2 Basic information on analytical instruments used in direct analyses of different types
of samples

Method Technique Example of application

Colorimetry Dry test
Wet test

Determination of metal ions in
water
Determination of metals in
vegetables and fruits
Determination of nitrates in
vegetables

Potentiometry Ion Selective Electrodes—ISE Measurement of pH (Glass
electrode)
Determination of metals in
surface water

Activation
analysis

(Instrumental) Neutron Activation
Analysis—(I)NAA

Determination of metals in
environmental samples

Atomic
Absorption
Spectroscopy

Graphite Furnace Atomic Absorption
Spectroscopy—(GFAAS)
Quartz Furnace Atomic Absorption
Spectroscopy—(QFAAS)

Determination of metals in solid
and liquid environmental samples

Inductively
Coupled Plasma
Mass
Spectrometry

Laser Ablation Inductively Coupled
Plasma- Mass Spectrometry
(LA-ICP-MS)

Determination of major and trace
elements in different samples

Infrared
Spectroscopy

Fourier-Transform Infrared
Spectroscopy (FTIR)

Analysis of samples of different
matrix composition

Nuclear Magnetic
Resonance
Spectroscopy

Nuclear Magnetic Resonance
Spectroscopy (NMR)

Analysis of samples of different
materials

Emission
Spectroscopy

Laser-Induced Breakdown
Spectroscopy (LIBS)

Real-time elemental analysis in a
wide range of samples

X-ray
Fluorescence

Wavelength-Dispersive X-ray
Fluorescence (WD-XRF)
Energy-Dispersive X-ray
Fluorescence (ED-XRF)

Simultaneous determination of
many elements in solid and liquid
samples

Raman
Spectroscopy

Raman Spectroscopy (RS)
Surface-Enhanced Raman
Spectroscopy (SERS)

Analysis of samples of different
matrix composition

Laser-Induced
Breakdown
Spectroscopy

Laser-Induced Breakdown
Spectroscopy (LIBS)

Analysis of chemical composition
of different materials

Immunoanalysis Immunoanalysis (IMA)
Enzyme-Linked Immunosorbent
Assay—ELISA

Detection and determination of
selected dioxins and dioxin-like
compounds in environmental
samples

(continued)
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Table 15.2 (continued)

Method Technique Example of application

Fluorescence Laser-induced fluorescence (LIF)
UV light-emitting diode induced
fluorescence (UV LED)

Real-time screening of traces of
polycyclic aromatic hydrocarbons
in surface water and soil samples.
A possibility of the use of UV
LED in monoaromatic
hydrocarbon prospection studies

Ion-Mobility
Spectrometry

Ion-Mobility Spectrometry (IMS) Detection of high energy
materials (explosives, propellants)
and drugs

Photoelectron
Spectroscopy

X-ray Photoelectron Spectroscopy
(XPS)

Detection and quantification of all
elements except for hydrogen.
Determination of types of bonds
between elements on the surface
of samples

Electron
Paramagnetic
Resonance
Spectroscopy

Electron Paramagnetic Resonance
Spectroscopy—EPR (Electron Spin
Resonance Spectroscopy—ESR)

Used in solid-state physics for
determination of free radicals, in
chemistry for studying reaction
rates, in biology and medicine for
monitoring of spin labelling, in
archaeology for dating of tooth
enamel

Methods of
surface analysis

Secondary Ion Mass Spectrometry
(SIMS)

Analysis of surface of different
materials (mapping of analytes on
the surface of samples)Electron Spectroscopy for Chemical

Analysis (X-ray Photoelectron
Spectroscopy)—ESCA (XPS)

Scanning Electron Microscope
(Energy-Dispersive X-ray
Spectroscopy)—SEM (EDS)

Auger Electron Spectroscopy (AES)

Ion Scattering Spectroscopy (ISS)

Mass
spectrometry

Direct Analysis in Real Time-Mass
Spectrometry (DART-MS)

Analysis of liquid and solid
samples

Selected Ion Flow Tube-Mass
Spectrometry (SIFT-MS)

Analysis of gaseous mixtures
Determination of volatile
compounds

Desorption Electrospray Ionization
Spectrometry (DESI-MS)

Direct analyses of liquid samples
Detection of chemical warfare
agents

Proton Transfer Reaction-Mass
Spectrometry (PTR-MS)

Real-time simultaneous
determination of volatile organic
compounds

(continued)
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Table 15.2 (continued)

Method Technique Example of application

Membrane Inlet Mass Spectrometry
(MIMS)

Determination of volatile
compounds that permeate through
the membrane in gaseous and
liquid samples

Direct Inlet Probe-Atmospheric
Pressure Photo Ionization-Mass
Spectrometry (DIP-APPI-MS)

Identification and determination
of sample components adsorbed
on the surface of a sampler
introduced into an ionization
chamber.

Direct Infusion-Mass Spectrometry
(DI-MS)

Used in metabolomic studies of
liquid samples

Matrix-Assisted Laser
Desorption/Ionization-Mass
Spectrometry (MALDI-MS)

Analysis of samples with different
matrix composition for
determination of biologically
active compounds
(oligonucleotides, carbohydrates,
lipids and others)

Surface-Enhanced Laser
Desorption/Ionization-Time of
Flight-Mass Spectrometry
(SELDI-TOF-MS)

Analysis of biological material
samples (tissues, blood, urine,
etc.) for identification of proteins

Remote sensing
techniques

Light Detection and Ranging
(LiDAR)

Analyses of air samples

Sonic Detection and Ranging
(SODAR)

Measurements of air humidity

Sensor matrix Electronic nose (e-nose) Analysis of gaseous samples (air,
breath, headspace phase)

Electronic tongue (e-tongue) Analysis of liquid samples

Table 15.3 Morphological classification of remote sensing methods

Methods Passive Active

Ground Photographic
Photoelectric measurements
Correlation spectrometer

Radio measurements
LiDAR measurements
SODAR measurements

Aerial Photographic and thermovision
Radiometric measurements
Correlation spectrometer

SLAR
SAR
LiDAR measurements

Satellite Multispectral imaging
Microwave measurements
Photometric measurements

LiDAR measurements
Large-range
Radar measurements
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Table 15.4 Basic information on monostatic devices with a source of monochromatic radiation

Analytical technique A brief description of the principle of
operation

Differential Optical Absorption
Spectroscopy—DOAS

The light radiation beam is directed from the
transmitter to the receiver. The length of the
optical beam’s path is known
The intensity of the beam changes due to
contact with atmospheric components
After returning to the receiver, the beam is
directed through a fibre optic cable to the
central unit equipped with a computerized
spectrometer
The computer allows collecting characteristic
data on a beam of radiation up to 100 times
per second

Differential Absorption LiDAR—DIAL It is a device in which two laser beams of
different lengths pass through a gas cloud
(along the same path)
If the radiation length of one of the beams is
equal to the radiation length best absorbed by
a specific component, and the radiation of the
second beam is not absorbed at all, the
difference in radiation intensity of both beams
(after returning to the receiver) is proportional
to the amount of the absorbing component

Light Detection and Ranging—LiDAR It is a pulsed laser system used in a similar
way to a radar system. In this case, the return
time of the reflected beam of radiation is
measured, and on this basis the distance from
the cloud of the substance reflecting the
radiation or the distance from a fixed obstacle
is determined

• development of new procedures for assessing the environmental nuisance and
toxicological risk of the activity of chemical analysts.

15.4 Ongoing Challenges and Future Trends in Teaching
GAC

Nowadays, many efforts are being made in order to include the GAC concept to
education, including the field of analytical chemistry, where twelve GAC principles
play the main role. There is no doubt that the understanding and awareness of these
principles and other evolving related ideas require special teaching of GAC as part
of the curriculum at undergraduate and graduate levels. In fact, making analytical
chemistry more environmentally friendly is a basic approach that combines old and
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new analytical chemistry ideas and as such, it should be transmitted into the teaching
of GAC [77].

Education in Green Analytical Chemistry balances between ethical and chemical
aspects; therefore, the main role of teachers is to convince the students that chemistry
not only poses a risk for the planet, but also shows great promise for human health
care as well as a sustainable environment. Therefore, teaching GAC should be a
social responsibility, as it is undoubtedly one of the pillars of modern chemistry
[78], and in particular of analytical chemistry [79], which is due to the fact that
virtually every area of life today depends on the data obtained and transmitted via
chemical research. Analytical chemistry should be socially responsible, because the
data and knowledge that it provides affect every element of the reality that surrounds
us [77]. Green Analytical Chemistry is an appropriate platform for teaching and
promoting social responsibility because it is a social movement itself [80]. If we
would like to have analytical chemists who are responsible, socially sensitive, and
who would take care of the metrological quality of data and information, we must
educate them from the very beginning, from primary school through high school to
university. However, it is not a good idea to create separate chapters in chemistry
textbooks or to have guest lectures given by humanists. Rather, it should be done
by integrating chemical instrumentation and nomenclature with social and ethical
themes [81].

An important objective in teaching analytical chemistry is to change the chemistry
students’ attitude. In addition, the attitude of future generations towards chemistry
and its impact on the environment should also be changed. For a long time, some of
the green chemistry principles have been included in teaching analytical chemistry,
since they are essential for increasing safety and reducing lab costs. However, these
efforts were notmandatory; they only depended on the ethical preferences of teachers
and lab staff [77]. Therefore, additional efforts should be made to educate teachers
about conveying the message of sustainability in analytical chemistry teaching. It
should be quite clear that the GAC principles should be an integral part of solving
analytical problems, an obligation, and in no case a matter of choice. As pointed
out in a recent paper [82], there are several concepts for teaching Green Analytical
Chemistry, which are presented in Fig. 15.4.

New ideas in teachingGreenAnalytical Chemistry include the greening of analyti-
cal methods as well as the development of new greenmethodologies. Safety concerns
regarding laboratories and waste have become the reason for developing new ideas
of improving the safety in such a working environment and successfully reducing the
amount of waste or decontaminating it [77]. Hazard and waste become recognized
as design flaws or, more positively, as opportunities for innovation. Experiments can
be performed in laboratories that are more comfortable and alluring as well as more
economical to maintain [83]. It needs to be stated that analytical chemistry gives the
opportunity for innovations in teachings and science, in the context ofwaste treatment
or by using new reagents that increase students’ understanding of and sensitivity to
the environmental consequences of their scientific choices.

Unfortunately, there are many gaps and areas for improvement in GAC teach-
ing and research. Firstly, the teaching style itself, such as presentations on how to
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Fig. 15.4 Outline of the studies discussed in the present sub-chapter focused on the use of DES in
the extraction and/or digestion/dissolution processes

understand the laws of analytical chemistry, reaction recording style, etc. should be
changed. Besides the gaps in education and teaching, there are also ones in the litera-
ture and research. The simplest example is that several false “greenness” claims exist
in the chemical literature. Many researchers state that a given analytical procedure
is green based only on one of the Twelve Principles of Green Analytical Chemistry.
Such a proceeding shows a very narrow point of view rather than amulti-dimensional
global approach which considers all reagents, materials and energy consumption, as
well as the environmental impact of any waste and by-products manufactured. A
good example of such a proceeding is a declaration that a given procedure/reaction
is “solvent-free” or “solventless”. This, undoubtedly, should be changed, and it is the
teachers’ responsibility to show their students when they can consider a procedure
“green”.

Widespread success in these and related fields may lead to re-writing undergrad-
uate textbooks as the paradigm shift evolves [82]. Finally, quantification of energy
consumption, as well as the costs of an appropriate methodology, has received little
attention from both research and teaching perspectives. In addition, several current
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Fig. 15.5 Questions concerning introduction of Green Analytical Chemistry into teaching practice

trends in extraction techniques focused on finding solutions to minimize the use of
solvents. Thus, new microextraction techniques are still introduced into analytical
practice. These modern methods need to be known for students. Therefore, new
textbooks, as well as scholarly materials, will be published in the coming years.

Summarizing the above information, some questions should be asked:

• What do the new concepts in teaching Green Analytical Chemistry bring to the
teachers?

• What do students get?
• What about chemistry?

The answers are presented in Fig. 15.5.

15.5 Future Perspectives of Green Analytical Chemistry

A fast progress in Green Analytical Chemistry could not be possible without active
participationof analytical chemists in developingnew,more environmentally friendly
approaches to the analytical process or its phases. Of many different areas of interest
in Green Analytical Chemistry, two seems to play a major role in the development
of this concept, namely, greening of analytical laboratories and life cycle assessment
of reagents and instruments.

Greening of analytical laboratories. Principles of Green Analytical Chemistry
set general guidelines for making chemical analysis safer and more environmentally
friendly. A successful implementation of these principles on a laboratory scale may
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be easier during designing of a new facility, but in the case of existing laboratories,
it requires changes which may generate high costs and make the concept of Green
Analytical Chemistry a wishful thinking.

A green analytical laboratory can be defined as a laboratory in which Green Ana-
lytical Chemistry principles are implemented and constant efforts are being made
in order to assure minimum environmental impact through evaluation of the green-
ness of analytical procedures and selection of the most environmentally friendly
options. However, the greening of analytical laboratories can be implemented on
different levels of the analytical process, from reagents to methods and procedures
to instruments.

From cradle to grave—from reagents to waste. Analytical processes should be per-
ceived similarly to industrial processes in which life cycle assessment is performed.
A new approach “from reagent to waste” should be implemented because reagents
used in chemical analyses are part of the analytical waste. A green approach to the
analytical waste problem is to eliminate it or minimize its amount. More efforts are
needed in order to develop methods of recovery of resources from analytical waste.
So far, the recovery of americium and plutonium from analytical waste has been
performed [84–86]. A possibility of recovering elements other than radionuclides
should be examined in the future. Recovery of platinum group elements and rare
earth elements seems to be economically viable. A life cycle assessment of analyti-
cal instruments should also be adapted to Green Analytical Chemistry.

Another important issue that will determine the future of Green Analytical Chem-
istry is education and popularization of this concept in the society [77, 82]. This can
be achieved throughmakingGreenAnalytical Chemistry an integral part of a curricu-
lum at different education levels. Simple, but spectacular methods, i.e. those based
on smartphone detection, can be presented during science festivals and workshops
open to the public. All these efforts will be crucial for a wider interest and continuous
progress in Green Analytical Chemistry.
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