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Foreword

At the heart of biomedical analysis and engineering solutions, there is superb signal
processing. Computational, mathematical, and engineering fields such as data
analytics, machine learning, and AI, and biomedical engineering are developing
rapidly. A comprehensive, accessible, and research-informed book on recent
advances in biomedical signal processing is overdue. Biomedical Signal Processing
edited by Dr. Ganesh Naik meets this need by reporting the latest advances in signal
processing conveyed through examples of leading-edge research. Recent devel-
opments captured in the collection span new theoretical frameworks and algorith-
mic breakthroughs presented through specific applications.

Biomedical engineer Dr. Ganesh Naik is a vital researcher in the Biomedical and
Human Technologies program in the research institute that I direct, the MARCS
Institute for Brain, Behaviour and Development at Western Sydney University.
MARCS Institute’s programs of basic science and translational research are
designed to advance knowledge and find sustainable solutions to the problems that
matter most concerning humans and their interaction with other humans and
technology. Unashamedly interdisciplinary, engineers, cognitive scientists, devel-
opmental psychologists, linguists, neuroscientists, and speech and music scientists
come together to solve the problems that matter most through the themes: sensing
and perceiving, interacting with each other, and technologies for humans
(https://www.westernsydney.edu.au/marcs).

Dr. Naik joined the MARCS Institute at Western Sydney University in 2017
bringing his biomedical signal processing prowess to an industry-led project
developing a noninvasive wearable for sleep apnea research. Ganesh joined the
MARCS Institute for Brain, Behaviour, and Development as a skilled and talented
engineer with expertise gained in labs in Sydney and Melbourne in Australia as well
as Vellore Institute of Technology and Mysore University, India. External recog-
nition of the rigor and quality of Ganesh’s work includes fellowships from the
University of Technology Sydney, Skills Victoria, IEEE Victoria, and an adjunct
professor appointment at Vellore Institute of Technology. My background is
cognitive science, and I have a particular interest in the human-machine nexus. In
fact, Dr. Naik and I first met through an interdisciplinary research network funded
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by the Australian Research Council on Human Communication Science. Funded
for 5 years from 2004 to 2009, HCSnet was convened by Denis Burnham and me
at Western Sydney University together with Robert Dale at Macquarie University.

The edited collection Biomedical Signal Processing is organized into four parts.
Part I is devoted to recent developments in theories, algorithms, and extensions of
EMG signal analysis. The part begins with a description of the state-of-the-art EMG
signal processing and classification. Subsequent chapters discuss the application of
EMG signal processing to robots for assistive rehabilitation, then force myography
applied to human locomotion, and the final chapter in Part I reports a case study of
maximum voluntary contraction (MVC) and triceps brachii and biceps brachii.

The second part focuses on brain-computer interface (BCI) and EEG signal
processing. Applications include a BCI for classifying signals associated with
motor imagery; artificial neural networks applied to EEG to detect effects of bin-
aural stimuli; automated detection using wavelet filter banks of seizure versus
nonseizure EEG; and automated identification of seizures using Fourier-Bessel
series expansion-based empirical wavelet transform (FBSE-EWT).

In the third part, new ECG and cardiac applications are reported. These include a
review of unipolar cardiac leads; classifying arrhythmia using long-duration ECG
signal fragments analysis; data analytics applied to ECG; benefits of tensor-based
methods in cardiac contexts; and ECG signal processing for remote monitoring of
cardiovascular disease (CVD).

In the fourth part, biomedical signal processing is extended to proteomic
applications.

Biomedical Signal Processing offers academic researchers and practitioners a
comprehensive and contemporary account of developments in this fast-moving field.
With authors from Australia, Brazil, Canada, China, India, North Africa, Poland, and
the USA, the book reflects an international update on biomedical signal processing
methods and applications. With the health and medical challenges faced by the
world’s growing and aging population, we need biomedical signal processing more
than ever! This edited volume is a timely and excellent resource for undergraduate
and graduate students as well as researchers working with a range of physiological,
multidimensional, time-varying data, and signal processing techniques. I commend
the edition to all who are interested in biomedical signal processing.

April 2019 Professor Catherine J. (Kate) Stevens, Ph.D.
Director, MARCS Institute for Brain, Behaviour,

and Development
Western Sydney University
Bankstown, NSW, Australia
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Preface

The recent advances in modern signal processing techniques in medicine have
improved the accuracy and reliability of medical diagnoses. Today, biomedical
signal analysis is becoming one of the most important visualizations and inter-
pretation methods in biology and medicine.

The goal of the present book is to present a complete range of proven and new
methods that play a leading role in the improvement of biomedical signal analysis
and interpretation. The book provides a forum for researchers to exchange their
ideas and to foster a better understanding of the state of the art of the subject. This
book is intended for biomedical, computer science, and electronics engineers
(researchers and graduate students) who wish to get novel research ideas and some
training in novel biomedical research areas, especially on ECG, EEG, and EMG
signal applications. Additionally, the research results previously scattered in many
scientific articles worldwide are collected methodically and presented in the book in
a unified form.

The book is organized into four parts. The first part is devoted to recent
developments in theories, algorithms, and extensions of EMG signal processing and
human locomotion applications. In this part, we have collected four chapters with
several novel contributions. The set of chapters include an insight on EMG signal
processing, classification, and practical considerations the by Angkoon, Evan and
Eric; estimation of ankle joint torque and angle based on EMG for assistive
rehabilitation robots by Palayil Baby et al.; force myography and its application to
human locomotion by Anoop et al.; and an application of EMG for stroke reha-
bilitation applications by Naik et al. The second part focuses on the various
applications of EEG and its links to other relevant areas, such as BCI and epileptic
seizure identification system. We have gathered five chapters in this part, and they
are, respectively, EEG-based BCI to classify motor imagery signals by Andrade
et al., artificial neural networks on multi-channel EEG data to detect the effect of
binaural stimuli in resting state by Júnior et al., automated detection of seizure and
nonseizure EEG using two band biorthogonal wavelet filter banks by Bhati et al.,
automated identification of epileptic seizures from EEG using FBSE-EWT method
by Gupta et al., and DWT-based epilepsy seizures by Sharmila and Geethanjali.
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The third part covers various cardiac and ECG signal processing applications,
namely, unipolar cardiac leads ECG analysis by Hussein et al., cardiac arrhythmias
classification based on long-duration ECG signal fragments analysis by Plawiak
and Abdar, artificial intelligence-enabled ECG big data mining for pervasive heart
health monitoring by Zhang, tensor-based approaches in cardiac applications by
Padhy et al., syntactic methods for ECG diagnosis and QRS complexes recognition
by Hamdi et al., and extraction of ECG significant features for remote CVD
monitoring by Naresh and Acharyya. The final part covers a chapter on accelerated
computational approach in proteomics by Bhardwaj, Gudur, and Acharyya.

I want to thank the authors for their excellent submissions (chapters) to this book
and their significant contributions to the review process, which have helped to
ensure the high quality of this publication. Without their contributions, it would not
have been possible for the book to come successfully into existence.

Penrith, NSW, Australia Ganesh Naik
April 2019
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Myoelectric Signal Processing and Human
Locomotion



Surface Electromyography (EMG) Signal
Processing, Classification, and Practical
Considerations

Angkoon Phinyomark, Evan Campbell and Erik Scheme

1 Introduction

Electromyography (EMG) is the process of measuring the electrical activity pro-

duced by muscles throughout the body using electrodes on the surface of the skin or

inserted in the muscle. Motor intent deciphered from surface EMG signals has been

employed as an intuitive control strategy for dexterous multi-functional prostheses

[102] and gesture recognition interfaces [99]. Myoelectric prostheses relate residual

limb muscle activity to the movement of a terminal device, sometimes, by employing

pattern recognition approaches to identify repeatable and distinct EMG signatures

for each motion class. State-of-the-art EMG pattern recognition systems for multi-

function prostheses typically contain data pre-processing, data segmentation, feature

extraction, dimensionality reduction, classification, and control blocks [62]. Con-

ceptually, this architecture can facilitate intuitive control that mimics natural neural

pathways. For decades, despite substantial research and development efforts in the

literature, the only real commercial application of EMG signals has been prosthet-

ics. Recently, with the release of wearable EMG gesture control and motion control

devices, such as the Myo armband in 2013 (http://www.myo.com), new markets have

been opened. Advancements in wearable technologies have increased the potential

for myoelectric devices to permeate into everyday life; however, these emerging ges-

ture recognition interfaces suffer from similar sensitivities to many real-world factors

that have been identified in the field of prosthetics [75, 93].

Indeed, the real challenge for prostheses and gesture recognition interfaces are

the dynamic factors that invoke changes in EMG signal characteristics. As a con-

sequence of these factors, model inaccuracies are produced between the training
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phase and practical use. The common avoidance of these dynamic factors in lab-

oratory settings creates a discrepancy between the performance of these devices in

constrained settings and their reliability in regular daily use. Under ideal conditions,

such as in a controlled virtual environment, the usability of multi-function prosthe-

ses has been reported to suffer when classification accuracy drops below 90% [31,

48]. While classification accuracy provides a benchmark in the laboratory, daily use

invariably introduces dynamic variables not present in these conditions, leading to

decreased accuracy and, ultimately, reliability of the device [29, 102]. From day to

day, the reliability of previously trained models varies greatly depending on multiple

factors including intra-subject repeatability, signal noise, different muscle contrac-

tion intensities and duration, limb position and forearm orientation, electrode shift,

and muscle fatigue. Hands-busy conditions present additional challenges for gesture

recognition tasks by introducing increased signal complexity. Furthermore, while

the prostheses field has focused largely on within-user models, the widespread scal-

ing of commercial devices for human-computer interaction would benefit from the

development of multi-user classification models to eliminate the need for custom

training and lengthy calibration protocols. In this chapter, state-of-the-art EMG sig-

nal processing and classification techniques that address these dynamic factors and

practical considerations are presented, and directions for future research are outlined

and discussed.

2 EMG Pattern Recognition

Pattern recognition systems, which generally consist of data pre-processing, data

segmentation, feature extraction, dimensionality reduction, and classification stages

(Fig. 1), have found widespread success across many fields of biomedical engineer-

ing, including myoelectric control [102].

Data pre-processing involves the strategic removal of confounding information or

sources of data corruption. In EMG applications, after the raw EMG signals are pre-

pared (Fig. 2), a number of data pre-processing steps are applied to reduce the influ-

ence of noise, which could compromise their interpretation. Sources of noise com-

mon to EMG applications include, but are not limited to, motion artefacts, power-line

interference, and electronics noise inherent in the equipment. Pre-processing steps

are used to reduce the impact of these sources of corruption and prepare the input

data for further analysis [15, 96].

Data segmentation involves various techniques to further prepare the pre-

processed EMG signals before applying classification techniques. This step is neces-

sary due to the fact that the stochastic EMG signals, obtained as a time series in the

time-amplitude domain, are non-stationary or exhibit “non-stationarity.” Many fea-

ture extraction methods assume that the data are stationary, and so the longer EMG

time series is partitioned into shorter EMG segments to estimate the properties of

the signal. For real-time myoelectric control systems, however, the length of these

segments plus any computation must be less than 300 ms to avoid noticeable delays
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Fig. 1 A structure of EMG pattern recognition systems

Fig. 2 An example of
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[17]. The two main techniques for data segmentation include adjacent windowing

and overlapping windowing. In adjacent windowing, contiguous and disjoint seg-

ments of a predefined length are used. More commonly, overlapping windows with

window increments less than the segment length, are used to improve the density of

the resulting decision stream.

Feature extraction is the process of improving the information density of the pro-

cessed signals, often transforming the signals from a higher dimensional input space

into a lower dimensional feature space. The selection of appropriate features has a



6 A. Phinyomark et al.

tremendous impact on the performance of any pattern recognition system and the

ideal feature set is heavily dependent on the classification task. Within the myoelec-

tric control literature, EMG features have been commonly divided into three cate-

gories: time domain, frequency (spectral) domain, and time-scale (time-frequency)

domain [74, 76, 81, 87]. The availability of high quality features that possess good

class separability, minimal complexity, and are robust to dynamic factors is the most

influential aspect of myoelectric control system performance [9, 117].

Dimensionality reduction is the process of either searching the computed feature

space and selecting an optimal subset of high performing features (feature selection)

or combining all initial features and projecting them based on some linear or non-

linear mapping (feature projection) in order to maximize classification performance.

Some commonly used dimensionality reduction techniques include sequential for-

ward selection (SFS), genetic algorithms (GA), principal component analysis (PCA),

and independent component analysis (ICA) [62, 64, 79].

Finally, classification involves the use of a boundary detector, or discriminant

function learned through past events to estimate the class of a current event given the

features presented. Substantial exploration and development of classification algo-

rithms have been performed in myoelectric control, validating the viability of algo-

rithms such as linear discriminant analysis (LDA), support vector machines (SVM),

hidden Markov models (HMM), and artificial neural networks (ANN) [62, 79, 102].

3 Dynamic Factors in Hands-Free Control

Although classification rates of above 90% have been demonstrated in many studies,

several problems must still be solved before practical and robust implementations

of commercial myoelectric control systems can be realized. Consequently, four of

the main challenges to deployable myoelectric control are discussed in detail in this

chapter: (1) within-day and between-day variation, (2) noise, (3) variation in force,

and (4) variation in limb position and forearm orientation.

3.1 Within-Day and Between-Day Variation

The re-usability and sustainability of myoelectric control systems pose a major con-

cern for real-world applications as devices designed for long-term use often require

frequent retraining. Indeed, the requirement to retrain these devices regularly has

been seen as a hindrance to the commercialization and adoption of consumer-grade

myoelectric control systems. Regardless of the model performance upon creation,

the non-stationarity of EMG signals (i.e., their characteristics change throughout the

day, and between days) gradually degrades its performance over time (up to 20–

30% [60, 63]). The source of these natural variations over time has been attributed

to many factors including spatial orientation (electrode shift), electro-physiological
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Table 1 List of selected studies investigating the effect of time on myoelectric control systems

References Number of days Subjects Number of

movements

Number of

electrodes

[100] 2 8N 6 6

[83] 4 20N 8 + rest 4

[120] 5 5N 6 4

[3] 5 5N 7 + rest 8

[63] 5 10N 7 14

[112, 113] 7 10N + 6A 6 + rest 5–6

[60] 8 7N 5 + rest 4

[54] 10 5N + 3A 12 + rest 4–6

[33] 11 8N + 2A 12 + rest 4–6

[97] 15 7N 6 + rest 8

[10, 38, 39, 87] 21 1N 11 4

Note N, able-bodied (non-amputee) subject; A, amputee subject

factors (muscle fatigue, sweating, skin impedance), user intent (muscle contraction

effort), and many other potential factors. Most studies make the false assumption that

EMG signals are a stationary process and thus have neglected to model any temporal

variations in the signal over time. A common characteristic of these studies is their

short collection period (i.e., a single or few sessions in one day) within constrained

laboratory settings, thus largely avoiding these signal changes.

Over the last decade, approximately 30 experiments have been compiled that

investigate the effect of time on myoelectric control systems (Table 1). Neverthe-

less, these studies can be categorized into three main research categories. The first

category is the exploration of the nature of changes of time in pursuit of answers to

(a) when changes occur, (b) the impact of these changes on classifier performance

when not trained recurrently, and (c) the quantity and stratification of training data

necessary to achieve stable parameter estimation that is representative of the true

sampling distribution and reaches asymptotic accuracy. The second category is the

identification of stable classification, feature extraction, and dimensionality reduc-

tion algorithms that are invariant to changes that occur over time. The third category

is the development of adaptive algorithms that are able to actively retrain and/or

relabel the classification model.

EMG classification performance for able-bodied and amputee populations con-

tinuously degrades as the period between training and testing increases [3, 10, 33,

83, 113]. However, there is no consensus on the amount of training data sufficient

for a fixed classification model to reach an asymptote in accuracy. While Waris et

al. [113] found a continuous decrease in performance over 7 days, a number of other

studies have found that there may be periods when the classification performance is

rather stable or even improves. Some have found that classification accuracy initially

decreases exponentially, but then plateaus after 3 days [83], 4 days [3, 33], and 6 days

[10] for able-bodied individuals, and 6–9 days for amputees [33]. A possible expla-
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nation is the subject learning effect, wherein subjects begin to elicit more repeatable

gestures after becoming familiarized with the process. Because this subject learning

mainly occurs during the first several days [106], training data collected after this

period could reduce the need for classification algorithms to compensate for user

adaptation. For example, Milosevic et al. [60] found that training a classifier with

data after 4 and 5 days of use provided better results for later days (testing on the

6th) than training with data from the 1st and the 2nd days of use (and testing on the

3rd day). Of note, learning persisted in most studies irrespective of whether exter-

nal feedback was provided during the performed gesture or not [33]. The plateauing

of classification performance occurred at different times across studies, potentially

due to differences in subject learning abilities, coaching, or feedback, which may

vary with the sample population, experimenter, and experiment (i.e., the higher the

learning ability of a subject, the faster he or she may reach a stable accuracy).

Boschmann et al. [10] also remarked that classification accuracy begins to drop

again once the period between training and testing reaches more than 10 days. Such

studies on the long-term effects of classification performance have ranged from two

to twenty-one days (Table 1); however, they are few and remain relatively short when

compared to real prolonged usage in daily life. Consequently, longer experiments

may yield more consistent results across subjects and studies regarding whether

or not the performance curve would plateau. Evaluation of such longer-term EMG

effects over months and years is warranted as using more available data to train clas-

sifiers could lead to more accurate and stable parameter estimation that more closely

represents the true sample distribution [92]. For an extended coverage of methods

used to identify the probability density functions and the stationarity of EMG sig-

nals, the reader is encouraged to consult [109] and [89], respectively.

Numerous studies on time-invariant classification, feature extraction, and dimen-

sionality reduction algorithms have culminated in an understanding of techniques

effective for dealing with changes in signal properties. Kaufmann et al. [38] and

Waris et al. [112] investigated the behaviour of five state-of-the-art classifiers: LDA,

SVM, ANN, k-nearest neighbour (kNN), and decision tree (DT) when applied to

EMG signals recorded over 21 and 7 consecutive days, respectively. Kaufmann et

al. [38] found that classification accuracies dropped to less than 80% when trained

exclusively with data collected on the first day and validated against subsequent days’

data. The performance degraded with an increasing period between training and test-

ing data and dropped gradually (more than 10%) if not being retrained. This was

relatively consistent for all classifiers examined, with the exception of LDA which

dropped by only 3.6%. Within an alternative analysis, Kaufmann et al. [38] found

distinguishable performance differences between fixed and retrained classification

models after three days; retrained classifiers used either the most recently collected

data or all preceding data for training. In contrast, Waris et al. [112] found that an

ANN yielded the highest classification accuracies in the context of between-day

fluctuations, followed by LDA. In addition to the five aforementioned classifiers,

Kaufmann et al. [39] demonstrated that an evolvable hardware (EHW) classifier was

able to compete with the state-of-the-art classifiers in terms of classification perfor-

mance over time. Zia ur Rehman et al. [97] showed that a convolutional neural net-
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work (CNN) with raw bipolar EMG samples as the inputs outperformed both LDA

and stacked sparse autoencoders (SSAE) for classification of EMG signals from six

hand gestures over two sessions per day for 15 consecutive days. Similarly, Zhai et

al. [118] showed that CNN with spectrograms as the inputs outperformed SVM for

the classification of EMG signals from the NinaPro database [6]. For an extended

coverage of deep learning methods and considerations, the reader is encouraged to

consult [92].

During an investigation of 10 hand gestures over the span of 21 days, Phinyomark

et al. [87] found that sample entropy (SampEn) outperformed a set of fifty other EMG

features extracted from the time domain and frequency domain when using an LDA

classifier. The average classification accuracy across the duration was 93.4% when

using a static model obtained during initial training. This fixed model suffered only

a 2.4% performance decrease when compared to periodic retraining schemes. Inclu-

sion of three additional features in the feature vector: root mean square (RMS), wave-

form length (WL), and the fourth order cepstrum coefficient (CC), further increased

the classification accuracy to 98.9%; the four feature fixed model achieved the same

accuracies as the retrained models without requiring the collection of new training

data each day. Moreover, this study confirmed that the LDA classifier yielded better

performance than other state-of-the-art classifiers including SVM, ANN, KNN, DT,

quadratic discriminant analysis (QDA), and random forests (RFS) in the classifica-

tion of time-varying signal properties.

Dimensionality reduction techniques have also been explored in the context of

their robust to non-stationary effects. In their work, Zhang et al. [120] evaluated an

adaptive feature extraction method based on wavelet packet transforms (WPT), local

discriminant basis (LDB) algorithms, and PCA. Phinyomark et al. [83] compared

seven state-of-the-art feature sets in both the time domain and time-scale domain.

Time domain feature sets achieved above 80% accuracy in the presence of non-

stationary effects when uncorrelated linear discriminant analysis (ULDA) was used

for dimensionality reduction prior to LDA classification, whereas time-scale domain

features achieved less than 70% accuracy. In addition to PCA and ULDA, Liu et al.

[54] proposed another dimensionality reduction method called kernel Fisher dis-

criminant analysis (KDA), a kernelized version of LDA, to extract time invariant

characteristics from EMG features.

Adaptive algorithms, able to retrain and/or relabel the classification model, have

been proposed to enhance the longevity of myoelectric control systems. LDA has

been most heavily explored in this area, such as when Jain et al. [36] proposed an

adaptive LDA classifier that updated the training data during the detection of slow

concept drift and performed label correction during detection of fast changes in the

signal. Chen et al. and He et al. [13, 35] also proposed adaptive/self-enhancing LDA

and QDA classifiers that continuously updated their model parameters, such as the

class mean vectors, the class covariances, and the pooled covariance. Gu et al. [27]

proposed a new adaptation mechanism called representative sample based LDA by

using a new sample set instead of the whole training (an incremental learning-based

LDA). Zhang et al. [119] proposed an unsupervised LDA adaptation strategy based

on probability weighting and cycle substitution. Liu et al. [51] applied a domain
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adaptation (DA) framework, which reused the models trained in previous days as

input (nine days in this study) for a new LDA classifier trained on the 10th day of

the experiment. Although the results from all of these studies have shown that adap-

tive LDA classifiers significantly outperform their static counterparts, most [13, 27,

35, 36, 119] evaluated their performance on data recorded over only 4–11 h from

a single day. Moreover, in practice, the user will have at least visual feedback and

will likely experience self-adaptation in the form of reflexive error correction and

longer-term learning. This suggests a system where both the user and algorithms are

adapting, which may create unstable conditions. Future investigations should, there-

fore, explore appropriate adaptation schemes that can coexist with user adaptation

in the presence of visual feedback and with the dynamics factors introduced during

actual use [111].

3.2 Noise

The majority of EMG signal processing and pattern recognition algorithms assume

that the EMG data are of high quality, which can lead to invalid results or interpre-

tations if this assumption is incorrect. It is widely acknowledged that noise contam-

ination of EMG signals is an unavoidable problem involved in the recording data.

In other words, raw EMG signals typically contain not only useful information but

also some irrelevant or confounding information that adds ambiguity. The raw sig-

nal cannot, therefore be used directly, and data pre-processing is necessary to reduce

the effect of noise and to improve the spectral resolution of the EMG signal. Com-

mon noise contaminants in the EMG signal can be categorized into many forms

[15, 23, 59, 109], for example; (a) motion artefacts, (b) electrocardiogram (ECG)

interference, (c) power line interference, (d) quantization noise, (e) analog-to-digital

converter clipping, (f) amplifier saturation, (g) spurious background spikes, and (h)

additive white Gaussian noise (AWGN).

Research works related to these noise contaminants in myoelectric control sys-

tems have roughly focused on three main research topics. The first topic is the inves-

tigation of the quality of the EMG signal by (a) determining whether the noise is

present in the signal, (b) identifying the noise type, and (c) providing an estimate of

the severity of noise. The second topic is the development of algorithms that either

reduce the noise within the recorded signal or focus on the useful parts of the sig-

nal for classification purposes. The third topic is the identification of robust feature

extraction and classification methods that are tolerant of noise.

Verification of the EMG signal quality is often performed by human operators

using visual inspection during or after the acquisition in combination with some

quantitative measures such as signal-to-noise ratio (SNR). Fraser et al. [23], how-

ever, developed an approach to automatically differentiate clean from contaminated

EMG signals. The proposed method used a one-class SVM and a feature vector of

WL, mean absolute value (MAV), two of 10-bin histogram (HIST), and two of 10-

bin averaged power spectral density (PSD). This contaminant detection method was
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shown to be successful in identifying whether a noise is present in the signal; EMG

signals were classified as noise-free when the SNR was above 10 dB, and as contami-

nated when the SNR was found to be below 10 dB. The same research group [22, 59]

expanded on these previous methods by also identifying noise type. The output of

seven quantitative measures: SNR, signal-to-motion artefact ratio (SMR), maximum

drop in power density (DPR), power spectrum deformation (OHM), signal-to-power

line ratio (SPR), signal-to-ECG ratio (SER), and Pearson correlation coefficient test

for normality (CCN), were used as features for the SVM classifier that identified

the noise type. Specifically, SMR, SNR, OHM, and SER were able to detect motion

artefacts, but suffered some confusion with ECG interference. Power line interfer-

ence is best identified by SPR, while CCN can be used to detect amplifier saturation.

AWGN is detected by DPR, but DPR is sensitive to changes in all of the contami-

nants. This extended contaminant detection method, however, identified noise types

at only very low SNRs (below 0 dB), with the performance beginning to drop at

0 dB and approaching random chance at higher SNRs. Moreover, both methods can

be used to identify the presence of only a single noise type. In real-world situations,

it is likely that multiple types of noise are present simultaneously in the signal, and

additional work on noise detection methods for myoelectric control systems is nec-

essary.

If the signal quality is found to be inadequate, appropriate pre-processing

approaches are necessary. Fortunately, several types of noise manifest outside of

the useful energy band of the EMG signal or only in a narrow specific frequency

band of the signal. For instance, power line interference is clustered around 50 Hz

or 60 Hz (depending on geographic location), while motion artefacts tend to be ban-

dlimited in the frequency range of 0–20 Hz [96]. Use of conventional filters such as

finite-impulse response (FIR) and infinite-impulse response (IIR) filters can there-

fore reduce these types of noise with minimal impact on the usable EMG signal [30,

55]. For example, De Luca et al. [55] recommended using a Butterworth filter with

a corner frequency of 20 Hz and a slope of 12 dB/oct to filter movement artefact and

baseline noise contamination. Powar et al. [94] used an FIR filter with coefficients

that lead to the extraction of high kurtosis EMG, and that increased the classification

performance by 20.5%. Adaptive digital filters, such as least mean square (LMS) and

recursive least square (RLS) algorithms, have also been proposed to remove these

kinds of noise [21, 61, 121].

Other sources of noise whose frequency components are random in nature range

in the usable energy band of EMG frequencies from 0 to several thousand Hz

(depending on measurement method). This kind of noise cannot efficiently and effec-

tively be eliminated using conventional filters. In this case, the random noise can

be reduced using high-quality electronic components, intelligent circuit design, and

careful manufacturing techniques, but not entirely eliminated. Hence, it may cause

problems when extracting robust features, making it difficult to yield high classifica-

tion performance for myoelectric control systems. Wavelet transforms, and adaptive

filters have been commonly used as powerful tools in the removal of random noise in

non-stationary signals. Adaptive filters suffer from the complexity of devising auto-

mated procedures as their performance depends on a reference input signal, which is
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difficult to apply in real-world applications. In contrast, the wavelet transform does

not require any reference signals, and so pre-processing based on wavelet denoising

of EMG has been proposed for pattern recognition with good success (e.g. [40, 57,

80]). Combining both Wavelet transforms, and adaptive filters could also improve

the classification performance [28].

To yield the best performance with wavelet-based denoising algorithms, five

parameters must be optimized: (1) the wavelet basis function, (2) the decomposi-

tion level, (3) a threshold selection rule (4) a threshold rescaling method, and (5)

a thresholding function. All of these parameters have been examined comprehen-

sively [84] highlighting a compromise between two points of view, denoising and

classification, as follows: (1) the wavelet basis functions: Daubechies 2, 7, Symlets

2, 5, Coiflet 4, BiorSplines 5.5 and ReverseBior 2.2 [67, 71, 73]; (2) the decompo-

sition level: 4 [67, 71, 73]; (3) the threshold selection rules: the weighted universal

method with w = 0.55 [80] and the global scale modified universal method [68]; (4)

the threshold rescaling methods: the level dependent for wavelet coefficient length

and the first level or the level dependent for standard deviation of noise [67]; (5) the

thresholding functions: the adaptive shrinkage method [72] and the firm shrinkage

method [78]. These wavelet denoising approaches not only reduced the effect of noise

in EMG pattern recognition but also significantly increased the classification perfor-

mance by 2–50% depending on the SNR level. For extended coverage of wavelet

denoising methods and review of wavelet denoising in EMG signal processing and

classification, the reader is encouraged to consult [84].

Another kind of noise that occurs when using multi-channel EMG systems is

cross-talk. Blind source separation methods, such as PCA and ICA, can be used to

reduce this so-called noise [18, 19], however, it should be noted that muscle cross-

talk could also add discriminatory spatial information that may improve classifica-

tion performance [29].

Due to the limited number of noise removal options in the pre-processing stages

of EMG pattern recognition, employing robust feature extraction and classification

methods that are tolerant of noise may be required to improve the robustness of myo-

electric control systems. Based on comprehensive investigations of state-of-the-art

EMG features, the Willison amplitude (WAMP) [66, 69] and modified mean and

median frequency (MMNF and MMDF) [70] EMG features have been recommended

as being most tolerant of power line interference and additive white Gaussian noise.

Geng et al. [25] also showed that a sparse representation-based classification algo-

rithm outperformed a number of state-of-the-art classifiers such as LDA, KNN, RF,

and SVM when the signals were contaminated by white Gaussian noise.

3.3 Variation in Force

Conventional myoelectric control schemes use an EMG amplitude estimator (such

as MAV and RMS [91]) to map the intensity of the contraction of the underlying

muscles to the velocity or position of a cursor or device [105]. Pattern recognition
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Table 2 List of selected studies investigating the effect of force on myoelectric control systems

References Force levels

(%MVC)

Subjects Number of

movements

Number of

electrodes

[56] 2: 10, 50 8N 5 4

[110] 2: 25, 65 8N 4 Two 4-by-3 grids

[50] 3: 20, 50, 80 3N 4 + rest 4

[49] 3: 20, 50, 80 3N 5 32

[5] 3: 20, 50, 80 5N 6 + rest 6

[34] 3: 20, 50, 80 9N 8 + rest 8

[3] 3: 30, 60, 90 5N 7 + rest 8

[1] 3: low, medium,

high

2A 4 + rest 12

[2] 3: low, medium,

high

9A 6 8

[42] 3: low, medium,

high

10N + 1A 6 6

[43] 3: low, medium,

high

12N + 1A 6 6

[102] 7: 20, 30, 40, 50,

60, 70, 80

11N 9 + rest 8

Note that MVC, maximum voluntary contraction; N, able-bodied (non-amputee) subject; A,

amputee subject

based myoelectric control, however, relies on clustering repeatable patterns of EMG

activity into recognizable classes. Contractions performed at different force levels

may result in drastically different features, resulting in a considerable impact on the

performance of a classifier.

Some researchers have made efforts towards solving this problem during the past

decade (Table 2), which can again be categorized into three main research categories.

The first category is the investigation of the effect of changing force levels on the

performance of pattern recognition based myoelectric control. The second category

is the design of training strategies to mitigate the effect of force changes. The third

category is the development of feature extraction methods that are invariant to these

different force levels.

In a study by Scheme et al. [102], the ability of pattern recognition based myoelec-

tric control to recognize human gestures in the presence of deviations in contraction

intensity deviation was explored. EMG from 10 gestures was recorded at intensities

ranging from 20 to 80% of maximum voluntary contraction (MVC) from 11 able-

bodied subjects using an 8-channel wearable EMG armband. To test the ability of

EMG pattern recognition to handle unseen force levels, the classifier was trained

with each force level and then tested with each and all force levels. As expected,

classification accuracy was maximized when the classifier was trained and tested

with similar force levels, while the presence of contractions from unseen force levels

increased the error considerably (between 32 and 44%). These results were later reit-
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erated when Al-Timemy et al. [1] investigated the effect of force variation with two

transradial amputees. Similarly, their results showed that classification performance

is degraded by up to 60% when the force level is varied. Importantly, the classifica-

tion accuracies were found to be lower for high force levels as the amputees struggled

when generating this high, and unsustainable levels [1].

To counteract this severe degradation in performance, an obvious strategy is to

train the classifier using all force levels [1, 3, 102] or to train parallel classifiers

using different force levels and then categorize the input EMG signals into a target

classifier for recognition [50]. Although incorporating multiple levels in the training

protocol improves the classification accuracy, the increased training time and burden

may limit the clinical viability of this approach. Scheme et al. [102, 103] therefore

recommended the use of dynamically varying ‘ramp’ contractions which captured

features across the full range of force levels during training. Using these ramp con-

tractions have been found to be a highly successful and simple training strategy to

reduce the effect of force variation and to introduce added natural variability during

training.

Extracting features that are invariant to force levels is an alternative solution to

maintaining classification performance without incorporating extra training samples.

Tkach et al. [110] studied the stability of twelve commonly used time-domain fea-

tures with an LDA classifier during low and high levels of force and suggested a set

of four features consisting of WL, log detection (LD), slope sign change (SSC), and

AR features. The 76% accuracy obtained in the classification of four gestures, how-

ever, suggests the need for alternative feature extraction methods. Li et al. [49] pro-

posed the use of common spatial patterns (CSP) method and showed better robust-

ness against force variation with an improvement of 5.3% in classification accu-

racy. In addition to time domain features, Lv et al. [56] showed that frequency

domain (improved discrete Fourier transform) features were better than commonly

used time domain features for wrist EMG classification. He et al. [34] proposed two

novel feature extraction methods, based on the property of muscle coordination in

the frequency domain, to extract angular rather than amplitude information. These

features were found to increase accuracy by approximately 11% (from 80 to 91%)

when classifying nine gestures with three different force levels (20, 50, and 80%

MVC). These features were motivated by the observation that the frequency response

of muscle activation patterns is invariant over a range of force levels. Al-Timemy

et al. [2] proposed another set of features based on the orientation between a set of

spectral moment descriptors extracted from the original EMG signal and an addi-

tional non-linearly mapped version of these moments (TD-PSD features). Based on

Parseval’s theorem, the power spectral density was computed directly in the time

domain to reduce computational cost. This feature set achieved significant improve-

ments of around 6–8% in classification accuracy as compared to other commonly

used features. These features have since been shown to extract information that is

unique from other amplitude based features [65]. Asogbon et al. [5] also proposed

a different set of features based on Parseval’s theorem and showed an increase in

classification accuracies as compared to commonly used time-domain feature sets

(6.7–13.5%). Similarly, features based on chaos theory and fractal analysis could be
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used to increase the robustness of pattern recognition to contraction level as these

methods measure the self-similarity and complexity of the signal [4, 77, 85, 86]. For

example, Phinyomark et al. [82] found that detrended fluctuation analysis (DFA) can

yield a better classification performance when the amplitude level of the EMG signal

is low. More details about functional groups of EMG features can be found in [65].

3.4 Variations in Limb Position and Forearm Orientation

The same hand and wrist gestures can also generate substantially different signal pat-

terns when performed in different limb positions and forearm orientations, increasing

classification error, and reducing robustness in real-life use [12, 20, 43, 52, 104].

It has been noted, however, that the impact of changes in limb position is less pro-

nounced in amputees than with able-bodied subjects [26, 37]. Nevertheless, sev-

eral studies have proposed three main methods to address this problem (Table 3):

(1) training the classifier using EMG signals recorded from different pre-defined

static positions or during dynamic motion between pre-defined positions; (2) using

accelerometers to measure arm positions and orientations; and (3) developing robust

feature extraction, dimensionality reduction, and classification algorithms that can

suppress the impact of position and orientation variations.

As with force level, a similarly successful strategy has been to inform classi-

fier boundaries of the effect of limb positions and forearm orientations by includ-

ing exemplars from each position and orientation during training [12, 20, 43, 104].

For instance, Scheme et al. [104] trained an LDA classifier using EMG recorded in

8 different limb positions to discriminate eight different gestures. Within-position

accuracy was found to be best with the arm hanging straight down while the posi-

tion that provided the worst accuracy was when the elbow was bent at 90◦. Khushaba

et al. [43] trained an SVM classifier using EMG recorded from 3 different forearm

orientations (i.e., wrist fully supinated, at rest, and fully pronated) to discriminate

Table 3 List of selected studies investigating the effect of limb position and forearm orientation

on myoelectric control systems

References Number of

positions

Subjects Number of

movements

Number of

electrodes

[52] 2 4N 4 + rest 4

[43] 3 12N + 1A 6 6–8

[115] 5 8N 8 + rest 8

[20] 5 17N 7 + rest 8

[12, 26] 5 5A 6 + rest 8

[104] 8 8N 7 + rest 8

[7] 9 3N 4 + rest 8

Note that N, able-bodied (non-amputee) subject; A, amputee subject
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six different gestures. Recently, Yang et al. [115] investigated the effect of both limb

positions and forearm orientations, and found that the classification performance

of hand and fingers gestures are more highly impacted by forearm orientation than

limb position. This result is intuitive given the proximity of extrinsic hand muscles,

widely used as primary EMG sites, to the pronator and supinator muscles. Although

incorporating different positions in training protocols has been shown to improve the

classification accuracy, the training time and burden again limit the clinical viability

of such systems [7]. Using either a dynamic motion between predefined positions or

free movement of the arm in the 3-dimensional (3D) space while eliciting training

gestures is therefore seen as a preferred training strategy [24, 95, 101].

Scheme et al. [104] also proposed the use of accelerometers to measure the

positions of the arm. Fougner et al. [20] extended this work by proposing two

approaches integrate accelerometer information: (1) two-stage position-aware clas-

sification, wherein limb position is first detected using the accelerometer informa-

tion, followed by position-specific gesture classification using EMG, and (2) single-

stage position-aware classification wherein a classifier is trained using a combination

of features from accelerometers and EMG signals. The first approach creates mul-

tiple position-specific classifiers, requiring the selection and collection of discrete

positions, whereas the second increases the dimensionality of the feature space

to accomodate the position effect. In a similar approach, Geng et al. [26] used

mechanomyography signals to first determine the arm position, finding that both the

1- and 2-stage approaches outperform EMG information alone. Although adding

extra information from accelerometers may improve the classification accuracy,

their integration with EMG information must be carefully considered. Due to the

increased dimensionality of the problem, their inclusion can result in a worse per-

formance than EMG alone if too few training data and positions are included [95].

As with other perturbations, researchers have also attempted to identify and

develop feature extraction, dimensionality reduction, and classification algorithms

that are robust to the impact of arm position [7, 14, 43, 45, 46, 52, 53]. Liu et al.

[52] investigated the robustness of six state-of-the-art time-domain feature sets and

found that position had a significant impact on the performance of the classifier for

all the feature sets. The TD-PSD features that have been shown to be invariant to

force levels [2] have also performed well in the presence of limb position and fore-

arm orientation variations as compared to commonly used feature sets [43, 45, 46].

Canonical correlation analysis (CCA) methods have also been successfully shown

to reduce the number of positions required when training a new user [14]. Further, a

number of novel classifiers: mixed-LDA [116], conditional Gaussian mixture models

(CGMM) [53], sparse representation classification (SRC) [7], and extreme learning

machine (ELM) with adaptive sparse representation classification (EASRC) [8] have

been shown to significantly outperform traditional EMG classifiers (such as LDA)

in limb positions not explicitly seen during training.
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4 Hands-Busy Conditions

Given a historical focus on prosthetic applications, myoelectric control has been pre-

dominantly explored in hands-free conditions. As new applications emerge, however,

the need for EMG recognition during simultaneous interactions with other objects

is beginning to arise. Traditional human-computer interfaces, like keyboards, mice,

and joysticks, rely on the physical and dedicated interaction of the hands and fingers,

precluding the simultaneous control of alternate inputs. It is possible that this limita-

tion may be overcome through the use of EMG pattern recognition, thus facilitating

multitasking. In other words, even when a user’s hands are busy with other objects,

EMG-based human-computer interfaces may be able to classify a set of unique ges-

tures or contractions. Given the nascence of this emerging field of application, few

studies have been conducted with the aim of developing gesture recognition inter-

faces capable of performing under these ‘hands-busy’ conditions.

Hands-busy conditions were explored by Saponas et al. [99] when twelve partic-

ipants performed pinch gestures in combination with a travel mug and a weighted

bag to emulate object interactions with a small tool-sized object and a large heav-

ier object. Their experiment comprised 25 trials of finger gestures for each object,

where each trial contained a sample of the index, middle, ring, and pinky finger

pinch gestures in random order. Using an SVM classifier, four finger (index, mid-

dle, ring, pinky) and three finger (excluding pinky) pinch grips were recognized 65

and 77% while interacting with the travel mug. Classification accuracies during the

weighted bag interaction were 86 and 91% for four and three finger gesture experi-

ments, respectively. These experiments indicated that loading of the hand by object

weight does not negatively impact gesture recognition performance. In fact, classifi-

cation accuracies were higher under larger loads, alluding to more separable classes.

Another study conducted by Khushaba et al. [44] developed an EMG control scheme

to alleviate driver distraction by replacing button controls with decoded muscle activ-

ity. Eight-channel EMG was collected from 8 subjects to decode 14 gestures during

hands-busy conditions in a simulated driving environment. Fuzzy neighborhood dis-

criminant analysis (FNDA), orthogonal FNDA, LDA, locality sensitive discriminant

analysis (LSDA), PCA, and neighborhood preserving embedding (NPE) was utilized

for the projection of 136 EMG features to 13 features. FNDA and orthogonal FNDA

were found to significantly outperform other feature projection techniques (p < 0.05)

and achieved less than 7% classification error during an online experiment.

Given the potential broad applications in human-computer and human-machine

interaction, further hands-busy condition studies are required to fully identify object

characteristics that impact gesture recognition; however, these hands-busy condi-

tions may benefit from techniques explored in previous force level, limb position, and

forearm orientation studies. While object properties like stiffness may have minor

affects on EMG signal characteristics, the primary confounding factors are likely

the multiple positions and forces adopted to facilitate comfortable interaction with

objects.
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5 Cross-User Classification Models

Inherent differences in physiology and behaviour, among other factors, affect the

elicitation of muscle potentials and result in substantial differences in EMG patterns

between individuals, even for the same gestures. This has necessitated the adop-

tion of user-specific data collection and training phases within myoelectric control

protocols. In prosthetics, physiological changes due to amputation or differences

due to congenital absence contribute to additional variations in muscle geometry,

the composition of subcutaneous fats, muscle, and skin, tendon attachment points,

and innervation zones. As such, in clinical practice, numerous appointments don-

ning, articulating, and doffing prostheses in the presence of expert guidance are

expected to establish a confident classification model for each user. The growth of

other EMG applications, in particular, commercial gesture recognition interfaces,

would be greatly hindered if the same expertise, resources, and maintenance were

required. Indeed, the adoption of EMG-based devices would be greatly facilitated

by the forgoing of lengthy or custom training protocols. In pursuit of a solution, the

development of cross-user classification models has been a keen area of research

within the past decade.

The proof-of-concept of cross-user classification models was performed by

Saponas et al. [98], where a forearm electrode cuff was used to capture hand and

finger gestures from 12 subjects. A 12-fold, leave-one-subject-out, cross-validation

provided the framework for the assessment of model robustness and signal variance

between subjects. Recognition of six finger lift gestures from previously unseen sub-

jects achieved average classification rates of 57%. Despite the relatively poor perfor-

mance of the system (relative to common within-subject results), the model per-

formed considerably better than chance (1 in 6, or 17%), suggesting the potential for

developing cross-user classification models for myoelectric control systems. Kim

et al. [47] later corroborated that the standard classification models, without imple-

menting additional methods to extract the user-independent EMG patterns, can yield

classification rates above chance (41% for a four-class classification problem) and

that the further development of novel algorithms for cross-user classification mod-

els are necessary.

Xiang et al. [114] identified a set of gestures that were more user-independent that

could be coupled with cross-user classification models. In an offline experiment, data

from 4 subjects collected over 5 days were used to train a classifier to recognize ges-

tures from 6 unseen subjects. Eleven different user-independent gesture sets contain-

ing five, six, or eight gestures were evaluated. The range of gesture set classification

accuracies achieved, 76–90%, indicated the user-independence of these gesture sets

approaching a usable standard for commercial applications. Upon further inspec-

tion, gesture class separability was non-uniform across subjects; three test subjects

achieved good class separability, whereas others suffered from poor performance.

In an online experiment, data from 10 subjects collected over 4 days were used to

recognize two sets of 6 and 8 user-independent gestures from 50 unseen subjects

using a set of time-domain features (MAV and the fourth-order AR model coeffi-



Surface Electromyography (EMG) Signal Processing . . . 19

cients) and a linear Bayes classifier. Facilitated by the user-independent gestures and

increased numbers of training subjects, cross-user classification rates achieved 90.7%

and 81.3%, respectively. Hand gestures found to provide strong user-independence

include flexion and extension of the wrist, hyper-extension of palm, and hand grasp.

An alternative solution was proposed by Matsubara and Morimoto [58] through

the segmentation of motion-dependent and user-dependent information using a bilin-

ear model. This procedure involved adapting a parameter matrix that segmented

motion-dependent and user-dependent information for each gesture. Afterward, this

matrix was used to effectively remove user-dependent information from unseen sub-

jects; thus removing the necessity for user-specific data collection and classifier train-

ing. Using the user-independent features extracted from the bilinear EMG model

with an SVM classifier, the proposed method increased performance from 54 to 73%

while decreasing the learning time from 830 to 6 s as compared with the standard

classification model.

A subsequent study employed CCA driven by a similar motivation [41]. CCA

devises a pair of linear transformations that maximize the correlation of similar-

class feature matrices between subjects in the transformed space. Following the

same cross-validation method as Saponas et al. [98], CCA was validated using 10

able-bodied subjects as the expert users to recognize 12 finger gestures from 6 tran-

sradial amputees (with varying levels of amputation). The proposed CCA frame-

work produced comparable or better results for the amputee test subjects in the

absence of subject-specific training data (average classification accuracies greater

than 82% across all subjects). Another CCA-based study examined the combination

of user- and position-independence [14]. The position-independent CCA algorithm

was assessed using 10 new subjects and achieved an LDA classification accuracy

improvement of 44.2% over the same algorithm in the absence of CCA.

Deep learning architectures have begun to be tailored for EMG in an attempt

to develop cross-user classification models [92]. Traditionally, deep learning was

not used on EMG signals due to the lengthy training procedures required to amass

the necessary amount of samples; however, transfer learning serves as a solution

to aggregate a sufficiently large dataset by learning general features from multiple

subjects [16]. Cross-user transfer learning achieved 98.3% classification accuracy for

7 hand and wrist gestures collected from 17 subjects. Additionally, using the Ninapro

database, this deep-learning architecture achieved 65.6% classification accuracy for

18 hand and wrist gestures collected from 10 participants using the Myo armband

device.

In addition to these efforts to identify user-independent EMG patterns, individ-

ual differences in EMG signals due to human factors, including gender, age, and

anthropometric variables, have also been reported. For gender and age differences

in muscle activation via EMG signals, for example, Harwood et al. [32] and Theou

et al. [107] found that older adults exhibit greater EMG burst activity, with higher

mean amplitudes, as compared to younger adults. These age-related changes are also

emphasized in women. For anthropometric variables, Thongpanja et al. [108] found

that the linear relationship between the force of contraction and the MNF and MDF

features varied from person to person. These results could be due to human physical
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variations (i.e., different anatomical and physiological properties of the muscles) as

a number of anthropometric variables can be used to identify subgroups of subjects

based on these relationships. Phinyomark et al. [88] found that it is feasible to use

anthropometric variables as an input to calibrate or adapt EMG pattern recognition

systems. Significant and strong correlations between several commonly used EMG

features and anthropometric variables were found including the circumference of the

forearm and biceps. These variables could benefit the design of cross-user classifica-

tion models that include this added context. Such a system could leverage additional

sensors in an EMG armband that also measure the circumference of the band itself

[11]. For other anthropometric variables that cannot be measured directly using a

wearable device, it could be possible to estimate anthropometric data for individual

subjects using published anthropometric tables [90].

6 Concluding Remarks and Future Directions

In this chapter, we have reviewed and discussed several signal processing and classi-

fication techniques for myoelectric control systems. In particular, the practical con-

siderations of how to handle the dynamic factors prevalent in real-world scenarios

were emphasized. In particular, within-day and between-day variations, signal noise,

variations in force, and variations in limb position and forearm orientation were

highlighted. Additional emerging conditions, such as the implications of hands-busy

usage scenarios and the construction of cross-user classification models were also

explored.

Despite the exciting work in many of these areas, remaining research is needed to

extend the robustness and applications of myoelectric devices. Further exploration

of the effects of within-day and between-day variations is necessary for the devel-

opment of long-term commercial use devices. In particular, the controversy among

researchers regarding the performance profile exhibited using a fixed classification

model should be analyzed for longer periods between training and testing. More-

over, subject-learning, induced through longer collection and training procedures,

could provide insight into possible frameworks for adaptive systems that are robust

to non-stationary EMG signals.

Limitations with current signal processing techniques for the detection and

removal of noise remain the scenarios in which one-class classifiers can distinguish

types of noise. In the case where noise is large (low SNR) and visual inspection can

effectively be used to assess signal contaminants, the classifier is unnecessary; how-

ever, when the signal quality is high (high SNR), and contaminants are unable to

be distinguished through visual inspection, the one-class classifier fails. Adaptations

to this novel technique will facilitate targeting signal contaminants and empowering

accompanying pattern recognition systems for applications like gesture recognition.

The tradeoffs between these noise levels, their recognition, and their impact on per-

formance should also be further explored.
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The state-of-the-art techniques for minimizing the effect of contraction intensity
are facilitated by either strategic data collection along with quantized or dynamic

force levels or the extraction of features that are invariant to contraction intensity

level, both of which have drawbacks. The sampling of additional force levels involves

an additional parameter to be varied throughout data collection, increasing the length

of the training procedure. Contraction intensity invariant features implemented under

practical conditions may be sensitive to other dynamic factors or lack valuable ampli-

tude information, thus decreasing their usability. Future possible directions for con-

traction intensity invariant classification models follow the trends of other dynamic

factors in the implementation of adaptive systems. In particular, as in the devel-

opment of cross-user models, CCA or similar approaches may facilitate intensity

invariance with little or no added training burden.

Advancements in limb position methods have allowed for gesture classification in

numerous positions. Techniques identified as position invariant avoid additional data

collection under a range of positions, thus shortening the training protocol. Adaptive

techniques, like CCA and CGMM, also provide improved accuracy under the effects

of various limb positions while minimizing the training protocol. While these tech-

niques provide higher classification accuracy as compared to their absence, advance-

ments are necessary to guarantee usability (accuracy >90%) under all limb positions

and forearm orientations.

It is important to note that most current EMG feature sets provide sufficient class

separability to tolerate these added sources of variability, suggesting that proper pop-

ulation of feature space during training remains one of the predominant challenges

for myoelectric control.

Previous works exploring the classification of EMG during hands-busy condi-
tions have improved classification models for the intent of facilitating multitasking;

however, many of the practical robustness issues outline herein have yet to be exam-

ined in this context. Further studies are required to identify whether object interac-

tions that accompany gestures invoke characteristic behaviours or whether those two

are non-stationary.

Cross-user classification models remain a lofty and worthy goal for pattern-

recognition based myoelectric control. CCA has demonstrated exciting potential as a

possible framework for preceding user-specific training by learning a set of transfor-

mations that maximize the correlation between subjects. There remains the necessity

for user-specific training data to be collected to initialize the set of transformations

for a new user. This requirement could be rectified through an adaptive system capa-

ble of providing estimation for the set of transformations based on anthropomorphic

variables. In conjunction with an online self-enhancing parameter estimation tech-

nique that customize the statistical parameters to the user in real-time, a myoelectric

control system could be employed in the absence of any initial training procedure.

As previous research has typically studied the effects of these dynamic factors

in isolation, the investigation of the combined effect of various confounding factors

(including intra and inter-subject repeatability, noise, variation in force, variation in

limb position and orientation, and electrode shift) remains needed [27, 43].
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Estimation of Ankle Joint Torque
and Angle Based on S-EMG Signal
for Assistive Rehabilitation Robots

Palayil Baby Jephil, Paras Acharaya, Lian Xu, Kairui Guo, Hairong Yu,
Mark Watsford, Song Rong and Steven Su

Abstract Surface Electromyography (S-EMG) has shown the advantages of robotic
rehabilitation. Robotic rehabilitation can be significantly improved if the intended
body movement of the patients can be well identified. In this chapter, we first use
the SVM classifier to identify the intended motion patterns, which are plantarflexion
and dorsiflexion, by using three wireless EMG sensors placed at the tibialis anterior,
gastrocnemius lateralis and gastrocnemius medialis muscles. To estimate the ankle
joint torque as well as the joint angle for both plantarflexion and dorsiflexion, this
chapter also develops nonlinear mathematical models for joint torque estimation
and utilises Swarm Techniques to identify model parameters for each movement
pattern of the ankle. During rehabilitation, once the intended motion is recognised,
the activation functions extracted from an individual associated EMG channel can be
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used to estimate both the torque and angle by using the established nonlinear models.
Experimental results demonstrated the effectiveness of the proposed approach.

Keywords Ankle rehabilitation · Particle swarm optimization · Machine learning

1 Introduction

The human ankle joint is a complex structure, an articulation formed between the
talus and the tibia [43], which provides dynamic linkage allowing interaction of the
lower limb with the ground. Despite the constant high compressive and shear forces
experienced during the gait cycle, the ankle joint is considered to be less susceptible
to the degenerative process compared to the hip or knee joint [6]. A systematic review
by Fong et al. also shows that the ankle is themost common site of injuries in 24 of 70
sports studied [12]. Additionally, apart from common sprain and fractures, diseases
and conditions like osteoarthritis, peripheral nervous compression, peripheral nerve
trauma, peripheral neuropathy, cerebrovascular accident, and spinal cord injuries can
also result in ankle dysfunction or disability [2].

The conventional ankle rehabilitation methods are hands-on physiotherapy
techniques-joint mobilisation, joint manipulation, muscle stretching, neurodynamic,
massages, and soft tissue techniques and physiotherapy instrumentmobilisation [22].
These hands-on techniques have exposed several disadvantages and limitations, as
the integration of external factors (patient position, table height and so on) and inter-
nal factors (generated motion and force of practitioner arms and forearms and so
on) may be significantly different than for those of similar or higher stature than
their patients. The ability to generate adequately controlled force, acceleration and
displacement from the practitioner’s upper extremities, particularly the hands, to
facilitate therapeutic benefit in the patient may require proportionally more exer-
tion and effort and may exceed, in some cases, the practitioner’s capacity when the
patient’s size presents a physical challenge. To overcome these problems, researchers
are trying to optimise rehabilitation procedures by using automated robots. Many
mechanical devices incorporated with sensors and actuators are increasing surfacing
to help physiotherapists and other medical professionals with the rehabilitation pro-
cess [40]. Also, studies have demonstrated some level of success in various robotic
control strategies such as impedance control [47], adaptive control [3], and challenge-
based haptic simulation [4]. However, the responses for each control method differ
with different impairments. The most effective control strategy for specific ankle
disability has not been explicitly addressed.

Furthermore, studies [10, 33, 34] have revealed that rehabilitation robots oper-
ating on multiple bio signal sources have a high potential in improving diagnostics
and physiotherapy outcome. Using physiological signals offers the advantage over
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traditional physiotherapy, which increases the preciseness of the support, as well as
minimises the changes between movement repetitions. It also provides quantitative
measures of the patient’s recovery state after an injury [47].

Estimating how the forces are dissipated to the articulating surfaces is the first step
of understanding the joint mechanics, their functions, and related injuries and dis-
eases. Several dynamic models have been developed to estimate the forces (internal
and external) applied to a joint. However, it is far more difficult to determine given
the uncertain nature of the joint [20, 25]. Muscle forces cannot be determined based
on objective function alone, as it cannot account for individual muscle activation pat-
terns. For the past several years, biomechanical models such as the Hill-basedmuscle
model were developed to represent a mathematical model of muscle mechanics [11,
35], and its use is still ongoing and very relevant in the present context as well [36].
However, electromyography (EMG), in conjunction with an appropriate anatomical
model, is considered to be the most prominent solution [7, 15, 20]. McGill et al. 1995
and Lyod andBuchanan 1996were the early applicants of EMG signal in conjunction
with an appropriate anatomical model to estimate forces produced in each muscle
[8, 21]. In recent years, several biomechanical models, such as Hill-based muscle
model was developed to represent a mathematical model of muscle mechanics [5,
42], which dramatically increases the estimation error as the EMG signal varies from
one individual to another.

Since developing robotic assistive devices requires a multidisciplinary approach,
techniques from various backgrounds such as software engineering, control engi-
neering and mechanical engineering have been applied to improve the design. In
recent years, machine learning algorithms are implemented to provide a better strat-
egy for patients during and after the treatment [1]. As Table 1 shows, for the last
decade, researchers have investigated different optimisation techniques like Genetic
Algorithm, Simulated Annealing, Levenberg Marquardt and Particle Swarm Opti-
mization. These methods are used to establish the non-linear mathematical models
and create the relationship between ankle torque/force and s-EMG [27, 28, 39].

This chapter presents a design of an assistive ankle rehabilitation robot based on
the EMG signal that predicts the joint forces (torque and angle) based on the EMG
signal using a minimum number of constraints using SVM classification combined
with particle swarm optimisation for intention detection and prediction of required
angle and torque.

2 Methodology

2.1 Overview

Themodel designed investigates twomotions, namely, ankle plantarflexion and ankle
dorsiflexion. S-EMG signal was acquired from three muscles specifically- tibialis
anterior, lateral, and medial gastrocnemius are used as the input of the system.
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Table 2.1 Studies related to rehabilitation using EMG signals and machine learning

Authors Application Algorithm Results

Liu and Young [17,
18]

Modelling:
EMG-movements

The adaptive
neuro-fuzzy inference
system

The accuracy of 97,
99, 87.9 and 81.8%
for four subjects for
upper arm EMG
signal and
corresponding
movement

Rahatabad et al. [26] Modelling:
EMG-force

Genetic Algorithm +
Fuzzy Logic

Reduced root mean
square error to 12.4%
of Hill-based muscle
model

Allard et al. [9] Robotic arm guidance Convolution Neural
Network

97.9% accuracy with
18 subjects
performing 7 gestures

Zhai et al. [46] Neuroprosthesis
control

Convolution Neural
Network

10.8 and 2.99%
increase in
classification
accuracy in intact (50
movement type) and
amputee (10
movement type) with
consistent higher
absolute performance

Xia et al. [44] Limb movement
estimation

Convolution Neural
Network + Recurrent
Neural Network

The 3D trajectory
estimation was best
using Recurrent
Neural Network for
all eight healthy
subjects used
compared to support
vector regression and
Convolution Neural
Network alone

The model is designed in such a way that it can be easily tailored for any joint
and any individual with given appropriate anatomical and physiological data over-
coming the discomforts experienced with the current techniques such as calibration
process and the complexity of sensor placement which is achieved by machine learn-
ing, optimisation techniques, and decreased sensor numbers. The first stage of the
system is the intent classification that provides empirical data for the selection of the
appropriate model, decreasing the execution and processing time, thereby making
the system more robust and adaptive. Classification of the patient’s intent is done
by implementing a machine learning algorithm, Support Vector Machine (SVM).
The acquired s-EMG following the classification is converted to muscle activation
which is then fed into different non-linear mathematical models whose outputs are
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Fig. 1 System overview

respective torque value at that instance of time. The system chooses from two differ-
ent sets of mathematical models depending on the intent of the user. Particle swarm
optimisation is used, to optimise the mathematical models by iteratively improving
the solutions within the confined boundary of the search space.

The overall idea and the overview is shown in Fig. 1.

2.2 Intention Detection

Before estimating the joint torque and angle, it is necessary to understand the intended
direction in which the patient wants to move the ankle. To detect the intended direc-
tion, EMG data is acquired on three muscles location selected which are tibialis
anterior, lateral, and medial gastrocnemius. Based on the literature [29, 31, 37] four
features are selected to train the data. All the features are extracted using an overlap-
ping hammingwindow. The four features are mean absolute value (MAV), waveform
length (WL), root mean square (RMS) and Integrated EMG (IEMG)

• Mean absolute value (MAV) is taken for the amplitude of the EMG signal. It is
used as an onset to detect muscle activity and is defined as:

MAV = 1

N

N∑

n=1

xn

where,

N is the total sample size and
xn is the acquired EMG signal.

• Waveform length (WL) is the length of the waveform over a specified period. The
equation of (WL) is defined as:
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WL =
N−1∑

n=1

|xn+1 − xn|

where,

N is the total sample size,
xn+1 is the following EMG signal and
xn is the acquired EMG signal.

• Root Mean Square (RMS) is similar to standard deviation and is expressed as:

RMS =
√√√√ 1

N

N∑

n=1

x2n

where,

N is the total sample size
xn is the acquired EMG signal.

Integrated EMG (IEMG) is the summation of the absolute value of the amplitude
of the EMG signal, and it is defined as:

I MEG =
N∑

n=1

|xn|

where,

N is the total sample size and
xn is the acquired EMG signal.

Once the features are extracted from all the channels, these features are combined
to form a vector Z = [MAV, WL, RMS, IEMG]. The data was collected from four
healthy males between the age group 20–25 during dorsiflexion, plantarflexion, and
at rest using DELSYS wireless system placed at tibialis anterior, lateral and medial
gastrocnemius. The extracted features were trained and classified using multiclass
SVM. SVM seeks to find the optimal separating hyperplane between classes by
following the maximised margin criterion [38]. One-Versus-One Approach was used
in this project to classify the data using a radial basis function using MATLAB
toolbox. After the intention of the patient is detected, the next stage is to determine
the torque and angle of the ankle for the intended movement.
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Fig. 2 s-EMG signal processing

2.3 Estimation of Joint Ankle Torque

To estimate ankle joint torque, the EMG signal is firstly pre-processed using a high-
pass filter to remove motion artefacts and rectified so that the envelope of the EMG
signal can be considered to be a net neural drive to the muscle. It is then filtered using
a low pass filter to smoothen the envelope, which gives the corresponding activation
dynamics. Next, the pre-processed EMG signal is converted to an activation function
which is explained in the next session of the paper. Figure 2 shows the process of
extracting the activation function.

2.3.1 EMG to Activation Function

The activation function represents the elemental muscle activation dynamics. Activa-
tion dynamics correspond to the transformation of neural excitation to the activation
of the contractile apparatus, which is a specialised structure for contraction consist-
ing of the sarcomere [45]. The activation function is used to describe the linear or
non-linear relationship between EMG and force and the activation equation in this
paper is proposed by [20, 21]:

a j (t) = eAu j (t) − 1

eA − 1

where,

a j (t) is the activation of muscle j
u j (t) is the post-processed EMG of muscle j at time t
A is the non-linear shape factor constraint to −3 < Aj < 0.

Additionally, Ruijven and Weijus 1990, Guimaraes et al. 1995 and Herzog et al.
1998 showed a poor prediction alone from the rectified EMG signal and had a shorter
duration than the resulting force. However, their study has suggested the addition of
muscle twitch to the activation function can give a better prediction of the muscle
forces [13, 14, 41].Miler brownet al. 1973 andRabiner andGold1975have suggested
that a critically damped linear second-order discrete linear model can be used to
represent muscle twitches and which can be expressed in the discrete form by using
backward difference [24, 30]. D. G. Lloyd and T. F. Beiser 2003 have used a second
order discrete linear model to model muscle excitation from the activation function
in the form of a recursive filter given by [20]:
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u j (t) = αe j (t − d) − β1u j (t − 1) − β2u j (t − 2)

where,

e j (t) is the pre-processed EMG of muscle j at time t
u j (t) is the post-processed EMG of muscle j at time t
α is the gain coefficient for muscle j
β is the recursive coefficients for the muscle j
d is the electromechanical delay

where,

β1 = C1 + C2,
β2 = C1 · C2.

Such that |C1| < 1 and |C2| < 1
And,
α − β1 − β2 = 1; maintains a unit gain of the recursive filter.
Once the activation function of the EMG has been obtained, we input this signal

to 3 sets of mathematical models for each movement. The best mathematical model
that predicts the estimated torque would be selected using an algorithm called partial
swarm optimisation (PSO).

2.3.2 Mathematical Model of EMG to Torque Conversion

The mathematical is based on the assumption that the relationship between the s-
EMG signal and the joint torque is nonlinear [23]. Based on this assumption, three
nonlinear equations for estimating the joint torque from the EMG signal are included.
The nonlinear equations are based on previous similar studies [19, 39].

MM1 = x1 + x2 · √
ui

MM2 = x1 + x2 · sine(ui )

MM3 = x1 · ux2
i + x3 · ux4

i

where,

ui Processed EMG data.
xi as a random value parameter associated with the selected mathematical model.

2.3.3 Fitness Function

An objective function shown below is set as a fitness function-Sum of Squared Error
(SSE). The function defined below is used to summarise how close the mathematical
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model is for predicting the EMG signal. It also guides our algorithm towards an
optimal solution.

SSE =
n∑

k=0

(Actual T orque − Predicted T orque)2

where,

i data samples.
Predicted torque torque value estimated from a mathematical model.

An isokinetic dynamometer (Biodex System 4 New York, USA) was used to
measure continuous ankle torque. The ankle joint is manually forced in the upward
direction to record the highest torque value generated after the maximum position of
the ankle joint during dorsiflexionwas achieved. This was done to determine whether
our mathematical model could achieve the maximum torque value with the recorded
s-EMG signal.

2.3.4 Partial Swarm Optimization

Partial SwarmOptimization (PSO) is ametaheuristic computational method that iter-
atively improves the candidate solutions known and particles by continually moving
them around in a defined search space based on mathematical equation defining the
position of the candidate solution (particle) and its velocity at a certain point of time
in that space. The advantage of using PSO over other optimisation technique is that
it requires primitive mathematical operators making it computationally expensive
regarding computational memory and storage [16], which makes it is convenient
for real-time implementation. Additionally, PSO does not use the gradient of the
problem is optimised, and it makes few or no assumptions about the problem being
optimised [32]. With their exploration and exploitation algorithm, the particle of the
swarm fly through the defined hyperspace and have two essential reasoning capabil-
ities: their memory of their own best position—local best (lb) and knowledge of the
global or their neighbourhood’s best—global best (gb). The position of the particle
is influenced by velocity. The position of the particle “i” in the search space at the
time step; is denoted by xi(t) where denotes the discrete the time steps. The position
of the particle is changed by adding a velocity, i.e., vi(t), to the current position;

xi (t + 1) = xi (t) + vi (t + 1)

where,

vi (t) = vi (t − 1) + c1r1(lb(t) − xi (t − 1)) + c2r2(gb(t) − xi (t − 1))

c1 and c2 acceleration coefficient.
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Fig. 3 PSO flowchart

r1 and r2 random vectors.

The flowchart of partial swarm optimisation is illustrated in Fig. 3.
Since two motions of the ankle joint: dorsiflexion and plantarflexion are consid-

ered, the mathematical models described above are divided into two categories one
each for a particular motion. Eachmathematical model is activated, depending on the
output from the SVM. Consequently, if the intended movement is dorsiflexion first
set of the determined mathematical model will be used whereas, if the intention is
plantarflexion the second set of the determined mathematical model will be selected.
Contrarily, if the patient is relaxed, the output torque will be zero (Fig. 4).
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2.4 Estimation of Ankle Joint Angle

For a continuous movement of the ankle joint, it is necessary to estimate the joint
ankle. During dorsiflexion, the muscle activity is higher, and the corresponding joint
torque and joint ankle are increased simultaneously. The same can be seen for plantar
flexion as well as the joint torque, and the joint ankle is changed with the joint torque,
and the joint can be assumed to be closely proportional to each other [48], and it is
expressed as,

θ j = kτi

where,

θ j Estimated Joint Ankle Angle
τi Estimated Torque of Ankle Joint
k adjustable constant.

3 Results

Figure 5 shows the conversion of the s-EMG signal to the Activation function. As
mentioned earlier, activation function helps in better prediction of forces due to the
delay as s-EMG has a shorter duration than the resulting force.

The figures below show the estimated joint torque from the three mathemati-
cal models. The illustrated Fig. 6 depicts that the torque value predicted using the
mathematical model almost accurately supersede the data collected via dynamome-
ter during both planter and dorsiflexion. Additionally, the minor shifts in the graph
are due to inconsistent sampling configuration of the EMG signal collected and
dynamometer. In the future, we are planning to use the DELSYS system at lower
sampling configuration to reduce the data points thereby increasing the processing
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Fig. 5 EMG signal associated with dorsiflexion

Fig. 6 EMG signal associated with plantarflexion

Fig. 7 Estimated and actual joint torque for dorsiflexion using the mathematical models

time and conversely, decreasing the number of iterations making the response time
of the overall system accuracy. The error difference between the predicted and the
measured torque was an average of 18% for dorsiflexion and an average of 27% for
plantarflexion.

The second set of figures, i.e. Figs. 7 and 8 show the relationship between the
predicted angle obtained using θ j = kτi . The results show that the predicted angle
follows the measured angle more explicitly compared to the predicted torque. An
average error percentage of only 8% was observed between the predicted angle and
measured angle during dorsiflexion. However, a 14% average error was calculated
for dorsiflexion (Figs. 9 and 10).

The table below shows the stat for each mathematical model. The execution time
for both dorsiflexion and plantarflexion is increased with XN, where N = 1, 2, 3
and 4 are the variables linked with each mathematical model. Mathematical model
2 with X1 = −1.59E+1 and X2 = 3.52E+3 for dorsiflexion and X1 = −1.23E+1
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Fig. 8 Estimated and actual joint torque for plantarflexion using the mathematical models

Fig. 9 Estimated and actual ankle torque for plantarflexion using the mathematical models

Fig. 10 Estimated and actual ankle torque for plantarflexion using the mathematical models

and X2 = 3.64E+1 for plantarflexion has the least execution time of 0.4741 ms and
0.2798ms for dorsiflexion andplantarflexion, respectively.However, the variable size
and number of iterations seem independent of each other as mathematical model 1
for dorsiflexion has the maximum number of iterations:205 with only two variables
compared to mathematical model 4 whose number of iterations is only 190 with four
variables. The same can be seen for plantarflexion as mathematical model 1 has the
maximum number of iterations with two variables, i.e., 387 and mathematical model
3 with four variables has the least number of iterations of 158.

The results indicate that by integrating PSO and SVM classification, both joint
ankle torque and angle can be accurately predicted. The proposed approach can sig-
nificantly reduce the number of different types of sensors, which has great potential
to provide a more straightforward and efficient rehabilitation solution. Table 2 also
presents that the selected mathematical models for dorsiflexion may require some
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Table 2 Results of Mathematical models used

Dorsiflexion Plantarflexion

Mathematical
model
1
MM1 =
X1+X2 ·√Ui

X1 −6.47E+01 Mathematical
model
1

X1 −2.69E+01

X2 8.43E+02 X2 4.54E+01

Number of
iteration

205 Number of
iteration

387

Execution
time (s)

0.5437

Execution
time (s)

0.3868

Mathematical
model
2
MM2 = X1+
X2 · sine(Ui )

X1 −1.59E+01 Mathematical
model
2

X1 −1.23E+01

X2 3.52E+03 X2 3.64E+01

Number of
iteration

158 Number of
iteration

273

Execution
time (s)

0.4741 Execution
time (s)

0.2798

Mathematical
model
3

MM3 =
X1 ·UX2

i +
X3 ·UX4

i

X1 9.94E+08 Mathematical
model
3

X1 −2.23E+11

X2 1.02E+09 X2 5.14E+11

X3 1.32E+04 X3 2.98E+01

X4 1.41E+00 X4 2.57E+00

Number of
iteration

190 Number of
iteration

158

Execution
time (s)

1.9821 Execution
time (s)

0.4741

adjustments for higher accuracy. Since the model is well established that the rela-
tionship between joint torque and S-EMG signal is non-linear [23], to include more
non-linear equations using fewer variables shall be considered for future improve-
ment.

4 Conclusion

The paper presents an EMG-based real-time estimation of ankle joint torque during
plantarflexion anddorsiflexion.The real-time classificationof the intentionof the user
using multi-class SVM added an extra layer of certainty is minimising the failure
rate for the selection of a mathematical model, thereby reducing the processing
and execution time. The selected mathematical model is based on the nonlinear
relationship between s-EMGand joint torque. PSObased on commonfitness function
accurately solves the nonlinear equation.

For future works, the immediate step would be to convert the estimated joint
torque into a joint angle. Many papers have suggested that the ankle joint and the
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ankle torque has a linear equation. Furthermore, the main focus will be to implement
the model real-time and to develop an algorithm that selects the best mathematical
model based on the signal strength of the user in real-time with very few delays.

Since s-EMG signals are full of noise, we think that there should be a mechanism
that stabilises the motor once the predetermined angle is reached. We are planning to
use an in-house designed accelerometer with a Kalman filter that removes the jerky
motion that was experienced when testing out the results with our EC motor.
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Force Myography and Its Application
to Human Locomotion

Anoop Kant Godiyal, Vinay Verma, Nitin Khanna and Deepak Joshi

1 Introduction

Locomotion is a highly skillful task that we humans perform using our two limbs
to commute from one place to another. Millions of years ago, our ancestors used
to live in trees and used all four limbs to walk. Over the years, we have learned to
walk on two limbs and evolved gradually. In the modern day, with immense technical
advancement, our lives became easier, resulting in an unhealthier lifestyle that leads
to serious diseases. Diabetes is one such disease, which is one of the major causes of
amputation [47]. The secondmost important cause of amputation is traumatic injuries
[70]. With the loss of limb, an amputee faces serious challenges in his day-to-day
life; thus a declined quality of life. The situation worsens when the amputation is
particularly of the lower limb as it affects their locomotion capabilities. Locomotion
is an important factor for an individual’s independence. To enhance the quality of
amputee’s life, it is important to design a robust but simple and affordable prosthesis
that can provide a wide range of acceptability and better human-machine interface.

In the United States alone, there were 1.4 million lower limb amputees in the year
2012, which is estimated to double in the next 35 years. The lower limb disability
is prominent amongst the amputation related disabled population worldwide. To aid
their hampered lives owing to disability, a variety of prostheses are commercially
available. These are categorized into two types- passive and active prosthesis. Passive
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prosthesis cosmetically mimics the actual leg but lacks in capability as it requires
extra effort for driving and maintaining the balance. This results in unnatural gait
patterns and higher metabolic energy. These limitations of a passive prostheses can
be resolved to a great extent, using an active prosthesis, resulting in an active area
of research. The most important part of any active prosthesis is to recognize the
modes and gait events during locomotion, for seamlessly controlling the prosthesis
and timely adjusting the mode [3, 44, 59, 60].

Interestingly, the sensing technology is an integral and the most important part of
the active prosthesis. Over the years, many sensing technologies like electromyog-
raphy (EMG) [1, 22], inertial sensors [24, 33], capacitance sensors [9, 68] etc. have
been used to acquire the signal from the individual’s body and identify the differ-
ent locomotion modes along with the gait events during locomotion. To ensure the
safe walking, the locomotion modes and the gait events should be recognized as
accurately as possible, which mainly depends on the sensing technology used. Sur-
prisingly, there is one of the other limitations of each sensing technology. Therefore,
the quest to an alternate cost-effective sensing technologywithminimal limitations is
the utmost need and thus, remains a highly demanding area of research. This chapter
gives insight into the identification of locomotion modes and the gait events during
the locomotion using an emerging sensing technique called the force myography
(FMG). In FMG, the change in the gross volume of the limb is captured via a strap
tied to it. This change in volume is due to the contraction and relaxation of the skeletal
muscles while performing the activities of daily living (ADL).

2 Background

To identify the human locomotion and detect gait events during the locomotion,
various signals are acquired from the subject’s body. After detecting the gait events
and locomotion modes, the signals are then used to drive the prosthesis for safe
and efficient locomotion. This human locomotion and gait event determination is
also helpful to assess movement disorders such as Parkinson’s disease, cerebellar
ataxia, multiple sclerosis, and other gait related disorders. Electromyography (EMG)
is considered the gold standard system to assess limb activity because it is well
established and widely known. EMG is a technique to measure the electrical activity
that occurs in the skeletal muscles during the contraction and relaxation motion.
EMG has been widely used in prosthetics, rehabilitation, driving exoskeleton, and
many human-machine interfaces [20, 21, 29, 39, 57]. Especially in the control of
prosthetics, EMG is used to capture the muscle movements as it appears before any
other motion occurs. Though being popular, it suffers from some major limitations
such as sensitivity to anatomical locations, movement artifacts, cross-talk between
muscles, degradation due to external noise, and electromagnetic noise [12, 58]. It is
also dependent on environmental conditions such as humidity and dust, which restrict
it’s global acceptability. To obtain quality EMGsignal, the signal to noise ratio should
be high, which requires well-designed hardware resulting in an exponential increase
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in the cost of the system. Though cheaper surface electromyography (sEMG) systems
are available, these systems provide poor quality signals and hence, resulting in poor
accuracy in the identification of locomotion modes and gait events.

Recentlymechanical sensors like inertial sensors [18, 43, 45], capacitance sensors
[9, 68], and force myography [11, 16, 17, 26] are used as they provide an upper hand
in overcoming the limitations of the EMG system. The inertial measurement unit
is a combination of accelerometer and gyroscope that are fused into a single chip
to provide a better understanding of the real-world problems with their use. With
the advancement in technology, these sensors have become compact, lightweight
and affordable because of which researchers can acquire the data autonomously
and continuously even outside the laboratory environment. The limitation associated
with the inertial sensors is the noise component that is due to the external factors and
shifting of the sensors. To attain higher accuracy, the complementary information
is fed to the system, i.e., extra sensors are added with an independent source of the
noise. As the inertial sensor responds to the motion of the human body part, so the
intent to move cannot be collected using the inertial measurement unit (IMU), thus,
it lags behind the EMG. In addition, the inertial sensors do not acquire any of the
body parameters, and hence they cannot determine fatigue.

Due to these limitations, the researchers are endeavoring to the better sensing
technology that has benefits of EMG being intuitive and compact, lightweight and
affordable with good accuracy as IMU. The researchers have come up with two
solutions—capacitive sensing and FMG. Currently, the capacitance sensing is in the
primitive stage for the identification of human locomotion. Very few studies have
been done to identify the human locomotion, gait events, and the forearm motions
using the capacitive sensing [66–68]. FMG has been extensively explored for the
upper limb applications [14, 26, 27, 62, 63]. When compared to other available
technologies, FMG has a greater potential for being applied in prosthesis develop-
ment, rehabilitation, and various human-machine interfaces. The FMG technology is
advantageous over EMG as—there is no requirement of skin preparation for putting
the FMG strap, no effect of humidity, sweating, and dust on the sensors due to their
lamination and contact separation as they are not put directly on the skin [5, 55].
Additionally, there is no issue of cross-talk because the FMG is acquired through the
strap that is tied on the periphery of the limb, thus is homogeneous [5]. Moreover, the
literature reveals that FMG is not only capable but superior in determining the fatigue
in the muscles when compared with the EMG and is not affected by the socket shift
[56]. Above all, FMG is cost-effective, simple to design, easy to use, lightweight, and
stable over time. Keeping these factors in mind, the hardware required to design the
FMG system is simple and less complicated. To date, FMG systems are not commer-
cially available, a prototype for collecting FMG signal costs less than US $50 [6].
With these immense advantages, FMG puts its strong candidacy for rehabilitation
and movement monitoring, especially for persons with disabilities.
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3 Design and Development

3.1 FMG Instrumentation

FMG uses force sensitive resistors (FSRs) to measure the gross volume change in
the limb during a particular motion. FSRs are the combination of electrodes, spacer
and a conductive-resistive polymer. The resistance of FSR will decrease with the
increase in force applied to it. When the force is applied on the top/bottom of the
FSR, it compresses, and the conductive-resistive polymer is exposed to the electrodes
leading to a decrease in resistance from infinity. On the application of larger force, the
conductive-resistive polymer comesmore in contact with the electrodes resulting in a
further decrease in the resistance.The advantageof usingFSR lies in its flexible nature
and low cost. In the development of the FMG system, we have used a flexible and
stretchable strap with 8 FSRs (FSR 400, sensitivity 0.2–20N, Interlink Electronics
Inc., Camarillo United States) placed at equidistance to each other on the inner
periphery of the strap. Each FSR was supported by a thin layer of leather (20× 20×
1.5 mm) to provide rigid support. Here in this experiment, the strap was tied on the
thigh of the healthy and the amputee subjects, keeping in mind that we have designed
a strap of length 40 cm, which can be stretched to a length of 55 cm. Therefore, a
single FMG strap can accommodate a large population for the collection of the data.

To convert the stretchable strap to a non-stretchable strap, an additional strap
was tied on to the top of the strap for the healthy individuals using the Velcro. This
scheme was automatically provided with the socket for the amputee population as
shown in Fig. 1. During any movement, the change in force results in a change in
the resistance, which is captured through a voltage divider circuit and converted to
the voltage variation. A base resistance (10 K� in our case) was chosen to vary the
sensitivity of the system. An operational amplifier was used to amplify the acquired
signal and then send it to the analog pin of theArduinoNanomicrocontroller. The data
acquired was then wirelessly transmitted to the base system via a Bluetooth module
(Bluefruit EZ-Link) at a sampling frequency of 100 Hz. To detect the transmission
loss, the data was coupled with the reference signal and then validated at the receiver
station. If any abnormality with the reference signal was found then that trial was
considered to be a false trial. For example, in some of the trials, we found sudden
peaks from base value or non-uniformity in the reference signal, which may be due
to wireless data transmission, these trails were discarded during our data collection.

3.2 Footswitches Insoles

In the study related to gait analysis, the foot switches play a critical role, as they
become the markers to identify the gait events. So, to this end, we had designed
a customized foot insole that is having three tactile switches. The placement of the
switches was in such a way that they can efficiently segment the swing and the stance
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Fig. 1 Sensor placement.
a Placement of FMG strap
on the thigh of the
able-bodied individual.
b Placement of FMG strap
on the residual stump of the
amputee. GT—Greater
Trochanter. TL—Thigh
Length. SL—Stump Length

(a) (b)

phase. The first switch was placed at the heel, which serves as the basis to identify the
heel strike. The second and third switches were placed at the 1st metatarsal and big
toe respectively, as shown in Fig. 2. These two markers served as the reference point
for the toe-off marker. The 1st metatarsal marker was added to avoid any missing of
big toe switch during the walking. The customized insole serves dual purpose i.e.
could be used for the segmenting the gait cycles or could also be used as the ground
truth for estimation of gait events (heel strike, HS, and toe off, TO). The insole was
drawn on the coral draw and printed using the silk screen printing. To detect the

(a) (b)

Fig. 2 a Footswitch insole. b Configuration during the experiment
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status of a tactile switch the debouncing circuit is used and then the signal was sent
to the digital pin of the same Arduino Nano microcontroller from where the data was
sent wirelessly.

4 Applications

4.1 Application of FMG in Locomotion Classification

Recently there is a great advancement in lower limb prosthesis design. Although
modern-day prosthesis provides improved stability, still the commercially available
low-cost prosthesis is passive in nature. One of the major limitations associated with
passive prosthesis is that it consumes relatively higher metabolic energy and offers
an asymmetrical gait, which results in several spine related problems [3]. Though
modern day active prosthesis had solved some of the inherent problems that were
associated with the passive prosthesis [37]. For active prosthesis to perform safe
and efficient locomotion, locomotion classification becomes an inherent part of the
prosthesis [65]. Various sophisticated algorithms are adopted to identify locomotion
modes using different sensors.When it comes to selecting a signal that can be utilized
for locomotion classification, the first choice becomes the EMG signal due to its
inherent origin before the actual motion, thus being intuitive. However, the EMG
signal suffers from some of the major limitations that were discussed in Sect. 2,
which restricts its wide acceptability [1, 22]. Mechanical sensors have also been
explored in the literature for the locomotion classification [9, 50]. However, the
limitation with this type of sensors is that they provide the information when the
action/motion has occurred and thus lead to lagging in the EMG signal.

We have reported the in-house developed force myography system to classify
various locomotion modes like level walking (LW), ramp ascent (RA), ramp descent
(RD), stair ascent (SA), and stair descent (SD) [34]. All the locomotion modes were
performed by eight healthy individuals (age 25 ± 3 years, height 170 ± 11.5 cm,
weight 66.9± 11.43 kg) and two unilateral transfemoral amputees (25.5± 0.5 years).
In the process of locomotion classification, we have used FMG strap, which was
donned on the dominant limb at 50% of thigh length (TL) from the greater trochanter
(GT) of the able-bodied subject as shown in Fig. 1a.All able-bodied subjects involved
in the study were found to be the right limb dominant. For the amputee, the strap was
first tied on the residual stump at 50% of the stump length (SL) from the GT, and then
the socket was donned on by the amputee, as shown in Fig. 1b. The mentioned five
different locomotion modes, i.e., LW, RA, RD, SA, and SD, were performed by each
of the participants. Five trials of each locomotion mode were conducted for each
participant, and after each trial, the subject was given a rest for a minimum of 2 min.
Each trial started with a standing period of 10 s followed by a walk corresponding
to the particular locomotion mode (LW/RA/RD/SA/SD) and standing period of 10 s
at the end. Later, 10 s of standing periods at the beginning and end of each trial were
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removed before any further analysis. The instructions for initiating and stopping the
locomotion were verbally provided by the experimenter. All the data were collected
at user’s self-selected speed. The subject walked for 100 ft on a level platform. The
ramp had an inclination of 5° and a length of 60 ft. The total length of the stair was 12
ft with a step width of 12 inches and a step height of 6 inches. A pictorial description
of each locomotion mode with the corresponding measurements is shown in Fig. 3.

The gait cycle was segmented by the foot switch signals for each trial. As the sub-
jectwalks at a self-selected speed, each segmented gait cycle length varies. Therefore,
to make it similar, we interpolated the gait cycle data using the spline interpolation.
The time axis was also normalized to the duration of the gait cycle and expressed
in percentage. Additionally, we have assessed the repeatability of FMG by calcu-
lating variance ratio (VR) within a locomotion mode. This ratio is measured from
intra-subject variability, reflecting the repeatability of gait waveforms over a number
of gait cycles. It has been widely used for gait analysis applications [15, 23]. The
mathematical expression was explained in our earlier manuscript [16]. The value of
VR varies from zero to one, where zero signifies the highly matched and repeatable
waveforms, while one suggests the highly unmatched or random waveforms of gait
cycles.

The locomotion classificationmodes include—gait segmentationusing footswitch
signals, feature extraction, and testing of a trained classifier (Fig. 4). In this study,
only stance phase data has been used for classifying the locomotion modes to com-
pensate for the delay in the control of prosthesis [41] in real-time scenario. Now,
after segmenting the gait cycle by footswitch signal, we have extracted eight time-
domain features: minimum (min), maximum (max), mean, standard deviation (std),
root mean square (RMS), waveform length (WL), number of slope sign changes
(SSC), and mean absolute deviation (MAD) [61] from each gait cycle, resulting a
total of 64 features (8 features × 8 sensors = 64 features). Finally, linear discrimi-
nant analysis (LDA) has been used as a classifier to classify the locomotion modes.
For the validation, leave one out cross validation (LOOCV) method was adopted.
The LDA classifier is computationally efficient, has good performance, and can be
easily implemented in real-time [10, 22]. Then for the leave one out cross valida-
tion, we have selected four trials among the five trials of each of the five locomotion
modes (LW, RA, RD, SA, and SD) for training the classifier. Thus, the remaining
trial is used as a testing dataset for evaluating classification accuracy. The classifi-

Fig. 3 Experimental protocol. a LW. b Ramp walk (ascent/descent). c Stair walk (ascent/descent)
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Fig. 4 Block diagram of locomotion mode classification

cation accuracy was then averaged across all trials to calculate the subject-specific
classification accuracy and overall classification accuracy has been finally assessed
from averaging all subject-specific accuracies. We computed the confusion matrix
for the actual and estimated class to quantify error distribution where a high value
of diagonal element indicates higher accuracy to estimate that locomotion mode.

The FMG signal for a typical able-bodied and a unilateral transfemoral amputee
for each locomotion mode and sensor is shown in Fig. 5. Each sensor (S1–S8)
response is obtained by averaging the gait cycle across the five trials. For visualiza-
tion purpose, each sensor was normalized to its maximum value. The FMG sensors
detect the volumetric changes of thigh muscles. Therefore, the sensors placed on the
thigh have various loading responses of muscles during heel strike, mid stance, ter-
minal stance, pre-swing, and swing segments of a gait cycle. Thus, forming different
FMG patterns at different sensor locations for different locomotions. Noticeably, the
loading pattern of each signal was more distinct in stance phase than the swing phase
as most of the body weight exerts in the stance phase only. It has also been observed
that the variation in FMG pattern was more in able-bodied subjects when compared
to amputee depicting a “flatter trajectory” (Fig. 5). This variation may be due to the
absence of relevant muscles in amputee that utilizes more power through remaining
muscles.

The FMG patterns are usually consistent; however, the difference in walking
patterns results in variations across the subjects. Table 1 represents the variance ratio
(VR) of all sensors for all locomotion modes in able-bodied and amputee subjects.
Observations show that the FMG signal of LW, RA, and RD comprise a low VR
(close to zero) with minimal std, exhibit consistency leading to the high repeatability
in most of the locomotion modes except S4 sensor. The variability of the S4 sensor
may be due to its anatomical placement on the abductor muscle which has a role to
adduct and rotate the thigh [38], hence influence the walk. The range of VR up to
0.3 is considerably good, as reported in EMG based gait studies [23]. As we know,
for staircase walking the pattern of a gait cycle depends on the contact area of the
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Fig. 5 Normalized FMG signals from FMG strap, S1–S8 denotes the sensors within the strap. The
horizontal axis represents the gait cycle in percentage. The Red line shows the mean across the
gait cycle while the shaded region (red) represents the standard deviation of the signal for the able-
bodied subject. The blue line shows the mean across the gait cycle while the shaded region (blue)
represents the standard deviation of the signal for the amputee subject. The gray-shaded region on
the x-axis denotes the stance phase of the gait cycle

foot to the stair which may vary in every step resulting in higher VR in stair walking
[52, 53].

Remarkably, we have achieved classification accuracies of 99.5 and 96.1% for
able-bodied and amputees respectively, using simplified and low computational fea-
tures of FMG technique. This system has a high potential for sensing various terrain
as the classification accuracy for stairs was 99.2% (average of SA and SD in Fig. 6a)
in case of able-bodied and 97.9% (average of SA and SD in Fig. 6b) in case of
amputees. It was noted that being a physiological signal, EMG produces a classifi-
cation accuracy of 85–90% for classifying locomotion modes whereas the mechan-
ical sensors can give classification accuracy of more than 90% for able-bodied and
amputee subjects [1, 9, 10, 22, 29]. The high sensitivity to anatomical placement,
more susceptible to motion artifacts, and disturbance by sweating may be the cause
of lesser classification accuracy of EMG. In contrast, FMG signals are produced due
to the volumetric changes of muscle with slow variation and hence, represented by
simple time-domain features.

To conclude, the reasons which make FMG a better alternative sensing technique
lies under three predominant criteria:

(i) Improved accuracy than the standard EMG and other mechanical sensors;
(ii) No issue of humidity as well as sweating as FMG strap is laminated with a thin

non-compressible layer over the FSR sensors, overcoming the main limitation
of EMG sensing technique; and
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Table 1 Variance ratio (mean ± std) for all sensors during different locomotion modes

LW RA RD SA SD

(a) Able-bodied

S1 0.02 ± 0.01 0.03 ± 0.02 0.03 ± 0.01 0.10 ± 0.09 0.03 ± 0.01

S2 0.04 ± 0.01 0.13 ± 0.10 0.08 ± 0.04 0.13 ± 0.08 0.08 ± 0.02

S3 0.02 ± 0.01 0.05 ± 0.05 0.07 ± 0.04 0.17 ± 0.10 0.30 ± 0.10

S4 0.08 ± 0.02 0.27 ± 0.12 0.35 ± 0.23 0.33 ± 0.18 0.53 ± 0.23

S5 0.04 ± 0.02 0.03 ± 0.01 0.13 ± 0.06 0.15 ± 0.09 0.24 ± 0.09

S6 0.06 ± 0.03 0.10 ± 0.08 0.26 ± 0.10 0.10 ± 0.06 0.58 ± 0.10

S7 0.04 ± 0.03 0.04 ± 0.02 0.04 ± 0.03 0.15 ± 0.10 0.13 ± 0.07

S8 0.08 ± 0.04 0.04 ± 0.01 0.13 ± 0.09 0.13 ± 0.07 0.20 ± 0.09

(b) Amputee

S1 0.05 ± 0.02 0.09 ± 0.06 0.1 ± 0.08 0.21 ± 0.10 0.15 ± 0.08

S2 0.04 ± 0.02 0.05 ± 0.03 0.03 ± 0.02 0.19 ± 0.09 0.14 ± 0.09

S3 0.06 ± 0.02 0.16 ± 0.09 0.17 ± 0.09 0.20 ± 0.11 0.17 ± 0.09

S4 0.08 ± 0.05 0.10 ± 0.08 0.29 ± 0.19 0.50 ± 0.14 0.11 ± 0.11

S5 0.04 ± 0.03 0.05 ± 0.03 0.04 ± 0.03 0.17 ± 0.10 0.12 ± 0.10

S6 0.07 ± 0.05 0.19 ± 0.09 0.15 ± 0.10 0.11 ± 0.09 0.08 ± 0.06

S7 0.13 ± 0.09 0.09 ± 0.08 0.15 ± 0.12 0.11 ± 0.11 0.08 ± 0.07

S8 0.03 ± 0.03 0.07 ± 0.05 0.09 ± 0.07 0.14 ± 0.10 0.14 ± 0.08

Fig. 6 Confusion matrix for locomotion modes classification using the LDA classifier for; a able-
bodied, and b amputee
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(iii) Acquisition of simple time domain features resulting in minimal signal pro-
cessing, which leads to an efficient sensing system for low power applications.

Therefore, FMGwould be a promising sensing technique having low cost and high
accuracy with a wide range of biomechanical applicability. Although the hardware
design is under a primitive stage, it is difficult tomount on the thighof the transfemoral
amputee. Therefore, customized FMG strap is indeed a necessary futuristic step for
this highly valuable sensing technique.

4.2 Application of FMG in Gait Event Detection

The utility of the FMG signal has noticeably important directions in terms of gait
event detection. Gait event detection forms a crucial basis for applications like pros-
thesis and orthosis [18, 28], rehabilitation [35], activity monitoring [7, 48], and
exoskeleton [32]. In a single gait cycle, two gait events occur i.e. heel strike (HS)
and toe-off (TO). These are themarkers that define the stance and swing phase during
the gait cycle. To define the spatiotemporal parameter of the gait cycle, these events
need to be identified accurately. The conventional ways to measure the HS and TO
such as ground reaction force (GRF) [8] and motion capture systems, are highly
accurate but come with certain major limitations:

(1) The subject has to be restricted in a laboratory setting environment. Therefore,
they cannot perform the activity of daily living in restricted conditions.

(2) While performing the experiment, the subject becomes conscious, so the exper-
imenter does not accurately acquire the real gait characteristics.

(3) It requires a skilled person to operate the system, and
(4) The cost of the system is very high.

Identification of the gait events in any condition outside/inside is essential for
gait analysis. In the past, the insoles have been used to identify the gait events
outside the laboratory and got the same place as that of the camera-based system.
However, the major limitations associated with this type of system are—firstly, their
size dependency which requires a proper alignment for accurate identification of gait
events. Secondly, the insole is subjected to wear and tear as they are worn inside
the shoe, so it tends to get damaged over a period of time. Therefore, the quest
for another technique to resolve limitations related to the insole, a motion capture
system, and GRF is still a matter of exploration. Although the researchers have used
EMG for the identification of gait events, it comes with the inherent limitations
which restrict its applicability. Recently, mechanical sensors are gaining importance
due to miniaturization, no effect of sweating, and ability to wear. The IMU, which
is a combination of accelerometer and gyroscope, has been used to identify the gait
events in the various applications [2, 4, 32, 36, 43, 45]. Recently, to a little extent,
capacitance sensing has been explored for the gait event detection by putting it on
the thigh and shank [67].
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Therefore, an alternate sensing method needs to be explored which could be cost-
effective, independent of the laboratory settings and foot size, wearable, easy to
implement, and convenient to operate by a non-professional person. For the same
in this work, we have used force myography to identify the gait event during the
level walk, ramp walking, and also the transition between them. In addition, we have
further explored whether a single FSR sensor in the FMG strap has the potential to
identify the gait events. A recent study also showed the ability to force myography
to detect gait events during the slow speed of walking in a healthy population [25].

The study of gait event detection has recruited five able-bodied male adults (mean
± std, age: 25± 3 years, height: 170± 11.5 cm, and weight: 66.9± 11.43 kg) with
no movement related disorders. The FMG strap was wrapped on the thigh of the
dominant limb at mid of the thigh length, where thigh length is measured from
the greater trochanter and ends at the knee axis. All the sensors within the sensor
strap were mapped to the corresponding thigh muscles as—R1-Vastus Lateralis,
R2-Iliotibial tract, R3-Biceps femoris, R4-Semitendinosus, R5-Adductor Magnus,
R6-midway of Gracilis and adductor Longus, R7-Vastus Medialis, and R8-Rectus
Femoris. The subject walked on three different terrains, i.e., Level walk (LW), ramp
ascent (RA), and ramp descent (RD), and four trials of each activity were taken. The
length of the LW, RA, and RD was 50 feet, 80 feet, and 80 feet long, respectively. In
the RA and RD walk, the 10 feet walk at the starting, and the end was of LW, and the
rest 60 feet was the ramp. The ramp had an inclination of 5 degrees. The LW at the
starting and end of the ramp walk is added to detect the four transitions in between
them namely LW-to-RA, RA-to-LW, LW-to-RD, and RD-to-LW, as shown in Fig. 7.
In each trial, the subject stood for 10 s at the initial position, then he walked at self-
selected speed in the respective terrain, and again after reaching the final position
the rest of 10 s was provided. During the experiment, the instruction to initiate and
stop the trial was verbally provided by the experimenter. After each trial, minimum
2 min rest was provided for each participant.

The block diagram for the entire event detection framework is shown in Fig. 8.
A system with low computational complexity was developed to assist the real-time
development and deployment of the system in the prosthesis. The complete FMGdata
of walking is divided into the training and testing database. For each of the training
and testing trials, the data has to be first pre-processed with a fourth-order low pass
Butterworth filter with a cut off of 20 Hz, and then a seven-point moving average
filter is applied. The two-stage filtering is applied to remove the high-frequency noise
from the FMG signal. After the pre-processing of the FMG signal, a signature vector
is estimated, and then each of the signatures is normalized to zero mean and unit
variance. Normalization is done to avoid any possibility of signal variation as the
walking pattern may vary from trial to trial and also due to the difference in the
placement of FMG sensors. The training of the gait event detection for locomotion
is dependent on the actual gait events that were taken from the reference system
(foot insole system) from the 1st trial of that locomotion mode (LW, RA, and RD).
The collection of these reference signatures is named as a signature database. The
reference signature has two sub-database (1) HS database and (2) TO database.
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Fig. 7 Experimental protocol; locomotion platformwith transitions (total four transitions LW–RA,
RA–LW, LW–RD, and RD–LW)

Fig. 8 Block diagram of the event detection framework
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During the testing of the trial of any locomotionmode, the signal is passed through
the pre-processing and signature extraction of each sample, the signature of the test-
ing sample is then compared with the signature database which determines whether
the signature resembles the HS, TO or none. This comparison or signature matching
is performed using a detector based on the normalized correlation. If a particular time
instance corresponds to any of the events (HS or TO), then the signature correspond-
ing to that time instance will have a high correlation value; otherwise, it will have a
low correlation value. These correlation values were then stored, and a peak detection
algorithm is applied to the stored correlation values. The peak detection algorithm
determines the highest correlated values and finally gives the location of the occur-
rence of the gait events during that locomotion mode. To validate the accuracy of
the algorithm, the time difference between the actual gait events and the estimated
gait events is calculated. To remove the biasing, the error is computed in the form of
mean absolute error (MAE) for a subject and then averaged across the total number
of subjects in order to report the overall error. The transition MAE reported for a
subject is the overall average MAE obtained by averaging the error corresponding
to each of the four transition phases for that individual. More details about each step
can be found in our earlier research work [17].

For different locomotion modes, the MAE for estimating TO and HS is shown in
Fig. 9a, b. The figure depicts that using sensor R8 leads to minimal error among all
the other sensors R1–R7. The superiority of R8 among the other sensorsmight be due
to the rectus femoris muscle, as the rectus femoris muscle is majorly responsible for
the walking in the sagittal plane, which is aligned to the R8 sensor. In addition, it can
be noted that the placement of sensors is affecting the performance of the system. As
R8 being the most efficient and R2, R6, and R7 being the least efficient in estimating
the gait events. Given the fact that we have used eight sensors in the FMG strap, the
shifting on the strap will not have any effect on the overall performance. As the strap
is homogeneous, any shifting can result in the other sensor replacing the R8 sensor
in the FMG strap and hence not affecting the system performance.

The variation of MAE for different locomotion modes along with the transition
for heel strike and toe-off using the R8 sensor is shown in Fig. 9c, d. The overall
MAE for estimating TO in LW, RA, RD, and Transition is 16.99 ± 18.12, 15.65 ±
18.05, 11.41 ± 11.76, and 17.29 ± 21.92 ms respectively and is shown in Fig. 9c.
Similarly, the overall MAE for estimating the HS for LW, RA, RD, and Transition
is 9.66 ± 8.29, 9.03 ± 8.09, 9.66 ± 10.30 and 13.94 ± 18.95 ms respectively and
is shown in Fig. 9d. Table 2 shows the detailed variation of MAE for HS and TO
within/across the subjects for different locomotion modes and the transitions. Note
that in the estimation of the mean for overall MAE, we need to take weighted mean
because the number of TO (or HS) events is not exactly the same for each of the
participants. This difference in the number of events across the participants is as
expected because participants walk at their self-selected speeds. Since the algorithm
is terrain independent and the variability in the stride time is large for a particular
locomotion mode, the MAE has a relatively higher standard deviation. Although,
the terrain dependent algorithm might be used to reduce the standard deviation but
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Fig. 9 MAE in estimation of heel strike and toe-off for different locomotion modes and transitions
with FMG sensors (R1–R8) at corresponding locations around the thigh; a Toe-off; b Heel strike;
MAE for all locomotionmodes and transitions, using sensor R8 only, for five subjects; the solid lines
show the mean absolute error for MAES1-Subject1, MAES2-Subject2, MAES3-Subject3, MAES4-
Subject4, MAES5-Subject5 and MAEO-average across all five subjects; c Toe-off; d Heel strike;
LW—Levelwalk, RA—RampAscent, RD—RampDescent, TRANS-transitions i.e. transition from
LW–RA, RA–LW, LW–RD and RD–LW)

Table 2 Variation of MAE within the subjects for different locomotion modes and transitions

MAES1 MAES2 MAES3 MAES4 MAES5 MAEO

(a) Toe-off

LW 4.4 ± 5.1 13.4 ± 12.7 26.9 ± 22.3 11.7 ± 9.5 22.4 ± 21.3 16.99 ± 18.12

RA 12.8 ± 11.6 10.1 ± 14.5 8.6 ± 14.6 10.2 ± 7.1 34.4 ± 22.1 15.65 ± 18.05

RD 8.7 ± 7.0 8.3 ± 9.9 9.7 ± 10.8 9.7 ± 8.7 20.1 ± 15.9 11.41 ± 11.76

TRANS 8.9 ± 12.6 28 ± 36.8 10.2 ± 14.6 11.7 ± 13.5 26.7 ± 15.4 17.29 ± 21.92

(b) Heel strike

LW 5.7 ± 5.7 12.6 ± 7.6 8.8 ± 9.0 8.5 ± 6.4 11.3 ± 9.6 9.66 ± 8.29

RA 7.4 ± 7.3 8.1 ± 6.5 8.1 ± 7.2 10.3 ± 8.5 11.4 ± 10.2 9.03 ± 8.09

RD 7.9 ± 7.0 13.8 ± 15.7 9.2 ± 7.3 7.4 ± 8.4 10.0 ± 10.1 9.66 ± 10.3

TRANS 11.0 ± 8.1 24.4 ± 34.2 7.7 ± 7.3 8.4 ± 5.7 19.7 ± 17.3 13.94 ± 18.95

terrain independent algorithm is rather suitable for real-time applications. This is in
concordance with the previous literature [4, 24, 30, 42, 46, 54].

Also, it is clearly seen from Fig. 9c, d that, compared to LW, RA, and RD, the
MAEO (i.e.mean absolute error of all 5 subjects) for transition (TRANS) is the largest
in both the cases, toe-off, and heel strike. One of the factors leading to relatively larger
MAE for transition (TRANS) is a lesser number of gait cycles containing transition,
as in a single trial, only two transition gait cycles occur. The transition gait event
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analysis is important because this is the event when the person is transitioning from
one locomotion mode to another. It is one of the most common situations leading to
the falling of the amputees and the elderly persons [19, 49]. Till now, this [35] is the
only study that reports the estimation of HS error while performing the transition
and shows an improvement in the TO estimation as compared to our previous work
[30].

When comparing the FMGbased system to the other available gait event detection
systems FMG system offers the lowest error among all. However, the error obtained
using the accelerometer is comparable to the FMG system, but the accelerometer suf-
fers from the inherent problem of drifting, so another sensor is added to compensate
for the drift, which leads to a limitation of the study and FMG gaining its impor-
tance. Since the current approach is completely based on the heuristic approachwhen
compared with other methods, so the FMG puts its strong candidacy for real-time
implementation.

The advantages associated with the present FMG system are that there is no issue
of sweating and humidity as the FMG strap need not be placed directly on the skin,
there is no issue related to drift and alignment as compared to inertial sensors. The
most important feature of the FMG system is that it uses minimal signal processing
to estimate the gait events while performing the locomotion mode; hence it puts
less burden on the processing unit and leads to longer battery lives. The results are
promising; however, the current FMG system needs design modification for the use
of the amputee population. The present study focused on healthy individuals, which
can be further enhanced and verified for the larger dataset and amputee population.
Also, gait events in more complex gait patterns must be analyzed.

4.3 Other Applications of FMG

The FMG is very advantageous in terms of its multidirectional applicability. Some of
the other current and prospective applications of FMG include gesture recognition,
rehabilitation, and prosthesis control. This chapter focused on FMGapplication in the
lower limb as a primary example; however, it has used in the upper limb extensively,
as discussed below.

Currently, themajority of the available systems that are focusing ongesture control
are using the camera (simple/infrared) for acquiring the data. For recognizing finger
gestures [34] and hand gesture [69], these systems record a huge volume of data
and also suffer from occlusion and increased complexity, thus making it difficult
for the real-time applications involving classification of gestures. The other sensing
modality that has been widely used for monitoring the hand and wrist gestures since
the past decade is electromyography [31]. The limitations that were associated with
the EMG have already been discussed earlier (Sect. 2). Recently the FMG has been
used extensively for gesture recognition. The primary gestures that are the hot topics
for the researchers are hand gestures, finger gestures, and wrist gestures [11, 14, 26,
40, 51, 63]. For most of the applications, the FMG system is worn on the forearm
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section as it provides a large area for the radial displacement for the data collection.
FMG has also been used to identify the grasp and non-grasp [55] and estimation
of elbow, forearm, and wrist positions [64]. Researches have also compared FMG
with the existing commercially available sEMG systems for distinguishing 48 hand
motions of both the hands along with the wrist. The results state that the FMG system
is at par with the sEMG system, and they have also noted that the classification
accuracy is similar for both the forearm and the wrist [13].

Motivated from the previous results of the FMG, Cho et al. [11] conducted a
study where they used the FMG signals to classify the grip patterns of the transradial
amputees and achieved an accuracy of 70% in classifying the various grip patterns
using the residual muscles only. These results make the candidacy of the FMG
suitable for prosthesis control.

The FMG can also be used in the field of exoskeleton and rehabilitation. As we
have already seen that the FMG is capable of determining various gestures involved
in upper limb activities and lower limb applications, it can identify the gait events
and locomotion classification [16, 17]. These features of grasping, pinching, walk-
ing and other activities of daily living could be used by the rehabilitation experts.
These movements are used in rehabilitation to strengthen the body muscles, espe-
cially in the case of neuromuscular disorders like stroke, spinal cord injury, multiple
sclerosis, Parkinson’s disease. Therefore, FMG can also be used as the standard for
quantification of the degree of improvement and feedback during the rehabilitation
therapies.

5 Conclusion

In this chapter, we have shown the use of the FMG for two of the lower limb applica-
tions, i.e., locomotion classification and gait event detection. To achieve this, we have
developed an in-house FMG strap to acquire the FMG data. For the classification
of locomotion, this system offers good accuracy despite simple design. It is clearly
established from the experiments conducted during this study that the information
of muscle activities of a residual limb can be used as a method of locomotion-mode
classification or intent recognition during ambulation. Thus, it may prove to be a
viable and inexpensive alternative to EMG and mechanical-sensor-based systems.
Remarkably, a novel FMG based gait event detection system has also been proposed
in this chapter. Experiments conducted on healthy subjects validated the effective-
ness of the proposed system over the existing works. To the best of our knowledge,
the error levels attained by the proposed system were comparable to the lowest error
achieved so far in the literature. Although tested on healthy subjects, it offers enough
substance to be employed with exoskeletons, orthoses, and prostheses. The simple
design of FMG strap and its placement around thigh makes it suitable for mounting
it even inside the socket of the above knee (AK) and below knee (BK) amputees. It
can be concluded that the proposed FMG based system is a promising method for
gait event detection in a real-world scenario.
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Comparison of Independence of Triceps
Brachii and Biceps Brachii Between
Paretic and Non-paretic Side During
Different MVCs—A Case Study

Ganesh Naik, Rifai Chai, Steven Su, Song Rong and Hung T. Nguyen

Abstract Stroke is one of the major causes of permanent disability in adults. Phys-
ical training and rehabilitation help stroke survivors to carry out their day-to-day
tasks. Surface electromyography (sEMG) has been widely used for stroke rehabil-
itation and assessment of muscle activities for different force levels. In this regard,
it is very important to know the function and differences between various muscles
involved in the stroke rehabilitation process. Hence, this study investigated the inde-
pendence between biceps and triceps brachii for paretic and non-paretic sides during
different muscle voluntary contractions (MVCs). Source separation technique using
independent component analysis (ICA) and time domain features such as root mean
square (RMS), mean absolute value (MAV), and integrated absolute value (IAV)
were used to measure the muscle activities. The results show that biceps brachii
muscles are more independent than triceps brachii muscles for different MVCs. The
findings of this study could be used for measuring independence between muscles,
whichwould help to identify and treat the specificmuscle during stroke rehabilitation
procedures.
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1 Introduction

Stroke is one of the main causes of a cerebrovascular problem and is one of the
major reasons for permanent disability in adults. The stroke affects the quality of life
and stroke survivors have to deal with several issues related to muscles and body,
which include spasticity, weakness, loss of dexterity, and pain at the paretic (stroke
affected) side. Research shows that nearly 70–80% of people who sustain a stroke
suffer from limb impairment undergo continuous rehabilitation and medical care to
lessen their physical impairment [2, 16].

Post-stroke rehabilitation is a tedious process.Due to functional limitations, stroke
survivors usually have a lowquality of life as compared to healthy people [11].Hence,
post-stroke rehabilitation helps stroke survivors to recover their upper limb motor
functions and get back to near normal day to day life [12]. Kinematic analysis is one
of the widely used tools for stroke rehabilitation. Also, there exist several methods to
rehabilitate stroke survivors, which include: target point reaching tasks, robot-based
therapy, and trajectory tracking, etc. [1, 15].

Although kinematic analysis helps in understanding the external performance of
neuromuscular functions, it is also essential to understand the effect of stroke-induced
sensory-motor functions or muscle activities. Surface electromyography (sEMG) is
an electrical signal captured from the surface of the skin during muscle activation
[3]. Surface EMG provides a clear understanding of physiological processes neuro-
muscular functions of stroke-affected muscles and helps in the stroke rehabilitation
process. Surface EMG has been used for several applications which include, mus-
cle fatigue detection, amputee gesture recognition, device control, neuro-muscular
disease classification, etc. [5]. Surface EMG features have also been used for stroke
rehabilitation, such as identification of muscle activation level, muscle contractions,
muscle coherence, and neuromuscular disorder identification after stroke [4, 17].

An agonist to antagonistmuscle activation helps in understanding the coordination
of muscle activities [14]. However, crosstalk associated with these muscles, espe-
cially in the stroke-affected side (paretic), makes it difficult. Amultivariate technique
such as independent component analysis (ICA) has been used for crosstalk reduc-
tion and source separation of EMG signals. ICA is one of the blind source separation
(BSS) techniques and helps in separating the sources without the knowledge of how
they are mixed. This characteristic of ICA is very useful in EMG signal analysis
where mixed sources can be separated into individual sources, and during that pro-
cess crosstalk between muscles is minimized [13].

In this research, we investigated the independence of biceps and triceps brachii
between paretic and non-paretic side during differentmaximal voluntary contractions
(MVCs). This knowledge helps to understand the coordination between biceps and
triceps brachii muscles and might help in rehabilitating the patients who suffered
from a stroke and neuromuscular disorders.
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2 Theory

ICA is one of the BSS techniques which aim to express the mixed (observed) data in
terms of a linear combination of mutually independent latent variables, also known
as independent components (ICs). In the simplest form of this problem, suppose we
have nobservations (mixtures or recordings) containing different instantaneous linear
mixtures of n original sources and assuming that the original sources are independent
of each other. In this case, we can use ICA to tackle this problem. Mathematically,
we express this as x = As, where x and s are n-dimensional real vectors, and A is a
non-singular mixing matrix [8]. ICA determines unmixing matrixW to estimate the
unknown sources u (up to permutation and scaling): u = Wx .There exist various ICA
algorithms in literature such as FastICA [8], Infomax [9], Jade [18], etc. This research
uses the FastICA algorithm [8] due to its quick computational time as compared to
other ICA algorithms.

3 Methods

3.1 Subjects

University Human Research Ethics Committee approved the experimental protocol
for this study. Four patients affected with stroke participated in this study. An infor-
mation sheet was given, and all the participants signed a consent form prior to the
experiment.

3.2 Data Acquisition

Subjects seated in the chair with the hand gripping a dynamometer (refer to Fig. 1)
and performed MVCs. Subjects generated and maintained the grip force at 25, 50
and 75% of maximal grip force (MGF) according to the feedback of the ratio to
MVCs. The sEMG signals were recorded from both paretic (stroke-affected) and
non-paretic hands. The eight muscles that involve in the flexion and extension of
the hand, they are triceps brachii, biceps brachii, anterior deltoid, posterior deltoid,
flexor carpi radialis, extensor carpi radialis, flexor digitorum superficialis, and exten-
sor digitorum communis. The placement of electrodes was configured according to
SENIAM guideline [6]. The trials each lasting for 5 s were repeated 3 times at each
level. EMG signals were recorded from 8 muscles on upper extremities, which were
sampled at 1000 Hz.
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Fig. 1 Electrodes connection during the sEMG experiment

4 Data Processing and Feature Extraction

For this research, we investigated triceps brachii and biceps brachii muscles. EMG
data were processed using Matlab R2015a software. A 4th order Butterworth band-
pass filter with a frequency range of 20–450 Hz was applied to reject any frequency
outside this range. FastICA algorithm was applied to extract ICs from two-channel
(triceps brachii and biceps brachii) sEMGdata for eachMVCs. Time domain features
of moving the window of 500 ms duration are extracted to evaluate the independence
of paretic and non-paretic muscle activities for each MVCs, which include: (i) Root
mean square (RMS), (ii) Mean absolute value (MAV) and (iii) Integrated absolute
value (IAV). The feature details are summarized in Table 1. The RMS, MAV, and
IAV were averaged over the 3 trials for each subject.

Table 1 Time domain
features used for sEMG
analysis

Features Equations

RMS
√

1
N

∑N
n=1 x(n)

2

MAV 1
N

∑N
n=1 |x(n)|

IAV ∑N−1
n=1 |x(n)|

x(n) = recorded/segmented sEMG signal at time n
n = time index of recorded sEMG signal
N = Total number of samples to be analyzed
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5 Results and Discussion

The mean and standard deviation (SD) results for RMS, MAV, and IAV for both
non-paretic and paretic sides are provided in Table 2 and Table 3 respectively. The
same is plotted in Figs. 2, Fig. 3 and Fig. 4, respectively.

Figure 2 and Table 2 display the average ICA separated RMS of triceps brachii
and biceps brachii muscles. From the results, it can be seen that biceps brachii values
are independent and remain almost the same for both paretic and non-paretic sides
for different MVCs. On the other hand, there is a decline in triceps brachii values for
higher MVCs which indicate dependency for higher forces (MVCs). For full MVCs
(100%) paretic side shows lower triceps brachii values as compared to the non-paretic
side. It is understood that the reduction in sEMG activation level for triceps brachii
during higher MVCs was mostly due to the increased muscle force, which attributed
to the decrease in excessive muscle activations [7].

Figure 3 and Table 2 show the average MAV features of triceps brachii and biceps
brachii muscles for ICA separated data. From the results, it can be seen that biceps
brachii s exhibit almost the same muscle activities for both paretic and non-paretic
sides for different MVCs. Conversely, similar to RMS features, there is a decline in
triceps brachii values for higher MVCs. The decline in MAV is probably due to the
stiffness of triceps brachii muscle and reduced co-contractions for higher forces [7,
10].

Table 2 Average time domain feature values for non-paretic side during different MVCs

Features 25% MVCs 50% MVCs 75% MVCs 100% MVCs

Triceps
brachii

Biceps
brachii

Triceps
brachii

Biceps
brachii

Triceps
brachii

Biceps
brachii

Triceps
brachii

Biceps
brachii

RMS
(mv)

0.98 ±
0.12

1.00 ±
0.09

0.88 ±
0.19

0.97 ±
0.15

0.75 ±
0.17

0.97 ±
0.15

0.71 ±
0.13

0.93 ±
0.15

MAV
(mv)

0.75 ±
0.16

0.87 ±
0.09

0.73 ±
0.14

0.79 ±
0.12

0.55 ±
0.15

0.82 ±
0.13

0.53 ±
0.11

0.78 ±
0.13

IAV (µv) 376.89 ±
78.99

437.33 ±
46.90

363.94 ±
79.82

395.67 ±
83.47

316.54 ±
63.26

408.07 ±
75.16

288.41 ±
61.70

391.88 ±
64.25

Table 3 Average time domain feature values for paretic side during different MVCs

Features 25% MVCs 50% MVCs 75% MVCs 100% MVCs

Triceps
brachii

Biceps
brachii

Triceps
brachii

Biceps
brachii

Triceps
brachii

Biceps
brachii

Triceps
brachii

Biceps
brachii

RMS
(mv)

0.94 ±
0.13

0.96 ±
0.13

0.91 ±
0.09

0.93 ±
0.19

0.75 ±
0.15

0.98 ±
0.11

0.65 ±
0.16

0.99 ±
0.12

MAV
(mv)

0.80 ±
0.13

0.82 ±
0.12

0.76 ±
0.12

0.79 ±
0.09

0.59 ±
0.1

0.86 ±
0.11

0.55 ±
0.12

0.87 ±
0.08

IAV
(µv)

399.56
±
87.38

412.33
±
88.11

382.44
±
85.09

395.35
±
82.03

275.31
±
83.16

427.66
±
96.93

243.22
±
80.64

434.81
±
56.80
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Fig. 2 Average RMS values for paretic and non-paretic sides during different MVCs

Fig. 3 Average MAV values for paretic and non-paretic sides during different MVCs
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Fig. 4 Average IAV values for paretic and non-paretic sides during different MVCs

Figure 4 and Table 2 show the average IAV features of triceps brachii and biceps
brachii muscles for ICA separated data. From the results, it can be observed that
biceps brachii values remain identical for all MVCs for both paretic and non-paretic
sides. On the contrary, there is a sharp decline in triceps brachii values for 75 and
100% MVCs of the paretic side. Paretic triceps brachii muscle exhibits dependency
as compared to non-paretic side. For stroke-affected patients decline in triceps brachii
muscle indicates a decrease in motor performance and this may have a significant
effect on their upper extremity performances [10].

6 Results and Discussion

This study has produced clinically useful information on the effects of triceps brachii
and biceps brachii muscles for a stroke affected patients. Both triceps brachii and
biceps brachii muscles play a significant role in the stroke rehabilitation process.
Information on their independence, co-contraction, and correlated motor perfor-
mance are vital for after stroke rehabilitation process. The findings of this indicate
that biceps brachii muscles exhibit more independence as compared to triceps brachii
muscles in stroke patients. Additionally, the findings suggest that co-contraction of
biceps brachii and triceps brachii muscles might be strongly correlated; this is in
agreement with previous studies by [18]. However, further research using more sub-
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jects and investigation on more muscles are needed to identify independent muscles,
which would help in finding suitable muscles for the stroke rehabilitation process.
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An EEG Brain-Computer Interface
to Classify Motor Imagery Signals

Maria Karoline Andrade, Maíra Araújo de Santana, Giselle Moreno,
Igor Oliveira, Jhonnatan Santos, Marcelo Cairrão Araújo Rodrigues
and Wellington Pinheiro dos Santos

Abstract Considering the increase in life expectancy, people started to invest in
technologies capable of improving the quality of life. One of these technologies
is the Brain-Machine Interface. Combined with EEG signals, this technique may
allow individuals with some motor disabilities to perform activities of daily living.
Motor Imagery came up as an important tool to support this population. So they
may send commands to external devices by using their brain voluntary activity. In
this chapter, the performance of an Imagery EEG-based BCI engine was accessed
by applying Wavelet transform to the signals and extracting metrics used to describe
digital signals. We used signals from the motor imagery of the right hand, left hand
and foot movements. Different intelligent classifiers were tested.We achieved results
greater than 99% of accuracy and Kappa above 0.99. The method is promising and
can be used for future evaluations with several individuals to verify reproducibility.

1 Introduction and Motivation

According to the World Health Organization (WHO), more than 2 billion people
will need at least one assistive device until 2030. This estimation duplicates for the
elderly [9, 12, 24, 47, 54, 68, 69]. WHO also points out that nowadays, only one in
every 10 poor people may have access to this kind of technology. That is due to the
high costs associated with this technology and the lack of awareness about the use
of the devices [9, 12, 24, 47, 54, 68, 69]. Despite these numbers, the development
of new technologies is increasing year by year. These innovations aim to improve
the quality of life of people with all kinds of disabilities.
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Fig. 1 Motor imagery combined to artificial intelligence techniques to control interfaces. Source
Authors

Nowadays, many commercialized prostheses use myoelectric signals to control
the movements. This kind of device requires remaining musculature, which turns it
unfeasible for people with total limb loss. One possible solution to this limitation
is prosthesis that uses Brain-Computer Interface (BCI) combined with Electroen-
cephalogram (EEG) signals. This approach may allow these people to control inter-
faces (hardwares or softwares) using their brain activity, such as shown in Fig. 1.
Several groups worldwide have been working on this kind of technology. There is
still a lot to be done since it needs to provide the largest mobility combined to a
real-time response [4, 5, 10, 17, 22, 29, 37, 41, 42, 45, 67].

The brain-machine interface has proved to be a promising tool. According to
Brain/Neural Computer Interaction (BNCI), it may have applications in the fol-
lowing areas: neural rehabilitation, brain-to-brain interface, robotics, and assistive
technologies, space applications, clinical applications and miscellaneous. For assis-
tive technologies, we can mention the following applications: BCI-controlled robot,
BCI-controlled prosthetic, Controlling humanoid robots, driving wheelchairs [8, 11,
21, 43, 46, 51–53, 59, 66, 74, 75, 77].

Electrocorticography (ECoG), functional near-infrared spectroscopy (fNIRS),
and other kinds of signals may be used to control BCI, however, EEG is still one of
themost used. EEG acquisition process is non invasive, has a low cost, and has a good
temporal resolution. Even though it is a good technique, there are several challenges
in using EEG-based BCI. Two of the main ones are the non real-time response and
the brain unstable dynamics [43, 70]. The way to overcome these problems is to
optimize artificial intelligence techniques to achieve the best possible performance.
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2 Materials and Methods

This study was divided into four (4) main steps. The first one consists of the signal
recording using EEG. The second phase was the signal segmentation, in which we
prepared the signal to the following steps. Each segment of the signal was subject
to several procedures, to acquire some quantitative information from it. These infor-
mation (features) were then used as entries for the classification step. During the
classification, the features are used to describe each signal. The classifier’s challenge
is to learn some patterns to differentiate the instances of each group. Their main goal
is to correctly group the signals. In this case, satisfactory classification rates mean
that the intelligent system is capable of identifying imagined movements using only
brain activity. The method is briefly described in Fig. 2.

2.1 Signals Acquisition Protocol

EEG was recorded using a g.tec g.Hiamp amplifier at a sampling rate of 256Hz. A
notch filter at 60Hz and a bandpass filter between 0.5 and 60Hz were applied during
recording. Twenty-seven electrodes plus reference (placed on right ear) were used.
The electrodes were placed over the sensorimotor area of the subject, according to
Fig. 3. We observe the sensorimotor area since it is activated by the imagination of
movements [56].

The dataset has information from five (5) sections of EEG recordings. We per-
formed all sections with the same subject. In each section, the subject was placed in
front of a computer screen. Randomly spaced commands were given to the subject
by indicative arrows to the right, left, or upwards (see Fig. 4). The arrows appeared
on the screen.

We associated the different arrows directions to imagined movements of his right
hand, his left hand, or his foot, respectively. These movements were chosen since
the brain area responsible for them are well separated, as may be seen in Fig. 5.

Fig. 2 Methods brief description. Source Authors
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Fig. 3 Electrodes positioning. Source [30] (under permission)

The subject was asked to imagine the movement after seeing its respective arrow.
We provide subject all this explanation before performing the experiment.

Each command lasts eight (8) seconds (Fig. 6). This time is enough to give the
subject time to imagine the movement and record his brain activity. The subject was
exposed to 60 commands in each section.

2.2 Signal Segmentation

In this step, we split each trial from EEG recordings. We used an 8s window to
catch the whole trial. It was done in order to separate the signals into the three
classes, according to the respective imagined movement. We acquired a total of 100
recordings for the right hand, 98 of the left hand and 100 instances for foot imagined
movement.

2.3 Pre-processing and Features Extraction

Considering that the Wavelet transform has a good resolution in the domains of fre-
quency and temporal space [3, 16, 20, 49], after splitting the signal, we applied
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Fig. 4 Indicative arrows used to indicate which movement the subject should imagine. The upper
left image shows the right arrow. The left arrow is shown in upper right image. The bottom image
presents arrow upwards. Source [30] (under permission)

Fig. 5 Brain areas activated by the imagination of right hand, right arm and foot movements.
Source Based on [58]
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Fig. 6 Scheme of trial used to record brain activity during movement imagination using EEG.
Source [30] (under permission)

the Wavelet transform with seven (7) levels. Then, we calculated the following
attributes: Fourier Fast Transform coefficient, Standard Deviation, Energy, Entropy,
Mean, Range, and Skewness. They were chosen since they are widely used in digital
signal processing approaches [1, 44, 72, 76].

2.4 Classification

For the classification phase we performed experiments using nine (9) different algo-
rithms and varying some of their parameters (see Table1 for further information):
Bayes Net, Naive Bayes, Multilayer Perceptron (MLP), Support Vector Machine
(SVM), J48, Random Forest, Random Tree, Extreme Learning Machine (ELM) and
Morphological Extreme Learning Machine (mELM).

Naive Bayes and Bayes Net are classifiers based on Bayes theory. They use con-
ditional probability to create a data model. In a Bayes Net algorithm, we access the
probability of a class node by checking the values given by other nodes (features). It
assumes dependencies among the attributes. Its main parameter is the type of search
that will be performed. Naive Bayes, on the other side, assumes that all attributes
are independent of each other and are only connected to the class. It is considered
’naive’ since it does not allow dependencies among the features [15].

The Support Vector Machine (SVM) performs a nonlinear mapping of the dataset
into a higher dimension space. Then, it creates a hyperplane to separate the distinct
classes. It is common to change the function that will build this boundary to see
which one fits better to the dataset [14, 32].
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Table 1 Classifiers configuration

Classifier Parameters

BayesNet –

NaiveBayes –

MLP Hidden layers: none, 1 and 2

Learning rate: 0.3

Momentum: 0.2

Iterations: 500

SVM Polynomial kernel: exponent (E) = 1–5

RBF kernel

J48 –

RandomForest Trees: 10, 50 and 100

RandomTree –

ELM Sigmoid kernel

mELM Neurons in the hidden layer: 100

Kernel: dilatation and erosion

Multi-Layer Perceptrons (MLPs) consist of complex artificial neural networks
with multiple layers of neurons. AnMLP has a set of sensory units that makes up the
input layer, an intermediate layer (hidden layer), and the output layer. This neural
network usually learns information through a backpropagation algorithm [32]. The
state-of-the-art demonstrates that diverse architectures of multi-layer perceptrons
trained with several algorithms are able to aid to distinguish different classes of data,
with especially high accuracy in biomedical applications [7, 18–20, 61–65, 73].

J48 is a classifier that aims to build a decision tree from a database. It does that
to get knowledge and thereby to shape decision-making. In this approach, the most
significant attribute is called the root of the tree [55]. Random Forest also uses deci-
sion trees to perform classification. This classifier consists of a combination of trees,
which hierarchically split the data. Considering an input vector and after generating
a certain number of trees, each one cast a vote for a class of the problem. Then,
the most voted class will be chosen in the classifier’s prediction. In this classifier,
the user may change the number of trees that will vote during classification [13]. A
Random Tree is a decision tree that considers only some features for each node of
the tree. These attributes are randomly selected [28].

The Extreme Learning Machine (ELM) is a training approach for single-layer
neural networks. This classifier randomly generates input weights. Therefore, it is
usually associated with fast learning phases. This characteristic may be relevant in
applications that require several trainings iterations [25, 27, 34–36, 39, 48, 50, 78].

Proposed by Azevedo et al. [7], the mELM consists of applying non-linear ker-
nels based on mathematical morphological operators. These operators perform pro-
cedures of dilatation and erosion on the dataset [7].
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We tested ELM and mELM algorithms through GNU Octave, version 4.0.3. This
software is an open-source environment for scientific computing developed by Eaton
[23].

For the other algorithms, we performed tests using the Waikato Environment for
Knowledge Analysis (WEKA), version 3.8.1. This software was released by the
University of Waikato (New Zealand) and is licensed by the General Public License
[26, 31, 33].

In order to access an appropriate statistical analysis, we run each configuration
30 times. To check classifiers’ performance, we compared accuracy, Kappa statistic
and confusion matrix. The accuracy consists of the percentage of correctly classified
instances. Kappa statistic stands for the agreement coefficient. It measures the cor-
relation between the expected results and the achieved ones. The confusion matrix,
in turn, provides information regarding the rates of false positive, false negative, true
positive, and true negative.

All tests were performed using K-fold cross-validation as a test method. In this
approach, the algorithm splits the dataset into K subgroups. Then, it takes one by
one to train the classifier and builds the testing set using the remaining subgroups.
The final performance consists of the mean from the K tests [38].

3 Related Works

Asmentioned before, non-invasive EEG signals are the most used in BCI. Most EEG
electrodes require the use of a gel solution to balance impedance between skin and
electrode. This gel may cause discomfort, and its application takes some time. Based
on this, Spüler [71] performed an experiment using dry electrodes. He combined
BCI based on Visual Evoked Potentials (VEPs), one-class Support Vector Machine
(OCSVM), and euclidean distance. The tests performed achieved results up to 76%of
mean accuracy and the mean communication speed of 46 bit/min. Expressive results,
even though less satisfying than the ones obtained using gel-based electrodes.

There are several EEG-based BCI techniques, one of which is the Motor Imagery
EEG-based BCI. In their study, Khalaf et al. [40] combined this technique with func-
tional transcranial ultrasound Doppler (fTCD) to differentiate the imagined move-
ments of the right and left arms. They wanted to access the system’s ability to
differentiate the imaged movement from a baseline and each other. The obtained
results were up to 89.48%, using SVM. This result corresponds to the differentiation
of left-arm imagined movement in relation to a baseline. Their results were similar to
previous literature for EEG-fNIRS hybrid BCIs, but they achieved a better response
time.

Qureshi et al. [57] used independent component analysis (ICA) to classify EEG
signals of motor imagery of four movements: left hand, right hand, both feet, and
tongue. Eight (8) subjects participated in the tests. They obtained a mean accuracy
of 94.29% and individual accuracy of up to 97.80%. These results were accessed
using ELM as a classifier. Roman-Gonzalez [58], in turn, achieved accuracy up to
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96.77%. He used LDA and autoregressive parameters to classify movements from
the right hand, left hand, and foot.

One challenge of using theEEG-basedBCI is the distinction betweenmore refined
movements, such as finger movements of one hand. Alazrai et al. [6] used the Choi-
William distribution (CWD) and the quadratic time-frequency distribution (QTFD).
They analyzed EEG signals from eight (8) subjects who performed 20 finger move-
ments with the right hand. Using a two-layer classification framework (2LCF), they
obtained amean accuracy of 87.2%. The less satisfying result was 79% for ring finger
movements. Samuel et al. [60] extracted attributes of time and frequency domains
from EEG signals of motor imagery. In this study, they obtained results of up to 99%
accuracy to identify five hand movements.

One of the practical applications for EEG-based BCI is the control of robots. Ai et
al. [2] combined common spatial pattern (CSP), local characteristic-scale decompo-
sition (LCD) and functional brain networks. The attributes extracted had information
from the frequency and spatial domains of the signal. Robot movements were related
to the following tasks of the motor imagery: Feet movement (forward), right-hand
movement (right), left-hand movement (left), tongue movement (backward). The
best result was an accuracy of 89.7% and Kappa of 0.86.

4 Results and Discussion

Table2 shows the classifiers’ performance for all tested configurations. The best and
worse configuration are highlighted in green and red, respectively.

After analysing all the results we selected the best configuration for each classifier.
To do so, we compared accuracy, kappa, the standard deviation associated with
them. Parameters complexity was also checked, in a way that we prioritized less
computational costing configurations. Finally, we plot these configurations in order
to graphically visualize data and access some statistical information. Figure7 shows
the results for accuracy while Kappa results are presented in Fig. 8.

As may be seen from the results, most classifiers configuration had an outstanding
performance for both accuracy and Kappa statistic. Many classifiers achieve results
really close to the maximum (100% for accuracy and 1.0 for Kappa). Both Bayesian
classifiers had less satisfying performance, while SVM, ELM, andmELMperformed
better. The main difference between each configuration lies in the data dispersion.
Again, SVM, ELM, and mELM (kernel dilatation) were more consistent, presenting
very low dispersion. The tree-based classifiers and Bayesian networks showed more
data dispersion than the others.

Table3 presents the confusion matrix for the best (SVM—poly kernel E = 3)
and worse (Naive Bayes) results in the classification phase. From the matrices we
can observe almost none confusion for the best result, agreeing with the previous
presented results. For the worse result, we may note that there is almost none con-
fusion between right and left hands imagined movement. This result matches our
expectations since it is assumed that the brain activation area associated with these
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Table 2 Mean and Standard Deviation (SD) of accuracy and Kappa statistic for all tested
configurations

Fig. 7 Accuracy for classifiers best configuration. Source Authors
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Fig. 8 Kappa statistic for classifiers’ best configurations. Source Authors

Table 3 Confusion matrices for the best and worse results obtained during classification

Right hand Left hand Foot

BEST RESULT
Right hand 99 0 1
Left hand 1 97 0
Foot 1 0 99

WORST RESULT
Right hand 90 10 0
Left hand 3 93 2
Foot 56 5 39

movements are quite far from each other, becoming easily differentiated. Imagined
foot movement, however, was dramatically confused with right-hand imagery in this
trial.

5 Conclusions

The approach used here showed that the chosen attributes combinedwith theWavelet
transform provide satisfying results in the differentiation of hand and foot move-
ments. The promising results indicate that the method may be feasible for an appli-
cation in assistive technology. On the other hand, from an application perspective,
there are crucial points that still need to be analyzed. The first one is the low possi-
bility of generalization, due to the particularities of each human brain. This aspect is
well explored in Spüler [71], cited above, where different individuals had individual
accuracy values from 2.3 to 82.8%.

For more complex applications, with more refined movements, there is still a lot
to be improved. Alazrai et al. [6] approach confirm this need, even obtaining a good
accuracy, with average results per finger being up to 87.2%, they have not reached
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an ideal result yet. This is due to the fact that the execution of finger movements
requires simultaneity. In the case of motor imagery, the response waves are slow,
thus becoming another challenge to a rapid processing and immediate response.

It is worth mentioning that the EEG signal used here has a good temporal resolu-
tion, but it has limitations on spatial resolution. We observed that this characteristic
did not limit the results since we achieve an accuracy of up to 99%. This was similar
to the results obtained by Samuel et al. [60]. We consider that this spatial limitation
deserves to be better evaluated since it may disrupt the achievement of desirable
characteristics for BCI.
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Abstract More than 7% of the population of the world is afflicted by anxiety disor-
ders. If related to mood disorders, anxiety can trigger or escalate other symptoms and
affects mental diseases, akin depression, and suicidal behavior. Recent works have
shown that binaural beats are able to reduce anxiety and modify other psychological
conditions, significantly changing cognitive processes and mood states. They can
be defined as a low-frequency acoustic stimuli perceived when a given individual
is subjected to two marginally different wave frequencies, from 200 to 900Hz. In
the present work, we applied a 5Hz binaural beat to 6 different subjects, to detect if
relevant changes could be noticed in their brainwaves after the stimuli. Twenty min-
utes stimuli in ten separate sessions were applied. In order to detect these possible
differences, we used a single hidden layer Multi-Layer Perceptron neural network
and compared its results to non-parametric statistical tests and Low-Resolution Brain
Electromagnetic Tomography (eLORETA). Results obtained on eLORETA point to
a strong increase in the current distribution, mostly in the Alpha 2 band, at the Ante-
rior Cingulate, pertinent to the recognition and expression of emotions, as well as
the monitoring of mistakes regarding social conduct. Many Artificial neural net-
works models, principally Multi-Layer Perceptron architectures, proved to be able
to highlight the main differences with high separability in Delta and Theta spectral
bands.
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1 Introduction

One of the most common mental disorders is anxiety, responsible for bringing sev-
eral problems to those whom it affects. It can be categorized into social phobia (ago-
raphobia), panic disorder, generalized anxiety disorder, and obsessive compulsive
disorder (OCD) [51]. Usual symptoms range from physical manifestations (palpi-
tations, tremors, trembling, dyspnea), fear of losing control, fear of public places,
difficulty concentrating, fear of specifics subjects, such as animals, situations, or
natural phenomena [3].

Anxiety disorders afflict almost 7.3% of the planet’s population, and recent
research suggests that one in 14 people will experience an anxiety event during the
given year [4]. It also can trigger or increase other diseases’ symptoms and effects,
as when associated with mood disorders, such as depression and suicidal behavior
[59]. Aiming to alleviate this condition, several treatments have been arising, many
of them based on music stimulation.

According to [43], music is an intricate combination of amplitude and frequency
patterns that interacts with the human brain, interfering in some of its processes, such
as synaptic plasticity, neuronal learning, and world perception [43]. Consequently,
different types of music evoke specific physical alterations, such as reduction of pain
and blood pressure, and psychological modifications as well, like stress attenuation,
relaxation, and good mental moods [36].

Positive results were found on a specific type of acoustic stimulation, which has
proven to be able to reduce anxiety as also to attenuate or enhance other psychological
conditions and states. It is called a binaural beat [50, 70, 71]. The binaural beat is
the cerebral perception of a low-frequency sound originated when the individual is
subjected to two slightly different wave frequencies (maximum of 30Hz), both with
frequencies ranging from 200 to 900Hz [9, 42, 70].

Binaural beats were first perceived and related by Dove, before the XIX century,
and later detailed by Oster, in 1973. For the time being, the binaural beats have
been used as an alternative for treatment or manipulation of neuronal activity pattern
[9, 18], achieving good results when applied to mental disorders, as is the case of
anxiety [50, 70, 71], depression, attention deficit, epilepsy, mood states, vigilance,
and concentration states.

The scientific community presents several examples of well-succeeded applica-
tions of binaural beats, specifically attending to anxiety problems. Wahbeh et al.
[70], for example, was able to show a statistically significant decrease in anxiety
self-report (as also a decrease in tension, confusion, and fatigue) of individuals sub-
jected to Theta (4–7Hz) and Delta (0.5–3.5Hz). Padmanabhan et al. [50] reported
a reduction of 26.3% in anxiety scores, according to State-Trait Anxiety Inventory
(STA-I) results when applying binaural beats in pre-operatory patients. An analogous
approach was taken by Weiland et al. [71], where binaural beats and sound compo-
sitions were applied to 170 pre-operatory patients. Their work showed a decrease in
anxiety after a 20min stimulation, based on STA-I answers before and after the inter-
vention. The experiment related by Puzi et al. [53] evinced that stress and anxiety in
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students were diminished by 61% after a 10Hz binaural beat session, according to
theDepression, Anxiety and Stress Scales test (DASS). Lastly, a pilot study made by
Le Scouranec et al. [41] showed the first study related to binaural beats applications,
describing positive results after applying the aforementioned stimulus in theta and
delta waves. The binaural beat stimulus was applied within 4 weeks, from 1.4 to 2.4
times per week, for approximately 30 min, on each subject. The results were anal-
ysed based on STA-I answers, showing that the scored trended toward a reduction
in anxiety levels, after the sessions. It is important to emphasize, however, that the
results are usually presented based on the questionnaire’s responses, being, therefore,
subjective [50, 70, 71].

A different and perhaps more objective approach to analyze the impact of those
stimuli in the human brain is to acquire and process the electroencephalographic
(EEG) signal [64] from each individual, before and after the binaural beats applica-
tion, in order to find out if a physical change occurred and how it affected the resultant
signal. To observe these changes, statistics are often applied, usually relying onmeth-
ods for feature extraction such as temporal (HjorthParameters,DetrendedFluctuation
Analysis), spectral (Non-parametrics, Parametrics, Coherence, etc.), time-frequency,
and non-linear features [46]. Pre-processing the signal is usually necessary to identify
artifacts and clean the signal, using mathematical tools such as Independent Com-
ponent Analysis (ICA) [68]. Often, many steps are followed in order to extract the
signal’s attributes, with the aim to analyze it. With the purpose of simplifying this
process we propose a novel approach for determining if there were any changes in
the EEG signal, using a bandpass Finite Impulse Response (FIR) filter, withdrawing
the remaining artifacts after running ICA on the signal and, finally, using a classifier
based on Multi-Layer Perceptrons to verify the conditions of the signal before and
after the binaural stimuli. The state-of-the-art demonstrates that many architectures
of multi-layer perceptrons are capable of differentiating among categories of the
same data, with high performance in biomedical applications [2, 16, 17, 19, 20, 55–
58, 65]. We then compared the proposed method with a non-parametrical statistical
analysis, in order to see the reliability of the emerging results.

The subsequent sections are organized as follows: In Sect. 2, we show the state-
of-the-art of the research field, as well as a brief of our proposal; in Sect. 3, we
present the materials and methods utilized in this work and Sect. 4, we present the
experimental results and discussions. Our conclusions are provided in Sect. 6. This
chapter is an extended version of the work presented in [61].

2 Related Works

The effects of auditory beat stimulation have been investigated using monaural and
binaural beats [9]. Monaural beats are generated when sine waves of similar frequen-
cies and with the same amplitudes are presented to either both ears simultaneously,
while binaural beats are perceivedwhen thewaves described previously are presented
to each ear separately. For instance, when the 400Hz tone is presented to the left



102 M. da Silva Júnior et al.

ear and the 440Hz tone to the right one, a beat of 40Hz is perceived, which appears
subjectively to be spatially localized inside the head. This is known as the binaural
beat perception. This phenomenon was first registered by H. W. Dove, in 1839, and
outlined in detail by Oster [49], who reported that the binaural beats were detected
only when the carrier frequency was below 1000Hz [9]. This finding confirmed an
earlier study by Licklider et al. [42], which indicates that beat carrier frequencies
have to be low enough to be temporally encoded by the cortex [9, 60].

Oster [49] described binaural beats as “muffled sounds” with an intensity close
to 3dB and also discovered that the acoustic signals responsible for producing the
binaural beat must have the same intensity. Other characteristics were pointed out
by Oster [49], namely: (1) enhancement of binaural beats by external noise; (2) the
proof that the binaural beats are processed differently due to the superior olivary
nucleus, due to neurons sensitive to the oscillations of the acoustic signal. Oster
[49] also related that some patients were not able to hear the beats or even could
not localize the sound produced by the examiner. Coincidentally, people who were
unable to localize the generated sounds also suffered from Parkinson’s disease [49].

The effects of binaural beats and other types of stimuli are based on the assump-
tion of brainwaves entrainment, also known as Frequency FollowingResponse (FFR)
[66]. According to [28], FFR arises from converging inputs of populations of neurons
tending to follow a specific external frequency pattern, given the proper stimulation.
Consequently, the brainwaves entrainment can be directly influenced by binaural
beats. Besides these results, the assumption of FFR is still in discussion, since some
works have related no achievements on brainwaves entrainment based on EEG den-
sity analysis [25, 66].

Despite the uncertain effect on binaural beats entrainment, there are several works
that showapositive influence of this type of stimulation [9, 22, 38, 50, 70].Applied to
areas such as anxiety, depression, creative processes, memory, attention, vigilance,
and mood states [9], binaural beats have shown good results. For example, [22]
demonstrated that the application of binaural beats of 5Hz for 15 min twice a day,
during 15 days, significantly increased the number ofwords recalled post-stimulation
compared to other techniques. Lane et al. [38] showed that people subjected to
binaural beats onBeta 2 range (16–24Hz), while executing vigilance tasks, presented
better performance than when hearing sounds without binaural beats.

There are also reports related to the interference in mood states and the creative
process. Wahbeh et al. [70] showed that mood states like depression, fatigue, inertia,
and tension were diminished after the application of binaural beats, during 60 days,
in Theta, Beta, and Delta frequencies. Lane et al. [38] also showed decreases in
depression sub-scales after binaural beat stimulation in Beta, suggesting that stimu-
lation with binaural beats in the given frequencies may be related to a less negative
mood. The conditions were assessed using the Profile of Mood States (POMS) ques-
tionnaire.

The impact of a binaural beat can also be seen in an EEG analysis. To detect the
influence of this sound [35] used the average of the amplitudes of the EEG spectral
frequencies allied to statistical analysis, in order to check whether the morphology
of the bioelectrical signal had changed after stimuli. Using a 10Hz binaural beat
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stimulus on a sample group of 20 individuals, he observed the FFR effect, finding a
component of equivalent frequency to the applied stimulus [35]. The statistical anal-
ysis using ANOVA proved the theta wave presented an average increasing amplitude
in EEG [35], while there was a significant decrease in the average amplitude of
Beta and Alpha brainwaves. Becher et al. [6] recorded the intracranial EEG of a
brain under stimulation of 5, 10, 40, and 80Hz binaural beats, and compared the
results with the monoaural beats stimuli. Analyzing power and phase beat synchro-
nization with a Bonferroni-corrected non-parametric label permutation test, results
showed that power and phasemodulationwere statistically and significantly different
between the signals, mostly decreasing before and after the stimuli application, at
temporo-basal, temporo-lateral, surface sites, and medio-temporal sites [6].

Beauchene et al. [5] applied several EEG signal analysis to perceive statistically
significant differences among 6 types of auditory signals (none, pure tone, classical
music and 5, 10 and 15Hz binaural beats), in order to observe its effects on working
memory, tested by the delayed match to sample visual task [69]. The metrics used for
the analysis were time-frequency synchronizationmeasures using the Phase-Locking
Value (PLV), graphical network measures, and Connectivity Ratio (CR). One-way
ANOVA was then applied, showing that the theta band had the most significant
response among the other bands, and presented the most evident result when the
activities were done by 15Hz binaural beat [5].

Our proposal is based on the identification of binaural beat stimuli using the
Independent Component Analysis (ICA) and posterior machine learning techniques
over the EEG filtered signals, in order to identify alterations due to binaural beat
stimuli. Regarding the EEG signal analysis of binaural using ICA preprocessing, we
did not find any works. Nevertheless, several EEG related articles employed similar
approaches in order to remove artifacts from signals with significant information.
ICA assumes that signals are composed of statistically independent sub-signals [44].
Therefore, after applying ICA to EEG, it is possible to identify the independent data
and, consequently, apply some artifact removal techniques, in order to eliminate or,
at least, reduce the influence of biosignals originated from the activity of the eyes,
breathing, and muscle movements, for example. Jung et al. [34] related that EEG
signals collected fromnormal and autistic subjects demand proper artifact separation,
detection, and removal after ICA data analysis. Snyder et al. [63] demonstrated that
ICA associated with dipole fitting was able to identify the pure movement artifact
in EEG acquired data with an accuracy of up to 99%. However, besides the strong
application in EEG data analysis, we did not find any binaural beat related work with
such an analysis technique at the pre-processing stage.

In thiswork,we present the use of artificial neural networks to classify the binaural
beats entrainment effects. Despite their regular use on Brain-Controlled Interfaces
(BCI) for Motor-Imagery tasks [10, 26] and other applications [23, 47], we did
not find works on machine learning applied to binaural beats entrainment detection.
Intelligent tools based on machine learning, especially on artificial neural networks,
have been successfully applied to process and classify EEG data. For instance, [47]
used a Multi-Layer Perceptron (MLP) to classify different emotions based on their
EEG data pattern, achieving a considerable accuracy rate of 95.36%.
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In summary, we used four different methods to verify every possible change from
a different point of view. In the first one, we applied a simple statistical analysis
using a non-parametric test for unpaired samples (Friedman test), aiming to find
the statistical differences between conditions, regarding EEG amplitude. We then
used the exact-Low Resolution Brain Electromagnetic Tomography to investigate
the spatial changes possibly caused by the binaural beat stimulus, and to compare
with already known functionalities of the anatomical structures of the brain. We also
aimed to investigate the discrimination capabilities of pattern recognition algorithms
in identifying the same changes in amplitudemodulation before and after the binaural
stimuli. With the latter, the goal was also to investigate, from another perspective,
which frequency bands showed the most prominent differences among conditions,
and to compare the obtained results with the previous analysis. At last, we applied a
self-report questionnaire of the State-Trait Anxiety Inventory and Beck Depression
Inventory, looking forward to evaluating the conscious answers of each individual
regarding the effects of the binaural beats sessions.

The statistical analysis showed that there were significant differences for almost
every condition evaluated, for specific electrodes, regarding Theta, Alpha 1, Alpha
2, Beta 1 and Beta 2, while for Delta, almost every electrode showed different results
between conditions. Regarding the eLORETA, our main results suggest a strong
increase in the current distribution, mostly in the modulation in Alpha 2, at the
Anterior Cingulate. The neural activity of this structure is related, among others, to
the monitoring of mistakes regarding social conduct, as also on the recognition and
expression of emotions.

Our third analysis showed that pattern recognition algorithms are capable of evinc-
ing the main differences among all studied conditions (PRE1 × POS1, PRE10 ×
POS10, and PRE1 × POS10), with high separability in Delta and, surprisingly,
in Theta. Lastly, regarding the self-report questionnaire of the State-Trait Anxiety
Inventory and Beck Depression Inventory, significant differences between condi-
tions were not found, although a trend towards diminishing the scores after the tenth
session was observed.

EEG analysis is usually handled after the implementation of several preprocessing
techniques, including artifact processing and temporal, spectral, frequency, time-
frequency and nonlinear feature extraction, used in order to gather information about
the data [46].

3 Methods

3.1 Selection and Description of Subjects

A total of 14 volunteers, aging between 18 and 35 years old, all residing in Recife’s
metropolitan region, State of Pernambuco, Brazil, participated in this research. They
were recruited using invitation letters distributed by digital social media networks,
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in which they were informed of the experiments purpose, the contact information
of the responsible researcher, possible doubts, and the laboratory location where the
experiment would be performed.

As eligibility criteria, the participants should be aged between 18 and 35 years
old, reporting normal auditory functions, never subjected to binaural beats stimu-
lation, and free of neurological disorders (including epileptic crises). Furthermore,
the volunteers should not have ingested caffeine, alcohol, or any drugs 24 hours
before EEG recording. The consumption of drugs capable of affecting the nervous
systemwas also prohibited.We excluded subjects in which the recorded signals were
compromised by the excessive presence of artifacts or presented pathological traces,
such as epileptiform activity, too slow waves, or undesired periodic patterns. These
and other aspects of this research were evaluated using three questionnaires: Iden-
tification Questionnaire, The State-Trait Anxiety Inventory, and Beck Depression
Inventory detailed in Sect. 3.2.

All chosen participants signed a consent form, agreeing on participating in the
study. Due to technical problems, the data collected from 8 subjects were lost. The
remaining data from 6 subjects (3 males and 3 females) were used in this work. The
participants were informed that at any time and for any reason, they could interrupt
the session.

3.2 Instruments and Equipment

3.2.1 Identification Questionnaire

This questionnaire was applied to record the subjects’ personal information, such as
educational degree, age, civil status, and gender. We aimed to collect and evaluate
the subjects’ experience with binaural beats acoustic stimulation, as well as gather
information about possible illnesses or any psychiatric treatment.

3.2.2 The State-Trait Anxiety Inventory—STA-I

STA-I is a tool used to evaluate two different anxiety constructs: trait and state. The
test possesses two consecutive scales, one for measuring the state of anxiety and the
other for measuring the trait-anxiety, each containing 20 questions, itemized with 4
alternatives. For each item, the candidate should assign, among 4 possible alternatives
(1—“almost never”; 2—“sometimes”; 3—“often”; 4—“almost always”), the one that
fits the most his/her feelings. The total test score varies between 20 and 80, in which
20–40 points characterize a low anxiety level, 41–60 points a medium anxiety level,
and 61–80 points a high anxiety level.
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3.2.3 Beck Depression Inventory—BDI

The Beck Depression Inventory is also a self-report test of 21 questions, in which
each question has 4 possible answers. The participant is, therefore, instructed to
choose the one that better fits his/her feelings about the question. The total test score
varies between 0 and 63, where 0 is the lowest score, indicating lack of depression;
10–16 means light to moderate depression state; 17–29 comprises a moderate to a
severe depressive state, and 29–63 indicates a severe depressive state.

3.2.4 EEG Acquisition Equipment

For collecting and amplifying the EEG data, we used a Nexus-32 system combined
with Biotrace+ software (MinMedia, Roermond-Herten, the Netherlands). Nexus-32
has 32 channels for data acquisition. Biotrace+ can be used to synchronize, store,
process, and export the sampledEEG. Its applicability and portabilitymake it suitable
for a large range of biofeedback protocols and physiological monitoring.

Nexus-32 is able to use Bluetooth technology to communicate with computers,
but the preferable option used in this experiment was the data transference through
optic fiber cable and the EEG sampling rate for the acquisition was 256Hz. EEG is
commonly recorded at sampling rates between 250 and 2000Hz. The EEG acqui-
sition should occur at a minimum sampling rate of three times the high-frequency
filter setting. However, higher rates are always preferable. The sample rate needs to
be high enough to prevent the aliasing effect.

3.2.5 Binaural Beats Generator

To generate the Binaural Beats, we used the open-source software Gnaural Binaural
Beat Audio Generator 2.0. It makes possible the designing of binaural beats based on
the parameters described by Oster [49]. This program allows us to create and export
the generated data in several different audio and frequency formats. Therefore, using
the Gnaural, we created and exported an audio sample containing the 5Hz binaural
beat using carrier waves of 400 and 405Hz.

The composition of the binaural tones was based on [49], emphasizing that the
background around the 400Hz frequency band is easier to be detected by the subjects.
No noises or instrumental sounds were superimposed on the binaural tones.

3.2.6 Earphones

We employed as supra-auricular earphones the Seenheiser HD 220 with frequency
response 19–21kHz, impedance 24�, Sound pressure level (SPL) of 108 dB, and
total harmonic distortion <0.5%. The headphone was placed covering the external
area of the ear and presenting the possibility of support, and acoustic shells adjust. It
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is designed to block the external sound noise and can reproduce 19–21kHz frequency
sounds, reaching a maximum of 108dB of sound intensity. Its impedance is of 24�.

3.3 Procedural Information

After signing the consent form and answering the proposed questionnaires, the sub-
jects were instructed to schedule sessions to record their EEG (first and tenth ses-
sions) and to receive the binaural beats stimulus (from second to the eighth session).
Then, the volunteers were conducted for the first session in the Laboratory of Cogni-
tive Neuroscience at the Federal University of Pernambuco (LNeC-UFPE), Recife,
Brazil. There, the volunteers had their foreheads and ears cleaned with an abrasive
solution, in order to remove possible skin’s dirt and oiliness. Afterward, we placed
an EEG cap with 21 electrodes in the subject’s head, with 19 electrodes for data
acquisition and 2 electrodes for reference on each of the subject’s ears.

3.3.1 Data Acquisition

After signing the consent form and answering the proposed questionnaires, the sub-
jects were instructed to schedule sessions to record their EEG (first and tenth ses-
sions) and to receive the binaural beats stimulus (from second to the eighth session).
Then, the volunteers were conducted for the first session in the Laboratory of Cogni-
tive Neuroscience at the Federal University of Pernambuco (LNeC-UFPE), Recife,
Brazil. There, the volunteers had their foreheads and ears cleaned with an abrasive
solution, in order to remove possible skin’s dirt and oiliness. Afterward, we placed
an EEG cap with 21 electrodes in the subject’s head, with 19 electrodes for data
acquisition and 2 electrodes for reference on each of the subject’s ears.

Nineteen active electrodes were positioned in accordance with the 10–20 system,
in the following scalp areas: Prefrontal (Fp1 and Fp2); Frontal (F3 and F4); Front
Midline (Fz); Central (C3 andC4); CentralVertex (CZ); ParietalMidline (P3 andP4);
Anterior Temporal (F7 and F8); Medial Temporal (T7 and T8); Posterior Temporal
(P7 and P8); Posterior Midline (Pz) and Occipital (O1 and O2) in addition to two
auricular reference electrodes (A1 and A2). Figure1 displays a diagram of the used
cap for data acquisition.

Each EEG cap was adjusted accordingly to each subject after the circumference
of their heads, and the distance between the craniometric points was measured. Once
adjusted, a conductive gel was applied to enable better conductivity.

In this situation, the EEG baseline of each participant was acquired and then
the binaural stimulus was applied for 20 min. After that, another EEG recording
was performed, concluding the first session of the experiment. The EEG was record
uninterruptedly during the experiment. However, we only analyze the periods before
and after the stimulation. Placed markers in the record were used to separate the
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19 of 19 electrode locations shown
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Fig. 1 Cap diagram with 19 electrodes

stimulation section from the others, which started and ended with a delay of 1–2 min
for placement and removal of the headset.

Subsequently, the other 8 scheduled sessions were performed, where no EEG
recording was performed. In this situation, each participant was accommodated in
a chair with arms support, placed in a room with attenuated sound and luminosity,
in the LNeC. The binaural stimuli had intensities of 75–80dB, maintained for 20
min, and the subjects were oriented to keep their eyes closed during the experiment.
These intensities were empirical, determined by asking the subjects to return when
the signal intensity could be considered comfortable.

As showed in Fig. 3, we used 20 min for the Binaural Beat stimulation and 80s for
the EEG recording time. This temporal dynamic was thought according to [32, 33],
that demonstrated a maximum effect of entrainment of the amplitude of the Theta
band on the EEG after 10min of stimulation with binaural beats, decaying into a
plateau at 20min of stimulation and remaining sustained up to at least 30 min.

In the tenth session, the same procedure of session 1 was followed. Once finished,
they were told to fill again the psychological inventories, as they did before the
first session, detailed in Sect. 3.1. Figure2 summarizes the whole process for better
understanding.
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Fig. 2 Timeline of experiment. On the first day, the participants went to the Laboratory of Cogni-
tive Neuroscience (LNeC) to read and sign the informed consent form (ICF). They also completed
the sociodemographic characteristics questionnaire and then Beck’s Depression (BDI) and Anxi-
ety (BAI) inventories. In the next day, the subjects who filled the inclusion criteria, attended the
Laboratory of Applied Neuroscience (NeuroLab BRASIL) to record the EEG, in a rest state, 5 min
with open and 5 min with closed eyes, before and after 20 min of stimulation with binaural beats.
From the third to the tenth day, the subjects daily experienced one session of binaural beats. On the
11th day, the subjects should return to the NeuroLab BRASIL, when we collected again their EEG,
before and after the last session of binaural beats. Lastly, subjects answered again to Beck’s scales
questionnaire

3.3.2 Data Preprocessing

To obtain the EEG spectrum distribution, 80 s were extracted from each period of
records, before and after the 1st and 10th sessions. Artifacts were extracted through
visual inspection. The collected data were divided into four conditions, being them:
PRE1, POS1, PRE10, and POS10. The PRE1 and POS1 conditions corresponded to
the first session when EEG was collected before and after the first binaural stimuli,
while PRE10 and POS10 are the EEG records for the tenth session. A pictorial
representation of the process for data acquisition concerning epoch, stimulation, and
time, is depicted in Fig. 3.

For each volunteer, 40 epochs of 2 s per condition were acquired and saved in
Matlab format (.mat), containing 20,480 signal samples and 19 columns for the elec-
trodes. Three types of analysis were performed: statistical, eLORETA, and feature
classification analysis. Each of them considered three different conditions: PRE1 ×
POS1, PRE10 × POS10, PRE1 × POS10. Considering this situation, for each par-
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Fig. 3 Pictorial representation of epoch, stimulation and time for data acquisition

ticipant, the data were separated in four .mat files, concerning the conditions PRE1,
POS1, PRE10, and POS10, and then individually processed using the EEGLab plu-
gin, installed in Matlab programming environment. Once processed, the files from
each subject were concatenated in four main files, one for each condition (PRE1,
POS1, PRE10, and POS10). The next topics explain in more detail some of the steps
taken for preprocessing the data, and the flowchart, depicted in Fig. 4, provides a
general picture of the matter.

1. Filtering
For filtering, we used a passband Finite Impulse Response (FIR) filter to all the
stated conditions in 7 different frequency ranges [7, 13, 37]. Since we chose the
default filter order for all the frequency filtering (option provided by EEGLab), it
changed based on the cutoff frequencies of each passband window. Their values
are detailed in Table1.

2. Independent Component Analysis—ICA
The Independent Component Analysis is a method for identifying linear and
statistically independent signals superposed in mixed data. Supposing we have
two recorded signals, x1(t) and x2(t), and assuming that they can be written as
a linear combination of two statistically independent signals s1(t) and s2(t), as
described in Eqs. 1 and 2,

x1(t) = a1,1s1(t) + a1,2s2(t) (1)

x2(t) = a2,1s1(t) + a2,2s2(t) (2)

ICA manages to find the values of the ai, j coefficients, to solve the Eqs. 1 and 2
by classical methods [30]. The aforementioned equations describe the classical
illustration of the Cocktail-Party Problem [30].
Therefore, considering ICA’s purpose, several applications have emerged, one of
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Fig. 4 Flowchart for data
acquisition, artifact removal,
and data analysis
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Table 1 Passband filters and orders [7, 13, 37]

Waves Ranges (Hz) Filter order

Broadband* 0.5–35 1690

Delta 0.5–3.5 1690

Theta 4–7 424

Alpha 1 7.5–9.5 424

Alpha 2 10–12.5 339

Beta 1 13–23 261

Beta 2 24–35 143

them being for EEG analysis [30]. In EEGLab, the ICA option is available in
MARA [72] plugin, explained on the next topic.

3. Artifacts Identification and Removal using MARA
Once the independent components were separated, the MARA plugin was used
in order to identify the noisy signal’s components, such as muscular or breathing
artifacts. MARA is an open-source EEGLAB plugin that automatizes the process
of hand labeling independent components for artifact rejection [11]. Initially, it
uses PCA for reducing the signal dimensionality, and after it applies the TDSEP
(Temporal Decorrelation source Separation) algorithm, an ICAmethod that takes
temporal correlations into account for identifying the independent components.
Then, 6 features are extracted from the data (Current Density Norm,RangeWithin
Pattern,MeanLocal Skewness,λ, 8–13Hz andFitError) and aRegularizedLinear
Discriminant Analysis Classifier is used to identify the artifacts. The classifier and
features were proven to be the optimal configurations, according to [72], since the
trained classifier on unseen data leads to a Mean Square Error of 8.9%, showing
a high agreement with the expert’s labeling. Once the artifacts were identified
and removed from the data, the remaining independent components are projected
back to the sensor space, before proceeding with the analysis. MARA is free
software distributed under the GNU General Public License.

3.4 eLORETA

The eLORETA (exact-Low Resolution Electromagnetic Tomography) is a method
that allows the estimation of probabilistic models of the signals sources within the
brain anatomy. It is based on algorithms that report the solution of the inverse problem
of the EEG signal with zero error estimation, having, therefore, the property of
providing the exact localization for any point source in the brain for any arbitrary
distribution [8, 15]. eLORETA is also able to provide the correct localization of
sources even in the presence of structured noise. However, low spatial resolution is
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provided, in which each voxel presents an anatomical resolution of 5 millimeters for
the anatomical model utilized [1].

The algorithms that report the solution of the inverse problem to rely on the differ-
ences of electric potentials, measured on the scalp for computing the localization and
intensity of the electrically active sources, represented by current density (A/m2) for
each voxel [21]. Also, the brain model used for the anatomical representation of the
current sources is based on the cortical model of the Montreal Neurological Institute
(MNI), composed of 6239 voxels with 5mm of resolution [15].

The images generated by eLORETA software (depicted in Figs. 5, 6, and 7) con-
sists of a pictorial representation of the electric activity in the brain. Regions colored
in red or blue indicates areas with electrical activity, where red means an elevation of
the electric potential in the referred region, and, therefore, more cerebral activity and
blue indicates otherwise. The regions colored in gray indicate non-activated regions.

The eLORETA analysis was performed for each experimental condition, where
the current density obtained from each situationwas comparedwith a non-parametric
statistical analysis, in order to determine if any significant change in the intensity of
the current sources had occurred [40].

3.5 Pattern Recognition

3.5.1 Overall Arrangements

In order to analyze the data from another perspective, we performed experiments
using pattern recognition. Our hypothesis was that there are differences that are not
evident in the usual methods of EEG analysis (such as statistical approaches), but that
can be found using common pattern recognition algorithms. Those algorithms have
proven to be very efficient for several different areas, such as emotions through speech
recognition, gesture identification through image or electromyographic analysis, so
on.

However, since those algorithms perform differently, depending on the data, it
is wise to test a few of them to find the one with the best performance. For best
performance, one must consider the trade-off between the highest discrimination
capability possible and the smallest time spent on classification.

It is common to use before discriminating data using amachine learning algorithm
to extract features from the raw or original dataset. In our case, however, we used
as the input of the classifiers, the raw dataset after filtering and removing artifacts.
This means that our features were the amplitude results of the EEG signal for each
electrode. It is also important to mention that the original size of the database had a
considerable amount of instances (122,880 per class), and the resultant files were too
big to be computed in a reasonable time, considering cross-validation and percentage
split database’s division. Therefore, an elegant solution to this problem was the
resampling technique, introduced by Chawla et al. [12]. In summary, it consists
of the creation of a new database with the same statistical characteristics of the
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�Fig. 5 Statistical maps of differences between cortical sources computed under the resting state
for POS1–PRE1 conditions. The results have been projected onto the MNI152-2009c T2 template.
Red color represents ROIs of greatest activity. Blue color indicates ROIs with electrical activity
decrease. a Oscillations reduction in Delta activity at the left lower Frontal Gyrus; b oscillations
reduction of theta rhythm at the posterior Cingulate; c oscillations increasing within Alpha 1 at
the medial Frontal Gyrus; d oscillations increasing within Alpha 2 at the anterior Cingulate; e
oscillation decreasing within Beta 1 and f in Beta 2 (f) at the right Insula

Fig. 6 Statistical maps of differences between cortical sources computed under the resting state for
POS10–PRE10 conditions. The results have been projected onto the MNI152-2009c T2 template.
Red color represents ROIs of greatest activity. Blue color indicates ROIs with electrical activity
decrease. a Oscillations reduction in Delta at the Parahippocampal Gyrus; b oscillations increasing
within alpha 2 in the Anterior Cingulate

original database, but with a reduced number of instances. This procedure diminished
considerably the time needed for computing all the classifiers among the classes, and
the obtained results were within the expected values (considering classification with
the original database).

For those simulations, we employed the free software Weka, a machine learning
software with several data preprocessing techniques, classifiers, data visualization,
and manipulation tools. Weka uses ARFF files, in which training and testing sets
are stored. Therefore, after the preprocessing stage, all the acquired data, i.e., each
windowed filtered signal time series, was converted to the aforementioned format
in order and resampled using the technique introduced by Chawla et al. [12], to
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Fig. 7 Statistical maps of differences between cortical sources computed under the resting state for
POS10–PRE1 conditions. The results have been projected onto the MNI152-2009c T2 template.
Red color represents ROIs of greatest activity. Blue color indicates ROIs with electrical activity
decrease. aOscillations reduction inDelta at the Left Lower Frontal Gyrus; b increasing oscillations
increasing within alpha 2 in the Anterior Cingulate; c oscillations increasing and reduction within
Beta 2 at the Medial Frontal Gyrus and Parahippocampal Gyrus, respectively

be then classified. The built files were composed of 19 attributes. Each attribute is
the representation of one electrode and contains information about the electrode’s
acquired signal. Each ARFF file contains 2 classes, i.e. condition before and after the
stimulus, PREX, and POSX. We built up 21 ARFF files since we considered three
different conditions, PRE1 × POS1, PRE10 × POS10, and PRE1 × POS10 and 7
different frequency analysis, Broadband, Delta, Theta, Alpha 1, Alpha 2, Beta 1 and
Beta 2.
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3.5.2 Classifiers Configuration

In this stage, we tested the database for Multilayer Perceptron (MLP), Support Vec-
tor Machine optimized with John Platt’s sequential minimal optimization algorithm
(SMO) [52], k-Nearest Neighbors (kNN), J48 decision table classifier and Random
Forest (RF). We chose the aforementioned classifiers due to their robustness and
good performance in several applications. Also, they are relatively simple and very
well studied algorithms, with enough literature to support the choice of near-optimal
parameters in little time.

For MLP, SMO, and kNN, a few configurations within each classifier were tested.
ForMLPwe changed the values of neurons in the hidden layer between 10, 19, 2, 21,
and used the learning rate with values of 0.1 and 0.3. For SMO, we simulated four
different configurations by changing its kernel among Radial Basis Function, Linear,
Quadratic and Cubic polynomials. Finally, for the kNN classifier, we changed the
number of neighbors between 1, 3 and 5. For J48 and Random Forest, the default
configuration suggested by Weka was applied. The values used here were chosen
both empirically and using Weka’s predefined parameters.

The results from the classifiers analysis will show that the classifier with best per-
formance is the Multilayer Perceptron, for both percentage split (66% for training
and 34% for testing) and 10-fold cross-validation analysis. However, the configura-
tions that presented better results are different between the two simulations, and the
one considered for further investigation in the feature classification step was the best
result depicted in the cross-validation study.

The chosen MLP uses a sigmoid function as the neuron activation function. The
amount of neurons in the input layer equals the number of attributes in the ARFF
file, and the amount of neurons in the output layer equals the number of classes in
the aforementioned file. Given the best configuration for cross-validation, its hidden
layer was set with 2 neurons, with a learning rate and momentum equals to 0.3 and
0.2, respectively.

Once the performance of the classifier was evaluated, and the most suitable algo-
rithm was chosen, we tested the configuration for the reduced database, considering
the Kappa Correlation, or Kappa Index. Briefly, the Kappa Index (KI) is one of the
most used metrics to measure the performance of a classifier. It is preferred, among
others, such as accuracy or sensitivity only since it accounts for the possibility of
agreement occurring by chance [45] between observers. The KI is defined as

κ = Pr(a) − Pr(e)

1− Pr(e)

where κ represents the KI, Pr(a) represents the actual observed agreement and
Pr(e) represents the agreement that occurred by chance.

Like any correlation coefficient, the KI range from−1 to+1, where−1 indicates
a complete systematic disagreement between observers, 0 represents the number
of agreement that can be expected from random chance, and 1 represents perfect
agreement between observers [45, 67].
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4 Results

4.1 Statistical Analysis

This analysis is just an exploratory perspective since it is a single group design
[29, 41]. In this research, we also tried to replicate the analyzes of the state-of-the-
art [29, 41]. We may in future investigations implement other signal analysis, such
as the analysis of signal coherence between Regions of Interest. However, in this
case, we performed analysis over amplitude, not phase signals.

Since our samples were not normally distributed, according to the results of a
Kolmogorov-Smirnov test [39, 54], non-parametricWilcoxon test for paired samples
were conducted to compare the distribution of the median location of the amplitude
of the each EEG frequencies bands, before and after stimulation with binaural beats,
position-by-position. The null hypothesis assumed in this statistical analysis is that
the amplitude of the EEG frequencies obtained at each pair of electrodes would
not differ from the median location when comparing the signal before and after the
stimulation, between the following conditions: Cond1—PRE1 × POS1; Cond2—
PRE10 × POS10; and C3—PRE1 × POS10. A p-value p < 0.05 was established
to discriminate statistically different results.

The results are depicted in Tables2, 3 and 4. They show that there were signifi-
cant differences among all the EEG frequencies for almost every condition (Cond1,
Cond2, and Cond3). However, for Broadband, Theta, Alpha 1, Alpha 2, Beta 1 and
Beta 2 frequencies, we observed changes in a few electrodes, while for Delta, every
electrode captured, at least, we perceived one significant difference among each con-
dition. More than that, one can also observe that most of the differences were found
between conditions PRE1 × POS1, especially for Delta and Broadband.

Considering the individual variability of the effect of stimulation with a binaural
beat of 5Hz on the cortical electric current distribution, in each EEG recording com-
parison condition, as described previously, the intraindividual statistical significance
of the binaural stimulation effect of 5Hz was briefly analyzed. To do so, we exported
40 epochs of 2 s for each condition of resting state with closed eyes—PRE1; POS1;
PRE10; POS10—were selected for paired statistical analysis of electrophysiological
activity, after preprocessing in EEGLab, for the purpose of conduct the intra-group
and intra-subject analysis in LORETA. We used the 10/20 system model to adjust
the electrode coordinate to the Talairach coordinates, a step necessary to create the
transformation matrix, choosing no regularization method and exact low-resolution
brain electromagnetic tomography (eLORETA). Thereunto, we compared the cor-
tical electric current sources of each subject between conditions PRE1 × POS1,
PRE10 × POS10, and PRE1 × POS10. Only the EEG frequency bands and the
regions of interest found during the intra-group analysis were examined, that is, the
EEG frequency bands that presented coordinates of voxels with significant statistical
values in intra-group analysis.

Then, for each condition, and each intragroup and intrasubject analysis, crossspec-
tral matrices using Fast Fourier Transformation (FFT) were calculated and averaged
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Table 2 Electrodes that presented significant statistical differences in the magnitude of the EEG
signal compared to their position in three different conditions PRE1 × POS1 (Cond1), PRE10 ×
POS10 (Cond2) and PRE1× POS10 (Cond3) in the non-parametric Wilcoxon test with p-value <

0.05

Brainwave Electrodes Cond.1 Cond.2 Cond.3

Broadband FP1 0.02* 0.04* 0.19

FP2 0.00* 0.02* 0.95

F8 0.00* 0.15 0.99

F7 0.04* 0.83 0.02*

T8 0.00* 0.54 0.08

Delta FP1 0.00* 0.00* 0.87

FP2 0.00* 0.41 0.36

F7 0.00* 0.69 0.00*

F3 0.00* 0.00* 0.63

FZ 0.00* 0.00* 0.81

F4 0.00* 0.00* 0.51

F8 0.00* 0.00* 0.05*

T7 0.93 0.00* 0.00*

C3 0.03* 0.74 0.00*

CZ 0.00* 0.12 0.05*

C4 0.00* 0.01* 0.00*

T8 0.00* 0.00* 0.16

P7 0.00* 0.01* 0.01*

P3 0.00* 0.00* 0.59

PZ 0.01* 0.88 0.71

P4 0.00* 0.00* 0.00*

P8 0.00* 0.00* 0.65

O1 0.00* 0.00* 0.00*

O2 0.00* 0.00* 0.10

Theta FP2 0.47 0.04* 0.51

F7 0.00* 0.36 0.12

F8 0.95 0.05* 0.15

C3 0.07 0.03* 0.93

CZ 0.57 0.02* 0.07

C4 0.00* 0.69 0.37

T8 0.01* 0.00* 0.22

P7 0.01* 0.06 0.16

P3 0.17 0.03* 0.92

PZ 0.28 0.00* 0.85

P8 0.67 0.02* 0.10
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Table 3 Electrodes that presented significant statistical differences in the magnitude of the EEG
signal compared to their position in three different conditions PRE1 × POS1 (Cond1), PRE10 ×
POS10 (Cond2) and PRE1× POS10 (Cond3) in the non-parametric Wilcoxon test with p-value <

0.05

Brainwave Electrodes Cond.1 Cond.2 Cond.3

Alpha 1 FP2 0.01* 0.12 0.10

F7 0.05* 0.89 0.35

C3 0.02* 0.74 0.30

CZ 0.00* 0.04* 0.86

T8 0.06 0.63 0.01*

P4 0.06 0.02* 0.43

P8 0.02* 0.58 0.97

O2 0.01* 0.12 0.74

Alpha 2 F7 0.00* 0.34 0.66

F3 0.24 0.02* 0.07

FZ 0.77 0.05* 0.02*

F4 0.88 0.45 0.75

F8 0.56 0.37 0.04*

F7 0.03* 0.33 0.06

T8 0.00* 0.92 0.00*

PZ 0.00* 0.01* 0.00*

O2 0.09 0.92 0.04*

Table 4 Electrodes that presented significant statistical differences in the magnitude of the EEG
signal compared to their position in three different conditions PRE1 × POS1 (Cond1), PRE10 ×
POS10 (Cond2) and PRE1× POS10 (Cond3) in the non-parametric Wilcoxon test with p-value <

0.05

Brainwave Electrodes Cond.1 Cond.2 Cond.3

Beta 1 FP2 0.00* 0.24 0.20

F8 0.00* 0.61 0.01*

F7 0.05* 0.95 0.01*

T8 0.01* 0.08 0.00*

P3 0.11 0.04* 0.25

PZ 0.81 0.03* 0.10

P4 0.03* 0.80 0.42

O1 0.00* 0.57 0.34

O2 0.01* 0.88 0.02*

Beta 2 FP1 0.02* 0.65 0.37

FP2 0.01* 0.87 0.35

F8 0.01* 0.72 0.18

T8 0.08* 0.14 0.05*

P4 0.03* 0.47 0.19

O1 0.00* 0.82 0.33

O2 0.03* 0.26 0.03*
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for each dataset, converting in one cross-spectral matrix (CRS) for each analysis
condition and for each of the discrete frequencies studied: Delta (0.5–3.5Hz), Theta
(4–7Hz), Alpha-1 (7.5–9.5Hz), Alpha-2 (10–12.5Hz), Beta 1 (13–23Hz) and Beta 2
(24–34Hz). Next, each CRS file is transformed into eLORETA file for each analysis
condition and frequencies band above mentioned. Finally, using the LORETA sta-
tistical package, statistical comparisons of the subjects’ cortical sources among the
condition pairs, via nonparametric mapping approach (SnPM) with randomizations
[48], were used to establish the level of significance of each test performed.

4.2 eLoreta Analysis

In this section, we aimed to investigate the differences between conditions before and
after the binaural beat stimulus, using the exact Low-Resolution Brain Electromag-
netic Tomography method and software. One of state-of-art in literature, invented
in 1994, eLORETA solves the inverse problem, localizing the electrical activity
within the brain by using the electroencephalographic activity of the individual. The
eLORETA analysis allows the investigation of patterns of activation in the brain
directly linked to the EEG signal produced, making it possible to cross-reference
the obtained results with the functional capabilities of the anatomical regions of the
brain.

Considering the individual variability of the effect of stimulation with binaural
beat of 5Hz on the cortical electric current distribution, in each EEG recording com-
parison condition, as described previously, the intraindividual statistical significance
of the binaural stimulation effect of 5Hz was briefly analyzed.

In order to do so, we compared the cortical electric current distributions of each
subject between conditions PRE1 × POS1, PRE10 × POS10, and PRE1 × POS10.
Only the EEG frequency bands and the regions of interest found during the intra-
group analysis were examined, that is, the EEG frequency bands that presented
coordinates of voxels with significant statistical values.

InTable5,we compare the local electric current density of each individual between
the conditions PRE1 × POS1. Note that in the Delta, Alpha 1 and Beta 2 frequency
bands, we did not find statistically significant values in the intraindividual compari-
son for the voxel coordinates identified in the intragroup analysis. However, in these
frequency bands, one can see that there is a tendency in the individual effect similar
to the group pattern, where all individuals showed local modulation in the electric
current density, with a density decrease of Delta and Beta 2 and increase of Alpha 1
brainwaves. In the analysis of the Theta and Alpha 2 current density, besides intrain-
dividual tendency similar to the standard group, we found results with significant
values for p < 0.05, in subjects 3 and 5 in Theta band and subjects 1, 3, 5 and 6
in Alpha 2 band. That is, in almost all subjects, there is a suggestion, mainly in
Alpha 2, as in the intragroup analysis, of a local modulatory effect on the current
density of EEG frequency band, with decreased Theta activity and increased activity
in Alpha 2. On Beta 1 frequency band, no statistically significant results were found
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Table 5 Intraindividual comparison of cortical electric current distribution between the conditions
PRE1 × POS1

Subjects Threshold two-tailed
(0.05)

Frequency band

Delta Theta Alpha 1 Alpha 2 Beta 1 Beta 2

1 0.341 −0.018 −0.175 0.082 0.431* −0.287 −0.072

2 0.450 0.110 −0.044 0.256 −0.071 0.073 0.087

3 0.344 −0.296 −0.403* 0.103 0.405* 0.203 −0.225

4 0.447 −0.371 −0.084 0.230 0.174 −0.340 −0.406

5 0.503 −0.470 −0.538* −0.109 1.010* 0.124 −0.160

6 0.413 −0.394 −0.352 0.331 0.443* −0.261 −0.265

Table 6 Intraindividual comparison of cortical electric current distribution between the conditions
PRE10 × POS10. Beta 2 (+) is the superior range of Beta 2 (30–35Hz), while Beta 2 (−) is the
inferior one (24–30Hz)

Subjects Threshold two-tailed (0.05) Frequency band

Delta Alpha 2 Beta 2 (+) Beta 2 (−)

1 0.549 −0.789* 1.510* 0.107 0.274

2 0.664 −1.040* 1.680* 0.256 0.023

3 0.450 −0.296 0.173 −0.502* −0.641*

4 0.523 0.797* −0.935* 0.906* 0.539*

5 0.595 0.047 0.038 −1.060* −0.389

6 0.479 0.446 −0.274 0.331 −0.331

in the comparison of the local current density between the conditions PRE1× POS1
conditions. There is no tendency of the intraindividual effect with the binaural beat
employed.

In Table6, one can see the results of the intraindividual comparison of the local
electric current density between conditions PRE10 × POS10. In this analysis, con-
sidering the current density on frequency bands Delta, Alpha 2, and Beta 2 (+), in
most of the subjects occurred the maintenance of the intraindividual tendency of
the effect found in the intragroup comparison. In the Delta and Alpha 2 frequency
bands we found statistically significant values for p < 0.05 in subjects 1, 2, and 3,
whereas in Beta 2 (+) we found statistical significance in subjects 2, 3, 4, 5, and 6.
These results may indicate that the binaural beat produces a local modulation effect,
described in the intragroup analysis, on the current density of the EEG frequency
band, with a decrease in delta activity and an increase in Alpha 2 and Beta 2 activity
(+). In the Beta 2 frequency band, statistically significant results were found in sub-
jects 3 and 4. However, we did not find an intraindividual tendency of the effect of
the binaural beat used. Nevertheless, the results showed that there was again a local
effect of modulation of the current density in the voxel coordinates with the max-
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Table 7 Intraindividual comparison of cortical electric current distribution between the conditions
PRE1 × POS10

Subjects Threshold two-tailed (0.05) Frequency band

Delta Alpha 2

1 0.572 −0.927* 0.023

2 0.577 −0.958* 1.380*

3 0.465 0.151 0.320

4 0.514 0.752* −0.924*

5 0.505 −0.738* 0.794*

6 0.456 0.867* −0.245

imum statistical value found in the intragroup comparison between the conditions
PRE10 × POS10 conditions.

Lastly, the results of the intraindividual comparison of the local electric current
density between the conditions PRE1 × POS10 conditions are depicted in Table7.
We found in the Delta frequency band significant statistical values in subjects 1, 2, 4,
5 and 6, and the Alpha 2 frequency band, in subjects 2, 4, and 5. The intraindividual
tendency to the effect identified in the intragroup comparison is evidenced in most of
these subjects, that is, a decrease in the local density of Delta activity and an increase
in Alpha 2 activity. It is observed that the current density in the voxel coordinates
with maximum statistical values, in their respective EEG frequency bands, identified
in the intragroup analysis, present a local modulatory effect in the intraindividual
analysis.

The analysis using eLoreta also provided a pictorial representation of the effects
of binaural beats in anatomical areas of the brain. The obtained results for the three
studied conditions (PRE1 × POS1, PRE10 × POS10, and PRE1 × POS10) are
depicted in Figs. 5, 6, and 7, where are evinced the positions with significant changes
in the neural behavior, regarding the studied conditions. For interpretation purposes,
one must consider the regions in blue as the ones with a significant decrease in the
electrical activity, and the regions in red otherwise. More specifically, Figs. 5, 6 and 7
are pictographic representations in each frequency band and experimental condition,
in three planes of perspective—axial, sagittal, and coronal (from left to right).

Our analysis disregards the temporal specificity of when differences in EEG activ-
ity began or how long they lasted.Our interest is to describe the differences in theEEG
spectrum domain, that is, which EEG frequency bands have activity in the increased
or decreased current generating sources and where these EEG current sources are,
through the voxel coordinates of the Montreal Neurological Institute brain digital
model (MNI). Therefore, the voxels that are shown in Figs. 5, 6, and 7 are in differ-
ent planes because the location of the differences in current distribution found in the
statistical analysis of LORETA is in regions related to the EEG frequencies in each
comparison condition.
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Regarding Fig. 5, we can observe the effects on the current sources within the
first session of the binaural beats application. Also, an acute increasing effect of the
neural activity in the regions of theMedial Frontal Gyrus and Anterior Cingulate can
be observed, for Alpha 1 and Alpha 2. At last, for Delta, Theta (Left Lower Front
Gyrus and Posterior Cingulate, respectively), Beta 1 and Beta 2 frequencies bands
(both in the right Insula), a decrease in the neuronal activity is depicted.

The eLORETA analysis of the conditions PRE10× POS10 on Fig. 6 showed that
the dominating effects of the binaural beats stimulationwere noticed as an increase in
the Alpha 2 neural activity and a diminished neural activity at the Parahippocampal
Gyrus, within Delta band.

At last, Fig. 7 suggests a modulation on the signal sources when comparing the
conditions before and after the tenth session of the 5Hz binaural stimulation: an
increase of the neural activities at the Alpha 2 and Beta 2 frequency bands, at the
Anterior Cingulate and Parahippocampal Gyrus respectively. Also, the Delta fre-
quency displayed an intensity reduction at the Frontal Medial Gyrus.

4.3 Pattern Recognition Results

In this section, we aimed to explore the capabilities of classifiers into finding differ-
ences between EEG patterns, before and after an individual was subjected to binaural
beats. Our objective with this exploratory study was to investigate the possibility of,
while finding these differences, also open a new path for possibly finding the effec-
tiveness of the treatment, duration of the effects, sensitivity to the stimulus, among
others.

We divided this subsection into two parts. The first, named Analysis of Classifiers
Sect. 4.3.1 concerns the analysis of the results that we obtained with the classifiers we
proposed to study, in Sect. 3.5. The second, Multilayer Perceptron Analysis, regards
a more profound analysis of the results given by the best configuration of MLP.

4.3.1 Analysis of Classifiers

We analyzed the performance of the algorithms using the cross-validation technique.
The obtained results are depicted on boxplots, from Figs. 8, 9, and 10. The results
are organized considering the three different conditions (PRE1 × POS1, PRE10 ×
POS10, PRE1 × POS10) and are detailed and discussed below.

The condition PRE1 × POS1 consists of the brainwaves obtained immediately
before and after the first session of binaural beats. The results show the classifiers
have different performances, regarding the same EEG frequency. For example, while
the Multilayer Perceptron, k-Nearest Neighbors, and Random forest had a good
performance when classifying Delta, the SMO algorithm showed a relatively bad
performance, often showing negative kappa indexes. This suggests that some of
those algorithms might be more suitable than others for identifying differences in
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Fig. 8 BoxPlot of the performance of the classifiers from Random Forest (RF), Decision Table
J48 (J48), k-Nearest Neighbors (IBK), Support Vector Machine (SMO) and Multilayer Perceptron
(MLP) algorithms, for PRE1× POS1 conditions, for PRE10× POS10 conditions, considering the
cross-validation analysis and conditions PRE1 × POS1

the data,which is an expected result, considering that those classifiers rely ondifferent
theoretical concepts. The boxplots in Fig. 8 show a detailed view of the performance
of the classifiers for each EEG frequency. What one can observe is that the classifiers
have similar performance for Broadband, Alpha 2, Beta 1, and Beta 2. However, if
we look into Delta, Theta, and Alpha 1, the discrepancies among classifiers are more
evident, where almost all MLP configurations performed better (high kappa index
and reduced distances between the quartiles and the median) than SMO, kNN and
Random Forest. This tendency can also be observed in the other frequencies, but, as
said before, they are more subtle.

Condition PRE1×POS1 is one of the three conditions of interest because it shows
the immediate effects of binaural beats in subjects with no previous experiences on
this type of approach. Our results demonstrate that strong differences can be found on
Delta, Theta, and Alpha 1 frequencies, especially if we consider the MLP, kNN, and
Random Forest. This suggests that the binaural beat has an immediate effect on the
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Fig. 9 BoxPlot of the performance of the classifiers from Random Forest (RF), Decision Table
J48 (J48), k-Nearest Neighbors (IBK), Support Vector Machine (SMO) and Multilayer Perceptron
(MLP) algorithms, for PRE1× POS1 conditions, for PRE10× POS10 conditions, considering the
cross-validation analysis and conditions PRE10 × POS10

modulation of some EEG frequencies, as shown in our previous analysis (Sects. 4.1
and 4.2), with prominent results on Delta and Theta.

Classifiers were also tested among cerebral conditions immediately before and
after the tenth session of binaural stimuli, PRE10× POS10 conditions. As happened
concerning the PRE1 × POS1 conditions, most of the classifiers could successfully
identify the classes PRE10 and POS10 concerning Delta and Theta brainwaves. It is
important to notice, however, that better classification resultswere obtained forDelta,
if we compare the results for Multilayer Perceptron from conditions PRE1 × POS1
and PRE10 × POS10. Also, the performance of MLP, in this condition, dropped
considerably, achieving the worst results when comparing the other conditions. This
may indicate that after the tenth session, continuous and more prominent modifica-
tions still occur regarding the Delta band, but for the Theta frequency, these changes
are, somehow, more subtle or nonexistent. The boxplots in Fig. 9 highlights these
changes, among conditions. Differences are still easily distinguishable among con-
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Fig. 10 BoxPlot of the performance of the classifiers from Random Forest (RF), Decision Table
J48 (J48), k-Nearest Neighbors (IBK), Support Vector Machine (SMO) and Multilayer Perceptron
(MLP) algorithms, for PRE1× POS1 conditions, for PRE10× POS10 conditions, considering the
cross-validation analysis and conditions PRE1 × POS10

ditions for Delta frequency, especially for MLP, k-NN, and Random Forest. What is
curious, nevertheless, is that k-NN and Random Forest had better performance com-
pared to conditions PRE1× POS1. This and the fact significant differences between
conditions (Delta), can indicate that the stimuli still significantly change the EEG
modulation from two consecutive sessions, even after 9 sessions of binaural beats.

However, this event is observed in specific frequencies, while in others, it does not
happen. It is the case of Theta. From conditions PRE10 to POS10, what we observe,
is that there are no significant differences, meaning that the binaural stimuli are
not successful in modulating Theta, after 9 sessions of experiments. Those results
indicate that an equilibrium state in Theta was achieved after enough number of
sessions.

We can also evaluate the performance of the classifiers and the long term effect
of the binaural stimulus, observing the conditions before the first session and after
the tenth session. The results show that indeed there are differences before the first
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Fig. 11 The general performance of classifiers Random Forest (RF), Decision Table J48 (J48),
k-Nearest Neighbors (IBK), Support Vector Machine (SMO) and Multilayer Perceptron (MLP)
algorithms, considering every condition, PRE1× POS1, for PRE10× POS10 and PRE1× POS10

session and after the tenth session for, especially for Delta, Theta, and Alpha 1. This
also means that Theta EEG was modulated on the first session, but stabilized after
the tenth session.

Considering the previous results, one can see that there is a trend in which the
MLP configurations perform better than the other classifiers. To corroborate this
assumption, we run aWilcoxon test for paired samples, andwe calculated the number
of classifiers that a specific classifier would outperform. Our results indicated that
in 15 of 21 situations (7 band frequencies and 3 different conditions), some MLP
configuration outperformed the other classifiers. This means that, while we do not
have a specific configuration that has better performance, we have that the MLP, in
general, outperforms the other machine learning algorithms. In Fig. 11 we present
the general performance of the classifiers we employed.

This result also shows that this dataset is easily generalized. Every MLP config-
uration had only one hidden layer, meaning that the dataset was separable in a low
dimensional space. Therefore, it is possible to conclude that the changes made by
binaural beats are almost immediate and easily recognized, opening opportunities for
the use of machine learning to identify the EEG modifications after such stimulus.

4.3.2 Self-reporting Results

The assessment of anxiety and depression symptoms in the group was performed
using subjective self-reporting instruments, the State-Trait Anxiety Inventory, and
the Beck Depression Inventory.

The average anxiety score was 38± 6.8 for the Trait factor and 40± 8.0 for
State factor, before the first binaural session. After the 10th session, the scores were
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Table 8 Results for anxiety and depression measures

Instrument Condition Mean Standard
deviation

p-value

Anxiety trait Pre 1st session 38 6.8 0.48

Post 10th session 37 6.8

Anxiety state Pre 1st session 40 8 0.11

Post 10th session 39 7.6

Beck depression
inventory

Pre 1st session 4.17 3.37 0.52

Post 10th session 4.5 3.39

37± 6.8 for Trait and 39± 7.6 for State. The Wilcoxon test for paired samples
indicated that Pre versus Pos comparisons were not significantly different (p = 0.48
for Trait p = 0.11 for State factors), as shown in Table8.

For depression, the average score was 4.17± 3.37 before the first binaural stim-
ulation. After the 10th session, the scores were 4.5± 3.39. The Wilcoxon test for
paired samples revealed the absence of significant differences (p = 0.52), as shown
in Table8.

These results suggest the absence of depression symptoms in both assessment
sessions, showing that the volunteers had no symptoms of depression either before
or after the binaural stimulation program.

It is very important to notice that the therapeutic effects of binaural beats in anxiety
are related after a more intensive stimulation program. Le Scouranec et al. [41] found
differences in anxiety after a month of stimulation, using at least 5 times weekly.

5 Discussion

This chapter aims to investigate the performance of binaural beats in changing the
modulation of EEG frequencies after a predefined number of sessions. To perform
the experiments, we used EEG data from 6 different individuals, subjected to 10 ses-
sions of binaural beats stimulations. The electroencephalogram was obtained before
(PRE1) and after (POS1) the first sessions and before (PRE10) and after (POS10)
the tenth session. Therefore, for each volunteer, 40 epochs of 2 s each were obtained,
and three different dispositions of the data were analyzed: PRE1 × POS1, PRE10
× POS10, PRE1 × POS10. Each separate condition (PRE1, POS1, PRE10, and
POS10) was individually processed using the EEGLab plugin for Matlab, where
artifacts were removed using Independent Component Analysis. The remaining data
were then filtered in seven different frequency ranges, comprising the Broadband,
Delta, Theta, Alpha 1, Alpha 2, Beta 1, and Beta 2.

Considering the frequency bands, we used three different methods to verify every
possible change. We first applied a simple statistical analysis using the Wilcoxon
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non-parametric test. Then, we used the exact-Low-Resolution Brain Electromagnetic
Tomography software to investigate the spatial changes caused by the modulations.
At last, we considered a novel approach using a pattern recognition algorithm, the
Multilayer Perceptron (MLP).

First, the statistical analysis showed that there were significant differences among
all EEG frequencies for almost every condition (PRE1 × POS1, PRE10 × POS10,
and PRE1 × POS10), and for specific electrodes concerning Theta, Alpha 1, Alpha
2, Beta 1 and Beta 2. For Delta, every electrode captured at least one significant
difference among each condition. Finally,more significant differenceswere observed
in condition PRE1 × POS1, especially concerning Delta and Broadband ranges.

In the eLORETA study, we performed an intra-subject analysis, due to individual
variability. In order to do so, we compared the cortical electric current distributions,
considering conditions PRE1×POS1, PRE10 × POS10, and PRE1 × POS10. Con-
sideringTable3, results showed that there is a tendency that appears in both individual
and group behavior, where Delta and Beta 2 showed a decrease in local modulation,
while an increase was observed for Alpha 1. For Theta and Alpha 2 we found differ-
ent results for different subjects, meaning that besides the intra-individual tendency,
subjects still behaved differently among each other. However, still, almost all sub-
jects presented a local modulation in Alpha 2, while a decrease in Theta activity.
Figure5 displays the locations of local modulations, where, for this condition, and
acute effect of the neural activity in the Medial Frontal Gyrus and Anterior Cingu-
late can be observed, for Alpha 1 and Alpha 2. On the other hand, a decrease in
the neuronal activity in the Left Lower Front Gyrus, Posterior Cingulate (Delta and
Theta) and right Insula (Beta 1 and Beta 2) is observed. Considering the analysis of
PRE10 × POS10 conditions, a decrease in Delta activity and an increase in Alpha
2 and Beta 2 could be observed in specific subjects, but we did not find an intra-
individual tendency of the effect of the binaural beat used. Nevertheless, results still
corroborated a local modulation in voxels coordinates with maximum statistical val-
ues for this condition. Figure6 depicts these results, where a diminished activity can
be observed at the Parahipocampal Gyrus within Delta band. At last, for condition
PRE1× POS10, Delta and Alpha 2 also showed a decrease in Delta modulation and
an increase in Alpha 2 activity, and Fig. 7 illustrates these results.

Therefore, comparing the results given by eLORETA, the Alpha 2 band presented
a strong increase in the current density distribution, mostly at the Anterior Cingulate.
This effect is similar to the ones found in other studies [31]. The neural activity of this
structure is related to the monitoring of mistakes regarding social conduct, as also
on emotions recognition and expression. Therefore, this region receives information
from emotive stimuli and selects the appropriate answer. Also, it adjusts the behav-
ior based on the errors made by one or frustrated expectations [14]. The increase of
the Alpha activity in this area is also inversely related with blood oxygenation [24],
meaning that themetabolic activity in this region is reduced and the consequent inter-
actions of this nucleus with the Default Mode Network, modulated by binaural beats,
can be associated with the cognitive and somatic anxiety symptoms conditioning in
clinical populations in training protocols with Neurofeedback [27, 62].
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In our third analysis, we considered the classification results provided bymachine
learning (ML) algorithms. In the first moment, we considered the Random Forest,
J48, four configurations of k-Nearest Neighbors, four configurations of Support Vec-
tor Machine, and eight configurations of Multilayer Perceptron, in order to obtain
the algorithm with the highest discrimination capability. Observing the classification
performance depicted in Figs. 8, 9, 10, and 11, we concluded that the MLP algorithm
performed better in 15 of 21 situations,meaning that this classifier, in general, outper-
forms the other ML algorithms. Despite that, most of the classifiers found repeatable
results for PRE1× POS1, PRE10× POS10, and PRE1× POS10. In PRE1× POS1,
high separability in frequencies Delta, Theta, and Alpha 1 can be found, especially
if we consider MLP, k-NN, and RF algorithms, suggesting that the binaural beats
had an immediate effect on EEGmodulation. For PRE10× POS10, Delta and Theta
could be successfully identified, but the performance of the ML algorithms dropped
considerably for Theta, suggesting that changes in this frequency range after a long
program of stimulation are little or non-existent. At last, the performance of the clas-
sifiers for PRE1× POS10 was similar to conditions PRE1× POS1. In this situation,
significant differences could be found in both Delta and Theta, for RF, k-NN and
MLP algorithms, meaning that besides little differences occur between consecutive
sessions (PRE10× POS10), they exist if we consider the basal state of EEG, before
the binaural stimuli. This study suggested that modulation in theta exists, and this
finding could be used to create novel therapeutic solutions towards relaxation and
creative states [9].

At last, we considered the self-reporting results of the State-Trait Anxiety Inven-
tory and Beck Depression Inventory, applied before the first session, and after the
tenth session of binaural stimuli. Our results were not significantly different between
conditions, perhaps because of the short duration of the experiment.Also, subjects did
not present depression symptoms in both assessment sessions. Nevertheless, results
still showed a trend towards diminishing the scores after the tenth session, and a
more intensive stimulation program could show statistically significant differences
before and after the binaural beats stimuli [41].

6 Conclusion

In this work, we aimed to explore the effects of a 5Hz binaural beat stimulation
within 10 sessions of the experiment on healthy subjects. For that, we approached
the problem using a conventional and a novel approach with MLP, in order to use it
as a pilot study for verifying the possible effects of binaural beats on the EEG signal.

Our analysis showed complementary and concordant results. The non-parametric
Wilcoxon test for paired data showed a statistically significant difference in the
amplitudes of all brainwaves on Tables2, 3, and 4. The eLORETA analysis, using
current sources in order to find the most prominent expressions of neurons groups
within different regions showed long term differences among signals before the first
experiment session (PRE1) and after the tenth experiment session (POS10) regarding
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Delta and Alpha 2 frequencies, with oscillations within Beta 2 when comparing the
PRE10 × POS10.

Finally, among several classifiers, we found out that the Multilayer Perceptron
is the most suitable machine learning algorithm for the analysis of the effects of
binaural beat stimulation. It showed evident changes, mostly in Delta, Theta, and
Alpha 1 frequencies. The Theta band was the surprise element in our analysis, since
none of the methods used showed a continued modification in the aforementioned
frequency, suggesting entrainment, to be further explored. Modifications in the theta
range can elicit relaxation and creativity [9].

The statistical analysis showed that there were significant differences for almost
every condition evaluated, for specific electrodes, regarding Theta, Alpha 1, Alpha
2, Beta 1 and Beta 2, while for Delta, almost every electrode showed different results
between conditions. Our main results on eLORETA indicate a strong increase in the
current distribution, mostly in the modulation in Alpha 2, at the Anterior Cingulate.
The neural activity of this structure is related to the monitoring of mistakes regarding
social conduct, as also on the recognition and expression of emotions. Our third
analysis showed that pattern recognition algorithms are able to evince the main
differences among all studied conditions (PRE1 × POS1, PRE10 × POS10, and
PRE1 × POS10), with high separability in Delta and, surprisingly, in Theta. Lastly,
regarding the self-report questionnaire of the State-Trait Anxiety Inventory and Beck
Depression Inventory, significant differences between conditions were not found,
although a trend towards diminishing the scores after the tenth session was observed.

The lack of a control or placebo group limits our conclusions, though several
works deal with just a single group [29, 41]. However, our data also present some
important contributions. For further works, the use of a larger sample of subjects
must be considered, as well as a control group, providing a bigger quantity of EEG
data and questionnaire responses. Furthermore, other classifiers should be tested in
order to find a faster and more accurate machine learning algorithm for testing the
data. Once the significant relevance of binaural beats is proved, the application of
a classifier for identifying the entrainment or EEG amplitude change could be used
for biofeedback or for checking if the binaural beats treatment is being effective.
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Automated Detection of Seizure
and Nonseizure EEG Signals Using Two
Band Biorthogonal Wavelet Filter Banks

Dinesh Bhati, Ram Bilas Pachori, Manish Sharma and Vikram M. Gadre

Abstract The automated feature identification and classification of nonseizure and
seizure electroencephalogram (EEG) is very useful for the diagnosis of epilepsy. In
this chapter two band biorthogonal wavelet filter banks are used for classification
of nonseizure and seizure EEG signals, and their classification accuracy has been
evaluated. The energy or the bispectral phase entropies of the wavelet subbands
can be used to discriminate nonseizure and seizure EEG signals. We compare the
performance of energy measure and the bispectral phase entropies to discriminate
EEG signals. We compare the classification accuracy of thirty biorthogonal filter
banks with respect to the regularity orders of the synthesis and analysis of low pass
filters and the number of wavelet decompositions. It is found that the energy measure
performs better than the bispectral phase entropy for the cases forwhich the regularity
order is greater than or equal to five independent of the wavelet decomposition
level. For the fifth and sixth levels of wavelet decomposition, it is found that the
energy measure always performed better than the bispectral phase entropy measure
independent of the regularity of the filter bank. For the energy measure, the filter
banks with higher regularity orders are found to perform better than the filter banks
with lower regularity orders at almost all the decomposition levels. However, for the
bispectral phase entropy measure, the filter banks with lower regularity orders are
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found to perform better than the filter banks with higher regularity orders for most
of the decomposition levels. The highest classification accuracies obtained from the
bispectral phase entropies and the energy measure is 96.4% and 98.2% respectively.

1 Introduction

In the last two decades, the digital signal processing community has tremendously
employed wavelet transform for signal denoising [1], compression [2], and feature
extraction [3, 4]. Various authors have proposed different methods for the analysis
of biomedical signals such as heart rate variability (HRV) [5] signals, electroen-
cephalogram (EEG) signals [6–10], electrocardiograph (ECG) signals [11, 12] and
so on. Epilepsy is characterized by recurrent seizures or the misfirings of the electri-
cal system of the brain. Smart diagnostic systems are required for the automated
identification and classification of nonseizure and epileptic seizure EEG signals
[3, 13–19]. Researchers have proposed different methods for the automated classifi-
cation of seizure and nonseizure EEG signals [20–22]. Various authors have proposed
EEG signal classification methodologies based on empirical mode decomposition
[6, 7, 23, 24], statistical parameters [25, 26], time-frequency analysis [27–29], sin-
gular value decomposition [30, 31] and band power and auto regression models [32].
Yol et al. [33] compare the performance of several classifiers such as Linear Discrim-
inant Analysis (LDA), K-Nearest Neighbor classification (KNN) and Naive Bayes
classifier for EEG signal classification for several feature extraction methods such
as Renyi entropy, Tsallis Entropy and coherent relative entropies of EEG signals.
Iftikhar et al. [34] survey various techniques for feature extraction and classification
of EEG signals. The method of deep learning is also discussed. Chakole et al. [35]
study EEG signal classification in the context of Brain Computer Interface. They
extract features from the EEG signals to differentiate several mental tasks. They
show that the classification accuracy directly depends on the type of features cho-
sen for the classification and their effectiveness. Subasi et al. [36] study EEG signal
classification and flash stimulation in the context of migraine neurological disorder.
They have provided guidelines for choosing the effective window length of EEG
signals for achieving high classification accuracies. Lu et al. [37] employ hybrid
features based on Kraskov entropy and Hilbert Huang Transform. They show that
the hybrid features perform very well in the classification of EEG signals. Datta and
Chatterjee [38] introduces ensemble architectures and used wavelet based energy
and entropy and band power and adaptive auto regressive models. They have shown
that good classification accuracies can be obtained with simple classifiers such as
K-Nearest Neighbour classifier. In a recent survey by Chakladar and Chakraborty
[39], authors compare various methods for EEG signal classification. They classify
variousmethods based on the criteria of low-cost methods or computationally expen-
sive methods. Fasil and Rajesh [40] used exponential energy features and obtained
very high classification accuracies for classification EEG signals. EEG signals are
nonlinear and nonstationary in nature [41]. Among all the existing signal analysis
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transforms, researchers have found that wavelet transform to be the most appropriate
choice to capture the dynamics of the signal in time and frequency domain [42].
Two-band wavelet transform has shown outstanding performance in comparison to
many other existing methods used for the classification of EEG signals [43, 44].

Orhan et al. [43],Ubeyli et al. [45, 46], Bhati et al. [47] andSharma et al. [48] study
the performance ofwavelet filter banks in feature extraction and classification of EEG
signals. Patidar et al. [49] use tunable-Qwavelet transform for feature extraction from
EEG signals and proposed an empirical alcoholic index for diagnosis of alcoholism.
Tapan et al. [50] studied the performance of some specific two band orthogonal as
well as the biorthogonal wavelet transform to classify seizure and nonseizure EEG
signals.Bhati et al. [47] have shown that time-frequencyproduct optimized three band
biorthogonalwavelet filter banks performverywell in classification and identification
of nonseizure and seizure EEG signals. Therefore, in this chapter, we evaluate the
performance of two-band biorthogonal wavelet filter banks with higher regularity
orders in the classification of nonseizure and seizure EEG signals. Bhati et al. [47] use
norm of the wavelet subbands to extract the features of the EEG signal. Acharya et al.
[4, 51] and [52] use bispectral phase entropies to extract the features of the normal
and nonseizure EEG signals. In this work, we present the performance comparison
of bispectral phase entropy measures and energy in extracting the features of the
EEG signal from its wavelet subband signals extracted from two band biorthogonal
wavelet filter banks.

Wavelets are time frequency localized, smooth, oscillating functions used to
extract the time and frequency domain features of the nonstationary signals [53].
In this work, we use the wavelet transform to analyze the wavelet components in the
nonseizure and seizure EEG signals. The decision of the signal classifier is signifi-
cantly affected by the wavelet chosen for analyzing the EEG signals. The wavelets
form the basis functions of the wavelet transform which are obtained by dilating and
shifting a mother wavelet and forms a wavelet multiresolution analysis [53]. Wavelet
transform has the advantage that the basis functions not only provide finite resolution
in both times as well as a frequency domain, but also the wavelets can be optimized
for better resolution simultaneously in time and frequency domain. It is well known
that wavelet transform can be implemented using perfect reconstruction orthogonal
or biorthogonal filter banks, provided they satisfy certain regularity conditions. Tree
structure wavelet filter bank with L level of decompositions divides the input signal
in L + 1 subband signals. The outputs of the low pass filters are called approxima-
tions, and the output of highpass filters are called details. Thus, a wavelet tree with L
level of wavelet decomposition yields one approximation signal and L detail signals.
The process of feature extraction involves two steps: (1) wavelet decomposition of
a signal in wavelet subbands and (2) feature extraction from subband signals. The
features of the given EEG signal are obtained by computing a statistical measure for
all the L + 1 subband signals. Figures1 and 2 show the seizure (S) and nonseizure
(NS) EEG signals and the respective spectra.

Wavelet decomposition of a signal can be obtained either from orthogonal filter
banks or biorthogonal filter banks [53]. The regularity orders of synthesis and analysis
low pass filters are necessarily the same in case of orthogonal filter banks, which
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Fig. 1 Plot of a seizure EEG signal, b nonseizure EEG signal

Fig. 2 Magnitude spectrum characteristics of normalized a seizure EEG signal, b nonseizure EEG
signal

is not the case with biorthogonal filter banks [53]. Unlike the design of two-band
orthogonal filter banks, more than one filter is designed in two-band biorthogonal
filter banks, and therefore degrees of freedom available is more in comparison to
orthogonal filter banks. An automated framework for classification of EEG signal
comprises a feature extraction unit for dimensionality reduction and a classifier to
identify its class as a seizure or nonseizure EEG signal from the extracted features
[54]. In this chapter, we use two-band biorthogonal wavelet filter banks to extract
features of an EEG signal. To the best of our insight, the comparative study of
two-band biorthogonal filter banks with different regularity orders in classification
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of nonseizure and seizure, EEG signals are not available in the literature.We study the
performance of two-band biorthogonal filter banks with respect to its regularity order
and the number of wavelet decompositions in discriminating nonseizure and seizure
EEG signals. Since the nonseizure and seizure EEG signals are highly dynamic
and nonlinear in nature, we employ higher order spectral measure bispectral phase
entropy to extract the features of the EEG signal from its wavelet subband signals.

2 Two-Band Biorthogonal Filter Banks

The nature of EEG signals is highly dynamic and nonstationary [55]. Wavelet filter
banks can be used to capture the dynamics of the EEG signals in time and frequency
domain. Figure3 shows the two-band perfect reconstruction filter bank (PRFB) and
the wavelet tree structure [53] used to obtain the wavelet decomposition of the given
EEG signal at the third level of the wavelet decomposition. The filters G0(z) and
H0(z) represents the synthesis and analysis of lowpass filters respectively. Similarly,
G1(z) and H1(z) represents the synthesis and analysis of high pass filters respectively.
Alias cancellation can be ensured by choosing [53]:

H1(z) = z−1G0(−z),G1(z) = zH0(−z)

Wavelets with regularity orders of KA and KS can be generated from two-band
PRFB, if its low pass filters satisfy the conditions of KA and KS zeros on the aliasing
frequency ω = π . Let

H0(z) =
(
1 + z−1

2

)KA

QA(z).

and

G0(z) =
(
1 + z−1

2

)KS

QS(z).

In thiswork,we evaluate theEEGsignal discrimination ability of various biorthog-
onal filter banks with respect to regularity orders KA and KS . It should be noted that

(a) Perfect reconstruction filter bank (b) Wavelet tree filter bank

Fig. 3 Wavelet filter bank. a Two-band analysis and synthesis filter bank. bWavelet tree filter bank
obtained from iterations of analysis bank on the low pass filter branch
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even for the cases KA = KS the roles of QA(z) and QS(z) filters can be interchanged
without affecting the perfect reconstruction condition. The energy or the bispectral
phase entropy of the wavelet subband signals has been used to compute the features
of the given EEG signal.

3 Bispectral Phase Entropy

The bispectrum β(ν1, ν2) of a subband signal x(t) is given by [4, 51]:

β(ν1, ν2) = E[X (ν1)X (ν2)X
∗(ν1 + ν2)]

where X (ν) represents the Fourier transform of the signal x(t). The L1 and L2 norm
bispectral phase entropies, denoted by Hen1 and Hen2 are given by [4, 51]:

Hen1 = −
∑
k

pk log(pk)

Hen2 = −
∑
i

qi log(qi )

where,

pk = |β(ν1, ν2)|∑
� |β(ν1, ν2)|

and

qi = |β(ν1, ν2)|2∑
� |β(ν1, ν2)|2

4 Artificial Neural Network and Classification of Signals

An Artificial neural network (ANN) [56] classifier maps a feature space to discrete
class space. It is an interconnection of artificial neurons that simulates a human brain.
It takes the features of the signal as an input and identifies its class. A neural network
is first trained to learn the different classes to identify. The classification accuracy of
an ANN is evaluated using a test set. The class of a given EEG signal is determined
using the following three steps:

• Step 1: Wavelet transform of a given EEG signal is computed using two-band
biorthogonal filter banks, and subband signals are obtained.

• Step 2: Bispectral phase entropies Hen1 and Hen2, or the energy of each sub-
band signal is computed and features of the EEG signal are obtained. For L level
of wavelet decomposition, one approximation and L detail subband signals are
available. Thus, L level of wavelet decomposition yields 2(L + 1) bispectral phase
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entropy features and (L + 1) energy features for the given EEG signal. This step
is called dimensionality reduction.

• Step 3: A trained neural network [43, 57] with ten hidden neurons and a single
hidden layer is employed to identify the class of a given EEG signal from its
features obtained in step 2. The ANN consists of linear activation functions and
hyperbolic tangent function in its output and hidden layer respectively [27]. The
neural network training algorithm used is Levenberg-Marquardt backpropagation
algorithm [43].

In this work, we use ten-fold cross validation to reduce the variance of the estimate
of the classification accuracy.

5 Results and Discussion

We evaluate the performance of two-band biorthogonal linear phase wavelet filter
banks to classify nonseizure and seizureEEGsignals.Wecompare theperformanceof
energy and the bispectral phase entropymeasures in extracting the time and frequency
domain features of the EEG signal from its wavelet subband signals and identifying
its class. The performance evaluation is done on the EEG signal dataset provided by
Bonn University, Germany. The EEG signals are recorded using signal acquisition
devices from the epileptic patients, and the healthy persons and a dataset are formed.
The samples of the EEG signals of length 4097 are taken at the sampling frequency of
173.61Hz. The signals are classified into five subclasses and identified by the names
A,B, C,D, andE. The setsA, B, C, andD are combined, and a set of nonseizure signal
is formed containing 400 signals. Subclass E comprises 100 seizure EEG signals
procured from the epileptic patients amid seizure movement [23]. The performance
of fifteen biorthogonal filter banks with different KS and KA regularity orders of
synthesis and analysis of low pass filters is evaluated. Bispectral L1 and L2 norm

Fig. 4 Entropy Hen1 of the subband signals obtained at the fourth level of wavelet decomposition
using filter bank with KA = 3 and KS = 1
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Fig. 5 Energy of subband signals obtained at the fifth level of wavelet decomposition using filter
bank with KA = 4 and KS = 2 that yielded the highest classification accuracy of 98.2%

phase entropies Hen1 and Hen2, respectively, and energy measures have been used
to extract the features from the subband signals [58]. Figure4 shows the boxplots
of the L1 norm bispectral phase entropy Hen1 obtained from the wavelet subbands
at the fourth level of wavelet decomposition for 100 seizure (S) and 400 nonseizure
(NS) signals from filter bank with KA = 3 and KS = 1. Figure5 shows the boxplots
of the subband energy at the fifth level of wavelet decomposition obtained from
filter bank with KA = 4 and KS = 2 and Table1 shows the corresponding p-values
obtained from the Kruskal-Walli’s statistical test [47]. It shows that the p-values are
very small in the subbands D2–D5 and A5, and thus the filter bank exhibit very high
discrimination ability. Figure6 shows the subband signals of an EEG signal obtained
from the same filter bank. Tables2 and 3 demonstrate the classification accuracy
with respect to the regularity orders of the filter banks and the number of wavelet
decompositions. Tables2 and 3 show the classification accuracies when bispectral
phase entropies and energy measures are used to extract the features from two-band
filter banks, respectively. It shows that the energy measure performs better than the
bispectral phase entropies at the fifth and sixth decomposition level independent of
the filter bank chosen to compute the wavelet subbands. Figure7 shows that the
energy measure performs better than the bispectral phase entropies for the cases for
which the regularity order is greater than or equal to five independent of wavelet
decomposition level. Figure8a, b show that the filter banks with higher regularity
orders performbetter than the filter bankswith lower regularity orders at almost all the
decomposition levels when energy measure is used for feature extraction. However,
Fig. 8c, d show that the filter banks with lower regularity orders perform better than
the filter banks with higher regularity orders for most of the decomposition levels
when bispectral phase entropies are used for feature extraction. Tables2 and 3 show
that the highest classification accuracy obtained from bispectral phase entropies is
96.4% from the 8th filter bank at the third level of wavelet decomposition, and that
obtained from the energy measure is 98.2% from the 20th filter bank at the fifth level
of the wavelet decomposition.
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Table 1 Discrimination of normalized seizure and nonseizure EEG signals using subband energy
measure and p-values. The results are obtained from biorthogonal filter bank with KA = 4 and
KS = 2 at the fifth wavelet decomposition level

Subband p-value

D1 0.2174

D2 2.2190e–04

D3 5.6470e–09

D4 3.4617e–07

D5 1.8616e–25

A5 3.2407e–13

Fig. 6 Wavelet subband signals of the EEG signal

We have further analyzed the nonseizure and seizure EEG signal discrimination
ability of bispectral phase entropies and energy measures for the simplest filter bank
with KA = 1 and KS = 1 using support vector machine (SVM) [59] at the sixth level
of the wavelet decomposition. Thus, there are seven and fourteen features obtained
from the energy measurement and the bispectral phase entropies respectively. We
used the student’s t-test [60] for the selection of significant (M) features and com-
puted the parameters sigma and the box constraint [61, 62] of the SVM that exhibit
the highest classification accuracy. Tables4 and 5 show the classification accuracy
when energy measurement and the bispectral phase entropies are used to extract the
features from wavelet subbands. We note that the highest number of significant fea-
tures (M) yields maximum classification accuracy. Thus, we verified that the energy
measure perform better than the bispectral phase entropies independent of the classi-
fier chosen for the classification. It should be noted that the energy measure not only
yields better classification accuracy than the bispectral phase entropies, the number
of features required in case of former is much lesser than that required in case of later.
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Table 2 Classification accuracy with respect to number (L) of wavelet decompositions and regu-
larity orders (KA) and (KS) when bispectral phase entropies are used to extract the features

FB no. KA KS L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 1 1 93 92.6 93 94 91.8 89.4

2 1 3 84 90.4 89.4 93.6 91.6 89.8

3 1 5 92 92.8 93.6 94.8 94.2 92.8

4 2 2 85 86.2 88 92.8 90.4 87.2

5 2 4 81.4 85.4 87.4 91.6 92.4 88.6

6 2 6 88.8 91.6 92.2 92.4 92 91

7 2 8 86.2 87.8 88.6 91.2 90.4 89.6

8 3 1 92.2 91.8 96.4 94.8 92.8 91.8

9 3 3 81.4 83.2 87.8 87.4 84.6 85

10 3 5 80.8 83.4 84.6 87.8 85.2 83.6

11 3 7 84.8 84 87 89.4 86.4 87.6

12 3 9 85.8 86 88.4 88.8 87.6 86.8

13 4 4 83.2 88.4 90.6 92.8 92.6 92.8

14 5 5 82.4 88.6 91.2 92.4 92.8 91

15 6 8 86.8 88.4 89.2 91.4 91.8 89.6

16 1 1 92.8 92.4 93.2 93.2 90 88.8

17 3 1 94 94 95 93.8 91.8 91

18 5 1 94.2 94.6 92.8 92.8 92 91.6

19 2 2 83.8 89.2 88.4 92.6 89.4 89

20 4 2 84.6 90.8 88.2 94 91.4 89.6

21 6 2 84 89.6 88 91.6 90.8 89.6

22 8 2 85.2 89.4 91 91.6 90.8 89.4

23 1 3 86.2 89.8 93.8 92.6 91.2 92

24 3 3 86.4 89.8 92 90.8 87.8 88

25 5 3 86.2 89.8 93.4 92 90.2 90.4

26 7 3 87 91 92.2 91.8 89.6 88

27 9 3 86.6 89.4 93.2 92.2 91.4 90.2

28 4 4 87.8 92.6 91.8 94 94.2 94.2

29 5 5 86.4 89.8 90.4 94.2 91.8 89.6

30 8 6 87 89.6 90.2 91.8 91.8 90.4

Table6 shows the classification accuracy reported by various authors in discriminat-
ing nonseizure, and seizure EEG signals. It shows that two-band biorthogonal filter
banks with regularity order of KA = 4 and KS = 2 performs better than many other
EEG signal classification methods proposed in the literature. It also shows that the
energy measure performs better than the bispectral phase entropies to extract the
features of the EEG signals when two-band biorthogonal wavelet filter banks are
used for the classification of nonseizure and seizure EEG signals.
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Table 3 Classification accuracy with respect to number (L) of wavelet decompositions and regu-
larity orders (KA) and (KS) when subband energy is used to extract the features

FB no. KA KS L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 1 1 79.6 86.8 88.6 87.2 95.8 95.8

2 1 3 88.6 90.8 94.2 94 97.6 97.6

3 1 5 89.2 91.8 92.8 95.6 96.6 97.4

4 2 2 87 88.6 96 97 96.4 97.2

5 2 4 88 90.2 95.2 96.4 97.4 96.4

6 2 6 88.2 89.6 94.8 95.8 97 96.8

7 2 8 88.2 90.4 94.6 95.6 96.4 97.4

8 3 1 86.2 86.6 94.2 96.2 97.2 97.2

9 3 3 86.6 89.4 96 96.2 96.4 97

10 3 5 87.4 88.8 95.8 96.6 96.6 96.8

11 3 7 88 89.8 95.8 96.8 96.4 96

12 3 9 87.8 88.6 95.6 96.8 96.8 96.6

13 4 4 87.8 90 95.4 96.2 97 96.8

14 5 5 88.8 90.8 93.4 94.4 96.8 97

15 6 8 88.8 91.6 93.6 93.6 97 96.8

16 1 1 80 87.2 88.6 87.8 96 96.2

17 3 1 88 87.4 90.6 94.2 96.8 96.8

18 5 1 88.4 88.4 90 94.2 97.2 96.6

19 2 2 88 88.6 89.8 97 97.8 97.4

20 4 2 88.2 89.6 91.4 97 98.2 97.6

21 6 2 87.8 88.6 92.6 96.8 97.6 97.8

22 8 2 87.4 89.2 92 96.6 97.2 97.6

23 1 3 87.6 88.8 91 96.8 96.2 96.2

24 3 3 86.8 89.4 91.8 95.8 96.6 97

25 5 3 87.6 88.4 92.6 95.8 96.2 96.8

26 7 3 87 90.6 93 95.6 96.6 96.6

27 9 3 88.4 88.8 92.8 96 97 97

28 4 4 88.6 90 95.6 94.6 97.2 97.4

29 5 5 89.8 90.6 93.8 94.4 96.8 97.8

30 8 6 88.8 91.6 91 94 96.8 97.2

Weare analyzing the performance of two-bandbiorthogonalwavelet filter banks to
identify and classify nonseizure and seizure EEG signals with respect to the regular-
ity of filter bank, number of wavelet decompositions, subband energy and bispectral
phase entropy feature extraction methods, SVM or ANN classifiers and number of
features required to obtain high degree of classification accuracy. Bhati et al. [47]
have shown that three-band biorthogonal wavelet filter banks perform very well in
the classification of seizure and nonseizure EEG signals. They used subband norms
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Fig. 7 Classification accuracy with respect to number (L) of wavelet decompositions to compare
the performance of subband energy measure and bispectral phase entropy for feature extraction. a
Classification accuracy obtained from filter bank no. 30 with regularity orders KA = 6 and KS = 8.
b Classification accuracy obtained from filter bank no. 15 with regularity orders KA = 6 and
KS = 8. c Classification accuracy obtained from filter bank no. 29 with regularity orders KA = 5
and KS = 5. d Classification accuracy obtained from filter bank no. 30 with regularity orders
KA = 8 and KS = 6

to extract the features of the EEG signal and obtained a very high classification
accuracy. Table3 shows the classification accuracy obtained when subband energy is
used for the classification of nonseizure and seizure EEG signals. The highest clas-
sification accuracy obtained from the ANN classifier is 98.2% and found to be better
than the many recently reported results in the literature and Fig. 9 shows the corre-
sponding receiver operating characteristic [63]. The subband energy of the signals
is the most simple and powerful measure to extract the features of the EEG signals.
The results have shown that the subband energy feature extraction measure performs
better than the higher order spectral measures in extracting the features of an EEG
signal, and the performance comparison of subband energy feature extractionmethod
with other complex feature extraction methods is a nontrivial research problem. It is
worth investigating the performance of subband energy feature extraction measure in
the classification of signals from various other datasets. There may exist a large class
of nonstationary signal datasets wherein subband energy feature extraction measures
may perform better than other complex feature extraction measures such as subband
entropy [6], frequency variances [7], fractal dimension [48], etc. It should also be
noted that the trend of the classification accuracy with respect to number of decom-
position levels shown by a given filter bank is a function of the measure used for
feature extraction. The results show that the trend for the classification accuracy with
respect to the number of the decomposition levels is highly sensitive to the statisti-



Automated Detection of Seizure and Nonseizure EEG Signals … 149

Fig. 8 Classification accuracywith respect to a number (L) ofwavelet decompositions. It shows the
effect of the regularity of the filter bank on the classification accuracy. a and b show classification
accuracy when subband energy is used to extract features. c and d show classification accuracy
when bispectral phase entropies are used for the classification of signals

cal measure energy or the bispectral phase entropy used for feature extraction. The
results show that, in general, the increase in the the number of decomposition levels
increases the classification accuracy when subband energy is used for feature extrac-
tion. However, the classification accuracy is found to decrease with the number of
decomposition levels at higher decomposition levels when bispectral phase entropies
are used for feature extraction. It should be noted that the classification accuracy at
the lower decomposition levels is better for filter banks with lower regularity order
than the filter banks with higher regularity orders when bispectral phase entropy is
used for feature extraction. However, the filter banks with higher regularity order
are found to exhibit better performance than the filter banks with lower regularity
order at the lower decomposition levels when subband energy is used for feature
extraction. It is found that the subband energy feature extraction measure performs
better than the bispectral phase entropy measure independent of the ANN or SVM
classifier used for EEG signal classification. Subband energy measure is found to
yield high classification accuracy even when the number of features is much smaller
than required when subband bispectral phase entropy is used for feature extraction.
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Table 4 Classification accuracy with respect to a number of significant features (M) and SVM
parameters when subband energy is used to extract the features from subbands of filter bank with
KA = 1 and KS = 1 at the sixth level of wavelet decomposition

M Classification
accuracy (%)

Sigma Box constraint

1 0.856 1 0.7

2 0.858 1 0.6

3 0.926 1 0.7

4 0.948 1 0.4

5 0.944 1 0.4

6 0.948 1 0.6

7 0.96 1 0.7

Table 5 Classification accuracy with respect to a number of significant features (M) and SVM
parameters when subband bispectral phase entropies are used to extract the features from subbands
of filter bank with KA = 1 and KS = 1 at the sixth level of wavelet decomposition

M Classification
accuracy (%)

Sigma Box constraint

1 0.8 1 0.5

2 0.718 1 0.4

3 0.71 1 0.7

4 0.706 1 0.5

5 0.7 1 0.4

6 0.696 1 0.4

7 0.7 1 0.7

8 0.818 1 0.7

9 0.84 1 0.5

10 0.828 1 0.5

11 0.828 1 0.5

12 0.848 1 0.4

13 0.86 1 0.5

14 0.864 1 0.7
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Table 6 Comparison of classification accuracy obtained from the biorthogonal filter banks with
recently reported results to classify nonseizure (A, B, C, D) and seizure (E) EEG signals

Authors Methodology Year Classification
accuracy (%)

Tzallas et al. [27] Time-frequency features using ANN 2007 97.73

Guo et al. [64] DWT and line length feature using ANN 2010 97.77

Gandhi et al. [50] DWT and energy and entropy features using
SVM and Probabilistic neural network

2011 95.44

Nicolaou et al. [65] Permutation entropy and SVM 2012 86.10

Samiee et al. [66] Rational discrete short-time Fourier transform
using multilayer perceptron

2015 98.10

Swami et al. [67] DTCWT and energy, Shannon entropy features
using general regression neural network

2016 95.24

This work Two-band biorthogonal filter bank with
KA = 4 and KS = 2 and multilayer perceptron

– 98.20

Fig. 9 Receiver operating
characteristic for
identification of seizure
signals for the best case
performance obtained with
subband energy features and
the filter bank no. 20 at the
fifth level of wavelet
decomposition. Note that
corresponding sensitivity and
specificity are 99.50% and
95% respectively

6 Conclusion

An automated expert system for the classification and identification of signals con-
sists of a feature extraction unit and a signal classifier to classify the signal based on
its features. Wemodeled an expert system in which a two-band biorthogonal wavelet
filter bank is used to compute the wavelet subband signals of nonseizure and seizure
EEG signals. Bispectral phase entropies and energy measures are used to extract the
features of the EEG signal from its wavelet subband signals. Results show that the
energy measure performed better than the bispectral phase entropies for the fifth and
sixth levels of wavelet decomposition independent of the regularity of the filter bank.
The energy measure performed better than the bispectral phase entropies for all the
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decomposition levels if regularity order of the filter bank is greater than five. The
filter banks with higher regularity orders are found to perform better than the filter
bankswith lower regularity orders at almost all the decomposition levelswhen energy
measure is used for feature extraction. The filter banks with lower regularity orders
are found to perform better than the higher regularity filter banks for most of the
decomposition level when bispectral phase entropies are used for feature extraction.
It is found that the energy measure outperforms bispectral phase entropy measure
independent of the classifier ANN or SVM was chosen for classification.
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Automated Identification of Epileptic
Seizures from EEG Signals Using
FBSE-EWT Method

Vipin Gupta, Abhijit Bhattacharyya and Ram Bilas Pachori

Abstract Epilepsy is a neurological disorder that leads to the occurrence of recur-
rent seizures. The electroencephalogram (EEG) signal is commonly used to record
the electrical functioning from the brain. These recorded EEG signals have non-
stationary and non-linear characteristics. In this chapter, we have introduced a
new methodology based on Fourier-Bessel series expansion (FBSE) and empiri-
cal wavelet transform (EWT) for the classification of epileptic seizure EEG signals.
The scale-space representation based detection of boundaries has been adapted for
the segmentation of the FBSE spectrum obtained with EEG signals, and the EWT
is utilized to obtain narrow sub-band signals. Then, the Hilbert marginal spectrum
(HMS) of these sub-band signals have been obtained with FBSE-EWT. Afterwards,
the line length and entropy features have been computed from obtained HMSs cor-
responding to different oscillatory levels of the EEG signals. To reduce the feature
space, the Kruskal-Wallis test based feature ranking is applied. The selected features
after feature ranking are used in random forest (RF) classifier for classifying normal
from healthy subjects and seizure from epileptic subjects using EEG signals. The
classification is also validated with 10-fold cross-validation and 50% training—50%
testing data techniques. In addition to these techniques, the 5-fold cross-validation
and 40% training—60% testing data techniques have been also applied on the sig-
nificant features corresponding to maximum classification accuracies obtained with
10-fold cross-validation and 50% training—50% testing data techniques in order to
reduce computational complexity. The assessment of classification performance is
also evaluated in terms of classification accuracy for different sample lengths of EEG
signals. The obtained maximum classification accuracy in this proposed method is
100%, with 50% training—50% testing data technique. The proposed method may
help the neurologists for the identification of healthy and epileptic subjects from
EEG signals.

V. Gupta (B) · A. Bhattacharyya · R. B. Pachori
Indian Institute of Technology Indore, Indore 453552, India
e-mail: vipingupta@iiti.ac.in

A. Bhattacharyya
e-mail: phd1401202001@iiti.ac.in

R. B. Pachori
e-mail: pachori@iiti.ac.in

© Springer Nature Singapore Pte Ltd. 2020
G. Naik (ed.), Biomedical Signal Processing, Series in BioEngineering,
https://doi.org/10.1007/978-981-13-9097-5_8

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9097-5_8&domain=pdf
mailto:vipingupta@iiti.ac.in
mailto:phd1401202001@iiti.ac.in
mailto:pachori@iiti.ac.in
https://doi.org/10.1007/978-981-13-9097-5_8


158 V. Gupta et al.

1 Introduction

Epilepsy is a neurological disease which identifies by the reoccurrence of epileptic
seizure [1]. The electroencephalogram (EEG) signals are more often used tool for the
identification of epilepsy because these signals contain information about the brain
[2]. The recorded EEG signals are non-stationary and non-linear in behaviours [2, 3].
Moreover, the neurologists can have difficulty in visually monitoring for these subtle
nature. Therefore, an automated identification system based on non-linear features
and non-stationary signal processing techniques are required to identify epileptic
seizures.

Severalmethods depend on non-linear features, and non-stationary signal process-
ing techniques are presented in the literature [4–28]. Amethod based on second-order
difference plot (SODP) of intrinsic mode functions (IMFs) obtained with empirical
mode decomposition (EMD) has been proposed in [4] for classification of normal
and epileptic seizure EEG signals. The obtained classification accuracy is 100%with
this proposed method. The classification of seizure EEG signals based on bandwidth
features obtained with EMD is presented in [5]. The achieved minimum and maxi-
mum classification accuracies are 99.5 and 100% for this method. In a work [6], the
authors proposed a method based on time-frequency localized three-band synthesis
wavelet filter bank with sub-band norm used as a feature which achieved a classifi-
cation accuracy of 99.66% for classifying seizure and non-seizure EEG signals. The
instantaneous area of analytic IMFs has also been utilized as features for epileptic
seizure detection. The achieved classification accuracy is 90% for this method [7]. A
method known as fractional linear prediction (FLP) has been used in research work
for the classification of seizure and seizure-free EEG signals. This method gives a
classification accuracy of 95.33% [8]. In another work [10], seizure-free and seizure
EEG signals have been classified with SODP of IMFs, and 95% confidence ellipse
area of SODP were used as features with artificial neural networks (ANN) classi-
fier. The obtained average classification accuracy was 97.75% for this method. The
one-dimensional local binary pattern (1D-LBP) based features are used in a method
for classifying seizure and seizure-free EEG signals. The classification accuracy
obtained in this method is 98.33% [14]. The classification based on phase space
representation (PSR) reconstructed with IMFs of EEG signals has been used in work
for classifying seizure and seizure-free EEG signals. The classification accuracy
achieved in this method is 98.67% [15]. The seizure and seizure-free EEG signals
in another work have been classified using three-band orthogonal wavelet filter bank
with an achieved classification accuracy of 99.3% [12]. The method based on mul-
tiscale radial basis functions (MRBF) and a modified particle swarm optimization
(MPSO) have been also used to classify seizure and seizure-free EEG signals with
an achieved classification accuracy of 98.7% [13]. The technique for the detection
of nonconvulsive seizure detection has been proposed using Hilbert-Haung tensor
representation [16]. The time-frequency images of EEG have been proposed for the
detection of epileptic seizure in a work with an achieved classification accuracy of
100% [17]. A new approach based on time-frequency localized three-band biorthog-
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onal wavelet filter bank has been utilized for the classification of epileptic seizure
EEG signals. The obtained classification accuracy is 99.33% for the classification of
seizure and seizure-free EEG signals [18]. The tunable-Qwavelet transform (TQWT)
with a multiscale entropy method has been also proposed for classification of seizure
EEG signals. The obtained classification accuracy was 99% for the classification
of seizure and non-seizure EEG signals [19]. An analytic time-frequency flexible
wavelet transform based classification of epileptic seizure EEG signals has been
proposed in a work. The acquired classification accuracy was 100% for classifica-
tion of normal and seizure EEG signals [20]. A key-point based LBPmethod has been
proposed for the detection of an epileptic seizure. The achieved classification accu-
racy was 100% for classifying seizure and normal EEG signals [21]. In another work
[22], the authors proposed a different method depends on TQWTwith fractal dimen-
sion features for the classification of epileptic seizure EEG signals. The obtained
highest classification accuracy in this method is 100% for classifying normal and
seizure EEG signals. The dynamic mode decomposition (DMD) based methodology
has been found significant importance for the detection of epileptic seizures [23].
The classification based on time-frequency domain features has been also proposed
using improved eigenvalue decomposition of Hankel matrix and Hilbert transform
(IEVDHM-HT). The proposed method has achieved classification accuracy of 100%
for classifying seizure and seizure-free EEG signals [24]. The classification based on
EMD-TQWT method has been also explored in literature for epileptic EEG signals.
This classification method achieved a classification accuracy of 99% for classifying
seizure and non-seizure EEG signals [25]. In a recent work [26], the classifica-
tion based on empirical wavelet transform (EWT) with Hilbert marginal spectrum
(HMS) has been proposed for classifying seizure-free and seizure EEG signals. The
achieved classification accuracy was 99.33% in this method. The analysis of epilep-
tic EEG signals based on two-dimensional (2D) projection of reconstructed phase
space (RPS) has been also proposed in the literature for the discrimination purpose
of epileptic seizure EEG signals [27]. A review using various epileptic seizure detec-
tion techniques have been published recently. In which, various epilepsy EEG signals
databases along with seizure detection methods have been compared [28].

In this chapter, we have proposed a new method for automated classification
of epileptic seizure EEG signals based on Fourier-Bessel series expansion (FBSE)
[29, 30] and EWT [31]. The FBSE-EWT was proposed in previous work for the
time-frequency representation (TFR) of EEG signals [32]. The FBSE is a suitable
tool for analysis of non-stationary signals [29], and the analysis of epileptic seizure
EEG signals based on FBSE has been presented in [33]. The EWT based studies
have a significant contribution to the classification of epileptic EEG signals [34, 35].
In [34], the EWT based multi-variate TFR has been proposed by authors and they
have designed models for patient specific EEG seizure detection. In [35], authors
separated EEG signal rhythms with filter-bank developed by EWT method and the
areas of the 2D RPS have been used in order to classify focal and non-focal EEG
signals. Therefore, we have proposed FBSE-EWT based HMS which can be used as
a more relevant spectral representation for non-stationary EEG signals. Further, we
have evaluated line length and entropy features in the spectral domain from theHMSs
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FBSE-EWT

Normal EEG signal Seizure EEG signal

FBSE spectrum

Scale space representation based boundary detection

Designed filter bank

HMS of each obtained sub-band signal

Features extraction

Random forest classifier

Fig. 1 Block diagram of the proposed method for classification of normal and seizure EEG signals

with different oscillatory levels of EEG signals. Then, we have ranked the evaluated
features with the help of Kruskal-Wallis statistical test [36] using their probability
(p) values. Finally, the ranked features have fed to random forest (RF) classifier for
the classification of normal and seizure EEG signals. In Fig. 1, the block diagram
of our proposed method is presented for the classification of epileptic seizure EEG
signals.

The organization of the rest book chapter is as follows. Section2 is briefly dis-
cussed about the FBSE-EWT method. The proposed method for automated classifi-
cation of epileptic seizure based on FBSE-EWT and studied database are described
in Sect. 3. Section4 provides the results with discussions about the effectiveness of
the proposed method. Finally, the chapter is concluded in Sect. 5.
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2 Overview of the FBSE-EWT Method

The FBSE-EWT is an adaptive method that combines FBSE [29] and EWT [31]
signal processing techniques for non-stationary signals analysis [32]. The FBSE uses
Bessel functions as bases, which are non-stationary type and this characteristic of
FBSE makes it suitable for analysis of signals which have time-varying parameters.
On the other hand, the EWT is based on the design of adaptive wavelet based filters.
Thesewavelet filters provide support to localized the analyzed signal in the spectrum.
The sub-band signals obtained with EWT method have specific center frequencies
with compact support of frequencies. The basic steps involved to implement FBSE-
EWT method are described as follows [32]:

1. Firstly, the FBSE method is utilized to get the frequency spectrum of an arbitrary
signal x(n) in the range of frequency between [0, π ]. The FBSE of a signal x(n)

with the help of zero-order Bessel functions is mathematically expressed as [29,
37–39]:

x(n) =
N∑

i=1

Ci J0

(
βi n

N

)
, n = 0, 1, . . . , N − 1 (1)

where, Ci are known as the FBSE coefficients of x(n) which can be mathemati-
cally written as follows [30, 40, 41]:

Ci = 2

N 2(J1(βi ))2

N∑

n=1

nx(n)J0

(
βi n

N

)
(2)

where, J0(.) and J1(.) represent zero and first-order Bessel functions, respectively.
The ascending order positive roots of the zero-order Bessel function (J0(β) = 0)
are represented by βi with i = 1, 2, . . . N . The order i of the FBSE coefficients
is analogous to peak value of continuous time-frequency fi (Hz) and it can be
expressed by the following equation [29, 30]:

βi ≈ 2π fi N

fs
, where βi ≈ βi−1 + π ≈ iπ (3)

In Eq. (3), fs represents the sampling frequency and the Eq. (3) can be written as
[30, 42],

i ≈ 2 fi N

fs
(4)

Therefore, we can conclude from Eq. (4) that, i should be varied in the range
from 1 to N (signal length) in order to capture the entire bandwidth of the signal.
Hence, FBSE spectrum is a magnitude plot of the FBSE coefficients (|Ci |) versus
frequencies ( fi ).

2. Secondly, segmenting the obtained FBSE spectrum into U number of contigu-
ous segments using scale-space based boundary detection method [43] in order
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to get optimal set of U + 1 boundary frequencies denoted as λi with first and
last boundary frequencies are prefixed to 0 and π , respectively. The rest U − 1
intermediate boundary frequencies are obtained using EWT boundary detection
method. Therefore, the adaptive segments of FBSE spectrums are expressed as
[0 λ1], [λ1 λ2], …, and [λU−1 π ].

3. In the third step, the empirical scaling and wavelet functions are defined for each
adaptive segment of FBSE spectrum as the set of band-pass filters. These wavelet
based band-pass filters are constructed with the idea of Littlewood-Paley and
Meyer’s wavelets [31, 44]. The empirical scaling and wavelet functions of EWT
can be mathematically written as [31],

�i (λ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if |λ| ≤ (1 − ϑ)λi .

cos
(

πΘ(ϑ,λi )

2

)
, if (1 − ϑ)λi ≤ |λ| ≤ (1 + ϑ)λi .

0, otherwise.

(5)

�i (λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if (1 + ϑ)λi ≤ |λ| ≤ (1 − ϑ)λi+1.

cos
(

πΘ(ϑ,λi+1)

2

)
, if (1 − ϑ)λi+1 ≤ |λ| ≤ (1 + ϑ)λi+1.

sin
(

πΘ(ϑ,λi )

2

)
, if (1 − ϑ)λi ≤ |λ| ≤ (1 + ϑ)λi .

0, otherwise.

(6)

where,

Θ(ϑ, λi ) = κ

(
(|λ| − (1 − ϑ)λi )

2ϑλi

)
(7)

The parameter ϑ generates tight frame in L2(�) with insuring empirical scaling
as well as wavelet functions and the function κ(u) is defined as [31],

κ(u) =

⎧
⎪⎨

⎪⎩

0, if u ≤ 0.

and κ(u) + κ(1 − u) = 1, ∀u ∈ [0 1].
1, if u ≥ 1.

(8)

The inner product of the wavelet and scaling functions is used to compute detail
and approximation coefficients with the analyzed signal x(n).

3 Proposed Method and Studied Database

In the proposed method, we have used FBSE-EWT method in order to obtain HMS
of non-stationary EEG signals. The obtainedHMSs are considered for feature extrac-
tion process, and the classification performance have evaluated with these extracted
features in RF classifier. A brief description of the database is also included in this
section. The description of these parts is as follows.
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3.1 FBSE-EWT Based HMS

In this subsection, the FBSE-EWT method is used to decomposed a signal x(t) into
U number of sub-band signals xi (t); i = 1, 2, . . . ,U as described in the last section.
The obtained sub-band signals are narrow-band components. Thus, Hilbert transform
function (H) is applied to obtain instantaneous amplitude (IA) and instantaneous
frequency (IF) of each sub-band signal then the analytic representation of each sub-
band signal is expressed as [45]:

x+i (t) = xi (t) + jH [xi (t)] (9)

The same analytic representation which expressed in Eq. (9) can also be written as:

x+i (t) = Ai (t)e
jφi (t) (10)

The IA Ai (t) and instantaneous phase (IP) φi (t) are expressed as [46, 47]:

Ai (t) =
√

(xi (t))2 + (H[xi (t)])2 (11)

φi (t) = arctan

(
H[xi (t)]
xi (t)

)
(12)

The IF fi (t) is expressed as:

fi (t) = d

dt
[φi (t)] (13)

Then, the time-frequency coefficients for each decomposition level is written as [48]:

Tfi ( f, t) = Ai (t)δ[ f − fi (t)] (14)

The HMS for each decomposition level is written as:

xi ( f ) =
∫

T
Tfi ( f, t)dt (15)

Finally, the TFR with considering all the decomposition levels is mathematically
expressed as [48]:

Tf( f, t) = Tfi ( f, t); i = 1, 2, . . . ,U (16)

Therefore, the HMSwith considering all the decomposition levels is mathematically
expressed as:

x( f ) =
∫

T
Tf( f, t)dt (17)
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3.2 Features Extraction

In this work, we have fixed total number sub-band signals U = 10 for each consid-
ered EEG signal. In order to differentiate normal and seizure EEG signals, we have
computed line length and entropy features from HMS of each sub-band signal in the
spectral domain. The description of line length and entropy features are as follows:

3.2.1 Line Length Feature

The line length feature of the HMS is expressed as [49]:

LiLei = 1

K − 1

K−1∑

k=1

abs[xi (k + 1) − xi (k)] (18)

Here, xi represents HMS of i th sub-band signal obtained with EEG signal, k denotes
the index of the HMS samples, abs denotes absolute value, and K denotes the total
number of samples present in HMS.

3.2.2 Log Energy Entropy

The log energy entropy of HMS for i th sub-band signal is defined as [50, 51]:

LgEni =
K∑

k=1

log
([xi (k)]2

)
(19)

3.2.3 Norm Entropy

The norm entropy of HMS for i th sub-band signal is computed as [51, 52]:

NoEni =
K∑

k=1

[xi (k)]α (20)

where, 1 ≤ α < 2. The LiLei , LgEni , and NoEni denote the features computed with
i th sub-band signal.
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3.3 Random Forest Classifier

The feature values extracted in the last step, are used as the input to a classifier
with the aim of obtaining a robust seizure EEG signals classification. In this work.
We have used RF classifier for the classification purpose. The RF classifier depends
on classification results of many classification trees [53]. These trees are obtained
with a random tree technique [54]. After that, each tree is assigned with a random
vector. These assigned random vectors have the same distribution, but they are not
dependent on each other. Therefore, the training data and assigned random vector
provide support to the tree in order to perform classification. In this work, theWaikato
environment for knowledge analysis (WEKA) software [55] is used for the classi-
fication using RF classifier. The classification performance is also validated using
10-fold cross-validation, 5-fold cross-validation, 50% testing—50% training data,
and 40% testing—60% training data techniques [26, 56]. The classification perfor-
mance parameters named as accuracy, sensitivity, and specificity are used to evaluate
the studied method [57].

In this chapter, in order to show the effectiveness of the proposed method based
on FBSE-EWT, we have studied publicly available databases by the University of
Bonn, Germany [58], which is available online at http://epileptologie-bonn.de/cms/
front_content.php?idcat=193&lang=3&changelang=3. This database has five sets
(denoted by Z, O, N, F, and S) of EEG signals. The 100 EEG signals in set Z are
recorded from the healthy personwith eyes open state, and 100 EEG signals available
in set O have been obtained from healthy subjects under eyes closed state. The sets N
and F have 200 EEG signals, and they are recorded from the epileptic patients during
seizure-free conditions. The set S contains 100 EEG signals which are recorded from
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the patients during epileptic seizure condition. The sampling rate of these available
EEG signals is 173.61Hz.

In this work, we have studied our proposed framework for the classification of
normal class (NC) and seizure class (SC) of EEG signals. The NC has been obtained
by combining sets Z and O. The SC is represented by set S. Figure2 shows NC and
SC signals from the described database of EEG signals.

4 Results and Discussions

In this section, the proposed automated classification system has been tested on the
Bonn University EEG database [58] to obtain the results in terms of classification
accuracy. The publicly available EEG signals are used in FBSE-EWT method to
obtain the sub-bands from each EEG signal. Afterward, the HMS is extracted with
each extracted sub-band signal. Figures3, 4, and 5 show the HMSs of normal and
seizure EEG signals which are shown in Fig. 2, respectively. It can be observed that
HMSs are not overlapped in the frequency domain in different oscillatory levels and
the magnitude of HMSs for seizure EEG signal are higher in different oscillatory lev-
els compare to normal EEG signal. Now, we have computed line length, log energy
entropy, and norm entropy features from spectral domain of these HMSs. The main
motive of using these features in this proposed work because these features found
significant importance in classifying epileptic EEG signals [49–52]. The extracted

0 20 40 60 80
0

5000

0 20 40 60 80
0

2000

0 20 40 60 80
0

2000

4000

0 20 40 60 80
0

2000

0 20 40 60 80
0

1000

M
ag

ni
tu
de

0 20 40 60 80
0

1000

0 20 40 60 80
0

1000

0 20 40 60 80
0

500

1000

0 20 40 60 80

Frequency (Hz)

0

500

0 20 40 60 80

Frequency (Hz)

0

200

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3 HMSs of normal EEG signal with eyes open condition
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Fig. 5 HMSs of epileptic EEG signal with a seizure condition

features may have redundant and less distinct. To omit these characteristics in feature
space, we have implemented Kruskal-Wallis statistical test [36] on obtained features
at the various parameter of normentropy alongwith line length and log energy entropy
features in order to find the statistical significance features which have p < 0.05. The
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Table 1 Classification accuracy on different norm entropy parameter α along with line length and
log energy entropy features using 10-fold cross-validation technique at 4097 sample length of EEG
signal
No. of
features

Classification accuracy (%)

α = 1 α = 1.1 α = 1.2 α = 1.3 α = 1.4 α = 1.5 α = 1.6 α = 1.7 α = 1.8 α = 1.9

1 95 96.7 96.3 95.3 95.3 94 96 95.7 95 95.7

2 95.3 96.7 96.3 95.3 97 95.7 96.3 95.7 95.3 96.3

3 97.7 98 97.7 98.3 98.3 98 98 98 97.7 97.7

4 98 98.3 97.7 98.3 98.3 97.7 98.7 98.7 97.3 98

5 98.7 98.3 97.7 97.7 98.3 98 99 98.7 98.3 98

6 98.7 98.3 98 98 98 98.3 98.7 99 98.3 98.3

7 99 98.3 98 98 98.3 98 98.3 98.3 98 98.7

8 98.7 98.3 98 98 98.3 98 98.3 98.7 98.3 98.3

9 99 98.7 97.7 98.7 98 98.3 98.3 98.7 98.3 98

10 98.7 98.7 98.3 98.7 98.3 98.3 98.7 98.3 98.7 98.3

11 99 99 98.3 98.7 98.3 98.7 98.7 98.3 98.3 98.3

12 99 99 98.7 98.7 98.3 98.3 98.7 98.7 98.7 98.7

13 99.3 99.3 98.3 99 98.7 98.7 98.7 98.7 98.7 98.7

14 99.3 99 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.3

15 99 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7

16 99 99 99 98.7 98.7 98.3 98.7 98.7 98.7 98.7

17 99.3 99 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7

18 99 99.3 98.7 98.7 98.7 98.7 99 98.7 98.3 98.7

19 99.3 98.7 98.7 98.7 99 98.3 98.7 98.7 98.3 98.3

20 99 99.3 98.7 95.3 98.7 99 98.7 98.7 98.7 98.7

21 99.3 99 98.7 98.3 98.7 98.7 98.7 99 98.7 98.7

22 99.3 99.3 98.7 98.7 98.7 99 98.7 98.7 98.7 98.7

23 99.3 99.3 98.7 98.7 98.7 98.3 99 98.7 98.7 98.7

24 99.3 99 98.7 99 99 99 98.7 99 98.3 98.7

25 99.3 99 98.7 98.7 98.7 98.7 98.3 98.7 98.3 98.7

26 99.3 99 99 98.7 99 99 98.7 99 98.7 98.7

27 99 99.3 98.7 98.7 98.7 98.7 98.7 98.3 98.3 98.7

28 99.3 99 98.3 99 98.3 98.7 98.7 98.7 98.7 99

29 98.7 99.3 98.7 99 98.7 98 98.7 99 98.7 98.7

30 99 99 98.7 98.3 98.7 99 98.7 99 98.7 98.7

Kruskal-Wallis statistical test was used for the statistical significance analysis of the
EEG signal in [50, 59]. Now, we have ranked the statistically significant features
according to their computed p-values and fed them in RF classifier for the classifica-
tion purpose. The classification of these EEG signals is also validated with 10-fold
cross-validation [56] and 50% training—50% testing data [26] techniques. Tables1
and 2 show the achieved classification accuracies using both validation techniques
at different norm entropy parameter α. It can be seen from Tables1 and 2 that the
maximum attain classification accuracy is 100% with thirteen p value based ranked
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Table 2 Classification accuracy on different norm entropy parameter α along with line length and
log energy entropy features using 50% training—50% testing data at 4097 sample length of EEG
signal
No. of
features

Classification accuracy (%)

α = 1 α = 1.1 α = 1.2 α = 1.3 α = 1.4 α = 1.5 α = 1.6 α = 1.7 α = 1.8 α = 1.9

1 93.3 98 96 95.3 97.3 97.3 96 95.3 94.7 93.3

2 96 98 94.7 96 95.3 94.7 97.3 96 95.3 94.7

3 97.3 97.3 98 98 98 98 97.3 97.3 98 96.7

4 98.7 98 97.3 97.3 97.3 97.3 98.7 99.3 98.7 97.3

5 98.7 98.7 98.7 98 98.7 98.7 98.7 98.7 98.7 98.7

6 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7 99.3 98

7 98 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98

8 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98 98

9 99.3 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7

10 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7

11 98.7 98.7 98.7 99.3 98.7 98.7 98.7 98.7 98.7 98.7

12 98 98.7 98.7 98.7 98.7 98.7 98.7 98 98.7 98.7

13 100 97.3 98.7 98.7 98.7 98.7 98.7 98.7 98.7 98.7

14 98.7 98.7 98.7 99.3 99.3 99.3 98.7 98.7 99.3 98.7

15 97.3 98.7 98 99.3 98.7 98 98.7 98.7 98.7 99.3

16 98.7 98.7 98.7 99.3 98.7 98.7 98.7 98.7 98.7 98.7

17 98 98 98.7 98.7 99.3 98.7 98.7 98.7 98.7 97.3

18 99.3 98.7 98.7 98.7 98.7 98 98.7 98 98.7 98.7

19 98 98.7 98 98.7 98 98 98.7 98.7 99.3 98.7

20 98 98.7 97.3 98 98 98 98.7 98.7 98 98.7

21 97.3 98 96.7 98 98.7 98 98 97.3 98 98.7

22 96.7 98.7 98 98 98 98 98 98.7 99.3 97.3

23 97.3 96.7 98.7 97.3 98.7 98.7 98 98.7 98 98

24 96 96.7 96.7 96 97.3 98.7 98.7 98.7 98.7 97.3

25 97.3 96 97.3 96.7 97.3 98.7 97.3 97.3 96.7 98

26 96.7 96.7 98 96.7 97.3 97.3 97.3 98 97.3 96.7

27 96 97.3 96.7 96.7 97.3 97.3 96.7 97.3 96.7 96.7

28 96 96.7 98.7 97.3 97.3 98.7 97.3 98 96.7 96.7

29 96 96.7 97.3 96 96 97.3 97.3 96 97.3 97.3

30 96 96 96.7 96.7 96 96.7 97.3 98 96 96.7

features using 50% training—50% testing data validation technique. The proposed
method is also implemented for the varying samples length of the EEG signals in
order to check the robustness of the proposed method in classifying seizure EEG
signals. Tables3 and 4 show the obtained classification accuracies with 3072 and
2048 sample length of EEG signals at the selected value of α = 1 which is corre-
sponding to maximum obtain classification accuracy for full length (4097 sample
length) EEG signals, respectively. It can be seen from Tables3 and 4 that the classifi-
cation accuracies increase for 10-fold cross-validation technique to 99.7%with 3072
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Table 3 Classification accuracy on selected norm entropy parameter α = 1 along with line length
and log energy entropy features at 3072 sample length of EEG signal

No. of features Classification accuracy (%)

10-fold cross-validation
technique

50% training—50% testing
data

1 95.3 96

2 99 98

3 98.7 98

4 98.7 98

5 99.7 98.7

6 99.7 98.7

7 99.3 98.7

8 99 98.7

9 99.7 98.7

10 99.3 98.7

11 99.3 98.7

12 99.3 98.7

13 99.3 98

14 99.3 98.7

15 99.7 98

16 99.3 98.7

17 99.7 98.7

18 99.3 97.3

19 99.3 98

20 99.7 98

21 99.3 97.3

22 99.3 97.3

23 99.3 96.7

24 99 96.7

25 98.7 98

26 99.7 97.3

27 99 97.3

28 99 97.3

29 99.3 97.3

30 99 96.7

sample length of EEG signals, but for 50% training—50% testing data technique, it
decreases. The obtained maximum classification accuracies can also be observed by
bold entries from Tables1, 2, 3, and 4. Figures6 and 7 show the variation of clas-
sification accuracy with respect to p value based ranked feature. From Figs. 6 and
7, it can be observed that the obtained highest classification accuracy is 100% with



Automated Identification of Epileptic Seizures … 171

Table 4 Classification accuracy on selected norm entropy parameter α = 1 along with line length
and log energy entropy features at 2048 sample length of EEG signal

No. of features Classification accuracy (%)

10-fold cross-validation
technique

50% training—50% testing
data

1 96.7 98

2 97 98

3 99 98.7

4 99 98.7

5 99 98.7

6 99.3 98.7

7 99.3 98

8 99 98.7

9 99 98

10 99.3 97.3

11 99.3 97.3

12 98.7 97.3

13 99 97.3

14 99.3 97.3

15 98.7 97.3

16 99.3 97.3

17 99 97.3

18 98.7 97.3

19 99 97.3

20 99.3 97.3

21 98.7 97.3

22 98.3 97.3

23 98.7 97.3

24 98.3 96.7

25 98.3 96

26 98.3 97.3

27 98.3 96

28 98.3 96.7

29 98.3 96.7

30 98.7 97.3

thirteen most significant p value based ranked features using 50% training—50%
testing data technique. The box-plots of thirteen most statistically significant p value
based ranked features are shown in Fig. 8. The p value of corresponding box-plots
shown in Fig. 8a–m are 2.32 × 10−44, 4.20 × 10−44, 3.32 × 10−39, 6.47 × 10−38,
8.52 × 10−38, 1 × 10−37, 1.02 × 10−36, 1.09 × 10−36, 4.58 × 10−36, 5.23 × 10−34,
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Fig. 6 Classification accuracy variation corresponding to a number of features atα = 1with 10-fold
cross-validation technique
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Fig. 7 Classification accuracy variation corresponding to a number of features at α = 1 with 50%
training—50% testing data

2.07 × 10−33, 3.40 × 10−33, and 1.16 × 10−32, respectively. It can be seen from
Fig. 8 that computed features for SC of EEG signals are higher in magnitude com-
pare toNCof EEG signals. Furthermore, we have also applied 5-fold cross-validation
and 40% training—60% testing data techniques on 5 and 13 significant features
which are corresponding to maximum classification accuracies obtained with 10-
fold cross-validation and 50% training—50% testing data techniques in order to
reduce the computational complexity of the developed method. However, these 5-
fold cross-validation and 40% training—60% testing data techniques provide dip in
classification accuracies for both cases, and it can be observed from Table5. There-
fore, we have achieved maximum classification accuracies of 97.7% and 100% using
10-fold cross-validation and 50% training—50% testing data techniques, respec-
tively. The classification sensitivities of 100% are obtained corresponding to these
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Fig. 8 Box plots of thirteen most significant features corresponding to maximum classification
accuracy at α = 1 with features description

Table 5 Classification accuracy with different validation techniques applied on significant features
corresponding tomaximumclassification accuracies obtainedwith 10-fold cross-validation and50%
training—50% testing data techniques

No. of features Sample length Validation technique Classification
accuracy (%)

5 3072 5-fold cross-validation 99

13 4097 40% training—60%
testing

98.3

achieved maximum classification accuracies for both validation techniques such as
10-fold cross-validation and 50% training—50% testing. Similarly, the classification
specificities corresponding to these achieved maximum classification accuracies are
99.5% and 100% for 10-fold cross-validation and 50% training—50% testing data
techniques, respectively. The receiver operating characteristic (ROC) curves [60] cor-
responding to maximum classification accuracies are shown in Fig. 9 using 10-fold
cross-validation and 50% training—50% testing data techniques. The ROC curve
provides a measure of overall classification performance in which a larger covered
area shows better classification accuracy [5]. From Fig. 9, it can be observed that the
50% training—50% testing data technique covered more area as compared to the
10-fold cross-validation technique. In Table6, we have also compared classification
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Fig. 9 ROC curves corresponding to maximum classification accuracies obtained with 10-fold
cross-validation and 50% training—50% testing data techniques

Table 6 Comparison of our proposed method with existing methods for the classification of NC
and SC of EEG signals

Authors Method Classification accuracy (%)

Polat and Gunes [61] FFT and DT 98.7

Lee et al. [62] WT, PSR, and ED 98.1

Fu et al. [63] HHT and TFR 99.1

Yuan et al. [64] KSR 98.6

Kaya et al. [65] 1D-LBP 99.5

Fu et al. [66] HMS analysis 99.8

Sharmila and Geethanjali [67] DWT and Naive Bayes 99.2

Yu et al. [71] KR-PCR 99.3

Mert and Akan [68] EMD and PSD 97.9

Gupta et al. [69] DCT, Hurst exponent, and
ARMA parameters features

94.8

Sharma et al. [70] Iterative filtering 99.5

This work FBSE-EWT based HMS, LiLe,
LgEn, and NoEn features

100

accuracy of our proposedmethodwith some other existing epileptic EEG signal clas-
sification methods studied on the same EEG database. The classification based on
fast Fourier transform (FFT) and decision tree (DT) classifier was obtained a classi-
fication accuracy of 98.7% for classifying seizure EEG signals [61]. In another work
[62], the authors proposed a method based on wavelet transform (WT), PSR, and
Euclidean distance (ED) with a maximum achieved classification accuracy of 98.1%
for seizure EEG signals. The Hilbert-Huang transform (HHT) based TFR has been
utilized as time-frequency image (TFI) feature in research work with a maximum
classification accuracy of 99.1% [63]. A kernel sparse representation (KSR) based
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the approach has been also suggested in the literature for classification of epileptic
EEG signals with maximum attain classification accuracy of 98.6% [64]. In [65],
the classification is based on 1D-LBP method, and the obtained maximum classifi-
cation accuracy was 99.5% for the classification of seizure EEG signals. The HMS
based seizure classification method has been also implemented in [66] with maxi-
mum achieved a classification accuracy of 99.8%. The classification of NC and SC
EEG signals with discrete wavelet transform (DWT) has been also proposed using
two different classifiers, namely, Naive Bayes and k-nearest neighbour (KNN). The
highest achieved classification accuracy is 99.2% using Naive Bayes classifier in
this method [67]. The EMD and power spectral density (PSD) based work acquired
a maximum classification accuracy of 97.9% [68]. The discrete cosine transform
(DCT) with Hurst exponent and auto-regressive moving average (ARMA) param-
eter features gives a classification accuracy of 94.8% [69]. The iterative filtering
based automated system has also been proposed for the classification of epileptic
seizure EEG signals. The proposed classification system was achieved the highest
classification accuracy of 99.50% in classifying NC and SC of EEG signals [70]. A
kernel robust probabilistic collaborative representation (KR-PCR) based approach
gives a maximum classification accuracy of 99.3% [71]. These existing methods
have significant contributions and results in the present literature. Hence, we can
conclude that our proposed method gives highest classification accuracy of 100%
in comparison to existing methods. It should be noted that the proposed method is
based on non-stationary and adaptive signal decomposition techniques.

5 Conclusions

We have proposed a new method for the automated classification of NC and SC of
EEG signals. The proposed method is based on the HMS obtained with FBSE-EWT.
TheFBSE-EWTbasedHMSprovides better spectral representationdue to use of non-
stationary Bessel basis functions and adaptive wavelet decomposition. The extracted
features namely line length and entropies from theHMSalongwithRF classifier have
provided the highest classification accuracy of 100% with utilizing only 50% testing
data. The proposed method also found effective for different sample lengths of EEG
signals with 10-fold cross-validation technique. Moreover, the proposed method can
be used for the clinical purpose and provide help to neurologists in their diagnosis of
epilepsy. The proposed method in this chapter needs to be studied on a large number
of EEG databases before applying it for the diagnosis of epilepsy. The developed
method can also be used with other biomedical signals in order to diagnosed other
diseases.
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DWT Based Time Domain Features
on Detection of Epilepsy Seizures
from EEG Signal

A. Sharmila and P. Geethanjali

Abstract In the study of detection of an epileptic seizure using Electroencephalo-
gram (EEG), pattern recognition has been recognized as a valued tool. In this pattern
recognition study, the first time the authors have attempted to use time domain (TD)
features such as waveform length (WL), number of zero-crossings (ZC) and number
of slope sign changes (SSC) derived directly from filtered EEG data and from dis-
crete wavelet transform (DWT) of filtered EEG data for the detection of an epileptic
seizure. Further, the authors attempted to study the performance of other time domain
features such asmean absolute value (MAV), standard deviation (SD), average power
(AVP), which had been attempted by other researchers. The performance of the TD
features is studied using naïve Bayes (NB) and support vector machines (SVM) clas-
sifiers for the university of Bonn database with fourteen different combinations of
set E with set A to D. The proposed scheme was also compared with other exist-
ing scheme in the literature. The implementation results showed that the proposed
scheme could attain the highest accuracy of 100% for normal eyes open and epilep-
tic data set with direct as well as DWT based TD features. For other data sets, the
highest accuracy is obtained with DWT based TD features using SVM. However, no
significant difference in the classification of 14 data sets with TD features filtered
EEG data and from DWT of filtered EEG data.
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1 Introduction

A tool which is prevalent to study the electrical brain activity is an Electroencephalo-
gram (EEG). Nearly, 1% of the world population grieves from epilepsy, and it is one
of the most common neurological disorders [1]. Epilepsy is a condition character-
ized by transient recurrent seizures [2]. However, detection of epileptic seizures from
the recording of the EEG over extensive periods of a few days is tiresome process.
Over two decades, attempts have been made to develop an expert system for epilep-
tic seizures detection. In these systems, different techniques have been taken with
varying degrees of success. For an automated pattern recognition base seizure detec-
tion systems, features such as raw EEG amplitude [3], power spectrum [4], wavelet
co-efficient [5], relative spike amplitude, rhythmicity [6], etc., have been utilized to
characterize normal and epileptic activity. The extracted features are classified using
various techniques such as discriminant analysis [7], nearest neighbor [8], learning
vector quantization [7], neural networks [9, 10], etc., for automated seizure detection
systems.

Orhan et al. [11] haveworked on the kNNclassifier andmultilayer perceptron neu-
ral network model to classify healthy and seizure signals with an accuracy of 100%.
Nicolaou and Georgiou [12] have used permutation entropy and SVM classifier to
classify healthy and seizure signals, using 82.88%. Sezer et al. [13] have extracted
statistical features from wavelet transform and used PCA for feature reduction and
ANN classifier to classify between healthy and seizure signals with an accuracy of
100%. Acharya et al. [14] have worked on sample entropy, approximate entropy,
phase entropy 1, phase entropy 2, and fuzzy sugeno classifier have classified three
class classification to classify healthy patient signal from epileptic patient signal
during seizure and non-seizure period with an accuracy of 98.10%. Song and Zhang
[15] have worked on wavelet transform and permutation entropy, sample entropy,
andHurst exponent to classify healthy and seizure signals with an accuracy of 94.8%.
Hosseini et al. [16] have used discrete wavelet transform and Hurst and Lyupunov
exponent to classify healthy and seizure signals with an accuracy of 96.5%. Pachori
and Patidar [17] have worked on Epileptic seizure classification in EEG signals
using second-order difference plot of intrinsic mode functions with a 95% confi-
dence ellipse area as a feature for discriminating ictal EEG signals from the seizure-
free EEG signals using the artificial neural network (ANN) classifier. The maximum
classification accuracy obtained using the proposed method is 100%. The average
classification accuracy of the proposed method is 97.75%. Kumar et al. [18] have
worked on fuzzy approximate entropy and used SVM classifier to classify seven two-
class classifications with accuracy ranging from 95.85 to 100%. Chan [19] worked
on DTCWT and kNN classifiers to obtain an accuracy of 100% to classify between
seizure and healthy signal. Riaz et al. [20] have Empirical mode decomposition-
based temporal spectral features and SVM classifier to classify healthy and seizure
signals using 100%accuracy. Peker et al. [21]worked onDTCWTandCNN to obtain
an accuracy of 98.28% for three class classification. Swami et al. [22] worked on
DTCWT and GRNN and obtained 100% accuracy to classify between healthy and
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seizure signal. Tiwari et al. [23] have worked on Automated Diagnosis of Epilepsy
using Keypoint Based Local Binary Pattern of EEG Signals they achieved to clas-
sify between normal and seizure; epileptic seizure and seizure-free; epileptic and
non-seizure; normal, epileptic seizure, and seizure classes of EEG signals on two
datasets with accuracy ranging from 98.80 to 100%. Sharmila and Geethanjali [24]
have worked on DWTBased Detection of Epileptic Seizure from EEG Signals Using
Naive Bayes and k-NN Classifiers and were able to obtain accuracy for 14 different
classifications with accuracy ranging from 95.1 to 100% using features like Mean
absolute value, Standard deviation, and Average power. Also, Sharmila andGeethan-
jali [25] have worked on Detection of Epileptic Seizure from Electroencephalogram
Signals Based on Feature Ranking and Best Feature Subset Using Mutual Informa-
tion Estimation, they were able to obtain accuracy for 14 different classifications
with the help of two features i.e. MAV and standard deviation on sub-bands D3,
D4 and D5 with accuracy ranging from 95.08 to 100%. Madan et al. [26] have
worked on Discrete Wavelet Transform based Hurst exponent for epilepsy detec-
tion and obtained accuracy for 15 classifications resulting from 89.33 to 99% using
SVM and KNN classifiers. Sharmila et al. [27] have worked on Epileptic seizure
detection using DWT-based approximate entropy, Shannon entropy and support vec-
tor machine and have obtained accuracy for 15 different classifications resulting in
from 78 to 100%. Chen et al. [28] have worked on A high-performance seizure
detection algorithm based on Discrete Wavelet Transform (DWT) and EEG using
seven different statistical features. Sharmila and Mahalakshmi [29] have worked on
Wavelet-based feature extraction for the classification of epileptic seizure EEG sig-
nal, using PCA with Naïve Bayes classifier gave 98.6% accuracy and LDA with
Naïve Bayes classifier attained the improved result of 99.8% accuracy. Also, they
achieved 98.5 and 100% accuracy by using PCA, LDA with K-NN. Wang et al.
[30] have worked on Automatic Epileptic Seizure Detection in EEG Signals Using
Multi-Domain Feature Extraction andNonlinear Analysis. Theywere able to achieve
accuracy of 99.25% using classifiers like KNN, LDA, and Naïve-Bayes. Reddy and
Rao [31] have worked on automated identification system for seizure EEG signals
using tunable-Q wavelet transform, they were able to classify two categories where
the First category is seizure free and seizure (NF-S) classes, and the other one is
the normal, seizure free and seizure (ZO-NF-S) classes in which they were able to
achieve accuracy of 98.3% and 98.2% respectively. Sharma et al. [32] worked on
ATFWT based features and SVM classifier to classify healthy signals and epileptic
patient signal during non-seizure period with an accuracy of 92.5%. Further, Ullah
et al. [33] have worked on an automated system for epilepsy detection using EEG
brain signals based on deep learning approach.

All the pattern recognition methods focused on improving classification accuracy
with a varying combination of feature extraction and classification technique in the
detection of an epileptic seizure. Therefore, the pattern recognition classification
accuracy depends on the type of features, a number of features, and the classifiers
[34]. The objective of this study is to identify an efficient pattern recognition method
for reliable seizure detection.
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The TD features such as waveform length, number of zero crossings, slope sign
change are being used for identification of activity in Electromyogram (EMG) signals
[35–37]. Recently, these features are used to extract the temporal characteristics
hidden in the EMG data [34]. The use of WL, ZC, and SSC in addition to MAV, SD,
and AVP features are the main emphasis of this work.

In this proposed scheme, an attempt has been made to obtain good classification
accuracy with the individual and combined time domain features extracted directly
from filtered EEG data and the discrete wavelet transform for fourteen different
combinations of data sets using NB and SVM classifier. The study presented here
examines the publicly available five EEG datasets A to E provided by theDepartment
of Epileptology at the University of Bonn, Germany [38]. The performance of WL,
SSC, ZC with MAV is studied. Also, the performance of SD, AVP with MAV is
studied in the detection of epileptic seizures from EEG signals. Discrete wavelet
transform (DWT) has been applied to decompose the signals into sub-bands with
various frequencies. The TD features such as WL, ZC, SSC, SD, AVP, and MAV
were derived from filtered and from DWT for the sub-bands D3–D5 and A5. The
directly derived features and TD features DWT are studied using NB and SVM
classifiers to identify the epileptic seizure. It has been found that the NB and SVM
perform better with directly derived TD features and from DWT for the normal eyes
open and epilepsy data set and gives an accuracy of 100% by considering the features
in a different manner.

2 Problem Formulation

In our proposed study, as shown in Fig. 1, the raw EEG data is pre-processed using
Butterworth 4th order band-pass filter. The features such as WL, ZC, SSC, MAV,
SD, and AVP are extracted directly from the filtered EEG data as well as from DWT
of EEG. The equal number of training and testing data sets is chosen to evaluate
the performance of the TD features individually and in a combined manner for the
fourteen different combinations such as A-E, B-E, C-E, D-E, AB-E, AC-E, AD-E,
BC-E, BD-E, CD-E, ABC-E, ACD-E, BCD-E, and ABCD-E.

Fig. 1 Block diagram of the proposed scheme
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2.1 Feature Extraction

In Linear methods, the statistical measures of variability which are easy to compute
and provide valuable predictive information about patients [39]. Well-known prob-
lems of using nonlinear methods for 2-class problems are the non-nutritive nature
of such measures, a large amount of data required for reliable parameter estimation
including issues of stationarity within these periods, and the high computational
requirement. These drawbacks inhibit applications with short latency with regard to
recording time and may cause difficulties in real-time applications [40, 41]. So, in
our study, we have attempted to work with 2-class problems with short segments of
data using the linear method.

Linear methods have been broadly used in epilepsy detection mostly due to their
ease and adaptability. Liu et al. [42] used Scored Autocorrelation Moment (SAM)
analysis, and distinguished EEG epochs containing seizures even though signals did
not exist changes in their spectral properties. The concept of seizure prediction was
originally stated in 1975 [43] for the EEGdata collected from two electrodes based on
spectral analysis. In 1981, Rogowski et al. [44] pole trajectories of an autoregressive
model were used to study the preictal periods. Gotman et al. [45] examined rates of
interictal spiking as indicators of forthcoming seizures. In order to detect the preictal
state, Mormann et al. [46] studied the statistical moment of the EEG amplitudes. The
other linear features like power are used in [47], and signal variance is used in [48]
to predict seizure onset. Mormann et al. used Hjorth parameters, among others as
features for seizure prediction [49]. In various studies of seizure prediction [50, 51],
accumulated energy has been used.

Also, seizure onset and offset determination mighty be successful in using linear
prediction filters (LPF) [52]. Discrete wavelet transform (DWT) is a transformation
extracting scale-frequency components from data that might also be useful in seizure
detection. In [53], normal and seizure signals were classified using DWT and a linear
classifier. Other linear features, the relative fluctuation index [54], can be used to
measure the intensity of the fluctuation of EEG signals. For the period of a seizure,
there exists higher fluctuation in the EEG signals than an ictal-free period. Hence,
the values of the fluctuation index for the period of a seizure are generally higher
than other EEG. In [55], the epileptic seizure from EEG signals is detected using
linear least-squares pre-processing.

In this work, the TD features such as WL, ZC, SSC, MAV, SD, and AVP are
derived directly and from D3–D5 and A5 coefficients of DWT.

2.2 Classification

The extracted TD features directly and derived from DWT are applied to the classi-
fiers. The purpose of the classifier is to identify epilepsy abnormality in EEG data. In
this work, the classifiers used areNB and SVM, to classify epileptic seizure EEGdata
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for individual and combined TD features for the different combinations of datasets
A to D with E. The NB and SVM classifiers can be assessed using the accuracy of
the classifier.

3 Results and Discussions

Figures 2 and 3 shows the estimated WL for the entire 23.6 s EEG segments directly
and obtained from DWT coefficients D3–D5 and A5 for the data sets A, B, C, D
and E. The WL of D3–D5 and A5 coefficients of data set C and D are very lesser
than data set A and B. Whereas the WL of D3–D5 and A5 coefficients of data set
E is extremely higher than other data sets. It is clear from the graph that WL of an
epileptic seizure is higher than other data sets. Figures 4 and 5 show the number of
zero crossings (ZC) for the five different data sets, which are derived directly and
from DWT coefficients, D3–D5 and A5, and Figs. 6 and 7 show the number of slope
sign changes for each EEG segments. Of these newly considered TD features, WL
performs better than ZC and SSC, and it showed a wide difference in detecting an
epileptic seizure.

In this study, fourteen different classification combinations, such as A-E, B-E,
C-E, D-E, AB-E, AC-E, AD-E, BC-E, CD-E, ABC-E, ACD-E, BCD-E and ABCD-
E was used in order to identify the epileptic signal from the EEG signal. Of these
combinations, the first time we attempted to use the TD features such as WL, ZC,
and SSC for dataset combinations AC-E, AD-E, BC-E, BD-E, ABC-E in our study.
Tables 1, 2, 3 and 4 presents the performance of the directly derived and DWT based
individual and combined TD features for the data sets A to D with E using NB and

Fig. 2 WL for data set A to E
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Fig. 3 WL for data set A to E from DWT

Fig. 4 ZC for data set A to E

SVM classifier. The performance of newly considered TD features and other TD
features such as SD and AVP was studied along with MAV.

The average classification accuracy of an individual WL feature is higher than
other features ZC and SSC. For the data set D-E, WL derived directly gives the
highest accuracy of 97.5% using NB and 97.12% using SVM. The performance of
ZC for the B-E data set is higher i.e., 90.37% using NB and 90.12% using SVM
classifier. WL extracted after DWT gives an accuracy of 99.87 and 99.37% using
NB and SVM for the A-E data set. Further, the performance of SSC is higher for the
data set A-E and provides the highest classification accuracy of 94.12% using NB
and SVM for direct TD feature extraction and with DWT based feature extraction
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Fig. 5 ZC for data set A to E from DWT

Fig. 6 SSC for data set A to E

it gives an accuracy of 97.15% using NB and 96.5% using SVM. The three TD
features if combined with MAV and along with themselves, gives better accuracy
than individual features. If WL is directly derived and combined with MAV, ZC,
SSC, MAV + ZC, MAV + SSC, and MAV + ZC + SSC, the accuracy for the data
set combination A-E is increased to 99, 96.12, 99.12, 99.62, 100, 99.5 and 100%
using NB and 99.75, 99.5, 99.37, 100, 99.62, 99.75 and 100% using SVM as shown
in Tables 1 and 2. The feature WL extracted after DWT for the coefficients D3–D5
and A5, combined with MAV, ZC, MAV + ZC, MAV + ZC + SSC features gives
100% for data set A-E andWL combined with SSC, ZC+ SSC provides an accuracy
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Fig. 7 SSC for data set A to E from DWT

of 99.87% using NB and with SVM, WL combined with MAV + SSC and MAV +
ZC gives 100% for the data set A-E. Further, in DWT based TD feature extraction,
other features such as ZC, and SSC combined with MAV gives 100% for the data
set A-E using both NB and SVM as shown in Tables 3 and 4. Also in direct feature
extraction, ZC and SSC, in combination withMAV give 100% accuracy for A-Ewith
SVM classifier, whereas, with NB, SSC in combination with MAV gives 100% for
the same data set.

In direct TD feature extraction, the performance ofWL in combination withMAV
+ ZC + SSC is better for all data sets and gives the highest average classification
accuracy of 96.08% using NB and the performance of WL in combination with ZC
+ SSC gives 97.54% using SVM. The performance of MAV+WL+ ZC and MAV
+ ZC + SSC combination gives an average accuracy of 95.93 and 95.72% using
NB as mentioned in Table 1. Also, the TD features MAV + WL + ZC, and WL +
ZC + SSC combination gives an average accuracy of 97.2 and 97.54% with SVM
classifier, and it is shown in Table 2.

In DWT based TD feature extraction, the performance of MAV + ZC + SSC is
better and gives the highest average classification accuracy of 97.86% using NB. The
other feature combinations such as WL+ ZC+ SSC and MAV+WL+ ZC+ SSC
are also well performed for all data sets combinations, and give an average accuracy
of 97.69% and it is shown in Table 3. From Table 4, it is evident that the performance
of WL + ZC + SSC is better for all data sets and provides an average accuracy of
98.28% with SVM. The other features such as MAV + WL + ZC and MAV + WL
+ ZC + SSC also performed well and give average accuracy of 98.25 and 98.27%.

It is evident from Tables 1, 2, 3 and 4, an individual feature WL performed better
and it gives the highest average accuracy, whereas, individual performance of SSC
is better for the data set A-E both in direct and DWT based TD feature extraction.
Further, the classification accuracy for each data set is increased if either of these
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Table 5 Performance of directly derived TD features (MAV, SD and AVP) using NB classifier

Classification accuracy (%) for the datasets A to D with E

Data sets MAV SD AVP MAV +
SD

MAV +
AVP

SD + AVP MAV +
SD + AVP

A-E 100 100 99.87 100 100 100 100

B-E 94.5 95.25 95.5 94.5 95.12 95.62 95.37

C-E 97.5 98 98.12 97.75 98.25 98.12 98.12

D-E 90.75 90.62 85.75 90.87 88.25 87.87 88.87

AB-E 97 97.91 97.97 95.41 96 95.83 95.75

AC-E 98.83 99 98.91 98.91 98.91 98.91 98.91

AD-E 93.83 93.58 91.83 93.75 93.75 95.41 93.66

BC-E 96 96.33 96.25 96.16 96 96.25 96.08

BD-E 93.91 93.66 91.75 93.91 93.16 93.25 93.91

CD-E 93.91 93.5 91.75 93.58 93.25 93.33 93.75

ABC-E 96.62 97.12 96.75 96.56 96.56 96.5 96.43

ACD-E 95.31 95.12 94.25 95.56 95.31 95.18 95.25

BCD-E 95.37 95.25 94.18 95.25 95.5 95.25 95.37

ABCD-E 96.25 96.1 95.6 96.4 96.35 96.2 96.1

Avg.
accuracy

95.69 95.81 94.89 95.61 95.45 95.55 95.54

features or both of these features are combined with other features such as MAV and
ZC. Comparing the results obtained from Tables 1 and 2, the performance of WL +
ZC+ SSC feature combination gives the highest average accuracy of 97.54% using
SVM. Similarly, comparing the results of Tables 3 and 4, the performance of WL
+ ZC + SSC feature combination gives the highest average accuracy of 98.28%
using SVM. In both direct and DWT based feature extraction, the WL+ ZC+ SSC
feature combination with SVM classifier. Comparing the direct TD and DWT based
TD feature extraction results as presented in Tables 1, 2, 3, and 4, the performance
of DWT based WL + ZC + SSC feature extraction with SVM gives better result
than direct TD feature extraction.

The performance of directly derived and DWT based TD features such as SD
and AVP along with MAV was studied in an individual, and combined manner using
NB and SVM classifier and results obtained presented in Tables 5, 6, 7 and 8. The
performance of the individual SD feature derived directly is better, and it provides
an average accuracy of 95.81% using NB and 94.88% with SVM classifier as pre-
sented in Tables 5 and 6. For the data set A-E, NB, and SVM provide 100% for
individual features such as MAV and SD, and it also gives 100% with other feature
combinations such as MAV+ SD,MAV+AVP, SD+AVP andMAV+ SD+AVP.
The performance of combined TD features MAV + SD + AVP gives an increased
average accuracy of 95.88% with SVM as shown in Table 6.
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Table 6 Performance of directly derived TD features (MAV, SD and AVP) using SVM classifier

Classification accuracy (%) for the datasets A to D with E

Data sets MAV SD AVP MAV +
SD

MAV +
AVP

SD + AVP MAV +
SD + AVP

A-E 100 100 97.87 100 100 100 100

B-E 94.5 95.5 95 94.62 94.5 95.62 94.62

C-E 97.5 97.62 95 98.25 97.62 97.87 98.25

D-E 83.12 89.37 90.75 92.62 93.75 92.12 92.75

AB-E 97.33 97.83 96.83 95.66 95.5 96 95.83

AC-E 98.91 98.91 97.83 98.91 98.91 98.83 98.91

AD-E 90.41 95.58 90.91 95.75 95.91 93.75 95.75

BC-E 95.08 95.75 96.66 95.5 95.33 96.16 95.5

BD-E 86.91 88 94.25 93.58 93.33 93.58 93.66

CD-E 86.91 90.5 93.25 94.58 95.08 94.33 94.91

ABC-E 96 96.37 97.25 96.31 96.12 96.37 96.25

ACD-E 93.56 92.62 90.93 96.12 96.25 96.12 96.31

BCD-E 93.25 95.31 93.18 94.68 94.37 94.56 94.5

ABCD-E 92.1 95.05 92.7 95.25 95.05 95.2 95.15

Avg.
accuracy

93.25 94.88 94.45 95.84 95.83 95.75 95.88

The performance ofMAV is better than other featureswithDWTbased TD feature
extraction, and it gives an average accuracy of 97.43% with NB and 97.53% with
SVM classifier. For the data set A-E, all individual and combined features give 100%
accuracy with NB as presented in Table 7. The performance of MAV and MAV +
AVP provides 100% for A-E data set using SVM classifier, and the performance
of MAV + AVP affords an increased average accuracy of 98.11% with SVM as
stated in Table 8. Comparing the results obtained in Tables 5 and 6, the performance
of MAV + SD + AVP feature combination is better with SVM, and it gives an
average accuracy of 95.88% and the performance of the SD feature is better with
NB and affords an accuracy of 95.81%. In the DWT based TD feature extraction, the
feature MAV performs well, and it gives an average accuracy of 97.43% using NB.
Further, the performance of MAV + AVP feature combination is better with SVM
and provides an average accuracy of 98.11%. Comparing the results in Tables 5
and 6, the MAV + SD + AVP feature combination with SVM is performed well,
and similarly, comparing the results in Tables 7 and 8, the MAV + AVP feature
combination with SVM is best performed. Comparing the direct TD and DWT based
TD feature extraction results as presented in Tables 5, 6, 7, and 8, the performance
of DWT based MAV + AVP TD feature extraction with SVM gives better results
than direct TD feature extraction.

Comparing the results obtained from Tables 1 to 4 with Tables 5 to 8, in general,
the performance of DWT based WL + ZC + SSC feature combination with SVM
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Table 7 Performance of DWT based TD features (MAV, SD, and AVP) using NB classifier

Classification accuracy (%) for the datasets A to D with E

Data sets MAV SD AVP MAV +
SD

MAV +
AVP

SD + AVP MAV +
SD + AVP

A-E 100 100 100 100 100 100 100

B-E 97.62 97.62 97.75 97.62 97.62 97.62 97.62

C-E 97.87 98 97.87 97.87 98 98 98

D-E 95.37 93.62 90.37 94.75 92.5 91.25 92.75

AB-E 99.66 97.33 97.58 97 97.41 97.33 97.25

AC-E 98.66 98.58 98.58 98.58 98.66 98.75 96.83

AD-E 97.33 96.83 94.41 97.25 96.33 96.16 96.83

BC-E 96.83 96.66 96.41 96.75 96.66 96.41 96.33

BD-E 97.82 94.16 92.33 94.66 93 93.16 93.41

CD-E 96.66 96.41 94.41 96.66 96 95.83 96.58

ABC-E 97 97 96.81 96.62 96.81 96.68 96.62

ACD-E 97.62 97.25 96.62 97.62 97.43 97.37 97.5

BCD-E 95.5 95.37 94.25 95.18 95.06 94.93 95.06

ABCD-E 96.2 95.9 95.35 95.85 95.85 95.65 95.75

Avg.
accuracy

97.43 96.76 95.91 96.88 96.52 96.36 96.46

classifier affords highest average accuracy of 98.27%, and its classification accuracy
ranges from 97.43 to 99.75% for the fourteen different combinations of data sets A
to D with E. So, it is the most appropriate pattern recognition approach to detect the
epileptic seizure.

In this work the TD features already attempted by other researchers [5, 16] such
as SD and AVP along with MAV are also studied and compared with WL, ZC,
and SSC along with MAV, both in direct and DWT based feature extraction. It
has been found that the newly attempted features are best performed for fourteen
different combinations such as A to D with E. The accuracy of classification with
individual TD features is less with SVM. However, the performance of classification
increases when used in combination with other TD features. Though the feature ZC
does not contribute good accuracy individually and improves accuracy when used
in combination with other features MAV, WL, and SSC. Further, the features SD
and AVP show good accuracy individually. However, the performance of features in
combination with other features does not improve significantly as compared to the
combination of ZC and WL.

Similarly the performance of TD features is studied with D3–D5 and A5 co-
efficients. It has been found that SVM classifier performs well with individual as
well as with a combination of features. It has been found that WL + ZC + SSC
performs well in direct extraction as well as extraction from DWT co-efficient. The
performance of WL + ZC + SSC is the best presented for the data sets C-E, D-E,
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Table 8 Performance of DWT based TD features (MAV, SD, and AVP) using SVM classifier

Classification accuracy (%) for the datasets A to D with E

Data sets MAV SD AVP MAV +
SD

MAV +
AVP

SD + AVP MAV +
SD + AVP

A-E 100 99.75 99.37 99.75 100 99.75 99.75

B-E 99.12 99.25 98.75 99.12 99.12 99.25 99.12

C-E 97.75 97.75 96.62 97.75 97.75 97.75 97.75

D-E 95.75 94.87 91.75 96 96.5 96.25 96.75

AB-E 99.66 99.41 99.08 99.58 99.41 99.5 99.58

AC-E 98.5 98.5 98.5 98.5 98.75 98.5 98.08

AD-E 97.5 97.58 96.41 97.75 98.16 98 98.08

BC-E 98.16 97.75 97.5 98.16 98.41 97.91 98.16

BD-E 95.58 95 95 95.83 96.75 94.58 95.83

CD-E 97 97.08 95.66 97 97.41 97.25 97.33

ABC-E 98.12 98.12 97.68 98 98.93 98.12 98.06

ACD-E 97.62 97.5 97.56 97.81 98 97.93 98.06

BCD-E 95.06 94.5 95.18 95.06 96.87 94.62 96.06

ABCD-E 95.6 94.9 95.1 95.3 97.5 94.75 95.4

Avg.
accuracy

97.53 97.28 96.72 97.54 98.11 97.44 97.71

ACD-E, BCD-E, AC-E, and AD-E. The other data sets also performed well when
WL is in combination withMAV, ZC or SSC. The combination ofWL features shows
a significant role in obtaining better classification accuracy.

4 Conclusions

In this study, first time the TD features waveform length (WL), number of zero
crossings (ZC) and number of slope sign changes (SSC) extracted directly and from
DWT coefficients have been employed for the detection of epileptic seizure using
Naïve Bayes (NB) and support vector machine (SVM). Also, for the first time, the
data sets such as AC-E, AD-E, BC-E, BD-E, and ABC-E have been considered and
obtained better classification accuracy for these data sets as well as for all fourteen
different combinations. In this proposed scheme, the observation of WL is very
high during epileptic seizures. The classification accuracy of 100% is obtained using
NB and SVM for the data set A-E. The achievement of the proposed scheme is
confirmed by comparing the performance of classification problems as addressed by
other researchers. It can be concluded that DWT based TD features achieve more
satisfactory results to distinguish the EEG signals in comparison to other methods.
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Since these features WL, ZC, and SSC afford the best presented along with MAV,
they are employed for automatic detection of epileptic seizures from EEG signals.
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Abstract The surface electrocardiography (ECG) uses a virtual reference point to
measure the potential of chest electrodes. This reference potential is known asWilson
central terminal (WCT) and is assumed negligible (near zero) in amplitude. Conse-
quently, the precordial leads have been named as the unipolar leads. Although this
assumption was found incorrect immediate after this reference potential was intro-
duced, it was difficult to measure its real amplitude.We recently introduced a 15-lead
electrocardiography device that can record the traditional ECG leads in combination
with the raw potential of limbs and chest electrodes directly referred to the circuit
grounding. Consequently, we are able to record the potential of the raw chest elec-
trodes, which we named as true unipolar chest leads. The aim of this study is to have
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a clear understanding of the WCT potential and its influence on the chest leads. Our
records show that the true unipolar leads may be more sensitive for detecting car-
diac diseases in the left anterior descending coronary artery in patients with non-ST
elevation reported on chest leads.

Keywords Electrocardiography · Wilson central terminal · Unipolar leads · Limb
potential · Left anterior descending · Electrocardiography database

1 Introduction

The heart impresses an electrical current that flows from the heart through the limbs,
which can be used for examining the cardiac function [1, 2]. First, Waller used two
electrodes on the body and found changes in electrometer by heartbeat [3, 4]. He
applied electrodes on limbs to show the electrical activity of the heart. However,
Einthoven made a major breakthrough in Electrocardiography by using the string
galvanometer in 1901 [4]. He used a silver-coated quartz filament (or string) in a
strong magnetic field to measure the strength and direction of the current of the heart
[5]. The string was moved in the magnetic field when the current of the heart moved
through it [5]. The Einthoven’s device was very bulky and far from the hospital,
hence, he used the telephone wire to receive the patients’ heart impulse from the
hospital [2, 5]. Later, Einthoven introduced the mathematics relations between three
limb leads, which has been known as Einthoven Triangle hypothesis [6]. The vertices
of the Einthoven Triangle are electrodes placed on the right hand, left hand, and left
leg which are used to measure the limb leads, known as the lead I, lead II, and lead
III [4, 6]. In this theory, the human body is characterized as a two dimensional,
homogeneous conductor and part of infinity with the heart located in the centroid of
the triangle [2, 4].

Lead I = �L − �R

Lead II = �F − �R

Lead III = �F − �L (1)

As the three limb leads to construct a closed loop (Fig. 1), the Kirchhoff’s voltage
law can show the relationship between the limbs (Eq. 2) [2].

I + III = II (2)

Although some researchers suggested a different system to record the heart activity
[2, 3, 7], only the Einthoven limb leads had clinically used for three decades [2, 5,
8]. Wilson highlighted the fact that the limb electrodes are far from the heart, and
introduced the unipolar lead concept [5, 8–10]. In Wilson hypothesis, the electrical
activity of the heart can bemeasured by the potential difference between six exploring
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Fig. 1 Twelve lead electrocardiography

electrodes on the chest and an indifferent electrode of zero potential, which is known
as Wilson Central Terminal (WCT) [10]. These six leads are designated as unipolar
precordial leads (V1:V6) as he assumed the WCT amplitude is equal to zero [2, 10].
The Wilson Central Terminal is measured by the average potential of the right arm
(�R), left arm (�L) and left leg (�F ) [9, 10].

�WCT = 1

3
(�L + �R + �F) (3)

V1 : V6 = �V1 : �V6 − �WCT (4)

Wilson also proposed to use three unipolar limb leads (VR, VL, and VF), which
weremeasured by the difference potential of limbs’ electrode and theWCT reference
point [10].

VL = �L − �WCT

VR = �R − �WCT

VF = �F − �WCT (5)

Because the three unipolar limb leads had a small amplitude, Goldberger [11]
modified the WCT to increase these leads’ amplitude by 50%. The new leads are
measured as the potential difference between each limb potential and the average of
the other two limb potentials. These leads are known as augmented leads and named
as aVR, aVL, and aVF [11].

aVL = �L − 1

2
(�R + �F)

aVR = �R − 1

2
(�L + �F)
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aVF = �F − 1

2
(�R + �L) (6)

The augmented leads were suggested in 1942 finalizing the development of the
ECG lead system. The current ECG lead system consists of three Einthoven limb
leads, three augmented leads, and six precordial leads (Fig. 1) [4].

Currently, Electrocardiography is themostwide-spread non-invasive tool for diag-
nosis of cardiac diseases, currently in use in every clinical center. However, some of
the aforementioned fundamental ECGhypotheses have been challenged either during
the development of the Electrocardiography [1901–1942], or afterward. Therefore,
we discuss two of these fundamental ECG hypotheses: the Einthoven equilateral
Triangle hypothesis, and the Wilson hypothesis in order to make a tangible picture
of the Wilson central terminal and its influence on the precordial leads.

1.1 Wilson Central Terminal

Wilson hypothesized that a neutral reference point of the human body could be
measured by averaging the limb potentials. This reference point was introduced
having null amplitude, being steady, and locating in the center of the Einthoven
triangle [10]. The potential in the infinite medium has a null amplitude, which could
be considered as the ideal reference point. In physics, we can only measure the
potential difference between two points. However, we can have the potential of one
point in case the second point is located in the far distance (infinity) from the first
[12]. Thus, Wilson used three large resistors through which a negligible current
would pass (based on Ohm’s law), and consequently, he was able to measure the
limbs’ potential (Fig. 2, panel a) [10]. This assumption was found incorrect and
absorbed immediate interests among researchers to measure this systematic error
in the Electrocardiography. The proposed methods can be categorized into three
different perspectives.

In thefirst approach, the humanbody is immersed in largehomogeneous conductor
to measure the potential difference between theWCT and the assumed zero potential
(the water itself). In 1938, Eckey and Frohlich immersed a human body into a full
bathtub and determined the WCT amplitude to be into a range of 0.2–0.3 [mV] [13].
A year later, Burger conducted the same experiment and immersed five men into
a bathtub filled by water and reported the WCT amplitude was 0.26 mV [14]. In
1946, Wilson submerged a human in the Lake Michigan and found that the average
absolute amplitude of the WCT could be as large as 0.15 mV [9]. Dolgin repeated
the same experiment with different adjustments and confirmed the previous finding
[15]. In 1954, Bayley et al. and Bayley and Kinard encased the body of volunteers
inside a metal structure and immersed it in water for the duration of the recording
[16, 17]. They determined that the WCT is not steady and its amplitude could be
as large as 0.4 of Einthoven’s leads during the cardiac cycle [16–18]. Thus, they
used three rheostats to adjust the weights of the three WCT components in order
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to minimize the WCT amplitude [17]. The legitimacy of the first approach was
undermined by a variety of factors, including the effect of water pressure on ECG
recording and degree of the conductivity of surrounding water [19]. Additionally, the
zero potential of surrounding water [9, 20] and the widespread use of this method
[21] have been questioned.

In the second approach, the zero potential of the human body was measured
using numerical methods [2, 22–24] or surface potential mapping [25–27]. In these
methods, the zero potential is not exactly aligned with the WCT definition; however,
they referred to it as Wilson Center Terminal. The numerical methods are developed
based on the theory that the summation of the electrical potential at the body surface
should be zero [2]. Miyamoto et al. used 128 electrodes placed on the thorax and
averaged their potential to estimate the amplitude of the human reference point. They
reported the average value of the WCT as −0.169 mV in 10 normal volunteers, and
−0.051 mV in all 60 subjects including controls and patients [19, 25, 26, ].

In a third approach, the potential of the right arm left arm and left leg directly
measured using the right leg as a reference point (Fig. 2, panel b) [28]. We recently
developed a new Electrocardiography device that can measure nine unipolar leads
including three limbs’ potential and six true unipolar limb leads, in addition to 12
lead ECG [28–32, 33, 28]. Our results confirm the previous findings that the WCT is
not steady and null, andwe found out theWCT amplitude could exceed the amplitude
of lead II (up to 247% of lead II).

Fig. 2 Traditional approach (panel a) in comparison with our approach (panel b) to measure the
WCT. In our approach, the limb potential and unipolar chest lead are measured with respect to the
right leg
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Fig. 3 ECG amplifier using right leg driver (lead I)

2 True Unipolar ECG Recording Device

Our ECG device is designed to record traditional ECG signals in addition to the nine
true unipolar leads including three limb potentials and six unipolar chest leads. The
true unipolar leads are the raw biopotential measured from the exploring electrodes
directly referred to the right leg (RL). Although the right leg was not included in
the original ECG montage, it was added as necessary return grounding for voltage
amplifier as well as a way to reduce the interference from external electric fields [33].
Reduction of interference from external electrical fields is usually achieved with a
technique known as a driven right leg or right leg driver, which usually implies an
injection of a small current into the body (via the right leg electrode) and measuring
amplifier circuits (via their reference terminal). In some specific biopotentials appli-
cations, the right leg driver is avoided using a technique known as voltage reference
bootstrap thatmight result in an advantage to reduce common noise capture [2, 4, 33].

Driven right leg circuitries (DRLs) are widely used for themajority of the designs.
Using the DRL increases patient safety because the human body is not directly
grounded [4, 33, 34]. Figure 3 shows an example of the DRL application. As can
be seen, the human body is driven by a measure of the common mode signal at
the measuring electrodes while the amplifier is directly grounded. The technical
documentation of the INA118 can be found in [35].

Our hardware system is developed around the INA116 instrumentation amplifier
[36] from Texas Instruments (Burr-Brown series). This chip has typically a bias
current of the only handful of femto-Amperes, and it incorporates a specialized guard
ring amplifier which is primarily used to preserve the signal to noise ratio (SNR).
The guard ring amplifier is used to measure the WCT components, as it generates a
replica of the input signal [28, 29, 31, 32, 37, ]. Therefore, the WCT components’
voltages are directly measured by using the guard buffer of the limb electrodes. The
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Fig. 4 Block diagram of the employed hardware (adapted from [28])

INA116 chips have a gain set of 1 V/V; two AC coupled active non-inverting low
pass filters with gains of 10 V/V and 100 V/V are used to provide the required gain
and bandpass filtering.

To ensure that the SNRof themeasured signals is sufficient, specialized grounding
circuitry is designed utilizing a combination of the right leg circuitry and a modified
voltage bootstrap circuitry [9, 29, 37–39]. The non-amplified average of the mea-
surement electrodes is directly inputted to the driven right leg circuitry, which is
designed to drive 20 µA [40–42].

This circuitry is battery powered, and the necessary analogue to digital conversion
and data logging is operated by the BIOADC [43], which samples data with a 16-bit
over a range of ±5 V with a sampling rate of 800 Hz. The BIODAC is directly
(galvanically insulated USB HUB) connected to a battery-powered laptop, and it
comprises an anti-aliasing low-pass filter operating at the Nyquist frequency. Finally,
a specialized importing script including a zero-phase lag 50th order bandpass filter
(0.05–150 Hz), a zero-phase lag 50th order 50 Hz and harmonics notch IIR filters
are used to normalize the frequency components to the diagnostic ECG bandwidth
of the acquired signal. Complete details can be found in our recent publication [28]
(Fig. 4).
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3 True Unipolar Leads

We are able to record the three Einthoven unipolar limb lead (the voltage of right
arm, left arm, and left leg) and six true unipolar precordial leads for the first time.
We have recorded data from more than 100 patients at the Campbelltown hospi-
tal (NSW) over two years (2016–2018). All the patients volunteered for this study
and gave written consent (this study was approved by the Ethics Committee of the
South West Sydney Health District on 23rd September 2015 with the protocol num-
ber HREC/15/LPOOL/302). Some recordings have been removed from the dataset
due to poor signal to noise ratio or because of abrupt interruption of the record-
ing (emergency or patient being transferred to another department for an interven-
tion/procedure). The published dataset1 [44] contains 92 patients (27 were female)
with an average age of 65.23 years and a standard deviation of 12.12 years. The
majority of the patients had a history of cardiac disease and were admitted to the
hospital from the emergency department because of difficulties in breathing and/or
chest pain.

3.1 Einthoven Unipolar Limb Lead

We are able to measure the amplitude of Wilson Central Terminal by averaging the
voltage of Einthoven limbs. In this part, we are trying to answer the question of what
is the Wilson Central Terminal? We investigate the legitimacy of two hypotheses:

1. The WCT is null and steady during the cardiac cycle.
2. The WCT and aVF are inversely proportional.

The first hypothesis is the Wilson assumption to measure the precordial leads,
which has been proved incorrect by many researchers. However, their approaches
were cumbersome, usually having a small test case population, andmore importantly,
their validity has been questioned [9, 20, 21]. The second hypothesis assumes that
the left leg potential has the smallest amplitude among the Einthoven limb potentials,
as it has the longest distance from the heart. Hence, considering the assumption that
the left leg has near zero amplitude (�F

∼= 0), the WCT can obtain using the right
arm, and left arm. Consequently, WCT and aVF are inversely proportional.

�WCT = 1
3 (�R + �L)

aVF = − 1
2 (�R + �L)

yields→ �WCT = −2

3
aVF (6)

To assess the credibility of these two theories, we calculated the average peak
to peak amplitude of three beats for all patients. In Fig. 5, We report the relative
amplitude of the WCT, RA, LA, and LL with respect to lead II. As it is shown in

1Our dataset name is WCTECGdb, and was published in the Physionet website (https://alpha.
physionet.org/content/wctecgdb/).

https://alpha.physionet.org/content/wctecgdb/
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Fig. 5 (panel a), the minimum, maximum and average amplitude of the WCT in
relation to lead II among all 92 patients are 0.11, 2.47, and 0.78 respectively. The
left arm expected to have a higher potential than the right arm, as it is closer to the
heart (Fig. 5 panels b, c). The left arm with respect to lead II has an average of 1.61
(within range of [0.038 6.41]), while right arm average is 0.88 (within range of [0.01
2.79]) for all 92 patients. Figure 5 (panel d) demonstrates the amplitude of the left
leg with respect to lead II. Although the left leg has a small amplitude in comparison
with the right and left arms’ potentials, it does not have zero amplitude. The left leg
potential in relation to lead II is in the range of [0.007 1.78] with an average of 0.22
for all patients.

Our recording shows that the WCT does not have a small amplitude and has ECG
lead characteristics such as p-wave or QRS complex. The WCT has neutral (Figs. 6
and 8), negative (Fig. 7), or positive (Fig. 9) deflection during the cardiac cycle.
Figure 6 is an example of the WCT with a large amplitude. The WCT signal is as
large as 2.41 of lead II, and it exhibits all the characteristics of the ECG trace.

Figure 7 is an example of WCT with negative deflection. The left arm, right arm,
and left leg showECG features. Furthermore, the left leg has relatively small potential
in comparison with the right arm and left arm.

As it can be referred from Eq. 6, the WCT and aVF are highly correlated in case
the left leg potential has near zero amplitude. It can be understood from Fig. 5 (panel
d) that the left leg has a small amplitude for most of the patients, however, it also
has a relatively big amplitude for some patients. Figures 8 and 9 are an example of
the WCT and aVF lead having a low and high correlation. As can be seen in these
figures, the RA, LA, and LL signals have ECG characteristics. Figure 8, shows a
low correlation between the aVF lead and the WCT signal, as the LL amplitude is
as large as 0.22 of lead II. In contrast, the LL has a negligible amplitude in Fig. 9,
consequently the WCT and the aVF lead are highly correlated.

3.2 True Unipolar Precordial Leads

The true unipolar leads and precordial leads are referred to like the same concept
in the literature. However, it has been known that this terminology is incorrect. The
precordial leads initially represent the difference potential between the electrodes
placed on the chest and the WCT. Since Wilson assumed the WCT is null, the
precordial leads have been referred to as unipolar leads. However, our ECG device is
able to record the potential of electrodes placed on the chest without using the WCT
signal [29–32]. Therefore, we recorded the traditional precordial leads (V1:V6) and
what we address as the true unipolar leads (UV1:UV6) at the same time for all
patients.
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Fig. 6 Example of neutral WCT. The WCT is 2.41 of lead II amplitude (average); the recording is
from a 80-year-old male patient admitted from the emergency department with NSTEMI diagnosis

Our recording shows that the WCT is highly individual and has medically
relevant amplitude, which impacts the precordial leads’ shape and resulting to
lose important information in the precordial leads.

We investigated the clinical features of true unipolar leads in comparison with
precordial leads for all 92 patients. In this paper, we selected four patients from the
WCTECGdb [44] with Non-ST Elevation Myocardial Infarction (NSTEMI) diag-
nosis to show the influence of the WCT on precordial leads. Our records show that
the unipolar ECG may be more sensitive for detecting disease in the left anterior
descending (LAD) coronary artery in patients presenting with NSTEMI. We are cur-
rently recording more data to show the validity of this hypotheses. As the WCT has
no effect on the limb leads and augmented leads, we do not include them in the
Figs. 10, 11, 12 and 13.

• Patient75: He presented with a non-ST segment elevation myocardial infarction.
In this type of myocardial infarction, the mechanism of injury is subendocardial
myocardial infarction. As it can be referred from Fig. 10 (panel a), the t-waves are
biphasic in leads V2:V4, while they are inverted in leads UV1:UV6. Consequently,
the unipolar ECG may be more sensitive at detecting this type of injury than the
standard ECG. As the only difference between unipolar chest lead, and precordial
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Fig. 7 Example of negative WCT. The WCT is 0.32 of lead II amplitude (average); the record-
ing is from a 54-year-old male patient admitted from the emergency department with ischemic
cardiomyopathy diagnosis

lead is the WCT signal (Eq. 4), the influence of the WCT on UV1 can be clearly
seen in Fig. 10 (panel b).

• Patient46:His angiography showed focal severemidLADstenosis,which supplied
a large collateral to a distal dominant right coronary artery (the native right coronary
artery being completely occluded). The patient subsequently underwent coronary
artery bypass surgery. As can be seen in Fig. 11, the true unipolar leads show loss
of clear T waves, which is suggestive of ischemia.

• Patient85:His angiography showed proximal tomidLADstenosis, whichwas sub-
sequently stented (after optical coherent tomography (OCT) imaging). As seen in
Fig. 12, the true unipolar leads show more markedly biphasic T waves UV1:UV3.
In other words, biphasic T waves in VU1–UV3 typically suggest proximal LAD
disease which is known as Wellens Syndrome. This was not apparent on the pre-
cordial leads but was predictive of the underlying culprit lesion.

• Patient66: His angiography showed focal severe stenosis in distal RCA and prox-
imal large diagonal branch stenosis of the LAD (both of which were stented). As
it can be referred from Fig. 13, the true unipolar leads show T wave inversion
UV4:UV6 consistent with diagonal branch territory problem/ischemia.
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Fig. 8 Example of neutral WCT that mutates into positive and neutral. There is low a correlation
(45%) between the WCT and aVF lead. The LL amplitude is as large as 0.22 of lead II

4 The WCT Location

In theory, the WCT is located in the centroid of the Einthoven triangle. However,
research conducted in 2005 shows that many cardiologists do not have a clear under-
standing of unipolar leads and theWCT concept [45]. Asmentioned earlier, although
there was an initial wave of interest working on the fault in the WCT assumption
after Wilson hypothesized its concept, this error has been widely accepted, and the
topic received scant research attention. Furthermore, there is no consensus under-
standing of the Einthoven triangle, as its edges have been considered differently in
the literature. Hence, a clear view of the Einthoven triangle hypothesis may lead to
a more precise answer to the question, where is Wilson central terminal?

Einthoven assumed the human body is two-dimensional conducting homogeneous
medium with the shape of a triangle. The heart is regarded as a single dipole in
the center of the triangle. The dipole changes its magnitude and direction in every
moment, which causes it to change its electrical field. Considering these assumptions,
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Fig. 9 Example of positive WCT with small LL amplitude (0.032 of Lead II). The WCT and aVF
are highly correlated (98%) as the amplitude of WCT is negligible

the potential of every point in the bodymeasured byEq. 7 [1], which� is the potential
of a single current dipole �p (with strength p) in infinite homogenous medium with a
conductivity of (σ):

� = 1

4πσ

p cos θ

R2
+ c (7)

R is the length of the vector �R directed from dipole source location to the target point,
and θ is the angle between vectors �p and �R.

As Goldberger discussed [46], the distance between the limb electrodes and the
dipole are equivalent; therefore the difference between the limb potential amplitudes
is only dependent to angles θ1, θ2(θ1 + 120) and θ3(θ1 + 240). It could be easily
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Fig. 10 Panel a: comparison of unipolar chest lead (UV1:UV6) with precordial leads (V1:V6).
Panel b: the influence of the WCT on V1; top panel is standard V1 precordial; middle is true
unipolar UV1; bottom panel is the WCT signal. The t-wave is inverted in UV1. Recorded from
70 years old male, admitted to a hospital for NSTEMI (patient75)

Fig. 11 Comparison of unipolar chest lead (UV1:UV6) with precordial leads (V1:V6). Recorded
from 69 years old male, admitted to a hospital for NSTEMI (patient46)
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Fig. 12 Comparison of unipolar chest lead (UV1:UV6) with precordial leads (V1:V6). Recorded
from 52 years old male, admitted to a hospital for NSTEMI (patient85)

Fig. 13 Comparison of unipolar chest lead (UV1:UV6) with precordial leads (V1:V6). Recorded
from 41 years old male, admitted to a hospital for NSTEMI (patient66)

shown that for every direction of the heart vector, the sum of the limb potential is
equal to zero [46] (Fig. 14).

Fig. 14 Einthoven assumed the potential of each limb only depends on the angle between �p and �R
vectors
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The geometrical position of the limb electrodes shaped the Einthoven triangle
[46–48, ].Wilson assumed the symmetrical orientationof theheart vectorwith respect
to the electrodes on the limbs [17] and hypothesized that the potential of the dipole
(heart) is equal to zero and calculated by the average of the Einthoven limb potentials.
Although theEinthoven hypothesis is themajor breakthrough in electrocardiography,
it has been known his assumptions are oversimplifying the human body, and the heart
activity. The same argument can be made for the Wilson hypothesis.

TheWCT located in the centroid of Einthoven triangle, represents the potential
of the single dipole, and its potential is equal to zero in case three electrodes
are placed in the same distance from the heart, and all Einthoven assumptions
are correct.

However, as it can be referred from Eq. 7, in case the imaginary line between limb
electrodes do not build up the equilateral triangle, the limb potentials depend on the
R amplitude and the angle (θ ). Consequently, the centroid of the triangle cannot
represent the dipole anymore. Furthermore, the other assumptions (the electrical
activity of the heart is a single dipole located in the center of the body, and the human
body is a homogeneous conductor) are ill-posed models of the human body [46].

In some literature, there is also a misunderstanding between geometrical space
and electrical space. As an example, in the standard surface ECG representation,
it is possible to see that limb leads are the edges of the Einthoven triangle, this
can be easily shown incorrectly. The Einthoven law (Eq. 2) contradicts the fact that
equilateral triangle edges are in the same length, and more importantly, three limb
leads could only construct a triangle (not equilateral) for less than 50% of the cardiac
cycle [49].

5 Discussion

Originally, the heart was theorized to act as a current source, and the electrocar-
diography model measured bio-currents using a very sensitive galvanometer (string
galvanometer). As there is no obvious current pathway that includes the heart when
the instrument is connected between the two legs and the right leg is the most distant
limb from the heart, Einthoven did not include the right leg in the cardiac con-
duction model. In other words, ECG recordings were intended as a measure of the
net current impressed by the heart circulating into an external circuit closed by the
measurement instrument. Therefore, it was possible forWilson to complete the trans-
formation from the equilateral triangle (Einthoven’s triangle) to the equivalent star
circuit (originating the augmented leads) when he faced the problem of finding a
reference for precordials. In theory, if each of the Einthoven leads measures the net
current impressed by the heart between the two limbs, averaging all the electrodes
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Fig. 15 Idealmeasurement of lead I versus realmeasurement of lead I. Left panel shows an idealized
measurement of lead I as voltage; right panel refers to real measurements of lead I in which includes
contact impedances (Zc1 and Zc2) and variable impedance of torso (Zt)

together should give the best approximation of the point of origin, the neutral point
of the cardiac electrical activity.

Impractical use of current measurement devices and the link between current and
voltage resulted in the replacement of all ECG current measurements with voltage,
neglecting that measuring voltage instead of current requires dealing with the differ-
ent impedances of body sections. In fact, each lead is interpreted as the voltage drop
across a composed resistance (impedance, as a matter of fact) due to the net current
impressed by the heart to the points of measurement based on Ohm’s law (Voltage =
Resistance * Current]). For example, lead I (Fig. 15) can be interpreted as the drop
of voltage across the sum of the contact impedance at both electrodes that includes
the impedance of the two arms and the impedance of the chest across the shoulders
that changes with respiration.

Of course, current and voltage measurements are perfectly interchangeable if the
body is simply considered as a homogeneous volume conductor (constant resis-
tance) with the limb electrodes placed at equal distance with no or negligible contact
impedance.However, in real life recording the contact impedance imbalance between
the ECG electrodes is often not verified. Additionally, the limb leads are measured
across different sections of the chest, which are different in shape, and their resistance
changes with respiration and body posture resulting in adding a frequency-dependent
delay and a phase difference between voltage and current. The modified phase rela-
tionship between voltage and current may also affect the limbs’ potential and conse-
quently, theWCT.Moreover, as the voltage potential difference between the reference
point (RL) and the other limb electrodes are used to measure the RA, LA, and LL
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potentials, different body and contact impedances may impose different delays upon
the limb potentials resulting in an unpredictable alteration of WCT [29, 32].

Based on the Einthoven theory, if the limb electrodes placed on the same distance
from the heart, theWCTpresents the potential of the dipole.However, it is not the case
in practice. TheWCT amplitude is highly dependent onwhere the limb electrodes are
placed (Eq. 7). Hence, it is obvious not to have a negligible amplitude in averaging
the limbs’ potential. On the other hand, the location of the limb electrodes influences
the shape and amplitude of precordial leads [50]. As our device uses the right leg as
a reference point to measure the potential of the electrodes on the chest, the WCT
variation does not affect the true unipolar leads. On the other hand, the true unipolar
leads are robust and independent from the limb electrodes’ displacement.

6 Conclusion

The electrocardiography is themost common tool in the diagnosis of cardiac diseases.
In this paper, we discussed two important hypotheses proposed by Einthoven and
Wilson, which shapes the currently in use electrocardiography tool. It has been
known that these two theories simplify heart activity, and do not provide a precise
model for the human body. However, no one can measure the influence of these
false assumptions on the leads. As our ECG device can record the potential of the
Einthoven limb electrodes and chest electrodes, we were able to show the impact of
the WCT on precordial leads. Furthermore, we depicted a clear picture of the WCT
concept by answering the questions what is the Wilson central terminal? and where
is the Wilson central terminal?Our records show that the WCT is not null, and it has
ECG features such as p-wave and QRS complex with clinically relevant amplitude
(as high as 2.47 of lead II). We also compared the limb potential amplitudes. Our
records show that the left arm has a high amplitude as it is closer to the heart, and the
left leg has a small amplitude for most of the patients. However, the left leg potential
is not negligible for all the patients, and its amplitude with respect to lead II is in a
range of [0.007 1.78] and with an average of 0.22 for all patients.

We used two terminologies to address the chest leads, first, precordial leads
(V1:V6) referring to the current approach used for recording the chest leads, second,
the true unipolar leads (UV1:UV6) addressing our approach used for recording the
chest electrodes’ potential. We show that the WCT signal is clinically relevant, and
has an impact on precordial leads’ shape and amplitude. Our preliminary results show
that the true unipolar leads may be more sensitive for detecting cardiac diseases in
the left anterior descending coronary artery in patients with NSTEMI.
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Novel Methodology for Cardiac
Arrhythmias Classification Based
on Long-Duration ECG Signal
Fragments Analysis

Paweł Pławiak and Moloud Abdar

Abstract According to the reports published by various organizations, it can be
seen that about 50 million people are at risk of cardiovascular diseases (CVDs)
around the world. Moreover, different types of heart diseases are the most common
causes of mortality. This chapter, therefore, investigates a cardiac disorders database
(ECG) with 17 classes (normal sinus rhythm, the rhythm of the pacemaker, and fif-
teen arrhythmias) using a novel classification methodology. The data set is based
on long-duration ECG signal fragments. The Electrocardiography (ECG) is a very
popular process to record the electrical activity of the heart during specific time. Even
though there are a lot of studies in the literature, however, there are many other open
issues in the topic. The main objective of the current study is to present a new and
efficient methods in order to do automatic recognition of myocardium dysfunctions.
The proposed methods are introduced that can be used in different situations such
as mobile devices, telemedicine, cloud computing, and finally supporting preventive
and supportive treatment of CVDs. Since the performance of proposed algorithms
is very important, the time duration, as an additional criterion, is also analyzed in
real time. The obtained outcomes demonstrate that our methodology has outstand-
ing performance compared to the methods presented in the literature. This study
uses 744 fragments of ECG signal database related to 29 patients from the MIH-
BIH Arrhythmia database (only for one lead—MLII). By using Welch’s method
and a discrete Fourier transform, the spectral power density is predicted in order
to increase the characteristic features of the ECG signals. The research presents a
new evolutionary-neural system, based on the SVM classifier. The proposed method
shows good performance with high sensitivity (90.19%), specificity (99.39%), and
accuracy (98.85%).

P. Pławiak (B)
Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology,
Warszawska 24 st., 31-155 Krakow, Poland
e-mail: plawiak@pk.edu.pl; plawiak.pawel@gmail.com

M. Abdar
Département d’Informatique, Université du Québec a Montréal, Montréal, QC, Canada
e-mail: abdar.moloud@courrier.uqam.ca; m.abdar1987@gmail.com

© Springer Nature Singapore Pte Ltd. 2020
G. Naik (ed.), Biomedical Signal Processing, Series in BioEngineering,
https://doi.org/10.1007/978-981-13-9097-5_11

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9097-5_11&domain=pdf
mailto:plawiak@pk.edu.pl
mailto:plawiak.pawel@gmail.com
mailto:abdar.moloud@courrier.uqam.ca
mailto:m.abdar1987@gmail.com
https://doi.org/10.1007/978-981-13-9097-5_11


226 P. Pławiak and M. Abdar

1 Introduction

The Electrocardiography (ECG) is a very popular diagnostic tool for diagnosis of
heart disease, which is an inexpensive and non-invasive tool [7, 65, 69]. For this
reason, the extensive range of applications of ECG signal analysis can be observed.
TheECGsignals can reveal very important information about the rhythmand function
of the heart. This is a very important point about ECGbecause it reveals very essential
information while it is not expensive. In other words, the ECG tool benefits both
physicians (with valuable information) and patients (with low cost). Thus, ECG
records can be considered as a good resource for doing research on heart diseases.

The statistics published by accredited organizations (e. g., World Health Orga-
nization: WHO) clearly indicate that cardiovascular diseases are the number one
reason for death in the globe [3, 7]. According to the reports published by WHO,
about 17.7 million people annually die, which means 31% of all global deaths hap-
pened because of CVDs in 2015 [2]. The significant point is that about 80% of
CVDs deaths are occurred because of heart attacks and/or strokes. Another point
is that above 75% of CVD mortalities happen in middle-income and low-income
countries. Based on these statistics, the estimation of CVDs patients may reach up to
approximately 23.6 million in 2030 [61, 88]. Moreover, the American Heart Asso-
ciation (AHA) expressed that different kinds of heart diseases are the number one
killer for all American individuals [1]. This constitutes an alarm for governments
and researchers to find some solution to reduce the negative and destructive effects
of this disease. In recent decades, computer-aided diagnostic systems (CADSs) have
been significantly applied to different types of heart diseases.

The computer-aided diagnostic system (CADS) uses different machine learning
(ML) and data mining (DM) techniques to improve the quality of diagnosis of dif-
ferent medical subjects (heart disease [8, 60, 66, 71], Parkinson’s disease [5, 39,
48, 89], bioinformatics [20, 23, 78, 79], breast cancer [12, 34, 35, 50], liver disease
[4, 6, 41, 45], hepatocellular carcinoma [46] etc.). In each of these subjects, various
methods have been applied and thesemethods showed different performances in each
case study. This means that the performance of ML algorithms depends on various
circumstances and also data types. For this reason, attention to different aspects of
medical databases can be helpful in reaching a better point of outcomes. There are
many works in the litterateur applied different algorithms on ECG data sets.

Sannino and Pietro [69] proposed a classification-based approach to address the
problem related to ECG beat classification. To this end, a Deep Neural Network
(DNN) method with 7 hidden layers is applied to the MIT-BIH Arrhythmia data set.
The best accuracy using the proposed method was 99.09% for testing set whereas in
whole data was 99.68%. Due to the importance of coronary artery disease (CAD),
authors in [2] used the decomposition ofECGsignals to provide an automated charac-
terization and classification approach. In this regard, EmpiricalModeDecomposition
(EMD), Discrete Wavelet Transform (DWT), and Discrete Cosine Transform (DCT)
were chosen and compared. Moreover, they used the highly ranked coefficients into
the K-Nearest Neighbor (KNN) algorithm. The proposed methodology showed very
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good performance with 99.7% sensitivity, 98.5% specificity, and 98.5% accuracy.
Varatharajan et al. [80] applied the Linear Discriminant Analysis (LDA) technique
to decrease the features in ECG data. In addition, to improve the performance of
traditional SVM, a weighted kernel function approach was used with SVM. This
new model was classified as various heartbeat levels, such as Premature Ventricu-
lar Contraction (PVC), Premature Atrial Contractions (PACs). Left Bundle Branch
Block (LBBB), and Right Bundle Branch Block (RBBB).

Similarly, authors in [22] investigated the ECG data set authentication and also
gender recognition. In this regard, several algorithms were used. The highest accu-
racy for ECG data set authentication was about 98%, whereas the best accuracy for
gender recognition was 94%. In another research [26], studied compressive sensing
(CS) due to its importance in the long-term ECG telemonitoring. Based on subspace-
based representation, the low-complexity framework of Privacy-Preserving Com-
pressive Analysis (PPCA) is proposed. The accuracy of the model was 96.05%.
The ECG heartbeat signal clustering approach is proposed by Rodríguez-Sotelo
et al. [67]. The proposed approach showed good results with a specificity of 98.69%,
sensitivity of 85.88%, and a general clustering performance of 95.04%. Yildirim [85]
studied ECG signals using a novel Long-short term memory network (LSTM). The
research introduced a deep bidirectional LSTM network-based wavelet sequence
named DBLSTM-WS method. The proposed model was applied to the Ventricular
Premature Contraction (VPC), Left Bundle Branch Block (LBBB), Normal Sinus
Rhythm (NSR), Right Bundle Branch Block (RBBB), and Paced Beat (PB) heart-
beats. The best accuracy of the model was 99.39.

Luz et al. [29] proposed a new methodology for cardiac arrhythmia signal data.
The optimum-path forest (OPF) algorithm was applied to the ECG signals. The
performance ofOPFwas comparedwith amultilayer artificial neural network (MLP),
support vector machine (SVM), and Bayesian network. Their outcomes indicated
that OPF classifier yielded better classification results compared with other methods
applied in the research. In [30] reviewed several studies in the literature about theECG
signal preprocessing approaches and also the heartbeat segmentation methods. By
using theAssociation for theAdvancement ofMedical Instrumentation (AAMI), they
explained some of the databases applied for evaluation of techniques. The evidence
indicated that the MIT-BIH data set (also called as MIT-BIH ARR DB) utilized in
most of the studies, was an imbalance. This is very important to have balance data
since majority class/classes can affect the results. This means that since we have
imbalance data the results are not trustable. Alickovic and Subasi [11] examined the
design of an efficient recognition approach for ECG database in order to diagnose
heart disease. To this end, the multiscale principal component analysis (MSPCA)
and the autoregressive (AR) modeling were applied for noise reduction of the ECG
signals and for extracting features, respectively. It should be noted that the Burg
Method was applied with for AR parameter estimation which named AR Burg. The
model showed very high performance with 99.93% when SMO-SVM method was
used with MSPCA and AR Burg.

Banerjee and Mitra [16] investigated ECG signals using machine learning tech-
niques. They, therefore, used the cross wavelet transform (XWT) analysis approach.
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After using XWT, wavelet cross spectrum (WCS) and wavelet coherence (WCOH)
were yielded. Their results demonstrated that combining these three approaches
can show very good outcomes with 97.6% accuracy, 97.3% sensitivity, and 98.8%
specificity. Authors in [25] proposed a novel machine learning approach by using a
combination of projected and dynamic features. Then, using the discrete cosine trans-
form (DCT) each row was transformed. The study used the support vector machine
(SVM) as a classifier to cluster heartbeats either into one of 15 or 5 classes. The best
accuracy for “class-based” assessment strategy was 98.46% while the highest accu-
racy for the “subject-based” assessment strategy was 93.1%. A Study [10] applied a
Gaussian mixture modeling (GMM) to coordinate the possibility density function of
heartbeats. Moreover, the expectation maximization (EM) approach was also used.
The overall accuracy for the “class-oriented” scheme was 99.70% whereas the accu-
racy for “subject-oriented” scheme was 96.15%. Kalgotra et al. [44] presented an
algorithm for automatic recognition of 5 classes (Normal, Atrial Fibrillation, Atri-
oventricular Block, Sinus Bradycardia and Sinus Tachycardia) with 91% accuracy.
The presented solution is used in a commercial mobile device to control the heart
condition of users.

Themost popular topic of ECG signal analysis in the diagnosis of cardiac arrhyth-
mia based on the MIT-BIH arrhythmia database. The works on this subject are pre-
sented below. Yildirim [86] proposed recognition system for detection and classifi-
cation of heartbeats in ECG signals. The new method is based on detection (wavelet
transform) and segmentationofQRScomplexes. Then theOnlineSequential Extreme
Learning Machine classifier was used to recognize the heartbeats. The trained model
achieved an accuracy of 98.51% in recognition of 5 AAMI classes from MIT-BIH
arrhythmia data set. Martis et al. [54] described amethod for automatic detection of 3
classes of arrhythmia: normal, AF and AFL of ECG signal. Four methods of feature
extraction were compared: the principal components (PCs) of discrete wavelet trans-
form (DWT) coefficients, the independent components (ICs) ofDWTcoefficients, the
PCs of discrete cosine transform (DCT) coefficients, and the ICs of DCT coefficients.
Three classifiers have also been tested in this paper: K-nearest neighbor (KNN), deci-
sion tree (DT), and artificial neural network (ANN). MIT-BIH arrhythmia and atrial
fibrillation databases were used. The best result, 99.45% accuracy, was obtained for
DCT with ICA and kNN and 10-fold cross validation. de Chazal et al. [31] presented
an automated method for classifying 5 AAMI heart beats classes (normal beat, ven-
tricular ectopic beat (VEB), supraventricular ectopic beat (SVEB), fusion of a normal
and aVEB, or unknownbeat type). TheMIT-BIHarrhythmia databasewas used in the
study, which was divided according to the subject-oriented validation scheme (inter-
patient paradigm). The work focuses on the extraction of features based on ECG
morphology, heartbeat intervals, and RR-intervals. The authors achieved an accu-
racy of 83%, obtained with linear discriminant analysis. Acharya et al. [9] applied a
novel method of deep learning to classify heartbeats. They obtained an accuracy of
94.03% in recognition 5 AAMI classes from theMIT-BIH arrhythmia database using
the 9-layer deep convolutional neural network (CNN). Oh et al. [58] introduced the
Novel modified U-net model for automated arrhythmia diagnosis. They proposed
autoencoder to diagnose 5 classes: normal sinus beats, atrial premature beats (APB),
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premature ventricular contractions (PVC), left bundle branch block (LBBB) and
right bundle branch block (RBBB) from the MIT-BIH arrhythmia database. They
have achieved accuracy equal to 97.32% using a 10-fold cross-validation strategy.
Llamedo and Martinez [51] proposed a simple heart beat classifier based on ECG
feature models selected. The authors have considered features from the RR series,
the ECG samples, and different scales of the wavelet transform. In the research, they
used 3 databases: the MIT-BIH Arrhythmia, the MIT-BIH Supraventricular Arrhyth-
mia, and the St. Petersburg Institute of Cardiological Technics (INCART). A floating
feature selection algorithm achieved an accuracy of 93%. Ye et al. presented in paper
[84] a newalgorithm for heartbeat classification basedonmorphological anddynamic
features. Wavelet transform, independent component analysis (ICA) and RR interval
information were used to extract the features. Data from the MIT-BIH arrhythmia
database were used. Support vector machine classifier achieved outcomes equal to
86.4% in classifying 5 AAMI classes, for subject-oriented evaluation. Yang et al.
described in the paper [82] novel heartbeat recognition method. MIT-BIH arrhyth-
mia database with 5 AAMI classes was used in the research. The main contribution
was to apply principal component analysis network (PCANet) for feature extraction.
Linear support vector machine (SVM) achieved a score of 97.08% accuracy. Bazi
et al. in study [17] used 2 kinds of features: (a) ECG morphology features and (b)
ECG wavelet features with QRS complexes. The authors used MIT-BIH arrhythmia
database. For SVM, they achieved an accuracy of 91.8%, for 5 AAMI classes and
subject-oriented scheme. Zhang and Luo described in [91] multi-lead fused classifi-
cation schema. The ECG features adopted include inter-beat and intra-beat intervals,
amplitude morphology, area morphology, morphological distance, and wavelet coef-
ficients.MIT-BIH arrhythmia database with 5 AAMI classes was used. The proposed
method has obtained an accuracy of 87.88%. Elhaj et al. [36] proposed support vec-
tor machine and neural network methods with radial basis function to arrhythmia
recognition and classification. In this work they were combined nonlinear and linear
features (high order statistics, cumulants, independent component analysis, princi-
pal component analysis of discrete wavelet transform coefficients). Combined SVM
and radial basis function method achieved 98.91% accuracy based on the MIT-BIH
arrhythmia database and 10-fold cross-validation in classifying 5 AAMI classes.
Zubair et al. [92] introduced an ECG beat classification system using convolutional
neural networks (CNN). In this work MIT-BIH arrhythmia database was used, and
5 AAMI classes were recognized. An accuracy of 92.7% was obtained.

This research studies a cardiac disorders database (ECG) with 17 classes (normal
sinus rhythm, the rhythm of the pacemaker, and fifteen cardiac arrhythmias). The
data set includes 744 fragments of ECG signals related to 29 patients from the MIH-
BIH Arrhythmia database, MLII. This study, therefore, has three main aims that we
will explain in the following of the research. The first aim to propose an accurate and
efficient recognition method to classify myocardium dysfunctions based on ECG
signals. Secondly, the proposed method can be used in tele-medicine and mobile
devices. Finally, the new method is universal, which means that it can be used for
general population not only for individuals. To this end, the major contributions, as
our novelties, of the study can be expressed as follows. The first innovative element
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is related to the genetic training and optimization of classifiers which means the
methods will have better training step by using GA. Moreover, current research opti-
mized feature extraction using the Welch method and the discrete Fourier transform
approach. These approaches strengthen the characteristic features of ECG signals
by predicting the power spectral density. It should be expressed that data analysis in
the frequency domain is analyzed for several Hamming window widths. As a point,
the described research in this chapter was continued in some of our prior papers
[60–62, 87], which will be explained in the following of the research briefly.

2 Data Set Used

As discussed earlier, we used theMIH-BIHArrhythmia data set [56], which publicly
available at the PhysioNet [40]. The database includes the information of 29 patients
which 15 were female, and 14 of them were male. The range of age for female is
23–89 while the range of males is 32–89 years old. The ECG data is categorized into
17 classes in which one class is related to normal sinus rhythm, one class is related
to pacemaker rhythm, and the rest of classes (15 classes) are related to 15 different
types of cardiac arrhythmias. The sampling frequency of 360 [Hz] and also a gain
of 200 [adu/mV] were used for all ECG signals. Moreover, the database consists of
randomly chosen signals (744 ECG signal fragments) which have 10s long, 3600
samples as well as the do not have an overlapping issue. Additionally, all of these
ECG signal fragments are derived from one lead (MLII).

A description of the collected signals (number of ECG signal fragments for all
classes from 1.34 to 25.94%, Imbalance Ratio (IR) = 19) is given in Table 1, which
presents the analyzed heart disorders, number of signal fragments collected for each
disorder, number of patients from whom the ECG data were derived. Moreover,
division of signal fragments into training and test sets for 2 types of stratified cross-
validation.

An important aspect is the appropriate balance of data. The number of signal
fragments corresponding to physiological heart evolutions should not be significantly
greater than the number of ECG signals for the other classes. This may cause an
artificial increase in the recognition efficiency of cardiac disorders.

Obtaining a greater number of suitable ECG signal fragments for the rarest dis-
orders (10 or 11 ECG signal fragments in Table 1) from the MIT-BIH Arrhythmia
database for the MLII lead was not possible.

Collected data from all 48 records is not possible because of records no. 102
and 104 do not have signals from MLII lead. In record no. 232, the entire signal
containing rhythm “Sinus bradycardia” (not recognized in the article).
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3 Methods

This section presents the subsequent stages of processing and analysis of the ECG
signals along with the methods utilized.

3.1 Step I—Preprocessing with Normalization

The aim of this stage was to unify the data from various ECG devices (gain reduction,
frequency uniformity, and constant component reduction) and from different patients
(normalization of signal amplitude).

In the research, the data were properly organized, and three preprocessing (nor-
malization) paths were tested:

• no normalization:

– reduce the gain
– reduce the constant component (mean signal value)

• rescaling:

– reduce the gain
– reduce the constant component
– rescale the signal to the range of [−1, 1]
– reduce the constant component

• standardization:

– reduce the gain
– reduce the constant component
– standardize the signal (mean signal value = 0 and signal standard deviation = 1)

Rescaling was performed on all the ECG signal fragments for a given disorder
for a given patient.

Therefore, the following techniqueswere applied in order to attain fulfill favorable
impacts. The reduction of gain can be calculated by using Eq.1.

Reduction of gain:

S = Sg
g

(1)

where:

S represents the value of ECG after gain reduction,
Sg represents the value of ECG before gain reduction,
g represents the value of gain of device that ECG signal was recorded.

Moreover, the reduction of a constant component can be computed by Eq.2.
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Reduction of constant component:

μ = 1

n
·

n∑

i=1

xj(i) (2)

where:

n the number of ECG signal samples j,
i represents the index of consecutive ECG signal samples,
j represents the index of consecutive ECG signals.

Rescaling to the range [−1, 1] is another preprocessing approach used which Eq.3
shows how it can be calculated:
Rescaling to the range [−1, 1]:

x̄j(i) = 2 ·
(

xj(i) − min(xj)

max(xj) − min(xj)

)
− 1 (3)

where:

i indicates the index of consecutive ECG signal samples,
j indicates the index of consecutive ECG signals,

min(xj) indicates the minimum signal amplitude value,
max(xj) indicates the maximum signal amplitude value.

Similarly, we used standardization approach as shown in Eqs. 4 and 5
Standardization:

x̂j(i) = xj(i) − μ

σ
(4)

σ =
√√√√ 1

n − 1

n∑

i=1

(xj(i) − μ)2 (5)

where:

i is the index of consecutive ECG signal samples,
j is the index of consecutive ECG signals,

μ is the mean signal value j, which can be calculated by Eq.2,
σ is the standard deviation of the signal j, which can be calculated by Eq.5.

3.2 Step II—Feature Extraction

The aim of this stage was to extract and strengthen the characteristic features of the
signal and thereby increase the recognition efficiency for the dysfunctions.
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Due to the periodic nature of the ECG signal, the extraction of features based on
the estimation of the power spectral density [72] of the ECG signal was performed
using theWelsh method [81] and the discrete Fourier transform (DFT) [72]. Then, to
normalize the frequency components of the power spectral density, the transformed
signal was logarithmized.

To this end, the following techniques were selected for this phase of research.

Power spectral density (PSD) The PSD of the signal is a solution to explain the
power present in the signal as a frequency function. In other words, the PSD
explains how much signal arises per unit bandwidth. Generally, the PSD can be
commonly represented in watts [power] per hertz (W/Hz), which can be obtained
by using the Fourier transform.

Welch’s method This is one of the approaches to predict the PSD function of the
signals at different frequencies. The periodogram is computed by calculating the
discrete Fourier transform and after that, calculating the squared magnitude of
the outcome. Finally, the individual periodograms are averaged, that decreases
the variance related to the individual power measurements.

Periodogram is a diagram that represents the most important periodic regularities
in different signals. The periodogram, as one of the nonparametric techniques,
helps to find out the estimation of the power spectral density of a signal. The
diagrams have peaks that correspond to periods (cycles). It should be noted that
the closest correlate with the data.

Fourier discrete transform The Fourier transform is a very important function
of time (a signal) that is used in order to present different signal distribution into
sinusoidal and cosine waveforms. Therefore, it transforms the signals from the
time domains to the frequency domains. It should be explained that a discrete
Fourier transform is a result of using the counterpart of the Fourier transform
related to the discrete (digital) signals and periodic signals. The Fourier transform
can be calculated according to Eq.6

X (k) =
N−1∑

n=0

x(n) · e−j· 2·π ·n·k
N (6)

where:

x(n) represents the nth sample of the discrete signal,
k represents the line number (in other words: frequency component number);

k = 0, ...,N − 1,
N represents the number of signal samples.

Hamming window is a function to describe the timewindow in order to determine
the manner of sampling from the signal data.

Series of logarithms of signals This is a form in order to normalize different fea-
tures and/or attributes of the signalswhich are used as inputs for various classifiers.
It can be calculated by Eq.7:
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x(n) = 10 · log10(Pxx(n)) (7)

where:

n represents the index of consecutive ECG signal samples,
x(n) represents the series of logarithms of ECG signal,

Pxx(n) represents the power spectral density.

To calculate the power spectral density, 3 Hamming window widths (Experiment
No. 1: 128, 256, and 512 samples) or 4 Hamming window widths (Experiments No.
2 and No. 3: 128, 256, 512, and 1024 samples) were applied. The Hamming window
widths were selected experimentally, with 6 tested widths, therein rejecting windows
with 768 and 1536 sample widths. The subsequent values of the tested Hamming
window widths were determined using a geometric string (multiples of 2).

In all experiments, as a result of the feature extraction, from a single fragment of
the ECG signal, a feature vector with a length of 4001 frequency components was
obtained.

To estimate the power spectral density (in all experiments), the following param-
eters were used: the number of common samples for 2 adjacent signal fragments
equal to half of the width of the adopted Hamming window and a DFT vector length
equal to 8000 as well as a sampling frequency equal to 360 [Hz].

3.3 Step III—Feature Selection

The aim of this stage was to reduce the data (and thus accelerate the computations)
and both extract and strengthen the characteristic features of the signal by reducing
the features that carry redundant and erroneous information.

In order to solve and optimize different real problems, different types of Genetic
algorithms (GA) [42, 68] can be usedwhich are based onnatural evolution.Generally,
the procedure of GAs is based on two mechanisms, including natural selection and
inheritance. Gas Belong to a larger family ofmethods called evolutionary algorithms.
Indeed, GAs benefit from the evolutionary principle of survival of the best adapted
individuals.

In the research, a genetic algorithm (GA) [68] was used for the feature selec-
tion. The genes in the population of individuals represented subsequent single fea-
tures/attributes of the signal entered as input for the classifiers.

Genes could take on the following values:

• 0—means that reject a given feature or
• 1—means that accept a given feature.

The genetic algorithm creates subsequent populations of individuals based on the
fitness function and optimizes the efficiency of the classifiers through the selection
of the most valuable features of the ECG signal.



236 P. Pławiak and M. Abdar

3.4 Step IV—Cross-Validation

The aimof this stagewas to eliminate the effect of over-fitting the designed classifiers,
thereby increasing the effect of generalizing knowledge and increasing the reliability
of the obtained results.

A study [47] mentioned there are different types of approaches for choosing train-
ing and testing sets: k-fold cross-validation, hold-out, leave-one-out cross-validation,
bootstrap, and resubstitution.

In this study, we use stratified k-fold cross-validation (CV) [47] in order to choose
the elements for the training and testing sets. Two types of cross-validation were used
to create the training and testing sets: stratified 4-fold cross-validation (4 CV) and
stratified 10-fold cross-validation (10 CV).

Applying a stratified 10-fold and stratified 4-fold cross-validation method that is
more consistent with the subject-oriented validation scheme (inter-patient paradigm)
than class-oriented validation scheme (intra-patient paradigm) [10, 30, 31].
Table 1 shows the allocation of ECG signal fragments (divided into disorders) to
training and test sets for both types of validation. The reference matrices with the
expected responses were created to enable a comparison of the final results. They
contained the required outputs of the classifiers. The reference matrices for both
variants of the cross-validation are not shown in this article because of their known
form.

3.5 Step V—Machine Learning Algorithms

This main aim of current research is to present an efficient and accurate approach
to investigate heart disorders based on ECG signal fragments. In order to reach this
point, some cases have a remarkable impact on the final results, such as the design and
selection of appropriate parameters and subsequently retraining and testing the sys-
tems usingmachine learning algorithms [13, 19, 37]. For this research, 4well-known
classifiers were chosenwhich are: Probabilistic Neural Network (PNN), Radial Basis
Function Neural Network (RBFNN), Support Vector Machine (SVM, nu-SVC), and
k-Nearest Neighbor (kNN).

It should be mentioned that some other classifiers such as Decision Trees (DTs)
[64],DiscriminantAnalysis [55], theTakagi-SugenoFuzzySystem [76],Multi-Layer
Perceptron (MLP) and Recurrent Neural Networks (RNN) [63, 77]) were also tested.
These algorithms had worse results and are not presented in this article due to space
limitations.

The classification of the samples with the machine learning methods used in the
present research was based on the Winner-Takes-All (WTA) rule. This means that
the classification algorithm, depending on the value of certain algorithm-dependent
response parameters, always assigns exactly one class identifier to a test sample,
independent of the number of classes.
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3.5.1 Probabilistic Neural Network (PNN)

The Probabilistic Neural Network (PNN) [63, 77], as an artificial neural network,
is one of the well-known machine learning classifiers developed by Specht [75].
The PNN can be applied to unravel different classification problems. The algorithm
utilizes the kernel approximation approach in order to predict the probability density
function for various categories (classes). Mainly, the PNN includes at least three
major layers including an input layer, radial layer and finally output layer. Neurons
in the radial layer have several parameters that are copied from the training data
directly. Each of them corresponds to only one item. Accordingly, neurons in the
output layer are responsible, to sum up, the values generated by radial neurons.
It should be noted that there is a proportional relationship between output values,
kernel estimators and also probability density functions for various classes in which
can predict the probability of each class accordingly. The smoothing factor is the
only parameter that has an impact on the learning procedure of the PNN.

3.5.2 Radial Basis Function Neural Network (RBFNN)

The Radial Basis Function Neural Network (RBFNN) algorithm is another type of
artificial neural network that initially introduced by Broom head and Lowe [21].
Generally, the RBFNN has only one hidden layer which consists of several radial
neurons. By using hyperspheres, which can be determined by their centers and radii,
separates the space related to the input signals. A Gaussian function is the response
surface of a single radial neuron which includes a vertex placed above the center as
well as a decreasing value of the function along with the distance from this point.
The slope of the Gaussian function can be modified. The radial neuron is defined by
two things: its center and a parameter named “radius”. By using N numbers a point
in an N-dimensional space can be defined that is entirely relevant to the number of
neuron weights.

3.5.3 Support Vector Machines (SVMs)

The Support Vector Machines (SVMs) have different types that the first type of
SVM was developed by Vapnik [27]. The LIBSVM [24] is used as a library for
MATLAB which is an open source tool for using different types of SVMs which we
used nu-SVC method. The original SVM was applied to solve binary classification
problems. In other words, SVM originally tries to find out an appropriate hyperplane
to recognize two classes as the simplest problem. Indeed, there are many hyperplanes
to fulfill this matter, however, to achieve the best results, the optimal hyperplanes
should be found. As mentioned above, there are several types of SVMs such as C-
SVC, nu-SVC, epsilon-SVR, nu-SVR. As studies [28, 70] showed, the effectiveness
and performance of the SVM depend on two factors: type of SVM and also type
of the kernel function. Some of the most important kernel functions are as follows:
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linear, polynomial, Radial Basis Function (RBF—radial), Gaussian RBF (GRBF),
and sigmoid. Different types of support Vector machines have been successfully
applied in different subjects [15, 52, 57].

3.5.4 k-Nearest Neighbor (kNN)

The k-Nearest Neighbor (kNN) algorithm is a non-parametric technique used for
classification and regression [14]. The kNN needs a distance metric in which the
most well-known distance metric is the minimum-distance classifier (MDC). The
MDC attempts to assign a classified variable to the most common category (class)
amongst its neighbors, which means that it measures the distance from neighbors
and classify them. There are different distance measures but Euclideandistance or
Manhattandistance measures are the most commonly used distance measures. There
are other measure metrics such as Chebyshev or Mahalonobis, however, less often
used because of their higher computational cost. The learning process of the kNN
includes choosing appropriate parameter k. Even though various approaches to select
this parameter have been previously applied, but however, the cross-validation is the
simplest approach and most commonly utilized technique.

3.5.5 Step VI—Optimization of Parameters

In order to improve the performance and also the efficiency of the proposed method-
ology, we aim to optimize the parameters using the following two techniques:

• Grid search [18]: hyperparameter optimization group is an approach that includes
different methods. The Grid search is one of the hyperparameter optimization
techniques, which includes a whole search of a specific subset of the space. The
method optimizes the parameters of the classifiers.

• Genetic Algorithm: as it is previously explained in Sect. 3.3, this is a very well-
known algorithm that can be used to optimize the parameters [42, 68].

3.6 Assumptions

The major assumptions of current research are listed as follows:

Assumption 1 Analysis of longer (10-s) ECG signal fragments, which contain
multiple heart evolutions.

Assumption 2 Not applying signal filtering due to both the use ofWelch’s method
and the genetic selection of features.
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Assumption 3 Not applying the QRS complex detection and segmentation of the
ECG signal.

Assumption 4 Applying stratified 10-fold and 4-fold cross-validation method
that is more consistent with the subject-oriented validation scheme (inter-patient
paradigm) than class-oriented validation scheme (intra-patient paradigm) [10, 30,
31]—the selection of elements for training and test sets based on signals fromother
patients.

Assumption 5 The classification of the samples was based on the Winner-Takes-
All (WTA) rule.

Assumption 6 Investigating ECG signals fragments that include only one type of
class but except for those normal sinus rhythm.

4 Experiments

Three experimentswere conducted based on the analysis of the ECG signal according
to the assumptions from the previous section.

4.1 First Experiment

The first experiment was characterized by the following:

• Applied feature extraction for 3 widths of the Hamming window (128, 256, and
512 samples).

• Applied the 4-fold cross-validation method.
• Applied the grid search method to optimize the classifier parameters.

4.2 Second Experiment

The second experiment was characterized by the following:

• Applied feature extraction for 4 widths of the Hamming window (128, 256, 512,
and 1024 samples).

• Applied and compared two types of cross-validation methods: 4-fold and 10-fold
cross-validation.

• Applied the genetic algorithm to optimize the classifier parameters.
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4.3 Third Experiment

The third experiment was characterized by the following:

• Applied feature extraction for 4 widths of the Hamming window (128, 256, 512,
and 1024 samples).

• Applied the 10-fold cross-validation method.
• Applied the genetic algorithm to optimize the classifier parameters.
• Applied the genetic algorithm for feature selection.

Experiment No. 3 obtained the highest recognition sensitivity for heart disor-
ders (Table 4). Figure 1 shows the scheme of Experiment No. 3. Table 2 contains
detailed information about the genetic algorithm and optimum values of parameters.
Section 4.4 shows the procedure for the evolutionary-neural system fromExperiment
No. 3.

4.4 Evolutionary-Neural System

Experiment No. 3 designed an evolutionary-neural system that consisted of a clas-
sifier (e.g., SVM) trained by a genetic algorithm. The genetic algorithm, coupled
with 10-fold cross-validation was used to select signal features and optimize the
parameters of the classifier.

Procedure No. 1 presented the evolutionary-neural system algorithm.

4.5 Evaluation Criteria

In different subjects, evaluation of the proposed methods is highly recommended.
This solution allows us to check the performance of the proposed methodology
and compare its effectiveness with previous methods. This is also quite common in
machine learning area to evaluate the performance of algorithms. This study, there-
fore, computes several coefficients (metrics) including [38, 73]: accuracy (ACC),
sensitivity (SEN ), specificity (SPE), k coefficient (or called Fleiss’ κ), sum of errors
(ERRsum), acceptance feature coefficient (CF ), Optimization time (To), Training time
(Tt), aswell as Classification time (Tc). Themetrics can be computed using Eqs. 9, 10,
11, 12
and 13.

The definitions of the calculated coefficients are as follows:

• Accuracy
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Fig. 1 Scheme of Experiment No. 3—genetic feature selection [61]
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Algorithm 1: Evolutionary-neural system.
Data:

X –matrix with raw data;
R –matrix with reference answers;
svmtype ← 1 –defining the type of SVM on ν − SVC;
kerneltype ← 2 –defining the type of kernel function on RBF ;

Result:

B – vector of the form [fp, g1, g2, c1, ..., c4001], with associated values of the fitness function (fp); the
determined optimal parameters of the SVM classifier, γ and ν; and the selected features;
OL and OT – matrices with the classifier responses of the SVM ;
CF – confusion matrix with the classifier responses of the SVM ; and
E – vector with the calculated evaluation coefficients of the SVM ;

1 Perform one type of signal pre-processing based on X
2 Perform one type of feature extraction
3 Create training and test sets and reference matrices based on R
4 Set genetic algorithm parameters (Table 2);

GENETIC ALGORITHM:
5 Create an initial population of individuals
6 for i ← 1 to 20 (number of generations) do
7 for j ← 1 to 50 (number of individuals) do
8 Perform feature selection
9 Save the value of the basic and optimized parameters of the SVM classifier.

10 for c ← 1 to 10 (number of set combinations) do
11 Create the model of the SVM classifier
12 Determine the SVM classifier responses
13 Determine the number of errors

14 end
15 Calculate the sum of the errors for the training and test sets
16 Determine the value of the fitness function (ff )
17 Save the related values B for the fitness function (ff ), classifier parameters and selected features

as well as the matrices with classifier responses: OL and OT

18 end
19 if ff == 0 then
20 Lead out the “best” individual with the corresponding response matrices
21 break
22 else
23 Perform the selection of individuals
24 Apply the genetic operators: crossover and mutation
25 Create a new population of individuals

26 end
27 end
28 ( /* End of GA */) Lead out the “best” individual with the corresponding response matrices
29 Create the confusion matrix CF
30 Calculate the evaluation coefficients E for the SVM classifier



Novel Methodology for Cardiac Arrhythmias Classification … 245

ACC =
(

N∑

i=1

TP + TN

TP + FP + TN + FN

)
· 100%

/
N (9)

• Sensitivity

SEN =
(

N∑

i=1

TP

TP + FN

)
· 100%

/
N (10)

• Specificity

SPE =
(

N∑

i=1

TN

FP + TN

)
· 100%

/
N (11)

where:

N represents the number of different sets utilized in the cross-validation (either
4-fold or 10-fold validation),

TP represents True Positive,
TN represents True Negative,
FP represents False Positive, and
FN represents False Negative.

• Additionally, in order to evaluate the efficiency and usefulness of the proposed
method, k coefficient can be applied which can be evaluated using the following
equation:

κ =
(

N∑

i=1

M
∑n

j=1 mj,j − ∑n
j=1(GjCj)

M 2 − ∑n
j=1(GjCj)

)
· 100%

/
N (12)

where:

N represents the number of different sets utilized in the cross-validation (either
4-fold or 10-fold validation),

j is the class index,
n represents the total number of classes (in this study, we have 17 classes),
M represents the total number of categorized variables which compared to the

ground truth,
mj,j shows the number of samples related to the ground truth class j which have

been truly categorizedwith a class j (for example various values detected along
the diagonal of the generated confusion matrix),

Cj represents the whole number of classified variables related to the class j, and
finally

Gj represents the whole number of ground truth variables related to the class j.
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It should be noted that thismetric should be used formulti-class problems. Another
point is that the higher value of k coefficient shows better performance and out-
come.

• The sum of errors (ERRsum): Based on the confusion matrix and the total number
of erroneous classifications, the sum of errors (ERRsum) can be calculated. The
sum of errors (ERRsum) is equal to the totality of the off-diagonal entrances of the
confusion matrix for all classifications (744 classifications).

• Acceptance feature coefficient (CF ): This is another metric used in this research
which shows the ratio of the total number of accepted features (Fa) towards the
whole number of features (F). The CF was determined when the genetic feature
selection was used. The CF can be computed by Eq.13:

CF = Fa

F
· 100% (13)

where:

Fa—shows the total number of accepted features, and
F—indicates the whole number of features.

• Optimization time (To): This is ametric to show the required time for optimization
of themethodwhichwas used after pre-processing and feature extraction stages on
the ECG signal data. For a given algorithm, the optimization time (To) is computed
for all training and testing sets in the classification step for both cross-validation
values (4-fold and 10-fold). This time indicates the time needed for finding the
optimal parameter configuration related to the given method or the optimal vector
of input features related to the feature selection stage.

• Training time (Tt): The training time (Tt) is used to compute the sum of the
training times related to both cross-validation values (4-fold and 10-fold). As the
same with the optimization time (To), the training time (Tt) is also used after
pre-processing and feature extraction and selection stages on the ECG signal data.

• Classification time (Tc): For a 10-s fragment of an ECG signal, the classification
time (Tc) is used to calculate the average time for a single classification required
from a given method after pre-processing and feature extraction and selection
stages on the ECG signal data.

Wewould argue that all listedmetrics listed abovewere used to evaluate the overall
performance and efficiency of the different machine learning techniques for different
classes of ECG signal fragments. In order to verify the performance of individual
classes in terms of recognition, the same metrics for class S were computed. In this
regard, we calculated different values for each class including TP(S), TN (S), FP(S),
and FN (S). First, these values were computed by using the classical approach (based
on the confusion matrix). After that, based on these generated values, the coefficients
of ACC(S), SEN (S), and SPE(S) were computed.

It should be mentioned that in this research, the SEN (see Table5) is equal to the
overallAcc from the literature [30, 31]. The reason is that the WTA (Winner-Takes-
All) approach was applied for the methods.
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5 Results

The methods applied in the current research were implemented in the MATLAB
R2014b environment and used the LIBSVM library with MATLAB [24]. The com-
putations were performed on an Intel Core i7-6700K 4.0 GHz machine with 32 GB
of RAM (only a single core was used). The total computation times, consisting of
the training, testing, and optimization phases, are shown in Tables 4, 3, 6, and 7.

We would argue that sensitivity (SEN) and the sum of errors (ERRsum) metrics
are the most important coefficients because of using the WTA approach and also
the recognition of 17 classes (see Table 3). As Table 3 shows, the accuracy (ACC)
and specificity (SPE) coefficients have very good performances and very high values
(ACC> 98% and SPE > 99%). Optimizing the time needed to extract results can be
much shorter by using the parallelization of the computation.

5.1 Raw Data

Figure 2 presents an example of single fragments (10 s) of raw ECG signals corre-
sponding to all 17 analyzed classes. Before the visualization, the raw ECG signal
fragments were processed by a reduction in the gain and constant component. For
certain disorders, Fig. 2 denotes their characteristic fragments (features) by a black
dashed line.

5.2 Preprocessing with Normalization

Figure 3 presents a comparison of ECG signals for all 17 classes following normal-
ization (rescaling the signal to the range [−1, 1]), reducing the constant component,
and feature extraction based on the applied DFT with a Hamming window width of
512 samples. The presented visualizations for each class include all 10-s fragments
of the ECG signals. The other colors represent the signals from other patients.

Figure 4 presents a visualization of the subsequent ECG signal processing stages
for the optimal combination (with the highest efficiency in the recognition of heart
disorders; Table 3): classifier: SVM, signal pre-processing: rescaling, feature extrac-
tion: 512 samples and feature selection. Figure 4 presents an example of a single
fragment (10 seconds) of an ECG signal for normal sinus rhythm from patient No.
100 from the MIT-BIH Arrhythmia Database.

In Fig. 5, a comparison of the following ECG signal fragments is presented: A—
concentration within the classes: normal sinus rhythm (all fragments of the ECG
signal, where other colors represent signals from other patients); B—separation
between all 17 classes (only the first fragments of the ECG signal for each class,
where other colors represent the signals from other classes). The graphs show the
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Table 3 The results of Experiment No. 3 for 10-fold cross-validation [62]. In all training sets, in
all cases, the sum of the errors equals zero
Normalization: Window width: Classifiers

SVM kNN PNN RBFNN

No
normalization

128 samples −g = 9.89e − 5
−n = 0.0087

exponent = 2.38 spread = 13.94 spread = 70.28

ERRsum = 99 ERRsum = 125 ERRsum = 116 ERRsum = 101

ACC = 98.44% ACC = 98.02% ACC = 98.17% ACC = 98.40%

SEN = 86.69% SEN = 83.20% SEN = 84.41% SEN = 86.43%

SPE = 99.17% SPE = 98.95% SPE = 99.03% SPE = 99.15%

κ = 84.67% κ = 80.71% κ = 82.11% κ = 84.40%

CF = 49.29% CF = 49.16% CF = 47.99% CF = 48.76%

Tt = 12.5594 [s] Tt = 0.1074 [s] Tt = 0.4257 [s] Tt = 57.4693 [s]
Tc = 0.0018 [s] Tc = 0.0511 [s] Tc = 0.0060 [s] Tc = 0.0080 [s]

256 samples −g = 4.24e − 5
−n = 0.0167

exponent = 2.00 spread = 13.22 spread = 115.96

ERRsum = 98 ERRsum = 109 ERRsum = 104 ERRsum = 109

ACC = 98.45% ACC = 98.28% ACC = 98.36% ACC = 98.28%

SEN = 86.83% SEN = 85.35% SEN = 86.02% SEN = 85.35%

SPE = 99.18% SPE = 99.08% SPE = 99.13% SPE = 99.08%

κ = 84.84% κ = 83.20% κ = 83.96% κ = 83.16%

CF = 50.61% CF = 72.31% CF = 50.94% CF = 50.94%

Tt = 11.9220 [s] Tt = 0.1163 [s] Tt = 0.4521 [s] Tt = 56.6089 [s]
Tc = 0.0020 [s] Tc = 0.0747 [s] Tc = 0.0065 [s] Tc = 0.0076 [s]

512 samples −g = 3.74e − 5
−n = 0.0051

exponent = 3.70 spread = 20.56 spread = 79.55

ERRsum = 83 ERRsum = 103 ERRsum = 97 ERRsum = 97

ACC = 98.69% ACC = 98.37% ACC = 98.47% ACC = 98.47%

SEN = 88.84% SEN = 86.16% SEN = 86.96% SEN = 86.96%

SPE = 99.30% SPE = 99.14% SPE = 99.19% SPE = 99.19%

κ = 87.14% κ = 84.14% κ = 85.03% κ = 84.99%

CF = 49.24% CF = 50.04% CF = 49.09% CF = 49.11%

Tt = 12.4013 [s] Tt = 0.1074 [s] Tt = 0.5083 [s] Tt = 46.8782 [s]
Tc = 0.0020 [s] Tc = 0.0518 [s] Tc = 0.0061 [s] Tc = 0.0061 [s]

1024 samples −g = 2.08e − 5
−n = 0.0122

exponent = 2.95 spread = 26.88 spread = 140.02

ERRsum = 85 ERRsum = 92 ERRsum = 83 ERRsum = 94

ACC = 98.66% ACC = 98.55% ACC = 98.69% ACC = 98.51%

SEN = 88.58% SEN = 87.63% SEN = 88.84% SEN = 87.37%

SPE = 99.29% SPE = 99.23% SPE = 99.30% SPE = 99.21%

κ = 86.84% κ = 85.84% κ = 87.19% κ = 85.40%

CF = 48.34% CF = 49.39% CF = 49.49% CF = 50.24%

Tt = 14.7607 [s] Tt = 0.1130 [s] Tt = 0.4349 [s] Tt = 41.1444 [s]
Tc = 0.0021 [s] Tc = 0.0503 [s] Tc = 0.0061 [s] Tc = 0.0057 [s]
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Table 3 (continued)

Rescaling+
reduction of
constant
component

128 samples −g = 8.04e − 5
−n = 0.0114

exponent = 3.35 spread = 15.78 spread = 71.94

ERRsum = 91 ERRsum = 93 ERRsum = 98 ERRsum = 93

ACC = 98.56% ACC = 98.53% ACC = 98.45% ACC = 98.53%

SEN = 87.77% SEN = 87.50% SEN = 86.83% SEN = 87.50%

SPE = 99.24% SPE = 99.22% SPE = 99.18% SPE = 99.22%

κ = 85.94% κ = 85.68% κ = 84.89% κ = 85.57%

CF = 46.74% CF = 48.21% CF = 48.46% CF = 49.89%

Tt = 9.7303 [s] Tt = 0.1142 [s] Tt = 0.4301 [s] Tt = 60.9248 [s]
Tc = 0.0016 [s] Tc = 0.0492 [s] Tc = 0.0060 [s] Tc = 0.0084 [s]

256 samples −g = 4.81e − 5
−n = 0.0125

exponent = 3.47 spread = 11.19 spread = 136.77

ERRsum = 87 ERRsum = 90 ERRsum = 92 ERRsum = 86

ACC = 98.62% ACC = 98.58% ACC = 98.55% ACC = 98.64%

SEN = 88.31% SEN = 87.90% SEN = 87.63% SEN = 88.44%

SPE = 99.27% SPE = 99.24% SPE = 99.23% SPE = 99.28%

κ = 86.53% κ = 86.13% κ = 85.83% κ = 86.70%

CF = 49.39% CF = 49.99% CF = 50.21% CF = 49.59%

Tt = 10.6013 [s] Tt = 0.1356 [s] Tt = 0.3270 [s] Tt = 59.0492 [s]
Tc = 0.0018 [s] Tc = 0.0541 [s] Tc = 0.0055 [s] Tc = 0.0076 [s]

512 samples −g = 2.64e − 5
−n = 0.0183

exponent = 3.61 spread = 18.85 spread = 117.89

ERRsum = 73 ERRsum = 87 ERRsum = 80 ERRsum = 80

ACC = 98.85% ACC = 98.62% ACC = 98.74% ACC = 98.74%

SEN = 90.19% SEN = 88.31% SEN = 89.25% SEN = 89.25%

SPE = 99.39% SPE = 99.27% SPE = 99.33% SPE = 99.33%

κ = 88.70% κ = 86.60% κ = 87.65% κ = 87.63%

CF = 49.09% CF = 49.59% CF = 49.76% CF = 50.81%

Tt = 11.3537 [s] Tt = 0.1192 [s] Tt = 0.3194 [s] Tt = 56.8192 [s]
Tc = 0.0018 [s] Tc = 0.0597 [s] Tc = 0.0055 [s] Tc = 0.0076 [s]

1024 samples −g = 7.69e − 6
−n = 0.0105

exponent = 2.34 spread = 20.11 spread = 148.12

ERRsum = 74 ERRsum = 79 ERRsum = 77 ERRsum = 79

ACC = 98.83% ACC = 98.75% ACC = 98.78% ACC = 98.75%

SEN = 90.05% SEN = 89.38% SEN = 89.65% SEN = 89.38%

SPE = 99.38% SPE = 99.34% SPE = 99.35% SPE = 99.34%

κ = 88.53% κ = 87.84% κ = 88.14% κ = 87.73%

CF = 47.91% CF = 78.26% CF = 49.51% CF = 47.86%

Tt = 10.4768 [s] Tt = 0.1432 [s] Tt = 0.3316 [s] Tt = 54.0503 [s]
Tc = 0.0019 [s] Tc = 0.0853 [s] Tc = 0.0055 [s] Tc = 0.0077 [s]
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Table 3 (continued)

Standardization 128 samples −g = 1.59e − 4
−n = 0.0290

exponent = 5.55 spread = 17.95 spread = 88.52

ERRsum = 103 ERRsum = 123 ERRsum = 120 ERRsum = 107

ACC = 98.37% ACC = 98.06% ACC = 98.10% ACC = 98.31%

SEN = 86.16% SEN = 83.47% SEN = 83.87% SEN = 85.62%

SPE = 99.14% SPE = 98.97% SPE = 98.99% SPE = 99.10%

κ = 84.04% κ = 81.03% κ = 81.47% κ = 83.44%

CF = 48.84% CF = 47.69% CF = 48.59% CF = 49.34%

Tt = 16.9512 [s] Tt = 0.1331 [s] Tt = 0.3458 [s] Tt = 64.2180 [s]
Tc = 0.0018 [s] Tc = 0.0525 [s] Tc = 0.0054 [s] Tc = 0.0089 [s]

256 samples −g = 4.80e − 5
−n = 0.0126

exponent = 2.64 spread = 14.98 spread = 77.97

ERRsum = 97 ERRsum = 122 ERRsum = 121 ERRsum = 110

ACC = 98.47% ACC = 98.07% ACC = 98.09% ACC = 98.26%

SEN = 86.96% SEN = 83.60% SEN = 83.74% SEN = 85.22%

SPE = 99.19% SPE = 98.98% SPE = 98.98% SPE = 99.08%

κ = 85.02% κ = 81.22% κ = 81.33% κ = 83.00%

CF = 50.56% CF = 49.01% CF = 49.16% CF = 49.11%

Tt = 9.8686 [s] Tt = 0.1586 [s] Tt = 0.3504 [s] Tt = 58.4766 [s]
Tc = 0.0016 [s] Tc = 0.0590 [s] Tc = 0.0054 [s] Tc = 0.0077 [s]

512 samples −g = 1.46e − 5
−n = 0.0129

exponent = 3.61 spread = 24.35 spread = 193.28

ERRsum = 83 ERRsum = 115 ERRsum = 101 ERRsum = 112

ACC = 98.69% ACC = 98.18% ACC = 98.40% ACC = 98.23%

SEN = 88.84% SEN = 84.54% SEN = 86.43% SEN = 84.95%

SPE = 99.30% SPE = 99.03% SPE = 99.15% SPE = 99.06%

κ = 87.16% κ = 82.33% κ = 84.38% κ = 82.65%

CF = 48.94% CF = 48.61% CF = 49.11% CF = 50.14%

Tt = 9.2840 [s] Tt = 0.1537 [s] Tt = 0.3000 [s] Tt = 58.8405 [s]
Tc = 0.0017 [s] Tc = 0.0583 [s] Tc = 0.0052 [s] Tc = 0.0077 [s]

1024 samples −g = 1.59e − 5
−n = 0.0202

exponent =
14.08

spread = 25.90 spread = 171.45

ERRsum = 81 ERRsum = 98 ERRsum = 81 ERRsum = 92

ACC = 98.72% ACC = 98.45% ACC = 98.72% ACC = 98.55%

SEN = 89.11% SEN = 86.83% SEN = 89.11% SEN = 87.63%

SPE = 99.32% SPE = 99.18% SPE = 99.32% SPE = 99.23%

κ = 87.45% κ = 84.87% κ = 87.53% κ = 85.74%

CF = 48.46% CF = 51.26% CF = 48.84% CF = 48.64%

Tt = 12.9148 [s] Tt = 0.1016 [s] Tt = 0.2981 [s] Tt = 58.0527 [s]
Tc = 0.0020 [s] Tc = 0.0469 [s] Tc = 0.0052 [s] Tc = 0.0079 [s]
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Fig. 2 Visualizations of the raw data for each analyzed class. For each class, an example single
fragment (10 s) of raw ECG signals is presented
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Fig. 3 A comparison of the analyzed classes after the DFT is applied. The presented visualizations
for each class include all 10-s fragments of the ECG signals. The other colors represent the signals
from the other patients
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Fig. 4 A visualization of the subsequent ECG signal processing stages for the optimal method
combination. All graphs present an example of a single fragment (10 s) of an ECG signal for
normal sinus rhythm from patient No. 100 from the MIT-BIH Arrhythmia database

10-second fragments of the ECG signals after normalization based on rescaling the
signal to the range [−1, 1], reducing the constant component, and performing feature
extraction based on the DFT with a Hamming window with a width of 512 samples.

5.3 Experiments

This section presents the results of Experiment No. 3, which achieved the highest
recognition sensitivity for heart disorders. On all the training sets, the obtained recog-
nition sensitivity (SEN ) of myocardium dysfunctions was 100% (zero errors). The
ERRsum coefficient equals the sum of the errors on all training and test sets per 744
classifications (in the training sets, in all cases, the sum of the errors equals zero).
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Fig. 5 Comparison of the analyzed classes after applying the DFT and logarithm procedure: A—
concentration within the classes: normal sinus rhythm (all fragments of the ECG signal, where the
other colors represent signals from other patients); B—separation between all 17 classes (only the
first fragments of the ECG signal for each class, where the other colors represent the signals from
other classes)
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Fig. 6 Confusion matrix

Table 3 presents detailed results on 4 types of classifiers (SVM, kNN, PNN and
RBFNN), 3 types of signal pre-processing methods (no normalization, rescaling +
reduction in constant component, and standardization) and 4 types of feature extrac-
tion (4 widths of the Hamming window: 128, 256, 512 and 1024 samples) for one
variant of the cross-validation method—10-fold cross-validation.

In Figs. 6, 7, and 8, the detailed results for the best classifier—SVM from Table
3—are presented. In Fig. 6, the confusion matrix, under the 10-fold cross-validation
method, is presented. In Fig. 7, the following coefficient values are presented: the
sum of errors (ERR), accuracy (ACC), sensitivity (SEN ), and specificity (SPE) for
each class. Figure 8 presents the coefficient value comparison of the sum of errors
(ERR), accuracy (ACC), sensitivity (SEN ), specificity (SPE), and κ coefficient for
the recognition of 17, 15, and 12 classes.
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Fig. 8 Comparison of coefficient values for the recognition of 17, 15, and 12 classes

In Table 4, a comparison of the obtained results for all 3 conducted experiments is
presented. Tsum coefficient—the total optimization time for all classifiers for a given
experiment.

In Table 5, a summary of the results (with the highest overall accuracy/sensitivity
in the recognition of cardiac disorders) from the current scientific literature together
with the results obtained by the author is presented. The summary is based on the
more objective subject-oriented validation scheme [10, 30] and includes information
about the applied ECG signal analysis methods.

Table 6 presents a comparison of the results obtained with 4 types of classifiers,
SVM, kNN, PNN, and RBFNN, calculated based on Experiment Nos. 1, 2, and 3.

Table 6 presents a comparison of the results obtained for 2 variants of the cross-
validation method, 4-fold and 10-fold cross-validation, calculated based on Experi-
ment No. 2.

Table 7 presents a comparison of the results obtained for 3 types of normalization
methods (signal pre-processing), no normalization, rescaling and standardization,
calculated based on Experiment Nos. 1, 2 and 3.
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Table 4 A comparison of the obtained results for all 3 conducted experiments, where the Tsum
coefficient is the total optimization time for all classifiers for a given experiment. In all training
sets, in all cases, the sum of the errors equals zero

Coefficients Experiments

E1 E2a E2b E3

Validation 4-fold 4-fold 10-fold 10-fold

Optimization Grid Genetic Genetic Genetic

Selection No No No Yes

Results obtained for the best case (combination of classifier + normalization + window width)

Classifier SVM SVM SVM SVM

Normalization Rescaling Rescaling Rescaling Rescaling

Window 128 512 512 512

ERRsum 106 97 81 73

ACC 98.32% 98.47% 98.72% 98.85%

SEN 85.75% 86.96% 89.11% 90.19%

SPE 99.11% 99.19% 99.32% 99.39%

κ 83.65% 85.05% 87.45% 88.70%

CF – – – 49.09%

Tt [s] 8.2920 8.21 30.1079 11.3537

Tc [s] 0.0029 0.0034 0.0041 0.0018

To [h] 15 10 20 100

Average result for all cases of a given experiment

ERRsum 131.28 121.02 104.65 96.25

ACC 97.92% 98.09% 98.35% 98.48%

SEN 82.36% 83.73% 85.93% 87.06%

SPE 98.90% 98.98% 99.12% 99.19%

κ – 81.40% 83.83% 85.13%

CF – – – 50.34%

Tt [s] 7.7012 10.1802 35.7554 17.1122

Tc [s] 0.0260 0.0250 0.0297 0.0182

To [h] 5.5 12 24 110

Summary

Tsum [days] 8 24 48 220

Table 7 presents a comparison of the results obtained for 4 widths of the Hamming
window (feature extraction), 128, 256, 512 and 1024 samples, calculated based on
Experiment Nos. 2 and 3 and for 3 widths of the Hamming window (feature extrac-
tion), 128, 256 and 512 samples, calculated based on Experiment No. 1.
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Table 6 Comparison of the results obtained for 4 types of classifiers and 2 variants of cross-
validation calculated based on the results obtained for Experiment Nos. 1, 2 and 3. In all training
sets, in all cases, the sum of the errors equals zero

Coefficients Classifiers Cross-validation

SVM kNN PNN RBFNN 4-fold 10-fold

Experiment No. 1

The results obtained for the best case (combination: classifier + normalization + window width)

ERRsum 106 122 107 120 106 –

ACC 98.32% 98.07% 98.31% 98.10% 98.32% –

SEN 85.75% 83.60% 85.62% 83.87% 85.75% –

SPE 99.11% 98.98% 99.10% 98.99% 99.11% –

Tt [s] 8.2920 0.0368 0.1597 25.0262 – –

Tc [s] 0.0029 0.0844 0.0082 0.0090 – –

To [h] 15 5 0.5 1 – –

Average results for all cases of the given experiment

ERRsum 121.89 137.89 129.22 136.11 131.28 –

ACC 98, 07% 97, 82% 97, 96% 97, 85% 97, 92% –

SEN 83, 62% 81, 47% 82, 63% 81, 71% 82, 36% –

SPE 98, 98% 98, 84% 98, 91% 98, 86% 98, 90% –

Tt [s] 6.3159 0.0360 0.1781 24.2748 7.7012 –

Tc [s] 0.0024 0.0838 0.0089 0.0089 0.0260 –

To [h] 15 5 0.5 1 5.5 –

Experiment No. 2

4-fold cross-validation/10-fold cross-validation

The results obtained for the best case (combination: classifier + normalization + window width)

ERRsum 97 102 98 108 97 81
81 85 85 92

ACC 98.47% 98.39% 98.45% 98.29% 98.47% 98.72%

98.72% 98.66% 98.66% 98.55%

SEN 86.96% 86.29% 86.83% 85.48% 86.96% 89.11%
89.11% 88.58% 88.58% 87.63%

SPE 99.19% 99.14% 99.18% 99.09% 99.19% 99.32%

99.32% 99.29% 99.29% 99.23%

κ 85.05% 84.37% 84.98% 85.48% 85.05% 87.46%
87.46% 86.92% 86.91% 85.73%

Tt [s] 8.21 0.0685 0.3327 36.8604 – –

30.1079 0.1280 0.4455 115.8806

Tc [s] 0.0034 0.0840 0.0106 0.0099 – –

0.0041 0.1083 0.0116 0.0127

To [h] 10 15 10 12.5 – –

20 30 20 25

(continued)
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Table 6 (continued)

Coefficients Classifiers Cross-validation

SVM kNN PNN RBFNN 4-fold 10-fold

Average results for all cases of the given experiment

ERRsum 109, 67 125, 92 123, 42 125, 08 121, 02 104, 65
92, 25 110, 58 104, 92 110, 83

ACC 98, 27% 98, 01% 98, 05% 98, 02% 98.09% 98.35%

98, 54% 98, 25% 98, 34% 98, 25%

SEN 85, 26% 83, 08% 83, 41% 83, 19% 83, 73% 85, 93%
87, 60% 85, 14% 85, 90% 85, 10%

SPE 99, 08% 98, 94% 98, 96% 98, 95% 98, 98% 99, 12%

99, 23% 99, 07% 99, 12% 99, 07%

κ 83, 12% 80, 73% 81, 08% 80, 69% 81, 40% 83, 83%
85, 71% 82, 96% 83, 82% 82, 83%

Tt [s] 7.0025 0.0673 0.2421 33.409 10.1802 35.7554

23.1446 0.1263 0.4785 119.2722

Tc [s] 0.0026 0.0790 0.0092 0.0093 0.0250 0.0297
0.0036 0.0903 0.0120 0.0128

To [h] 10 15 10 12.5 12 24

20 30 20 25

Experiment No. 3

The results obtained for the best case (combination: classifier + normalization + window width)

ERRsum 73 79 77 79 – 73

ACC 98.85% 98.75% 98.78% 98.75% – 98.85%

SEN 90.19% 89.38% 89.65% 89.38% – 90.19%

SPE 99.39% 99.34% 99.35% 99.34% – 99.39%

κ 88.70% 87.84% 88.14% 87.73% – 88.70%

CF 49.09% 78.26% 49.51% 47.86% – 49.09%

Tt [s] 11.3537 0.1432 0.3316 54.0503 – –

Tc [s] 0.0018 0.0853 0.0055 0.0077 – –

To [h] 100 125 100 115 – –

Average results for all cases of the given experiment

ERRsum 87.83 103.00 97.50 96.67 – 96.25

ACC 98.61% 98.37% 98.46% 98.47% – 98.48%

SEN 88.19% 86.16% 86.90% 87.01% – 87.06%

SPE 99.26% 99.13% 99.18% 99.19% – 99.19%

κ 86.41% 84.13% 84.96% 85.03% – 85.13%

CF 48.95% 53.63% 49.26% 49.54% – 50.35%

Tt [s] 11.9020 0.1253 0.3770 56.0443 – 17.1122

Tc [s] 0.0018 0.0577 0.0057 0.0076 – 0.0182

To [h] 100 125 100 115 – 110
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Table 7 Comparison of the results obtained for 3 types of normalization methods and 4 widths of
the Hamming window calculated based on the results obtained for Experiment Nos. 1, 2 and 3. In
all training sets, in all cases, the sum of the errors equals zero

Coefficient Normalization Extraction

No nor-
malization

Rescaling Standardization 128
samples

256
samples

512
samples

1024
samples

Experiment No. 1

The results obtained for the best case (combination: classifier + normalization + window width)

ERRsum 118 106 126 106 112 107 –

ACC 98.13% 98.32% 98.01% 98.32% 98.23% 98.31% –

SEN 84.14% 85.75% 83.06% 85.75% 84.95% 85.62% –

SPE 99.01% 99.11% 98.94% 99.11% 99.06% 99.10% –

Average results for all cases of the given experiment

ERRsum 134, 83 119, 83 139, 17 134, 17 134, 25 125, 42 –

ACC 97, 87% 98, 11% 97, 80% 97, 88% 97, 88% 98, 02% –

SEN 81, 88% 83, 89% 81, 29% 81, 97% 81, 96% 83, 14% –

SPE 98, 87% 98, 99% 98, 83% 98, 87% 98, 87% 98, 95% –

Tt [s] 7, 5405 8, 1127 7, 4504 7, 7549 7, 6641 7, 6847 –

Tc [s] 0, 0260 0, 0261 0, 0259 0, 0260 0, 0260 0, 0260 –

To [h] 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5 –

Experiment No. 2

4-fold cross-validation/10-fold cross-validation

The results obtained for the best case (combination: classifier + normalization + window width)

ERRsum 108 97 109 99 104 97 98

85 81 87 92 89 81 85

ACC 98.29% 98.47% 98.28% 98.43% 98.36% 98.47% 98.45%

98.66% 98.72% 98.62% 98.55% 98.59% 98.72% 98.66%

SEN 85.48% 86.96% 85.35% 86.69% 86.02% 86.96% 86.83%

88.58% 89.11% 88.31% 87.63% 88.04% 89.11% 88.58%

SPE 99.09% 99.19% 99.08% 99.17% 99.13% 99.19% 99.18%

99.29% 99.32% 99.27% 99.23% 99.25% 99.32% 99.29%

κ 83.42% 85.05% 83.27% 84.81% 83.97% 85.05% 84.98%

86.82% 87.46% 86.51% 85.80% 86.20% 87.46% 86.92%

Average results for all cases of given experiment

ERRsum 125, 56 108, 94 128, 56 126, 17 127, 50 118, 17 112, 25

109, 38 92, 63 111, 94 110, 25 108, 83 102, 25 97, 25

ACC 98, 01% 98, 28% 97, 97% 98, 00% 97, 98% 98, 13% 98, 23%

98, 27% 98, 54% 98, 23% 98, 26% 98, 28% 98, 38% 98, 46%

SEN 83, 12% 85, 36% 82, 72% 83, 04% 82, 86% 84, 12% 84, 91%

85, 30% 87, 55% 84, 95% 85, 18% 85, 37% 86, 26% 86, 93%

SPE 98, 95% 99, 08% 98, 92% 98, 94% 98, 93% 99, 01% 99, 06%

99, 08% 99, 22% 99, 06% 99, 07% 99, 09% 99, 14% 99, 18%

(continued)



Novel Methodology for Cardiac Arrhythmias Classification … 261

Table 7 (continued)

Coefficient Normalization Extraction

No nor-
malization

Rescaling Standardization 128
samples

256
samples

512
samples

1024
samples

κ 80, 70% 83, 28% 80, 24% 80, 65% 80, 43% 81, 82% 82, 72%

83, 10% 85, 68% 82, 70% 82, 97% 83, 20% 84, 18% 84, 97%

Tt [s] 10, 6200 10, 1902 9, 7305 9, 9812 10, 0230 10, 7484 9, 9684

38, 7735 34, 4454 34, 0473 34, 9725 36, 5018 35, 5818 35, 9654

Tc [s] 0, 0217 0, 0264 0, 0275 0, 0264 0, 0197 0, 0270 0, 0272

0, 0204 0, 0343 0, 0343 0, 0252 0, 0253 0, 0343 0, 0339

To [h] 12 12 12 12 12 12 12

24 24 24 24 24 24 24

Experiment No. 3

The results obtained for the best case (combination: classifier + normalization + window width)

ERRsum 83 73 81 91 86 73 74

ACC 98.69% 98.85% 98.72% 98.56% 98.64% 98.85% 98.83%

SEN 88.84% 90.19% 89.11% 87.77% 88.44% 90.19% 90.05%

SPE 99.30% 99.39% 99.32% 99.24% 99.28% 99.39% 99.38%

κ 87.19% 88.70% 87.53% 85.94% 86.70% 88.70% 88.53%

CF 49.49% 49.09% 48.84% 46.74% 49.59% 49.09% 47.91%

Average results for all cases of the given experiment

ERRsum 99.69 84.94 104.13 105.75 102.08 92.58 84.58

ACC 98.42% 98.66% 98.35% 98.33% 98.39% 98.54% 98.66%

SEN 86.60% 88.58% 86.00% 85.79% 86.28% 87.56% 88.63%

SPE 99.16% 99.29% 99.13% 99.11% 99.14% 99.22% 99.29%

κ 84.60% 86.88% 83.92% 83.66% 84.24% 85.70% 86.93%

CF 50.93% 50.94% 49.14% 48.58% 51.82% 49.46% 51.52%

Tt [s] 16.0006 17.1829 18.1530 18.6174 17.3389 16.4237 16.0685

Tc [s] 0.0180 0.0193 0.0173 0.0167 0.0195 0.0178 0.0189

To [h] 110 110 110 110 110 110 110

6 Discussion

6.1 Hypothesis

The results obtained in all experiments confirmed the thesis: the application of the
proposed methodology will enable the automatic, efficient, universal, low compu-
tational complexity and fast recognition of heart disorders based on ECG signal
analysis and the evolutionary-neural system.

The confirmation of this statement is given by the obtained results, summarized
in Tables 3, 4, and 5. The presented results show that the recognition sensitivity of
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the 17 classes for the best evolutionary-neural system based on the SVM classifier
(rescaling + 512 samples) is SEN = 90.19% (ACC = 98.85%, SPE = 99.39%).
This result is better than the average sensitivity of the results presented in the current
scientific literature, which is 88.86% (Table 5). The obtained result is one of the best
in the scientific literature, where the three best results are 94% [43] and 93% [49,
51] (Table 5). It should be noted that the results obtained by the author include the
recognition of 17 classes (a recognition sensitivity for 15 and 12 classes of 92 and
95%; Fig. 8). In contrast, the results presented in the scientific literature include the
recognition of only 5 classes (for the subject-oriented validation scheme [30]).

The obtained classification time for the ECG signal fragments, Ck = 0.0018 [s],
for the best evolutionary-neural system based on the SVM classifier is also very
important.

6.2 Machine Learning Algorithms

Based on the results obtained in Experiment No. 3 and presented in Table 3 and Table
4, we find that the best classifier was the SVM classifier (ERRsum = 73 errors and
average = 87.83 errors; SEN = 90.19% and average = 88.19%); the other classifiers
obtained worse results: PNN (ERRsum = 77 errors and average = 97.50 errors; SEN =
89.65% and average = 86.90%), RBFNN (ERRsum = 79 errors and average = 96.67
errors; SEN = 89.38% and average = 87.01%) and kNN (ERRsum = 79 errors and
average = 103.00 errors; SEN = 89.38% and average = 86.16%).

Analogous results were obtained for Experiment Nos. 1, 2a, and 2b, which are
presented in Tables 6 and 4.

6.3 Preprocessing with Normalization

Based on the results obtained in Experiment No. 3 and presented in Table 3 and
Table 4, we find that the best signal normalization method was the rescaling method
(ERRsum = 73 errors and average = 84.94 errors; SEN = 90.19% and average =
88.58%); the other methods obtained worse results: standardization (ERRsum = 81
errors and average = 104.13 errors; SEN = 89.11% and average = 86.00%) and no
normalization (ERRsum = 83 errors and average = 99.69 errors; SEN = 88.84% and
average = 86.60%).

Analogous results were obtained for Experiment Nos. 1, 2a and 2b, which are
presented in Table 7 and Table 4.
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6.4 Feature Extraction

Based on the results obtained in No. 3 and presented in Tables 3 and 4, we find that
the greatest efficiency for feature extraction was based on Hamming windows with
widths of 512 samples (ERRsum = 73 and average = 92.58 errors; SEN = 90.19%
and average = 87.56%) and 1024 samples (ERRsum = 74 and average = 84.58 errors;
SEN = 90.05% and average = 88.63%); other Hamming window widths obtained
worse results: 256 samples (ERRsum = 86 errors and average = 102.08 errors; SEN =
88.44% and average = 86.28%) and 128 samples (ERRsum = 91 errors and average
= 105.75; SEN = 87.77% and average = 85.79%).

Analogous results were obtained for Experiment Nos. 1, 2a and 2b, which are
presented in Tables 4 and 7.

The obtained result indicates that the best result was achieved under one of the
widest Hamming windows: 512 samples. This width corresponds to an analysis
windowwith a duration of approximately 1.25 [s] (approximately 2 heart evolutions),
assuming that one evolution of the heart corresponds to approximately 310 samples of
theECGsignal. The obtained result confirms the validity of the researchmethodology
based on the analysis of longer (10-s) fragments of the ECG signal because the
results for the narrower Hamming windows (256 samples) corresponding to a single
evolution of the heart were characterized by lower recognition efficiency for heart
disorders.

6.5 Feature Selection

Experiment No. 3 tested the effect of the applied genetic selection of the features.
The applied feature selection increased the recognition sensitivity of heart pathol-
ogy due to the removal of redundant or misleading information. Another positive
effect of its utilization was the reduction in the length of the input feature vector.
This resulted in an increased effect of the knowledge generalization achieved by
the classifiers, reduced effect of over-fitting and reduced training, optimization, and
classification times. The aim of the genetic selection of features was to eliminate the
frequency components corresponding to noise, measurement errors, network voltage
components, baseline wandering, and redundant information.

The confirmation of the presented findings is given by the obtained results, pre-
sented in Tables 3 and 4. From the results, it follows that the applied feature selection
increased the recognition accuracy of heart dysfunctions (average SEN higher by
about 1.0%) and decreased the sample training and classification times about 2-fold.

The results obtained for Experiment No. 3 are as follows: ERRsum = 73 errors;
average ERRsum = 96 errors; SEN = 90.19%, average SEN = 87.06%, Tt = 11.35
[s], average Tt = 17.11 [s], Tc = 0.0018 [s], and average Tc = 0.0182 [s]. For
comparison, for Experiment No. 2b (10-fold cross-validation), the results are as
follows: ERRsum = 81 errors; average ERRsum = 105 errors; SEN = 89.11% and
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average SEN = 85.93%, Tt = 30.11, average Tt = 35.76 [s], Tc = 0.0041 [s], and
average Tc = 0.0297 [s].

Based on the obtained results presented in Tables 3 and 4, it can be observed
that the average number of accepted features for Experiment No. 3 is CF = 50.34%.
This means that the optimal results (highest sensitivity) were obtained after rejecting
more than half of the features (the frequency components of the ECG signal power
spectral density) from the input vector.

6.6 Cross-Validation

Based on the obtained results presented in Tables 4 and 6, it can be stated that
better results were achieved under 10-fold cross-validation. The respective obtained
results for 4-fold and 10-fold cross-validation (based on Experiment No. 2) were the
following: ERRsum = 97 errors and 81 errors; average ERRsum = 121 errors and
105 errors; SEN = 86.96 and 89.11%, average SEN = 83.73 and 85.93%.

The 4-fold cross-validation method is less computationally complex but based on
the obtained results, themethod achieves a lower efficiency. Because fewer classifiers
models were created based on this method and because the createdmodels learned on
fewer elements of the training set, the models produced a worse fit for the recognition
classes.

6.7 Parameter Optimization

Based on the obtained results presented in Table 4, it can be stated that better results
were obtained under the genetic algorithm. The respective obtained results for the
grid search method and the genetic algorithm (based on Experiment Nos. 1 and 2
for 4-fold cross-validation) were as follows: ERRsum = 106 errors and 97 errors;
average ERRsum = 131 errors and 121 errors; SEN = 85.75 and 86.96%, average
SEN = 82.36 and 83.73%.

The obtained result is as expected. Using a genetic algorithm, it was possible to
search a much larger solution space compared to the grid search method. Another
advantage was the much higher resolution (smaller step size) for the tested parame-
ters. These two features resulted in a substantially better GA score.

6.8 Dysfunctions/Classes

One of the biggest difficulties in analyzing the ECG signal observed during this
research is the variability of the morphological and dynamic features within a given
class (disorder) for different patients. This problem was presented for the normal
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sinus rhythm class for 14 different patients in Fig. 5 for ECG signals after the DFT
was applied. The variability of the signals within one class for different patients is
very large and comparable to the variability of the shapes of the ECG signals for
different classes, as presented in Fig. 5b. This problem is presented in greater detail
in Fig. 3.

In Fig. 7, the recognition efficiency for each class is presented with the best
classifier from Experiment No. 3 - SVM. Based on this, we can observe a high
recognition efficiency for practically all classes: SEN over 70%. The worst results
were obtained for supraventricular tachyarrhythmia (SEN over 50%) and fusion of
ventricular and normal beat (SEN over 60%).

Based on the obtained results presented in Fig. 7, we removed dysfunctions with
the smallest value of the SEN coefficient. As a result, two other recognition cases
were considered: 15 classes (after removing the supraventricular tachyarrhythmia
and fusion of ventricular and normal beat classes) and 12 classes (after removing
the premature ventricular contraction, supraventricular tachyarrhythmia, ventric-
ular trigeminy, Ventricular tachycardia and fusion of ventricular and normal beat
classes). The best classifier, SVM, obtained the following sensitivity for heart dys-
function recognition for 17, 15 and 12 classes, respectively: SEN = 90.19, 91.52,
and 95.23% and κ = 88.70, 90.15, and 94.31%.

6.9 Times

6.9.1 Experiments

Based on Table 4, we can state that under both methods for parameter optimiza-
tion, the grid search and the genetic algorithm (Experiment No. 1 and Experiment
No. 2) obtained comparable optimization times: To[h] = 15 and 10 (for SVM, 2
parameters) and average To[h] = 5.5 and 12. This confirms the superiority of the
genetic algorithm, which achieved better results in a comparable amount of time. It
should also be noted that the training and classification times were significantly
shortened when applying feature selection. The algorithmwithout feature selection
(Experiment No. E2b) and with feature selection (Experiment No. 3) obtained the
following respective times: Tt[s] = 30.11 and 11.35; Tc[s] = 0.0041 and 0.0018 and
average Tt[s] = 35.76 and 17.11; Tc[s] = 0.0297 and 0.0182.

Based on the optimization time (To), we can state that for Experiment No. 3, the
classifier optimization required the most time: 220 days. The shortest time, 8 days,
was required by Experiment No. 1.

6.9.2 Classifiers

According to Table 6, we can state that the training of the kNN classifier was the
fastest and that the training of the RBFNN classifier was the slowest for Experi-
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ment No. 3: average Tt [s] = 0.1253 and 56.0443, respectively. The classification of
the ECG signal fragments by the SVM classifier was the fastest, and the classifi-
cation by the kNN classifier was the slowest for Experiment No. 3: average Tc [s]
= 0.0018 and 0.0577. The optimization of the SVM and PNN classifiers was the
fastest, and the optimization of the kNN classifier was the slowest for Experiment
No. 3: average To [h] = 100 and 125.

6.9.3 Cross-Validation

According to Table 6, we can state that, as expected, training, classification, and
optimization lasted much longer under 10-fold cross-validation than under 4-fold
cross-validation. The following results were respectively obtained for Experiment
No. 2 for 4-fold cross-validation and 10-fold cross-validation: average: Tt [s] = 10.18
and 35.76; Tc [s] = 0.0250 and 0.0297; To [h] = 12 and 24.

6.10 Computational Complexity

Our proposedmethodology has a valuable benefit, which is low computational com-
plexity. The investigation of longer segments of ECG signals (10-s), the proposed
method could reduce the number of classifications when heart rate was 80 beats per
minute, we had an average of 13 times fewer classifications. This advantage elim-
inated the need for both detections as well as the segmentation of QRS complexes.
We would argue that training and optimization steps have computational complexity
whereas the classification step has much less computationally complex compared to
the traditional approach based on QRS complex detection. The proposed approach
can be considered as a practical solution inmobile deviceswith lessCPUandmemory
load, lower power consumption, and also longer battery life.

6.11 Advantages and Limitations

The proposed methodology (analysis of longer-duration ECG signal fragments) has
the following advantages:

• reduced number (an average of 13 times) of classifications (analysis),
• no need to detect and segment QRS complexes,
• no need to filter the ECG signal,
• possibility to use the newmethodology in tele-medicine (real-time signal process-
ing) through implement designed solution in mobile devices or cloud computing
(one lead, low computational complexity, and low cost),

• recognition of 17 cardiac arrhythmias (classes),
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• high performance (high accuracy/sensitivity),
• more accurate classification for some diseases that are more likely to have time-
varying ECG signal changes, e.g. pre-excitation syndromes, atrio-ventricular con-
duction blocks.

In turn, the main limitations can be included:

• a low number of ECG signal fragments (744 from 29 patients) in the analysed data
set,

• no possibility to classification fragments of ECG signal containing more than one
class (except normal sinus rhythm),

• not applying a completely subject-oriented validation scheme (inter-patient
paradigm), due to an insufficient number of appropriate ECG signals in MIT-BIH
database.

7 Conclusion

The major aim of this research was to present an efficient machine learning-based
methodology to classify ECG signals. Therefore, an efficient and new recognition
system of myocardium dysfunctions was applied to the data set with 17 classes
including normal sinus rhythm, pacemaker rhythm, as well as 15 arrhythmias. An
evolutionary-neural system was applied to the 10-s fragments of ECG signals. The
data set included 744 fragments of ECG signals, which was related to 29 patients
that collected from the MIH-BIH Arrhythmia data set (for one lead—MLII). The
analysis of longer fragments (10-s) of the ECG signal was considered to conduct
this research. By using Welch’s method and a discrete Fourier transform approach
the spectral power density was predicted in order to improve the characteristic fea-
tures of the ECG signal. We conducted the research via three main experiments.
Basic analysis of ECG signals was investigated. Therefore, genetic optimization of
parameters and genetic selection of features were studied. The main three experi-
ments were as follows: pre-processing, normalization, feature extraction, and selec-
tion, stratified cross-validation, machine learning algorithms (SVM, kNN, PNN, and
RBFNN). It should be noted that obtained parameter optimizations outcomes were
used. The proposed methodology showed remarkable performance with high sensi-
tivity (90.19%), specificity (99.39%), and accuracy (98.85%). It should be expressed
that the time for classification of one sample was 0.0018 (s), and there were 73
errors per 744 classifications. The novel methodology can be implemented in mobile
devices or applied in cloud computing to diagnosis cardiac health immediately with
highest accuracy.

There are several research topics for further investigation in the future. The first
research in the future can be done about wavelet analysis in feature extraction. It
is also worth to apply different ensemble learning techniques [60] and also deep
learning methods [61, 87]. In addition, since current research used fragments of
ECG signals only from one lead, future works can be concentrated on the more leads
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(e. g., 2–12). Moreover, doing research on ECG signals fragments with more than
one class type can also be considered. Finally, the methods can be applied to more
number of appropriate ECG signal fragments [60, 87].
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Artificial Intelligence-Enabled ECG Big
Data Mining for Pervasive Heart Health
Monitoring

Qingxue Zhang

Abstract The ECG signal is a gold standard physiological signal to reflect heart
health and has been studied for many decades. It can not only be leveraged to gener-
ate real-time emergency alarms before a heart attack but also be mined in a long-term
manner for risk pattern discovery. ECG signal has specific characteristics in multi-
ple domain, such as the temporal, frequency, statistical, and phase domains, each
of which can reveal some interesting medical hints related to the mechanical and
electrical behaviors of the heart. Traditionally, ECG signals are acquired in clinics
or hospitals, where very high signal quality can be guaranteed. However, along with
the advance of wearable computers and mobile computing platforms, there are many
emerging ECG-based heart disease management possibilities, i.e., possibly, we can
monitor the ECG signal in our daily lives and effectively track our heart health with-
out going to medical facilities. However, it is very challenging to deal with motion
artifacts during people’s physical activates. Many researchers have proposed a large
number of ECG signal processing algorithms and studied a bunch of potential appli-
cations. We have introduced artificial intelligence into wearable ECG-based heart
rate monitoring during severe human activities, which greatly outperform previous
studies. We have also studied novel ECG applications, which can capture single-
arm-ECG for 24-hour heart disease monitoring. The goal in this work is to eliminate
the uncomfortableness and inconvenience induced by traditional ECG configura-
tions, i.e., the 12-lead ECG placement methods. Especially, previously, people put
the ECG electrodes on the chest, which requires a chest strap to fix the electrodes.
Leveraging advanced signal sensing and artificial intelligence algorithms, we have
successfully demonstrated the potential of this highly wearable arm-worn heart rate
monitor. This chapter will systematically introduce the current advancement of ECG
signal processing algorithms and applications, including previous works and our
research progress. The readers from both academia and industry can benefit from
the chapter by understanding the advancement, challenges, and future opportunities
from this chapter.
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1 Introduction

Cardiac health monitoring is of significant value to effectively manage people’s heart
health, due to the fact that heart disease is the leading cause of death worldwide [59].
To monitor cardiac health, it is essential to find out a vital signal that can reflect rich
information during the cardiac cycles. Electrocardiogram (ECG) [13, 39, 51], has
been used as the gold standard signal tomonitor cardiac health. ECG signal is ofmany
medical relevant characteristics and has been used by physicians for decades in heart
disease diagnosis. Unfortunately, ECG measurements are usually performed in the
medical facilities, such as the clinical and hospital. This poses lots of inconvenience
for cardiac health monitoring since the patients need to make the appointments, go to
the facilities, get the measurement, and then return home. Moreover, it also induces
a high medical cost, since both medical facilities and physicians/nurses need to be
involved in this frequency and checkups.

The advancement of the internet of things (IoT) [62] and artificial intelligence (AI)
[34, 56] have been paving a promising way for smart health [5, 6, 30, 45, 57, 58].
The former one, IoT, actually includes many technologies, such as wearable sensing,
wireless transmission, andmobile edge computing,whichmake the bodyworn sensor
network (BSN) more and more promising in pervasive health monitoring [9, 22, 49,
52, 67]. The latter one, AI,makes the signal processingmuchmore powerful, in terms
of signal characteristic extraction and high-level medical insights learning [2, 20, 31,
41, 47]. We take a special interest in the wearable daily cardiac health monitoring
application and highlight the advanced artificial intelligence methods in smart health
applications [17, 29, 37]. The AI will be new electricity for the whole society and is
reshaping many areas now, including the healthcare area.

In this chapter, the advancement of ECG-based cardiac health monitoring, visu-
alized in Fig. 1, will be deeply analyzed and summarized. Especially, the AI-enabled
signal processing methods will be highlighted and compared with traditional signal
processing methods. In wearable daily heart health monitoring, people are randomly
performing different physical activities, which greatly impact the ECG signal qual-
ity and pose huge challenges to its signal processing [23, 28, 46, 64]. As we know,
the sensor-skin contact is randomly impacted by the human motions, which make
the bio-sensing suffer a lot from the unstable and poor signal propagation path.
The ECG signal may be contaminated or even highly corrupted during diver human
motions. We have proposed multiple AI-enabled algorithms to identify the heart-
beat from highly noisy ECG signals, which are expected to advance the pervasive
ECG-based cardiac health monitoring. Meanwhile, traditional algorithms in terms
of wearable heart rate monitoring are also summarized, and the limitations are also
given. Furthermore, the opportunities and future directions of AI-enabled ECG heart
health monitoring are given, which are expected to greatly benefit both academic
and industrial communities.
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Fig. 1 Pervasive ECG-based AI-enabled cardiac health monitoring

2 Cardiac ECG Bio-potential

The cardiacmovement can be effectivelymonitored by the standardECGsignal.Here
the cardiac movements, cardiac bio-potential, and cardiac ECG will be detailed.

2.1 Cardiac Movements

A cardiac cycle corresponds to two phases of the heart muscle movements: the
contraction and the expansion, each of which has very complicated mechanisms.
During the contraction, the heart pumps the blood out of the heart and empty the
heart, and immediately the heart relaxes and receives the blood returning from other
systems of the human body. So these two periods, the contraction and the expansion,
repeat, and quasi-periodically control the blood flow [18, 21, 68].

In the heart, there are two atrial and ventricle chambers, which play irreplaceable
roles in each cardiac cycle. In the left heart, there are the left atrium and the left
ventricle, and in the right, there are the right atrium and the right ventricle. Each
component of the heart needs to coordinate with each other and work continuously
to finish a cardiac cycle, which is be quantitatively represented as the heart rate
(number of cardiac cycles per minute).

The heart rate reveals many valuable indicators of heart movement conditions.
Many heart movement abnormalities can be reflected in the abnormal heart rate.
That’s why the heart rate has been used in doctor visits as a routine cardiac health
measurement approach. The cardiac movements all contribute to the heart rate mea-
surements. Therefore, many medical investigations have shown a strong relationship
between the heart rate and many cardiac malfunctions. Since here, we focus on
the ECG-based heart rate monitoring; we will further demonstrate how the cardiac
movements relate to the cardiac bio-potential behaviors, and how the bio-potential
is finally measured as ECG.
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2.2 Cardiac Bio-potential

In a healthy heart, the sinus node in the heart is triggered by the electrical impulse
from the nerve connected with the brain. After this triggering event, the sinus node
stimulated the heart muscle to contract and expand, to pump out the blood and to
receive the blood consecutively. More specifically, one cardiac cycle includes four
stages: atrial systole, ventricular systole, atrial diastole, and ventricular diastole [15,
33, 54].

During atrial systole, both atria contract and push the blood into the ventricles,
lasting about 0.1 s; during ventricular systole, both ventricles contract to push the
blood through the pulmonary trunk to both lungs and other systems of the body
through the aorta, lasting 0.3 s; during atrial diastole, both atria expand and thus
receive the blood from large veins—the vena cava; and finally during ventricular
diastole, both ventricles expand and receive blood from the atria passively, lasting
about 0.5 s.

The electrical behaviors of all the heart elements need to coordinate with each
other, to generate a normal heart rhythm. The sinus node is like a cardiac pacemaker
and is situated in the upper wall of the right atrium. This node quasi-periodically
stimulates the atria and then another node, the atrioventricular (AV) node, located
in the lower wall between the atrium and the ventricle, is triggered. The two nodes
control the contraction of the atria and ventricles, respectively. There is a delay
between activation of these two nodes, to allow the blood to flow from atria to the
ventricles, before pumping the blood to the lungs and other systems of the body.

2.3 Cardiac ECG

The muscle movements of different heart elements correspond to different electrical
behaviors, which can be measured on the body surface in terms of the ECG signal.
ECG signal has been used as a gold standard for decades, to reflect cardiac internal
behaviors. The ECGmorphology includes several key segments: P wave, QRS com-
plex, and T wave [3, 12, 13]. The P wave corresponds to the atrial depolarization
(contraction), the QRS complex corresponds to the ventricular depolarization (con-
traction), and the T wave corresponds to the ventricular repolarization (expansion).

Malfunction of each element of the heart may yield different heart rhythms, such
as fast heartbeat, slow heartbeat, and irregular heartbeat, which all result in abnormal
heart rate information. That is why the heart rate information reflects the electrical
behaviors of the heart and corresponding mechanical behaviors. Many research find-
ings reveal more and more relations between heart rate information and cardiac
diseases.

Traditionally, ECG is measured by the 12-lead ECG configuration methods [13,
32, 39, 50]. Six electrodes are placed on the chest, surrounding the heart to yield
v1 to v6—six leads. Besides, electrodes are placed on two wrists, left leg, yielding
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Fig. 2 ECG heartbeat
morphology
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three leads (selecting any two electrodes, with one as the signal electrode, and the
other as the reference electrode). Another three leads are yielded as generating virtual
reference electrodes, for example, the average of the right wrist and the left leg is
regarded as the virtual reference, and the left wrist is regarded as the signal electrode.
To enhance the signal quality, a bias electrode is usually placed on the right leg, named
as the ‘Driving Right Leg’ (DRL) electrode. These 12-lead ECG signals can provide
very strong signal strength, and spatially reflect the electrical/mechanical behaviors
of the whole heart (Fig. 2).

Nowadays, people are interested in measuring heart rate information from wear-
able ECG monitors. This is of tremendous potential towards pervasive heart health
monitoring. Some works still put the electrodes on the chest or two wrists—tradi-
tional lead configurations, to get the wearable ECG. When the wearer is performing
different physical activities, the sensor-skin contact is randomly impacted and thus
highly lower the ECG signal quality.

In this chapter, as mentioned above, we mainly focus on how to robustly process
the highly noisy ECG signals to advance daily heart rate monitoring during body
movements. One thing worth noting is that wearable heart rate monitoring also paves
a way for continuous heart rate monitoring. That means the instantaneous heart rate
information can be continuously estimated and visualized/stored on the cellphone,
for long-term high-resolution heart healthmonitoring. This cannot be imagined using
traditional medical facilities, due to the fact that patients are unable to and unwilling
to stay in clinics/hospitals all the time to get continuous heart health monitoring.

3 Traditional Cardiac Health Signal Processing

Many investigations have been made to deal with the noisy ECG signal, to esti-
mate the heart rate information, including the wavelet de-noising, Kalman filtering,
weighted regularized least square, and so on. Here, we mainly focus on these three
representative methods and details their technical foundations, advantages, and lim-
itations. An example of the clean and noisy ECG signals is given in Fig. 3



278 Q. Zhang

Fig. 3 An example of the
clean and motion
artifact-corrupted ECG
signals

3.1 Kalman Filtering

The Kalman filtering method aims to enhance the measurement robustness by firstly
predicting and then refining each measurement. Given a series of measurements that
are observed over time, Kalman Filtering tends to produce estimates that are more
robust than a single measurement itself. More specifically, Kalman Filtering predicts
the measurement with the process model, and then refine it using the measurement
model [26, 43, 55].

In the former step, i.e., prediction, Kalman Filtering generates estimates of the
current state variables and their uncertainties, and in the latter step, i.e., refinement, it
leverages the next measurement that is contaminated with noise and error, to update
the prediction using a weighted average. With the weighted average, more weight
will be given to the measurement that owns higher certainty. The whole process is
recursive and can work in real-time.

During heart rate estimation, the sequence of the instantaneous heart rate is the
output of the filter. For each heart rate estimate, the process model predicts a guess,
and then the measurement model updates this guess with newmeasured information.
If the newmeasurement is of higher certainty, then the newmeasurement contributes
more to update the guess. Otherwise, the new measurements may have very little
impact the guess. The certainty can be generated using a detector, such as an impulse
rejection filter, which applies some rules to check whether the new measurement
may be an outlier or not.
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During the Kalman Filtering, the noise covariance matrix is usually chosen to be
0.1, and the noise covariance matrix is updated based on M = M0 · exp(1/w2 − 1

)
,

where w is a weighting factor representing the certainty of the measurement (w =
10−5 for outliers detected by the rejection filter, and w = 1 for non-outliers), and M0

is a parameter to be tuned.
The advantage of Kalman Filtering is that is can apply more weight on the predic-

tion when the measurement is suspected to be of much uncertainty, and vice verse.
However, the limitation is also obvious since it needs to assume the noise model.
Considering the motion artifacts are very difficult to be modeled, Kalman Filtering
may not be able to well predict and refine the estimates during random and severe
motion artifacts.

3.2 Wavelet De-noising

The wavelet method decomposes the ECG signal to multiple signal components,
usually using the QRS complex-mimic mother wavelet—Daubechies6 wavelet, and
then reconstruct the ECG signal using selected signal components and discard com-
ponents that are more likely due to noise. So this method is somehow like a noise
filtering method. In previous studies [4, 11, 19, 25, 35, 42, 61], the wavelet methods
usually include the following key steps:

Step 1. Select the ECG signal
Step 2. Decompose the signal to multiple signal elements, corresponding to differ-

ent detail coefficients
Step 3. Select specific detail coefficients, which include most energy of the QRS

complex
Step 4. Reconstruct the ECG signal using these selected components

After wavelet-based signal de-noising, usually, a threshold-based method is
applied to detect the R peaks of the ECG heartbeats. Consequently, the instanta-
neous heart rate can be estimated.

The advantage of this method is that it can suppress the motion artifacts during
slight human body movements. However, during severe human body movements,
the frequency spectrum of motion artifacts usually overlap with the ECG heartbeat,
making the reconstructed signal still include lots of motion artifacts. This is themajor
limitation of this method. The quantitative comparison will be given later to illustrate
more details on the heartbeat distinguishing capability of wave de-noising.
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3.3 Weighted Regularized Least Square

The weighted regularized least square (WRLS) method [16, 66], assumes the heart
rate estimation task to be an optimization problem. It tries to minimize the cost
function as shown in (1):

‖A · W · RRIOLS − A · W · RRIW RLS‖2 + λ2 · ‖L · RRIW RLS‖2 (1)

where,

– RRIOLS: the R peak-to-R peak interval (RRI) estimates generated by an ordinary
least square problem (ORS)

– RRIW RLS: the target RRI estimates to be found
– A: a lower triangular integration matrix, with a dimension of N × N
– W : a diagonal weighting matrix, with a dimension of N × N
– L: a smoothing matrix, with a dimension of (N − 2) × N
– λ: a parameter to be tuned to regularize the objective function, in terms of the
smoothness of the target RRI sequence

With the weighted regularized least square (WRLS) method, the heart rate esti-
mation sequence may be well smoothed during motion artifacts. Nevertheless, when
motion artifacts are severe, a heavy smoothing operation is required, which may
cause a large drift between the estimated sequence and the ground truth sequence.

4 Artificial Intelligence-Empowered Cardiac Health
Mining

Artificial intelligence (AI)methods [8, 10, 34, 38, 53, 56] are paving a promisingway
towards robust cardiac health monitoring. As analyzed above, although traditional
non-artificial intelligence-based methods own different advantages in heart rate esti-
mation from noisy ECG signals, they cannot work well during severe randommotion
artifacts.

Here we will introduce the new advancements in AI-based methods, especially
the AI frameworks we have proposed, in terms of robust ECG-based heart rate
monitoring. Furthermore, a detailed quantitative comparison between the traditional
and AI-based methods will be illustrated to show the competitiveness of the AI
techniques.
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4.1 Pattern Recognition

Pattern recognition techniques recognize the patterns from the signal [1, 7, 14, 24,
36, 40, 66]. Broadly speaking, pattern recognition can also be grouped into machine
learning techniques. However, these techniques usually more focus on capturing
patterns from the signal. Given patterns or regularities in the data, pattern recognition
techniques are concerned with how to automatically discover them in the data.

The ECG heartbeat is a typical pattern in the ECG data since a heartbeat is com-
posed of several segments that repeat every cardiac cycle. That’s why we have intro-
duced a famous pattern recognition technique, dynamic time warping (DTW) to the
ECG heartbeat recognition task, and achieved promising performance boosting com-
pared with traditional approaches mentioned above [66]. Later, we will also show
how we applied novel methods to enhance the DTW to be multi-view DTW, which
highly boosted the heart rate estimation performance. The general pattern recogni-
tion framework is shown in Fig. 4, where the ECG signal is usually pre-processed
by a band-pass filter, screened by a DTW template, and finally recognized from the
DTWmatching paths. A purification step can also be added to smooth the heart rate
estimation curve.

More specifically, DTW builds two matrices during the pattern (heartbeat) recog-
nition process, a local distance matrix, and a path distance matrix [66]. Given an
ECG sequence X as (2), and a pre-defined heartbeat template Y as (3), where N and
M are a number of sample in X and Y , respectively.

X = [xi |0 ≤ i ≤ N − 1] (2)

Y = [y j |0 ≤ j ≤ M − 1] (3)

When building the local distance matrix, DTW calculates the sample to sample
distance between X and Y , as (4), where di, j is the local distance element.

di, j = ∣∣xi − y j
∣∣,∀i,∀ j (4)

Fig. 4 The ECG heartbeat pattern recognition for wearable heart rate monitoring
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When building the path distance matrix, a dynamic programming strategy is
applied, as shown in (5), where Di, j is the path distance element. To determine
Di, j , three surrounding candidate paths are evaluated, and the shortest one is chosen
to extend the path. After this dynamic path searching process, multiple paths can be
generated.

Di, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

di, j + min

⎧
⎨

⎩

Di−1, j

Di−1, j−1

Di, j−1

∀i > 0,∀ j > 0

di, j ∀i, j = 0
in f i = 0,∀ j > 0

(5)

To determine which paths correspond to actually heartbeat pattern in the signal,
a threshold is required, and it can be obtained from the training data. Once this
threshold is determined, the DTW paths can be subsequently selected out, each of
which corresponds to a heartbeat pattern found in the signal sequence.

Since the R peak location in the template signal is known, we can determine the
corresponding matched sample in the DTW path that will be a heartbeat R peak. We
have introduced this powerful method to the heartbeat recognition task and further
enhance the DTW to be multi-view DTW. In multi-view DTW, we have increased
the dimension of the signal and template sequences from one to three.

The advantage of this high-dimensional data representation is that the so-called
phase loop, as shown in Fig. 5, are more tolerant of motion artifacts. Figure 5d4
shows heartbeat trajectories, which are more distinguishable than the time-domain
ECG heartbeats in Fig. 5b. On the left side, the clean ECG signal is also visualized
in the original time-domain and the new high-dimensional domain for comparison
purpose. The multi-view ECG sequence is fed into the multi-view DTW, and the
corresponding heartbeats will be recognized more robustly.

Multiple high-dimensional spaces have been evaluated, as shown in Fig. 6. It
is clearly shown that the introduced dimensions have successfully suppressed the
motion artifacts, and yielded much more robust heart rate estimation results (e.g.,
Fig. 6d, which includes three dimensions).

4.2 Machine Learning

The machine learning techniques, mainly the classification approaches, attracting
intensive attention these days to differentiate different objects [27, 34, 44, 48, 60].
In the heartbeat identification task, the classification methods can be applied to dif-
ferentiate the real heartbeats from faking heartbeats due to the motion artifacts. As
shown in Fig. 7, the major difference between it and the pattern recognition methods,
are the steps between pre-processing and purification. Here, the heartbeat candidates
need to be firstly generated from the noisy signal sequence, which will be fed into
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Fig. 5 Multi-view ECG phase loops to be fed into the multi-view DTW, for heartbeat recognition
purpose, which shows that with sever

Fig. 6 Pattern recognition-based heart rate estimation results. A0 space: the original time-domain;
A1 space: both amplitude and derivative dimensions are included; A2-40% space: both amplitude
and angle dimensions are included; A3-40% space: amplitude, derivative and angle dimensions are
all includes; 40%: 40% of the length of the QRS complex is used to determine the left/right angle
boundaries
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Fig. 7 The heartbeat identification framework using machine learning techniques

the machine learning classifier to generate the class labels—either real heartbeat or
faking heartbeat.

We have proposed a novel machine learning framework, including a powerful
machine learning classifier, support vector machine (SVM), and advanced feature
extraction techniques. The proposed framework has been validated on the motion-
tolerant heartbeat identification task [63, 64, 65], and greatly outperforms traditional
signal processing methods. More specifically, SVM tries to find out a hyper plane to
separate two classes, during optimizing the cost function defined in (6–8),

min
w,b

1

2

∥∥w2
∥∥ + C

M∑

i=1

ξi (6)

s.t. yi
(
wT · Φ(xi ) + b

) ≥ 1 − ξi , ∀xi (7)

ξi ≥ 0 (8)

where,

– 1
2w

2: the regularization part

– C
∑M

i ξi : the loss due to misclassified instances
– w: a weighting factor to be determined
– C : a parameter to tradeoff between the separation margin and the classification
error

– ξi : the nonnegative slave variables for misclassification penalization
– yi : class label
– xi : instance
– �(xi ): kernel function
– b: bias to be determined

After applying the Lagrange multipliers αi , the above optimization problem can
be solved and finally yields a classification function as (9), where K

(
xi , x j

) =
�(xi ) · �

(
x j

)
is the inner product between two instances in the kernel space.
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Fig. 8 Heartbeat candidates generated by a threshold-based method. Green dots: selected real
heartbeats; red dots: missing heartbeats; large amounts of faking heartbeats are also selected but
not visualized; yellow line: adaptive threshold; blue lines: signal envelope

Fig. 9 Themachine learning-based heart rate estimation curve. Blue curve: ground truth; red curve:
the estimated heart rate trend

ȳ = sign

(
M∑

i=1

αi yi K
(
xTi , x

) + b

)

(9)

The heartbeat candidates generated by the threshold-based methods are shown in
Fig. 8, which will be fed into the SVM classifier to generate the class labels. One
thing worth noting is that large amounts of faking heartbeats are also selected but
not visualized in Fig. 8.

After identifying the heartbeats and applying an outlier removal filter, the heart
rate estimation curve is shown in Fig. 9, showing that the heart rate is robustly
estimated and almost overlap with the ground truth heart rate curve.

To enhance the wearability, we have studied a non-traditional sensing method—
sensing the ECG signal from the left upper-arm, not from the chest or two wrists.
The sensing signal is pretty weak, only around 10% of the traditional chest ECG, in
terms of the signal strength. However, it paves a way towards unobtrusive sensing
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and pervasive heart health monitoring because people can wear the device and forget
about it. Also using the machine learning algorithm—the SVM, and unsupervised
purification methods, we have achieved very robust heart rate estimation results
from this single-arm ECG signal. The root means square error and the mean absolute
error are 1.2 and 0.2 beats per minute, respectively.

5 Conclusion and Future Directions

5.1 Conclusion

Smart cardiac healthmonitoring is attractingmore andmore intentions nowadays. To
thoroughly compare traditional signal processing approaches and advanced artificial
intelligence-based approaches, we have quantitatively compared them using two
databases. The results are shown in Table 1, which clearly shows that advanced AI-
enabled methods greatly outperform the traditional non-AI-based signal processing
methods.

The AI techniques are capable of capturing more signal characteristics from the
corrupted information. Therefore, we conclude that AI has been paving a promising
way for noisy cardiac ECG learning, and our studies have demonstrated that AI tech-
niques have greatly boosted the ECG-based heart rate estimation performance. These
advancements are expected to contribute to pervasive heart health management.

Table 1 Quantitative comparison among multiple traditional and advanced artificial intelligence-
enabled approaches

Databases KLMF WRLS DWT DTW MDTW SVM

WECG_SNRm1 4.2/6.8 4.6/6.1 3.1/4.8 1.2/4.2 0.2/1.4 0.1/0.6

WECG_SNRm7 63.1/68.0 39.0/43.2 7.1/12.8 6.7/14.1 1.6/5.3 1.4/6.5

FECG_SNRm1 2.2/5.0 2.8/4.4 2.0/3.6 1.8/6.6 0.5/2.6 0.4/1.6

FECG_SNRm7 69.6/76.7 44/8.50.0 4.5/9.2 7.1/16.0 1.4/4.9 1.4/5.8

Notes KLMF Kalman Filtering; WRLS weighted regularized least square; DWT discrete wavelet
transform; DTW dynamic time warping; MDTW multi-view dynamic time warping; SVM support
vector machine; two numbers in the format x/y: x is the mean absolute error, and y is the root mean
square error, both with the same unit—beats per minute; WECG_SNRm1: a wrist ECG database
acquired from 22 subjects, and corrupted by motion artifacts to be −1 dB (the signal to noise ratio);
m7: −7 dB; FECG: another database called Fantasia ECG database
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5.2 Future Directions

In the future, there are several promising research directions, focusing on current
challenges in cardiac health monitoring. Firstly, it will be promising to explore more
motion tolerant features, considering the motion artifacts are highly random andmay
be very severe during intensive body movement. The current features extracted have
been validated on a few databases. However, when dealing with noisy or corrupted
ECG signals under diverse motion scenarios, it is still very necessary to explore more
motion tolerant features. Moreover, it is necessary to lower the computation com-
plexity of the algorithms. Since the wearable health monitoring applications usually
have a strict power budget, the corresponding signal processing algorithms need to
be tailored sometimes to accommodate this constraint. Many new technologies such
as sparse signal processing and down-sampling techniques, are of great potentials to
lower the power consumption of the algorithms. How to balance the performance and
the power consumption is highly important, since the complicated algorithm may
greatly increase the power requirements when bringing better performance. This
chapter is expected to provide the readers with advancements, limitations, and future
directions, in terms of ECG signal processing for pervasive cardiac healthmonitoring
in the era of smart health.
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The Power of Tensor-Based Approaches
in Cardiac Applications

Sibasankar Padhy, Griet Goovaerts, Martijn Boussé,
Lieven De Lathauwer and Sabine Van Huffel

Abstract The electrocardiogram (ECG) is a biomedical signal that is widely used
to monitor the heart and diagnose cardiac problems. Depending on the clinical need,
the ECG is recorded with one or multiple leads (or channels) from different body
locations. The signals from different ECG leads represent the cardiac activity in
different spatial directions and are thus complementary to each other. In traditional
methods, the ECG signal is represented as a vector or a matrix and processed to ana-
lyze temporal information. When multiple leads are present, most methods process
each lead individually and combine decisions from all leads in a later stage. While
this approach is popular, it fails to exploit the structural information captured by the
different leads. Recently, there is a trend towards the use of tensor-based methods in
biomedical signal processing. These methods represent the signals by tensors, which
are higher-order generalizations of vectors and matrices that allow the analysis of
multiple modes simultaneously. In the past years, tensor decomposition methods
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have been applied to ECG signals to solve different clinical challenges. This chapter
discusses the power of different tensor decompositions with a focus on typical ECG
problems that can be solved using tensors.

1 Introduction

The electrocardiogram (ECG) is a well-known diagnostic tool and one of the most
preferred tests in every day clinical practice. It is widely-used in both hospitals
and ambulatory environments because it is easy to measure and contains a large
amount of information about the condition of the heart. Moreover, its associated
cost is relatively low compared to imaging techniques such as echocardiography or
magnetic resonance imaging.

In recent years, advances in sensor techniques and the introduction of wireless
technologies have led to the development of various newECGtechnologies, including
wearable devices and smart phone set-ups. The rise of these novel technologies
has introduced both opportunities and challenges in the field of ECG monitoring.
Improvements in digital filters led to more accurate noise removal methods and
increased signal qualities, which allow the detection and analysis of more refined
ECG characteristics. Expansions of computing power and storage capacity permit
the use of more advanced signal processing techniques, and advances in material
sciences have to lead to the development of sensors that can be worn for many days
in a row. Manual analysis of these large-scale ECG data sets has become tedious,
time-consuming, and expensive, leveraging the need for automated ECG processing
methods that can analyze the data in a computationally efficient way.

In a clinical context, ECG signals are mostly recorded with different channels or
leads, where each lead corresponds to the cardiac electrical signal viewed from a
different spatial angle. The combination of these channels gives a global view from
the heart in three dimensions. While matrices could technically be used to analyze
these multidimensional signals by constructing multiple matrices for each spatial
angle and concatenating them in one big matrix, there is no reason why the original
multidimensionality of the data should not be preserved and exploited maximally.
This way the information that is shared over all dimensions can be analyzed simulta-
neously. This can be done in a straightforward way through the use of tensors. Math-
ematically speaking, tensors are higher-order generalizations of vectors (first-order)
and matrices (second-order). Tensor tools have been applied extensively in various
applications within signal processing, data mining, object recognition, and machine
learning [8, 19, 26, 52, 53, 63, 64, 84, 93]. In biomedical signal processing, they
have also gained popularity in neuroscience applications such as gait recognition,
epilepsy monitoring, brain tissue segmentation, neuroimaging, magnetic resonance
imaging, and EEG processing [9, 10, 22, 43, 51, 58, 60, 86, 88, 92, 97, 99].

In the context of tensor-based ECG signal processing, tensors are first used in
blind source separation to separate the fetal ECG (FECG) from the maternal ECG.
In the PhysioNet/Computing in Cardiology (CinC) Challenge 2013 with a topic
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Noninvasive Fetal ECG, a number of methods have been developed for solving the
FECG separation problem. Niknazar et al. [72] reshaped the measured signals in a
three-way tensor which was then decomposed with canonical polyadic decomposi-
tion (CPD), separating the maternal and fetal ECG signals. In a similar approach by
Akhbari et al. [4], a weighted CPD version was used in order to improve the robust-
ness of the method. Debals et al. [24] and Boussé et al. [14] both used tensorization
techniques, Löwnerization and segmentation in the respective methods, for blind
source separation and showed the effectiveness for the FECG separation problem.
Other tensor decomposition methods used for FECG separation are PARAFAC2 [1],
which extends the CPD by allowing variations in one mode, and the periodic Tucker
Decomposition [5].

The literature also includes a few tensor-based studies on various cardiac abnor-
mality detection problems. One such study is irregular heartbeat classification where
the objective is to discriminate different types of heartbeats affected by arrhythmia
from normal sinus beats. Li et al. [59] and Huang and Zhang [46] both proposed
tensor-based methods on 12-lead ECG with the objective to maximally exploit spa-
tial information of the different ECG leads and extract more robust features. Spectral
information using the short-timeFourier transformhas been used to construct tensors,
which were then decomposed with higher-order variations of Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) in the respective methods.
Another abnormal heart rhythm is atrial fibrillation (AF). Block term decomposition
has been applied to analyze the atrial activity [81, 98] and automatically extract atrial
sources [73] in multilead ECG signals of patients with AF. Amultiscale tensor-based
approach combiningwavelet decompositions andmultilinear SingularValueDecom-
position have also been proposed for the following two ECG applications: detection
and localization of myocardial infarction [77], and T-wave alternans analysis [79].
Finally, other ECG application areas in which tensors were used are ECG denoising
[54] and compression [75]. Recently, He et al. developed a new feature extraction
approach in tensor space by combining the discrete wavelet packet transform and
multilinear PCA [42].

The purpose of this chapter is to focus on five representative applications in ECG
processing where tensors have been successfully used to process multilead ECG sig-
nals. Since tensors are a rather novel concept in ECG processing, the next section first
givesmotivation for the use of tensormethods in ECGprocessing. In Sect. 3, themain
concepts and methods related to tensors are summarized. We encourage interested
readers to refer to the overview articles and references therein for a more compre-
hensive overview of tensor methods and their applications [8, 19, 52, 84]. Section
4 discusses the use of tensor methods in five specific ECG applications, where we
highlight the flexible way tensors can be used to deal with specific ECG characteris-
tics. Here, we discuss the tensor-based approaches to the third-order tensor. Finally,
Sect. 5 concludes the chapter by suggesting possible directions for future research.
The work described in this chapter, especially Sects. 2 and 3 and the CPD-based
methods, is largely based on [38].
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2 Motivation

ECG signals can be measured with one or more leads, but multilead recordings
are considered as the gold standard, especially in clinical contexts. Also, long-
term recordings are often performed using Holter monitors, which typically have
a minimum of two channels. Each lead records the cardiac electrical activity from
a different spatial angle, complementing each other and enabling a comprehensive
three-dimensional view of the electrical activity of the heart.

Most methods that deal with multilead ECG data employ a late-integration
approach, whichmeans that they process each lead separately and afterward combine
the results of all channels [41, 55, 95]. This obviously fails to exploit the correlations
between the different spatial angles, leading to a loss of available information. Tensor
methods allow one to simultaneously analyze all channels, enabling exploitation of
all the available information at once in contrast to late-integration methods. Hence,
a tensor-based approach is clearly advantageous for applications that require the
assessment of the global behavior of the heart.

While matrix-based decomposition methods have been used successfully in many
applications, they often put constraints on the signals in order to obtain unique and
thus interpretable solutions. For example, Principal Component Analysis (PCA)
requires the different components to be orthogonal to each other, and Indepen-
dent Component Analysis enforces independence between the different components.
These assumptions are, however not necessarilymet in real-life conditions. However,
in contrast to low-rank matrix models, low-rank tensor models are unique under mild
conditions.

Finally, when dealing with biomedical signal processing problems, interpretabil-
ity of the final outcome is paramount, especially when the results need to be com-
municated with clinicians and patients. Nowadays, deep learning methods such as
artificial neural networks are rapidly gaining popularity. Although these models have
been shown to give accurate results, they are black box models, meaning it is not
straightforward to interpret how the outcome is calculated from the input. In contrast
to artificial neural networks, tensor methods can lead to physiologically interpretable
results. Tensor methods, on the other hand, can lead to interpretable components
which can be physiologically interpreted.

3 Tensors and Tensor Tools

3.1 Basic Concepts and Notations

Appropriate data representation is an important step that helps gain insight and pro-
cess the data in an effective way. Generally speaking, data with N modes are repre-
sented by a N th-order tensor X ∈ R

I1×I2×···×IN . The number of modes of a tensor is
equal to the order, e.g. a tensor with three modes is a third-order tensor. Within this
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Fig. 1 The mode-1 or
column vectors and
mode-(2, 3) or horizontal
slices of a 4 × 4 × 4-tensor.
The other mode-n vectors
and mode-(m, n) slices can
be constructed in a similar
way

framework, it is also possible to define scalars (N = 0), vectors (N = 1), and matrices
(N = 2).

Scalars, vectors, and matrices are all commonly encountered in biomedical signal
processing. A single observation or sample is represented by a scalar. Any signal
recorded from a single source over a period of time can be described by a vector.
The observations from acquisition with multiple sensors or electrodes are expressed
in matrix-format. Data obtained from multiple subjects or due to repeated measure-
ments can provide much more information, and these types of data can effectively
be represented by a higher-order array or tensor.

From hereon, we refer to scalars with italic lower-case letters x, vectors with
bold lower-case letters x ∈ R

I1 , andmatrices with bold upper-case lettersX ∈ R
I1×I2 .

Finally, tensors are written as calligraphic lettersX . For example, a third-order tensor
is denoted by X ∈ R

I×J×K and its elements as xijk with i = 1, . . . , I , j = 1, . . . , J
and k = 1, . . . ,K .

A matrixX consists of row- and column vectors. In a similar way,mode-n vectors
or fibers are defined for tensors. A mode-n tensor fiber is a vector that is the result
of fixing all indices except the nth index. For example, the mode-1 fiber of a third-
order tensor is analogue to a column vector and is denoted by x:jk . The mode-2 and
the mode-3 fibers are the row and the tube vectors and are denoted by xi:k and xij:,
respectively. Figure 1a shows an example of the mode-1 or column vectors of a
third-order tensor. The mode-2 and mode-3 vectors can be visualized similarly.

Slices are defined in the sameway.Amode-(m, n) slice of a tensor is thematrix that
is the result of fixing all indices except themth and nth index. In a third-order tensor,
the different types of slices are typically named after their corresponding directions:
this way, horizontal (mode-(2, 3)), vertical (mode-(1, 3)), and frontal (mode-(1, 2))
slices are defined. Figure 1b shows the horizontal slices of a third-order tensor. The
other slices can be visualized in a similar way.

The rank of a tensor is defined as the minimal number of rank-1 tensors that
generate the tensor as their sum. A rank-1 tensor is defined as the outer product of
nonzero vectors.

Finally, the Frobenius-norm of a tensor X ∈ R
I1×I2×···×IN is given by

||X ||F = √〈X ,X 〉 =
√√√√

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

x2i1i2···iN . (1)
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with 〈A,B〉 the representation of the inner product between two tensors. The Frobe-
nius norm is analogous to thematrix Frobenius-normand is essentially themultilinear
generalization of the L2-norm commonly used in vectors.

3.2 Tensor Operations

In many applications, tensors are converted to matrices and vice versa. The trans-
formation from a tensor to a matrix is referred to as tensor unfolding or flattening, a
process where the elements of the tensor are reformatted in a lower-order structure
[52]. One way of transforming tensors to matrices is the case of mode-n unfolding
or matricization, which places the mode-n fibers of a tensor X as column-vectors
in the matrix X(n). The different unfoldings of a third-order tensor are presented in
Fig. 2.

When data or signals are naturally collected in matrix-format, they have to be
transformed into tensors in order to be able to apply tensor methods. This is done
through tensorization, where a vector or a matrix is mapped onto a tensor by creating
additional modes. Many different tensorization methods exist, and the choice of
method is dependent on both the data and the application. An overview of the most
well-known deterministic and statistical techniques can be found in [23].

In the applications discussed in the remainder of the chapter, tensorization will
be mainly done through segmentation, e.g., by dividing the signals into equal-length
segments and stacking these in the frontal slices of a third-order tensor. The main
advantage of ECG signals is that they contain ‘natural’ segments in the form of
heartbeats or individual ECG waves, where the temporal profile of a beat is simi-

Fig. 2 Mode-1, mode-2, and mode-3 matricizations or flattenings or unfoldings of a 3rd-order
(3 × 4 × 4) tensor
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Fig. 3 Tensorization
techniques create a tensor
from a data matrix in a
meaningful way, enabling
tensor tools that allow one to
extract more information
[25]. Here, we apply a
technique called
segmentation to a multilead
ECG data matrix, obtaining a
third-order tensor with
modes channels × time ×
beats (Figure reproduced
from [11].)

lar across all channels of the signal. Tensorizing them in such manner transforms
ECG signals with modes time × channels to third-order tensors with modes time ×
channels × heartbeats, where each mode-2 vector contains the temporal profile of
one heartbeat in one channel. The resulting tensor allows studying the variations in
ECG waveforms of consecutive heartbeats in all channels simultaneously, which is
the goal in many ECG applications. Figure 3 illustrates the tensorization process:
the two-dimensional multilead ECG signal that contains J beats is transformed into
a higher-order tensor.

An important tensor-matrixmultiplication is themode-n product between a tensor
X ∈ R

I1×I2×···×IN and a matrix A ∈ R
J×In . It is represented as:

(X ·n A)i1i2···j···iN =
In∑

in=1

xi1i2···in···iN ajin . (2)

In practice, the mode-n product multiplies each mode-n vector of X with A.

3.3 Tensor Decompositions

Tensor decompositions are powerful tools that have been used successfully in various
applications within signal processing and machine learning [84]. In this chapter, we
will focus on the canonical polyadic decomposition (CPD) and multilinear singular
value decomposition (MLSVD), which have become popular tools in biomedical
signal processing in recent years.
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3.3.1 Multilinear Singular Value Decomposition (MLSVD)

The MLSVD is a powerful tensor tool in applications such as compression and
dimensionality reduction in different fields; see [27, 52]. Recently, it has been applied
for different ECG applications such as data compression and feature extraction for
myocardial infarction classification, and irregular heartbeat classification [11, 75,
77], which will be discussed in Sect. 4.

The key idea behind the MLSVD is to find the components that best capture the
variations in each mode individually, while not considering the other modes at this
point in time [52]. TheMLSVD is themultilinear generalization of the singular value
decomposition (SVD) for matrices [26].

As a recap, the SVD of a matrix X ∈ R
I×J can be written as:

X = U�VT =
R∑

i=1

uiσivTi (3)

where U ∈ R
I×I and V ∈ R

J×J are orthogonal matrices whose columns are respec-
tively called the left and the right singular vectors of X. � ∈ R

I×IJ is a non-negative
diagonal matrix that contains the ordered singular values σi on the diagonal. The
rank of the matrix R is defined as the number of non-zero singular values. The SVD
of a matrix X is often used when one wants to compute a low-rank approximation
of X, since it can be proven (in the Eckhart-Young theorem) that the optimal rank-r
approximation of X is calculated by taking the singular vectors corresponding to the
r largest singular values of X (Fig. 4) [26, 52, 57].

The MLSVD of a third-order tensor X ∈ R
I×J×K is defined as follows [26]:

X = S ·1 U ·2 V ·3 W (4)

withU ∈ RI×I ,V ∈ RJ×J andW ∈ RK×K orthogonal factor matrices that contain the
mode-n left singular vectors. The core tensor S ∈ R

I×J×K governs the interaction
between the different modes. It has the following properties:

• All-orthogonality: any two slices in a fixed mode are orthogonal.

Fig. 4 The MLSVD and LMLRA of a third-order tensor X . The column spaces of U, V, and W
represent the signal subspaces along the three modes. The core tensor is non-diagonal, governing
the interaction between the different modes
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• Ordening: the norms of the slices along any mode are ordered in a decreasing
manner

The Frobenius norms of the core tensor are called the multilinear or mode-n sin-
gular values (MSVs) ofX and are denoted as σ

(n)
i . The values I , J , andK correspond

to the ranks of the different matrix unfoldings of X along with the different modes.
The MLSVD can also be used to calculate a low multilinear rank approximation

(LMLRA) of a tensor X , but contrary to the matrix case, it is not necessarily the
optimal approximation [19, 26, 84]. Truncation can be done in a similar way as the
matrix case, e.g. by only keeping the mode-n singular vectors corresponding to the
highest mode-n singular values. While the LMLRA calculated in this way is not
perfect, it is usually a good approximation since the multilinear singular values are
ordered, meaning that most ‘energy’ is concentrated in the vectors corresponding to
the first singular values (the part that is kept in the LMLRA). It is therefore considered
a suitable solution for most applications, which can be refined by iterative algorithms
if necessary [48].

To have the core tensor S as a compressed form of X , reduced dimensions of
different modes can be chosen as R1 � I , R2 � J and R3 � K . Hence, X can be
approximated as

X ≈ Ŝ ·1 Û ·2 V̂ ·3 Ŵ (5)

where Ŝ ∈ R
R1×R2×R3 , Û ∈ R

I×R1 , V̂ ∈ R
J×R2 and Ŵ ∈ R

K×R3 , respectively.

3.3.2 Canonical Polyadic Decomposition (CPD)

The CPD is also an important tensor tool in many applications within the signal
processing, biomedical sciences, data mining, and machine learning; see [19, 52,
84]. The decomposition is unique under mild conditions [6, 14] which is a powerful
advantage of tensors over matrices in many applications [3].

A polyadic decomposition (PD) expresses a tensor as a sum of rank-one compo-
nents. If the number of components is the minimal number of components necessary
to exactly decompose the tensor, then the PD is called the canonical polyadic decom-
position (CPD). For a third-order tensor X ∈ R

I×J×K , it is expressed as:

X =
R∑

r=1

ar ⊗ br ⊗ cr (6)

with R the total number of components or rank of the decomposition and ar ∈ R
I ,

br ∈ R
J and cr ∈ R

K for r = 1, . . . ,R the factor vectors. CPD is also known as
PARAFAC (Parallel Factor Analysis) or CANDECOMP (Canonical Decomposition)
[52]. A schematic presentation of CPD for a third-order tensor is shown in Fig. 5.

While the definition of tensor rank is straightforward, its determination is a NP-
hard [40, 45]. Different approaches for automatic rank estimation exist such as
the core consistency diagnostic [16] or Rankest available in Tensorlab [89]. Both
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Fig. 5 Schematic representation of the Canonical Polyadic Decomposition of a third-order tensor
in the individual factor vectors ar , br and cr for r = 1, . . . ,R. The different factor vectors can be
used in various ways depending on the application

approaches gradually increase the tensor rank and compare the results of the decom-
position with the original tensor. They, however, lead to an overestimation of the
tensor rank for noisy signals [20] and are therefore less suitable for biomedical
signals that inherently contain noise. In practice, visual inspection of the obtained
components for different ranks is very informative for evaluating the results and
determining suitable rank values. Another starting point is the multilinear singular
values, which can provide a lower-bound for determining the rank [19].

One of the main advantages of tensor decompositions compared to matrix-based
methods is that the resulting components are unique undermild conditions (up to triv-
ial permutation and scaling indeterminacies).Ageneral framework for the uniqueness
properties of third-order tensors is presented in [28–30]. This means that no addi-
tional constraints have to be imposed on the data or factor matrices, which is required
for matrix decompositions such as orthogonality in case of PCA or independence in
ICA.

While many other tensor decomposition methods exist, CPD can be considered
one of themost accessible approaches. Generally, it generates components which can
be easily visualized and interpreted. Furthermore, different computation methods
have been developed that deal with practical issues such as missing data [94] or
noisy signals [12]. In the next section, these methods will be applied to identify
different ECG features, highlighting the power of these tensor decompositions in
cardiac applications.

4 Applications of Tensors in ECG Processing

Multilead ECG signals are described by two parameters: time and space. In contrast
to other biomedical signals, such as EEG, ECG is relatively noise-free and exhibit
intrinsic structure, making this type of data a prime candidate for tensor-based anal-
ysis. In the last few years, tensor methods have been used in a limited number of
ECG applications.

This section gives an overview of five typical problems in ECG processing where
tensors have been used successfully to obtain relevant results:
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1. ECG data compression [75],
2. Detection and localization of myocardial infarction [77],
3. Irregular heartbeat classification [11, 34],
4. Detection and quantification of T-wave alternans [33, 35, 36, 79],
5. Analysis of changes in heartbeat morphology [37].

The goal of this section is to highlight the flexible nature in which tensor tools can
be used in various important use-cases.We also show how the tensor decompositions
can be adapted to different typical characteristics of ECG signals in order to deal
with real-life problems such as noisy signals or changes in heart rate. For a more
comprehensive explanation of the methods, we refer to the dedicated papers of each
method.

Many different tensor decompositions exist, each with specific advantages and
disadvantages. The applications discussed here all make use of either theMLSVD or
CPD to decompose the ECG signal. The first two applications combine the MLSVD
with the discrete wavelet transform to exploit different types of correlations in the
ECG signal. For the next two applications, e.g. irregular heartbeat classification
and detection of T wave alternans, we present and compare a CPD- and MLSVD-
approach. Both approaches have their own strengths and are preferred in different
cases. Finally, the last application is tackled using another variant of the CPD.

4.1 ECG Data Compression

Diagnosis of heart diseases often requires long-term multilead ECG recordings in
order to accurately determine the extent of cardiac abnormalities. When dealing with
many patients in a hospital setting, this quickly leads to large-scale datasets: a 24-hour
ECG signal measured with 12 leads with a sampling frequency of 250 Hz, digitized
at 11 bits/sample, for example, requires a storage capacity of 2.88 Gb. There is a
growing need to store these datasets as compactly as possible without distorting the
ECG signals since this might lead to the loss of important clinical information.

For this purpose, many ECG compression methods have been developed that
reduce the number of samples required to store the signal. They mostly start from
the idea that there are different types of correlations present in ECG signals [49]:

1. intra-beat: correlations between the different samples in a heartbeat,
2. inter-beat: correlations among different heartbeats in a long-term signal,
3. inter-lead: correlations between different leads in a multilead signal.

Different methods exploit one or more type(s) of correlations in order to efficiently
reduce the required storage capacity. Vector-based methods utilize intra-beat corre-
lations by means of sampling or interpolation [2, 21, 49, 69]. Matrix-based methods
can handle up to two types of correlations simultaneously. Different matrix decom-
positions, such as the Karhunen-Loève transform (KLT) or PCA [82] and SVD have
been used for ECG compression [76, 96]. The use of tensor methods allows an
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analysis of all three correlations types at the same time, making optimal use of all
information present in the signal.

In the remainder of this section, we will describe a multiscale tensor-based ECG
compression method that uses the discrete wavelet transform (DWT) to represent the
signal. It starts from an ECG signal that has been tensorized by segmenting the signal
in different heartbeats, as described in Sect. 3 and shown in Fig. 3. A full description
of the method can be found in [77].

The ECG signal is a low-frequency signal where most of the physiological activ-
ity is contained in the frequency band between 1 and 40 Hz. It furthermore has
different morphological components (in the form of the different ECG waves) that
vary both in duration and frequency. The multilevel decomposition using DWT can
grossly segment the different components into different subbands while preserving
the information in an effective way [66]. An L−level wavelet decomposition splits up
the ECG signal in L + 1 subbands of different dimensions. Here, a decomposition of
L = 7 levels is applied on the mode-2 fibers xi:k of the original tensor (X ∈ R

I×J×K )
with modes channels × time × beats. Each mode-2 fiber represents one heartbeat
in one channel. The result is eight subband tensors: one approximation subband ten-
sor AL containing the approximation coefficients in mode-2, and L detail subbands
tensors Dl , l = L, . . . , 1 that contain the detail coefficients in mode-2 of respec-
tive levels. The dimensions of these tensors, AL and Dl , l = L, . . . 1, are given as
I × J/2L × K and I × J/2l × K , respectively, and we say now each subband tensor
has modes channels × wavelet coefficients × beats. Because the different heartbeats
in the ECG signal are related in time and in space (due to inter-beat and inter-lead)
correlations, thewavelet coefficients showahigh correlation in the different subbands
[78]. Therefore they can be represented in a more efficient way with the truncated
MLSVD.

Following (4), the MLSVD of each subband tensor can be expressed as

AL = SAL ·1 UAL ·2 VAL ·3 WAL

Dl = SDl ·1 UDl ·2 VDl ·3 WDl

(7)

where UAL , VAL , and WAL are orthonormal matrices of approximation subband ten-
sors, andUDl ,VDl , andWDl are that of each detail subband tensor, alongwith different
modes. The orthonormal column vectors of UAL and UDl span the channel space of
each subband. Similarly, the column vectors of VAL ,VDl and WAL ,WDl span the
coefficient space and heartbeat space.

The ECG signal is then compressed by truncating the MLSVDs of the subband
tensors that contain the detail coefficients. The truncation is done such that 95% of
the energy contained in the multilinear singular values in each mode is kept. This
means that for each subband tensor Di we will define a multilinear rank (R1, R2, R3)
such that: ∑Rn

i=1(σ
(n)
i )2

||SDl ||2F
≥ 0.95, n = 1, 2, and 3. (8)
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where ||SDl ||F is the Frobenius norm of each detail subband tensor. Note that the
multilinear rank of the truncated MLSVD (R1,R2,R3) is defined separately for each
subband tensor Dl . Since the multilinear singular values typically decrease rapidly
for most subbands, values for Rn can be kept relatively low, resulting in an efficient
compression. While it is known that the truncated MLSVD, in general, does not
result in the optimal low-rank approximation of the original tensor, the results are
however considered good enough for most applications.

In order to compare different vector-, matrix- and tensor-based approaches we
use standard measures such as the compression ratio (CR), which is defined as

CR = bits in the input signal

bits in the compressed signal
.

The higher the CR, the better the compression performance. However, as men-
tioned before, this should not come at the cost of reduced signal accuracy. To control
this trade-off, we, therefore, use additional quality measures such as the percentage
of root-mean-square difference (PRD). The PRD is defined as

PRD =
√∑N

n=1(x(n) − x̃(n))2
∑N

n=1 x(n)
2

× 100

whereN is the total number of samples and x(n) and x̃(n) are, respectively, the original
and the reconstructed signals. The quality of the reconstructed signal is ‘very good’
and ‘good’ if the PRD (%) value is between 0 and 9.Analysis of different compression
algorithms, however, suggests keeping the PRD value as small as possible (under
3%) [67].

Table 1 showsCR and PRDvalues for several of themethodsmentioned in the first
part of this section, together with the results for the proposed tensor-based method.
In order to make a fair comparison possible, all methods were performed in the same
environment and on the same database, the PTB database available on Physionet
[32]. From Table 1 it is clear that increasing the number of correlation types that

Table 1 Comparison of tensor-based ECG compression method with vector- and matrix-based
methods using the PTB database [32]. The tensor-basedmethod usingmultilevel DWT andMLSVD
in [77] exploits all three types of correlations and leads to the best results. Adapted from [75]

Decomposition Correlation type CR PRD (%)

KLT [18] Intra-beat 7.25 3.18

DWT + PCA [82] Inter-lead 12.61 2.66

SVD [96] Intra- and inter-beat 15.70 2.83

DWT + SVD [75] Intra-beat, inter-lead 19.34 3.05

DWT + MLSVD [77] Intra- and inter-beat,
inter-lead

45.00 2.71
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are exploited by the decomposition results in a better compression ratio: the lowest
CR values are obtained by methods using only one type of correlation. Adding a
correlation type immediately improves the compression ratio with minimal impact
on the PRD. The proposed tensor-based method that combines DWT and MLSVD
results in the highest compression ratio with PRD <3.

Here, the combination of multiscale DWT and truncatedMLSVDwas used solely
for data compression. The technique could, however also be used for feature extrac-
tion, since the singular values and singular vectors inherently contain valuable infor-
mation about the underlying ECG signal.

4.2 Myocardial Infarction Classification

Myocardial infarction (MI) occurs when the flow of oxygen-rich blood to the heart
muscle is halted, which causes cell death and tissue damage. It can be diagnosed
through blood tests or imaging techniques [90]. However, since MI is also known to
cause alterations in the electrical conduction pattern of the heart, efficient detection
can also be done by examining changes in the ECG signal (such as ST-segment
deviations or T wave inversions). MI detection should be done as early as possible,
so accurate treatment can start, and damage to the heart muscle can be kept minimal.
Therefore there is a clear advantage over using ECG analysis over other techniques
since results can be processed and analyzed in real-time.

A second objective is often MI localization, where the goal is to indicate the
location on the heartwall that is affected by the infarction. This can be done bymaking
use of the fact that each ECG lead represents cardiac activity from a different spatial
angle, as discussed earlier. Clinically, we make the distinction between lateral leads
(I, aVL, V5, and V6), anterior leads (V3–V4), septal leads (V1–V2), and inferior
leads (II, III, aVF). When a patient experiences an anterior MI, for example, it will
mainly be characterized by changes in the anterior leads. This way, we can define
four major MI types: anterior MI (AMI), inferior MI (IMI), posterior MI (PMI), and
lateral MI (LMI). Additional subtypes are possible when the MI can be detected in
more than one region, such as for example antero-lateral MI (ALMI), antero-septal
MI (ASMI), or infero-lateral MI (ILMI).

Since MI detection and localization is an important clinical task, a large number
of automated methods have been developed for this purpose. Their goal is to identify
discriminative features that can characterize the different MI subtypes compared to
ECG signals of healthy subjects. Many methods aim to detect and quantify specific
ECG changes such as ST-segment deviations [7, 62, 87] or alterations in the QRS
complex [80].While these features are known to change afterMI, they are difficult to
accurately measure in the presence of noise, which may affect the final performance.
A second class of methods, therefore, transforms the ECG signal to the frequency- or
wavelet domain before feature extraction. Examples can be found in [50, 83], where
the DWT is used to represent the signal and extract more robust features. This way
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detection and localization accuracies of >95% can be achieved. A comprehensive
view of recent advances in the field can be found in [3].

Similar to ECG compression, tensor decompositions can exploit spatial and tem-
poral correlations in the signal simultaneously to detect and localize the MI in an
even more efficient way. The method described here is a multiscale approach that
starts from an ECG signal that has been converted to the multiscale domain and
compressed with the method described earlier. Here, however, features are extracted
from the MLSVD to detect and localize MI.

MI induces morphological changes in the ECG signal, which are captured by the
multilinear singular values (MSVs) of the subtensors corresponding to the different
wavelet bands. An illustration is shown in Fig. 6, which shows theMSVs for a healthy
subject (top row), a patient with an ASMI (middle row), and a patient with an IMI
(bottom row), respectively. In a healthy subject, most of the energy is contained in
the D6 subband tensor, followed by A7, D5, and D7. This pattern is visible in all
three modes. The explanation can be found in the QRS complex, which is the most
dominant wave in healthy ECG signals and which is mainly segmented inD6. ASMI
introduces pathological Q-waves in the ECG signal, which changes the frequency
content in different wavelet bands. In the MSVs, this corresponds to a large drop in
the values forD5 andA7. Similarly, an ISMI causes ST-elevation which increases the
MSVs for the A7 subband. The significant MSVs of modes 1 and 2 were therefore
used as features for MI detection, whereas the mode 3 MSVs are used to localize the
MI. Additionally, normalized multiscale wavelet energy features were also extracted
to make MI localization more accurate. A more comprehensive explanation of the
different features can be found in [77].

The features are then used as input to a support vector machine classifier with χ2-
kernel, to do the classification in a supervised way. The SVM parameters (both the
regularization parameters and kernel parameters) are optimized using a grid-search
algorithm and 5-fold cross-validation on the training set. The final performance is
calculated on an independent test set. The performance of the proposed method
is evaluated on a subset of the PTB database [32]. The full dataset considered here
consists of 390 records: 78 healthy controls and 312 records of subjects with different
types of MI. 89 records were used as a training set, the remainder as a test set.

The results of the methods mentioned in Table 2 are rather similar for all three
methods.Theproposed tensor-based approach, however, has several advantages. First

Table 2 Comparison ofMI detection and localization performancewith existingmethods. Adapted
from [77]

Method Decomposition Detection Localization

Sen (%) Spe (%) Acc (%) Acc (%)

Arif [7] N.a. 97.2 99.6 NA 98.8

Sharma [83] DWT + PCA 93.0 99.0 96.0 99.6

Proposed DWT +
MLSVD

94.6 96.0 95.3 98.1
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of all, the results on the first two methods were not obtained with an independent
test set (e.g. which does not contain signals of patients in the training set). There is,
therefore, a significant risk of over-fitting,meaning that themethods are not capable of
generalizing andwill lead to inferior results on different datasets. Second, thematrix-
based features are calculated for each lead individually, which is computationally
not very efficient, while the proposed tensor-based approach processes all leads
simultaneously. The tensor-based method, on an average, takes 0.23 and 0.021 s for
detection and localization, respectively, during testing compared to 0.44 and 0.025 s
of [83].

4.3 Heartbeat Classification

Cardiac arrhythmias affect millions of people and are the main cause of many cases
of sudden cardiac death. A large number of people could benefit from a better and
more reliable detection of cardiac dysfunction. An arrhythmia is defined as any dis-
turbance of the normal sinus rhythm. This can be a perturbation or abnormality in
the rate, the regularity, the site of origin, or the conduction of the electrical impulses
of the heart. In general, they can be divided into two main groups: the first group,
morphological arrhythmia, contains arrhythmia that consists of only one heartbeat;
the second group consists of arrhythmia formed by a group of heartbeats and is called
rhythmic arrhythmia [61]. The focus of this section lies in the automatic detection
of the first class, e.g. morphological arrhythmia. Various types of morphological
arrhythmia exist, each differing in the origin and/or electrical pathway of the abnor-
mal beat. In general, we make the distinction between three types of abnormal beats:
Normal beats, atrial or supraventricular beats, and ventricular beats. Normal beats
refer to beats that originate during normal sinus rhythm. Atrial and ventricular beats
respectively arise in the atria or ventricles.

Classification of heartbeats in different classes is important for two main reasons.
Firstly, heart rate variability studies, which are useful in many clinical and non-
clinical scenarios require a series of normal RR-intervals. The presence of ectopic
beats or other abnormalities introduces abrupt changes in the RR time series which
can seriously disturb the values of HRV indices. Secondly, the most ventricular
arrhythmia, which is potentially lethal, is initiated by premature ventricular beats.
Their frequency and complexity have been shown to be predictive for predicting SCD
in certain patient groups and have been used as stratification tools in large clinical
trials.

Here we present two different tensor-based approaches to irregular heartbeat
detection. The first method detects irregular heartbeats in an unsupervised manner
using the CPD. A full explanation can be found in Goovaerts et al. [34]. The second
method uses the MLSVD to perform a supervised classification and is described in
Boussé et al. [11]. For both methods, the multilead ECG signal is first preprocessed
to remove major noise sources such as baseline wander and high-frequency noise.
The signal is then transformed into a third-order tensor in the same way as shown in
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Fig. 5. First, we segment the signals in individual heartbeats of equal lengths. Next,
all heartbeats are stacked in the third mode, resulting in a third-order tensor T with
dimensions channel × time × heartbeat. Tensorizing the signals in this way allows
us to study the differences between the heartbeats in a signal in a straightforward
way by studying the variation in the third mode.

4.3.1 CPD

We explained in Sect. 3 that the CPD can be used to decompose a tensor in a sum
of rank-1 components. In this case, R, the rank of the decomposition, is fixed to one
since we are interested in themain variation between different heartbeats. The result
is 1 rank-one tensor consisting of three loading vectors a1, b1 and c1.

An example of the CPD result for a 12-lead ECG signal with five abnormal heart-
beats are shown in Fig. 7. The feature vectors have a straightforward physiological
interpretation, especially for the temporal and heartbeat mode. The first loading vec-
tor, a1, corresponding to the channel mode, is associated with the differences in
heartbeat morphologies over different channels. The second loading vector b1 (time)
shows the temporal profile of the component and is a representation of the average
heartbeat in the signal. It is easily recognizable as a normal (regular) heartbeat, which
is expected since the majority of heartbeats are by definition normal. Furthermore,
the morphology of a normal heartbeat is similar over all channels, making it suitable
to capture in a rank-one component. Finally, the factor vector of the heartbeat dimen-
sion is the most important for irregular heartbeat detection since it shows the changes
in the ECG over different heartbeats. The values of this loading vector for normal
heartbeats vary around −0.1. The abnormal heartbeats are easily distinguishable by
their higher values, and they can be detected by simple thresholding or clustering
methods.

4.3.2 MLSVD

The second approach uses the MLSVD to detect heartbeats in a supervised way, e.g.
by making use of a training set of heartbeats with a known label. We first collect all

Fig. 7 The factor vectors for the different modes obtained by CPD. The irregular heartbeats are
clearly distinguishable in the third factor vector and can be detected by thresholding or clustering.
Reproduced from [38]
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labeled training beats in a tensor T . The (truncated) MLSVD of this tensor is given
by:

T = S ·1 Uc ·2 Ut ·3 U3 (9)

where Uc, Ut and Uh form an orthonormal basis for the spatial, temporal and heart-
beats components respectively.Everyheartbeat in a particular channel t canbewritten
as:

tT = S ·1 CT
c ·2 Ut ·3 cTh (10)

The mode-2 unfolding of this Equation is a so-called Kronecker-product equation
(KPE),which is a linear systemwith a solution that has aKronecker product structure.
It expresses each heartbeat in the column spaceUt and an unfolded interaction tensor
S:

t = UtS(2)(ch ⊗ cc) (11)

We can solve this system in an efficient way to obtain coefficient vectors ch and cc
using nonlinear least squares algorithms [12].

A new heartbeat without a known label, that is thus not included in T , can now
be classified by solving (10) as such:

UtS(2)(c
(new)

h ⊗ c(new)
c ) = t(new) (12)

to obtain estimates ĉ(new)

h and ĉ(new)
c . The new heartbeat can then be classified by com-

paring ĉ(new)

h with the rows of Uh, after normalizing all vectors to correct for scaling
and sign differences. Since each row ofUh corresponds to a heartbeat from the train-
ing set with a known label, we can assign the new heartbeat the label corresponding
to the closest match.

Note that while the data of all channels are used to compute the MLSVD, clas-
sification is only done using the signal from a single channel. In practice, however,
the MLSVD model holds only approximately, and incorrect classification can pos-
sibly occur. It is, therefore, possible to make the classification more robust by using
heartbeats from multiple channels, which can be solved using a coupled KPE. More
information can be found in [11].

To compare both approaches with each other and with alternative matrix-based
approaches, they were both applied on the first ten signals of the INCART database,
which is a publicly available multilead database that contains heartbeat annotations.
The unsupervised CPD-based method obtains a mean F1-score of 79%. Further
inspection of the results, however, revealed that the method distinguishes normal and
ventricular beats almost perfectly but lacks performance for atrial beat classification.
The MLSVD-based method reaches a mean F1-score of 94.2% which is better than
the best performance (92%) of traditional techniques [61]. The results could be
improved further by using all channels to perform the classification. Furthermore,
because of the generic nature of the method [12], the same concept can be applied to
other classification problems with minimal alterations, which shows the flexibility
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of the method. Examples of recently developed applications in biomedical signal
processing are atrial fibrillation detection [31] and EEG classification [92].

The CPD-based approach is clearly not suitable as a general irregular heartbeat
detection method but could be used to automatically detect ventricular beats. Since
most lethal arrhythmias are initiated by premature ventricular contractions, a type of
ventricular beats, this class is more important in a clinical context, so this would be a
practically useful result. It is furthermore an unsupervised detectionmethod,meaning
that no annotations are required to perform the analysis, which is an advantage in
clinical practice. Similarly to the proposedMLSVD-based approach, the CPD-based
method can be used to analyze other abnormalECGpatternswithminimal alterations.
In the next section, for example, we present a similar algorithm to analyze T wave
alternans.

4.4 T-Wave Alternans Detection and Estimation

T wave alternans (TWA) is an abnormal ECG pattern where the amplitude of the
T wave shows a beat-to-beat change in a characteristic ABABAB-pattern [70]. It
can be detected in healthy hearts at high heart rates, but if it also appears at lower
heart rates (<110 beats per minute) it is a sign of electrically unstable tissue and
associated with increased mortality [47]. When the variation between subsequent T
waves is large enough, TWA can be detected by visually inspecting the ECG signal.
In cases where the difference is only a few microvolts or when dealing with long
ECG signals, this is however not feasible. Therefore (semi-)automatic methods are
used that can reliably detect TWA in the ECG signal.

Martínez and Olmos [65] gave an overview of commonly used algorithms for
(semi-)automatic T Wave Alternans detection. Most methods start with a prepro-
cessing stage followed by the actual TWA detection. Examples of commonly used
methods are the modified moving average method [71] or the spectral method [85].
Most methods decompose the ECG signal to a beat-to-beat time series that contains
the T wave characteristics. The actual detection of T wave alternans is then done on
this decomposed signal. Most TWA detection and quantification methods have been
designed for use with single lead ECG signals. They can be applied to multilead
signals by processing each lead individually and combining the results of different
leads in a second stage; however it has been shown that thismight not be optimal [17].
Analyzing all leads simultaneously can be done in a straightforward way through the
use of tensors, as we already showed in the previous examples. Here, we present two
different tensor-based approaches for TWA detection and quantification. Similarly
to the previous section, the first method starts from the CPD [33, 35, 36] and the
second uses the MLSVD as the main building block [79].

CPD and PARAFAC2
In a similar way as before, the ECG signal was transformed into a tensor before
applying tensor decompositions. Since the objective is TWA detection, the tensor
should be constructed in such a way that the changes in T waves over different
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heartbeats are maximally emphasized. Therefore we constructed a T wave tensor T :
a third-order tensor that consists of the T waves of all channels and heartbeats.

There is an important difference between the tensorization in the previous section
and here: before, the individual heartbeats were segmented by selecting a window
around the R peaks. When these heartbeats are placed in the tensor, the different
heartbeats are automatically synchronized at the R peak location (which is always
at the same time location in the segmentation window). Here, segmentation is done
by taking a fixed-size window after the R peak that contains the T wave. When for
example the heart rate changes within a signal, it is possible that the timing of the T
wave with respect to the R peak changes, and that the T waves of different beats are
thus not strictly aligned in the third mode.

Similarly to the approach for irregular heartbeat detection, CPD was the first
decomposition method used to break down the tensor in different factors. Since
here the interest lies in the main variation between subsequent T waves, only one
component was extracted and therefore R was restricted to one. If the tensor is low-
rank, the CPD model is accurate, and the three factor vectors will capture the main
variations present in the tensor. When the ECG signal is relatively noise-free and the
T waves are perfectly aligned in the third mode, this assumption is met and CPDwill
lead to correct results.When there is however a variation in, for example, the timing of
subsequent T waves (as can be the case with a changing heart rate), the tensor cannot
be decomposed in rank-1 components, and CPD will lead to inaccurate results. In
those cases, it is better to use a more general tensor decomposition method such as
PARAFAC2. PARAFAC2 is a tensor decomposition method that is a variation of the
standard CPD [15]. The main difference is that PARAFAC2 is less restrictive than
CPD in the sense that it allows variations in the factor vectors of one mode. This is
especially useful when one of the factors contains a time shift. PARAFAC2models an
individual loading vector b1,m for each frontal slice of the tensor, effectively making
B1 a loading matrix that contains the collection of loading vectors for each heartbeat.
Each row of this loading matrix corresponds to the temporal profile of a T wave in
one heartbeat, taking into account the possible time shifts in T waves due to heart
rate changes.

The result of the tensor decomposition is a collection of three factor vectors (or
two factor vectors and onematrix in the case of PARAFAC2), which give information
about the structure of the signal in the three tensor modes. All three components give
valuable information about the Twave characteristics in time and space, but since the
mode-3 factor vector expresses the differences in theTwave in subsequent heartbeats,
only this vector was used for the actual detection of T wave alternans. If a signal
contains TWA, the typical ABABAB-pattern that is present in the T wave amplitude
will be captured by the tensor decomposition as an alternating time series in the third
dimension. To detect and quantify TWA, the number of consecutive turning points
of cr, the loading vector of the heartbeat dimension, was first detected. The total
TWA level in a signal is then defined as the mean amplitude difference between all
consecutive turning points.

To illustrate the difference between the decomposition methods, Fig. 8 shows the
CPD and PARAFAC2 results for three signals with respectively no TWA, with TWA
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Fig. 8 Vectors a, b and c for signal without TWA (top row), a signal with TWA (middle row) and
a signal with TWA and shifted T waves (bottom row). The results for CPD are plotted in red, the
results for PARAFAC2 in black. The three different columns show respectively the spatial, temporal
and heartbeats feature vectors. PARAFAC2 is better able to capture dynamic changes in the ECG
signal caused by changes in heart rate. When such differences are present, CPD fails to accurately
extract TWA activity. Reproduced from [36]

and with TWA and T wave shifts in the different rows. The columns show the factor
vectors for all tensor modes. Figures 8a, d, g show the spatial vector for the signal
without TWA, with TWA and with TWA and T wave shift respectively, which show
the sign and magnitude of the T wave in different channels. From Fig. 8a we can, for
example, conclude that T waves in channel 9 had a larger amplitude than those in
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channel 12. The temporal vectors, shown in Fig. 8b, e, h correspond to the shape of
the T wave in time. Here the difference between CPD and PARAFAC2 is obvious,
especially in Fig. 8h. The result for PARAFAC2 is a matrix, and each row of the
matrix (corresponding to the temporal profile for each heartbeat) is plotted on top
of each other. The presence of a large T wave shift in the third signal is evident.
While CPD succeeded in capturing the mean shape of the T wave, the difference in
the timing of the subsequent waves was discarded. This information is contained in
the feature matrix obtained by PARAFAC2. The other signals did not contain a large
shift, as is demonstrated by the small variation in the PARAFAC2 results of Fig. 8b,
e. Hence, the results of CPD and PARAFAC2 were much more similar.

TWA can be detected by analyzing the third loading vector. Figures 8c, f, i show
this loading vector for all analyzed signals. In Fig. 8c we see that, although there is a
certain variation in the T wave magnitude over different heartbeats, no clear pattern
is visible. The typical ABABAB-pattern is, however, clearly visible in Fig. 8f, i. Note
that in Fig. 8f, there is only T wave alternans present in the first part of the signal. The
results for PARAFAC2 and CPD are almost identical in Fig. 8c, f, while the results
in Fig. 8i differ significantly. This is caused by the large T wave shift (see Fig. 8i).

MLSVD
Apart fromusingCPDandPARAFAC2, TWAcan also be detected using theMLSVD
as the main building block. Furthermore, since noise can seriously alter the ECG sig-
nal in the time domain, we first transform the signal to the multiscale wavelet domain
using DWT to perform a more robust detection. The first aim is to extract the only
T-wave morphology from the ECG signal. Multiscale analysis, as discussed earlier,
alleviates this problemby grossly segmenting the ECGmorphological featureswhere
the signal of interest (T-wave with/without TWA) and noise are placed into differ-
ent subbands. To get back the time-domain signal from the wavelet coefficients in
a subband, these coefficients are synthesized in that subband, which is the same as
applying inverse DWT to that subband. This process collectively is termed as multi-
scale analysis-by-synthesis (MAS). Since the objective is to extract the only T-wave
morphology whose frequency is concentrated in between 0.3 and 15 Hz [44], syn-
thesized signals of low-frequency (A6, D6, and D5) subbands are added (here, L1 = 6
as the sampling frequency of the signal is 500 Hz). The maximum frequency of these
subbands is 3.906, 7.812, 15.624 Hz, respectively. Hence, the T-wave information is
retained in these three subbands.

After obtaining L + 1 subband tensors (ref, Sect. 4.1), the T-wave tensor is
obtained as follows:

Reconstruct the subband tensors using multiscale synthesis on mode-2 fibers of
A6, D6 and D5.

Add the reconstructed samples to get the T-wave tensor,

R = ri:k = a6i:k + d6i:k + d5i:k , i = 1:I, k = 1:K (13)

1L = 	log2Fs − 2.96
 = 	log2500 − 2.96
 = 6 [6].
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where a6i:k , d6i:k , and d5i:k is the reconstructed fibers. Similarly to [68] where PCA
was applied to improve the TWA analysis performance by exploiting the spatial
redundancy, here,MLSVD is employed on the T-wave tensorR for the same purpose
by exploiting both spatial and temporal redundancy.

For comparison purposes of the MAS-MLSVD method over the multi-PCA (a
matrix-based) method [68], we discuss here the results on a semi-synthetic database.
It is created by adding different TWA amplitude levels ranging from 0 to 100 µVs
to every other T-wave of ECG signals. The signals are considered from 52 records
of healthy subjects’ in the PTB database [32]. The addition of alternate waveforms
is carried out with selected but randomly chosen leads rather than with all 8-leads.
Further, to experience a high degree of realism, four types of noise, namely Gaussian,
Laplacian, electrode motion, and muscular activity are considered and with different
noise levels ranging from 0 to 50 dB. Figure 9 shows themean and standard deviation
of the estimated alternans level for each input alternans level for these two methods,
and also in the presence of laplacian noise of 20 dB. Noise is added to verify the
robustness of the proposed method. For input alternans levels ranging from 10 to 50
µV, difference between the mean estimated alternans level, and input alternans level
in case of multi-PCA method is significantly higher than the MAS-MLSVD method
(for instance, 16.56 versus 0.48 µV and 14.93 versus 0.07 µV when input alternans
levels are 20 µV and 50 µV, respectively). In the presence of noise, the estimation

Fig. 9 Variation of estimated versus input alternans level in semi-synthetic datasets with lp noise
of SNR = 20 dB for the multi-PCA and MAS-MLSVD techniques. Markers and bars represent the
mean and standard deviation of the estimated TWA amplitude, respectively. The dashed straight
line represents the would-be (perfect) estimated alternans levels. Adapted from [79]
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Table 3 Kendall coefficient scores obtained by comparing the rankings from different methods
found in literature and the two proposed tensor-based methods with the reference ranking for the
Physionet database. The tensor-based approaches reach the highest scores

Method Kendall coefficient

CPD 0.79

PARAFAC2 0.87

MLSVD 0.81

Periodic component analysis [68] 0.77

Modified moving average method [71] 0.73

Spectral method [85] 0.42

accuracy of the multi-PCA degrades comparatively more than the MAS-MLSVD
method. Additionally, for input alternans levels from 10 to 60 µV, the standard
deviations observed are 15–30 µV. This indicates the inconsistency in estimation
accuracy results of the multi-PCA scheme in the presence of noise.

To our knowledge, the Physionet TWA database is the only publicly accessible
labeled TWA database. This makes it ideal for use as a benchmarking tool to make a
comparison with existing methods possible. It consists of 100 multilead ECG signals
that are ranked based on their TWA level. Comparing different methods can be done
by ranking the results from the TWA detection in order of magnitude, and comparing
this ranking with the reference ranking by calculating the Kendall rank correlation
coefficient between the two. The results for the three tensor-based approaches and
some of the most well-known methods from literature can be found in Table 3.
It is clear that all tensor methods outperform the matrix-based alternatives. This
could be expected since it was already proven that combining information from all
leads increased results for TWA detection [17]. The method that used PARAFAC2
obtains the best result overall, while the results for CPD andMLSVDare comparable.
Using a more general tensor decomposition method thus has clear added value in this
application. The advantage of theMLSVD-based approach is however that it can also
be used to assess TWA in each lead individually, and can thus be used to differentiate
between different locations of TWA similarly to the MI detection method discussed
earlier.

4.5 Analysis of Changes in Heartbeat Morphology

The final application discussed in this chapter is the analysis of changes in heartbeat
morphology prior to cardiorespiratory arrest in the intensive care unit, explained
in [37, 39]. For this study, a dataset with long-term patients in the intensive care
unit was collected. The data were however characterized by large amounts of noise,
diminishing the signal quality and possibly affecting the analysis results. While the
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corrupted portions could be removed prior to the analysis; this seriously reduces the
amount of information available. Furthermore, since often, not all leads are contam-
inated by noise, removing the corrupted portions also eliminates a clean ECG signal
that contains valuable information. The method proposed here introduces the use
of weighted tensor decompositions, which allow us to incorporate prior knowledge
about the signal quality in the tensor decomposition in the form of a weight tensor
[74].When choosing the weights properly, they can automatically deal with the noise
that is inherent to biomedical signals, leading to more accurate analysis and making
them better suited to work with real-life signals. The method used in this study fur-
thermore uses a computationally efficient weighting scheme [13], which is essential
for real-time processing.

As explained before, CPD writes a tensor T as a sum of rank-one terms. Here,
we used an alternative way to compute the CPD, namely Weighted CPD (WCPD),
which uses weighted least-squares instead of regular least-squares. WCPD permits
the incorporation of prior knowledge about the signal quality in the tensor decom-
position, giving lower weight to entries with higher noise levels. This is done by
introducing a weight tensorW with the same dimensions as T into the standard CPD
optimization problem. Each entry of W contains the weight for the corresponding
entry of T . A detailed explanation of the weight tensor construction follows in the
next paragraph. The new optimization problem is then:

min
A,B,C

1

2
||W ∗ (T − [A,B,C])||2F (14)

The optimization problem can be solved using a novel Weighted Least Squares
(WLS) approach, where the weight tensor is modeled by a polyadic decomposition,
enabling efficient weighting. The computational details of the WLS algorithm can
be found in [13].

The weight tensor W contains information about the signal quality, e.g. entries
with higher quality receive higher weights. The quality of ECG signals is reduced
by artifacts, which are technical or physiological. Technical artifacts can be caused
by equipment malfunctioning or electrode loosening. During a technical artifact, no
ECG signal is measured; the corresponding entries in T , therefore, receive a weight
of 0, effectively eliminating them from further analysis. Physiological artifacts are
caused by for example muscle contractions and are superimposed onto the ECG
signal, reducing the Signal-to-Noise Ratio (SNR). For signals which do not contain
technical artifacts an estimate of the SNR was therefore used as a weight. We cal-
culated one weight for each complete mode-2 fiber, e.g. each full heartbeat in each
channel. It was thus assumed that the signal quality was the same during the time
course of one heartbeat but could differ from channel to channel or between different
heartbeats. Hence, the resulting weight tensorW has rankM , by construction, with
M equal to the number of channels in the ECG signal.

The result of theWCPDwith rank 1 is three factor vectors that are identical to the
ones shown in Fig. 7. For this application, the second factor vector, which contains the
temporal profile of themain heartbeat in the signal, is analyzed and processed further.
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Standard techniques [56] can be used to detect fiducial points on the P wave, QRS
complex, and Twave fromwhich interval- and amplitude-parameters can be derived.
By applying the tensor decomposition with a sliding window of 100 heartbeats, we
could track and analyze the changes of these parameters in time.

From these analyses, explained in more detail in [37, 39], it could be concluded
that changes in interval lengths are more significant between groups of patients with
different causes of cardiac arrest than changes in amplitude. Changes in amplitude,
especially for P wave and Twave amplitude, are however, more prevalent overall and
might thus be useful tomonitor overall patient deterioration. To confirm this, it would
be beneficial to collect data from a group of control patients that do not experience
a code blue to verify the normal physiological variations in different parameters.

The Weighted Least-Squares approach used to compute the WCPD optimiza-
tion problem is computationally much more efficient than previous weighted tensor
decomposition methods. This is extremely beneficial for use in continuous patient
monitoring, where the delay between the physiological change and the algorithmic
output should be minimal. The current method gives an output for each sliding win-
dow of 100 heartbeats (1–1.5 min), resulting in a quasi-real-time monitoring of ECG
morphology. Recent advances in tensor methodology, however, focus on the devel-
opment of efficient tensor updating methods [91]. This class of methods calculates a
new tensor decomposition every time new data arrives (for example after every heart-
beat) in a time- and memory-efficient way. Their use would lead to an improvement
in the time resolution of the results, which could help gain a deeper understanding
of the timing of the changes in ECG morphology before cardiac arrest.

5 Conclusions and Future Directions

Tensors are a novel concept in ECG signal processing. This chapter gave an overview
of different applications where tensors have been used to solve problems in cardiac
processing. As such we have shown that tensor-based methods are very suitable
to represent data with multiple modes and lead to improved results compared to
matrix-based methods when multiple leads need to be processed simultaneously.

We gave an overview of five typical ECG applications: data compression, myocar-
dial infarction detection and localization, irregular heartbeat classification, TWA
detection and quantification, and analysis of changes in heartbeat morphology. Most
of the methods presented are, however, highly flexible and can be used in different
applications with minimal changes. This can be done by either including different
segments of the ECG signal in the tensor or by extracting different features from the
decomposition results.

The popularity of tensor-based algorithms has increased in the past years, and it is
expected that this increase will continue in the near future. We can, therefore, define
possible future directions for the use of tensors in ECG applications.

The use of tensor decompositions for single-lead ECG signal is a first future direc-
tion that has a lot of potentials. Asmore andmorewearable devices are equippedwith
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ECG recording devices, the amount of single-leadECGsignals is expected to increase
drastically in the next years. Single lead ECG signals require an extra tensorization
step prior to tensor decomposition methods, but since many tensorization techniques
have been developed [25], this should not be a large bottleneck. The use of tensor
updating was briefly explored in the previous section. It is a promising approach for
most real-time monitoring methods, where an immediate output is required. Here,
tensor updating was applied in a very straightforward way, by updating the result
of the tensor decomposition for each new heartbeat. The updating could, however,
be taken even further, by for example, not only updating the results of the tensor
decomposition but also updating the rank of the decomposition as the signals are
changing over the course of time. Tensors can also be applied for data fusion, where
signals from different sources are analyzed simultaneously. While joint analysis of
measurements from different signal types has not been explored in this chapter, it
has the potential to reveal additional features that describe the interaction between
different biosignals. It is for example known that cardiorespiratory coupling, which
describes the influences of respiration on heart rate and blood pressure, is different
for healthy and sick people. Using data fusion approaches on the combination of
ECG and respiration or blood pressure would open the door to the development of
algorithms to analyze a whole new class of biomarkers.
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Syntactic Methods for ECG Signal
Diagnosis and QRS Complexes
Recognition

Salah Hamdi, Asma Ben Abdallah and Mohamed Hedi Bedoui

Abstract Grammar and the theory of language have been around for a long time.
So far, grammar formalism has been used for programming and formal languages
to describe natural languages and software engineering. However, the grammatical
discipline can be extended to join other areas of applications such as ECG signal
analysis. Thus, this chapter will provide an overview of the relatedmethods and show
that syntactic methods and regular grammar can be supported for ECG analysis and
especially for the recognition of QRS complexes. A comparative study with a huge
number of known methods will be presented.

1 Introduction

The processing of 1D medical data is a very active subject, and several approaches
have been proposed. The Electrocardiogram (ECG) signal is widely used in the field
of cardiology. This signal represents the electrical activity of the heart and constitutes
a crucial clinical added value to diagnose one of the different types of arrhythmias.
Generally, cardiac pathologies are indicated by disorders of the electrical activities
of the heart. In this chapter, we address the problem of automatic ECG signal pro-
cessing and the extraction of QRS complexes through type 3 and type 2 grammar.
Grammar is a formalism designed to describe languages and recognize all learned
words. However, syntactic approaches can powerfully represent signal structures and
therefore make information retrieval easier. The input data appears to be a structured
scene with a hierarchical order because grammar can represent hierarchical struc-
tures using non-terminal and terminal nodes. In addition, syntactic approaches can

S. Hamdi (B) · A. Ben Abdallah · M. H. Bedoui
Laboratory of Technology and Medical Imaging (LTIM), Faculty of Medicine of Monastir,
University of Monastir, Monastir, Tunisia
e-mail: salah.hamdi@isffs.u-sousse.tn

A. Ben Abdallah
e-mail: asma.benabdallah@cristal.rnu.tn

M. H. Bedoui
e-mail: medhedi.bedoui@fmm.rnu.tn

© Springer Nature Singapore Pte Ltd. 2020
G. Naik (ed.), Biomedical Signal Processing, Series in BioEngineering,
https://doi.org/10.1007/978-981-13-9097-5_14

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9097-5_14&domain=pdf
mailto:salah.hamdi@isffs.u-sousse.tn
mailto:asma.benabdallah@cristal.rnu.tn
mailto:medhedi.bedoui@fmm.rnu.tn
https://doi.org/10.1007/978-981-13-9097-5_14


326 S. Hamdi et al.

describe a large set of complex objects using small sets of simple primitives and
grammatical rules [38]. A set of grammar-based approaches were proposed for ECG
signal processing [22, 29, 42–44, 50]. The main advantage of these methods was
the representation of available ECG signal elements. In this chapter, we focus first
on related techniques. Then a syntactic method [43, 44] will be applied in real ECG
signals representing different patients issued from the standard MIT-BIH arrhythmia
database. For all input records, QRS complexes, RR distances, and Q, R and S peaks
are detected. A comparative study with a large number of known methods [3, 4,
7, 9, 16, 17, 19, 20, 30, 31, 40, 47, 49] is presented in terms of accuracy rate. In
the ECG feature extraction 1D module, an algorithm for detecting QRS complexes
from the ECG signal using a regular grammar-based approach is developed. It allows
extracting representative parameters of each heart-beat. We expand the ECG signal
database to apply the standardMIT-BIHmethod to have a balanced number of signal
types, to encompass other types and varieties of signals and to increase the quality of
learning. This chapter is organized as follows: Sect. 2 lists several application areas
of grammar formalism. Section 3 sheds the light on the state of the art and the meth-
ods based on context-free grammars. Section 4 discusses the results of the related
techniques. Section 5 presents a method based on regular grammar [43, 44] which
gives better results. Section 6 concludes this chapter.

2 Application Areas of Grammar

Grammar is a key step that facilitates data compression [27, 28], video scene inter-
pretation [8], pattern recognition [11, 15], image segmentation [10, 13, 18, 48, 53,
54] and medical data analysis [35, 36, 51, 52]. In [32], the author put a set of pro-
duction rules governing the use of similarity criteria to judge the similarity between
objects. The goal was to design a smart perception system based on pattern retrieval
from a database. The system had to retrieve the closest match in terms of similarity
to a request image entered by the user. In [12], the author used grammar for syntac-
tic recognition of cheese. The main idea was to represent a model as a structure of
strings, trees, or graphs. Then a set of structures was considered as a formal language
that could be analyzed with a PLC. The process of syntactic recognition of forms
consisted of three main phases: preprocessing the image (filtering, improvement…),
generating structural presentations and analyzing structural representations (parsing).
In [8], the author utilized grammar to direct a vision system for the interpretation
of dynamic scenes. The system was implemented based on production rules for the
interpretation of a scenario of putting a cup on a saucer and then on a table. Once
the functionality (fi) was detected and given the current state (qi), a production rule
(Pi) would be invoked resulting in a new state (qj). The transition from state (qi) to
state (qj) indicated a stage scene. Therefore, each transition in (Pi) had an associ-
ated semantic description which described the observed phenomena. According to
[39], as books had chapters, sections, paragraphs, and sentences, videos also had an
inherent hierarchical structure. The author focused on recent research in the areas of
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scene extraction. The first step was the detection of firing transitions with separate
detectors for difficult cuts. After that, complex cuts were segmented into semanti-
cally meaningful units called sub-slices. Finally, the results were used to extract the
scenes. The author proposed to utilize transition to improve scene detection results.
The suggested algorithm was robust to the distortions and artifacts founded in the
video. The grammar-based lossless coding theory was put forward by Kieffer et al.
[27, 28]. First, the encoding transformed the original data sequence into an irre-
ducible grammar, which was then compressed using arithmetic coding. It was shown
that grammar-based coding could specifically predict good performances on files that
had multimedia features. The proposed process applied the reduction rules in order
to reduce grammar G into irreducible grammar G’. Therefore, the role of reduction
rules was to ensure that a grammar G was irreducible. The code-based grammar
then used a zero-order arithmetic code to compress the irreducible grammar G to the
high compression ratio. Once the final irreducible grammar G was obtained, it was
compressed using a zero-order arithmetic code of a dynamic alphabet. Alex et al.
[1, 34] demonstrated that stochastic context-free grammars (SCFGs) were adequate
for signal processing. The grammar was applied for MFR signal processing using
stochastic syntactic models by a Markov chain representing radars policy of opera-
tion. The timing of the emitter was dictated by word. The words occur serially in the
pulse train so that one word starts as the previous word is ending.

Ogiela et al. [36] presented a method to obtain a bone description of the wrist
in the form of a graph. First, the images were subjected to a preprocessing step to
indicate the contours of the bone. Subsequently, the terminal symbols of the grammar
were represented by the gravity centers of each bone of the hand. The application
of the proposed techniques achieved a recognition rate of approximately 93%. The
grammar was aimed at the automatic construction and the semantic and topological
interpretation of the wrist bones. Trzupek et al. [51, 52] presented an approach for
medical image interpretation and the recognition of cardiac diseases from 3D images
of coronary arteries. After a phase of skeletonization, a grammatical description in
the form of a graph represented the spatial relationships between the arteries. This
operation determined the starting point and the point of arrival of each branch of the
arteries. Then, each point was tagged to identify the type of each branch basedmostly
on the coordinates of the points. The set of these points constitute the nodes of the
generated graph, which represented a semantic model for the spatial reconstruction
of the coronary arteries. The coordinates of the branches represented the terminal
vocabulary of the grammar used, whereas the non-terminal vocabulary represented
the different possibilities of distribution of the arteries and thus the different types
of stenosis. The proposed method showed a classification rate of 85%. In Salah et
al. [41], a method to segment a cardiac image and to estimate the area using regular
grammars was presented. An image was defined as a set of words based on an alpha-
bet, and an object, similar to a word, was recognized by an automaton. The image
was divided into small blocks, each having a predefined structure that represented the
terminal node of a grammar. Then, each block was associated with a number that per-
formed the mapping of the represented structure in such a way as to create a numeric
matrix, which represented the image. The next step created a regular expression rep-
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Table 1 Synthesis of application domains based on syntactic methods

Application domain Primitives Results

Data compression The axiom is the sequence to
be compressed; the transitions
are trying to reduce the
sequence size

Lossless coding based on
grammar. The coding
transforms the original
sequence of data into an
irreducible grammar

Video scene interpretation The transition from one state
to another indicates a stage in
the scene

An associated semantic
description describes the
observed phenomena

Pattern recognition Patterns and dictionary of
basic shapes from a database

Using similarity criteria to
judge the similarity between
objects in an image

Image segmentation Set of pixels in a specific
format

Presentation of the generated
image

Medical image analysis The terminal symbols of
grammar were represented by
the gravity centers of each
organ

Spatial relationship and
classification rate

resenting a closed contour. The automaton equivalent to this regular expression was
used to analyze the matrix in order to search sub-matrix with these contours, per-
forming the image segmentation. The authors conducted tests with cardiac images
and indicated an accuracy of 93.22% to estimate the segmented areas. Lluis-Pere
et al. [23] presented a stochastic grammar to represent the structural, hierarchical,
and semantic relations between floor plan elements. A Bottom-Up/Top-Down parser
has been used for floor plan recognition. The method was able to represent examples
of the corpus supposing idealistic component extraction techniques. Kasemsumran
et al. [25] developed a face recognition system with a string grammar nearest neigh-
bor (sgNN). The method was tested on AT&T, MIT-CBCL, and Georgia Tech face
databases ant it provided 88.25%, 87.50%, and 70.71% recognition rates respectively.

Table1 synthetizes the application domains of grammar. We presented succinctly
many fields with the application domains, primitives, and results.

The exploitation of syntacticmethods for ECG signal processingwill be described
in detail in the following sections.A large part ofQRScomplex recognition andwaves
extraction will be devoted.

3 Context-Free Grammar for ECG Signal Analysis

In this section, all the methods that use context-free grammar to analyze ECG signals
are listed. Trahanias et al. [50] presented an application of a syntax method for ECG
signal recognition and the measurement of associated parameters. The work was
composed of two parts: the extraction of peaks and their grammatical analysis. Each
peak was characterized by three points: the two left and right limit points plus one
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energy value. One peak could be either linear or parabolic. The extraction of peaks
was done by scanning the signal interval by interval to exclude erroneous peaks
which appeared as adjacent peaks satisfying a set of criteria. The suggested method
recognized all peaks and then rejected false peaks. Each peak was characterized by
three points: the two left and right limit points plus one energy value. A peak could
be either linear or parabolic. The extraction of peaks and endpoints was done by
scanning the signal interval by interval. In [50], a method for recognizing erroneous
peaks or false peaks in an ECG signal was presented. The erroneous peaks appeared
as adjacent peaks satisfying a set of criteria. Direct methods recognized all peaks
P1,P2, . . . ,Pi and rejected false peaks based on a set of criteria. Each peak Pi was
characterized by time Pxi and amplitude Pyi. The criteria were applied to each of
the five consecutive peaks Pi−3,Pi−2,Pi−1,Pi,Pi+1, as shown in Fig. 1. The peak
evaluation criteria were based on the amplitudes and durations of the following five
peaks:

Pyi−3 ≤ Pyi−1 AND Pyi−1 ≥ Pyi−2 (1)

|Pyi−2 − Pyi−1| ≤ s1 (2)

Δtm ≤ s2 (3)

if Δtm ≤ s3 so skip (5) (4)

Δtm ≥ Δtg AND Δtm ≥ Δtd (5)

i ←0
P0 ← the first peak of the signal
Step1: find the next peak
if there are no subsequent peaks then
END

end if
Step 2: i ← i + 1
if i ≤ 3 then
Goto Step 1

end if
Step3:
if the peer (Pi-2, Pi-1) is not noisy then
Goto Step1

end if
Pi − 2 ← Pi
i ← i − 2
if i ≤ 3 then
Goto Step 1

end if
Goto Step 3

Algorithm 1: Peaks detection
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Fig. 1 Application on each group of five peaks and detection of false peaks

Peaks with amplitudes above a fixed threshold were not considered false peaks.
Peaks with durations above a fixed threshold were not considered as false peaks. The
false peak detection algorithm applied to a group of five consecutive peaks.

A sequence of n peaks would be considered a QRS complex if they satisfied both
of the following conditions: The sum of energies of the n peaks was greater than a
threshold s1:

n∑

i=1

ei ≥ s1 (6)

The angle θ between the two consecutive peaks, pici, and pici+1, was less than a
threshold s2:

θ(pici, pici+1) ≤ s2 (7)

The angle concept made it possible to avoid confusion between the QRS com-
plexes and the P and T waves. The recognition of the P and T waves was based on
the measurement of the amplitude and the wavelength compared to thresholds s3 and
s4. One or two consecutive peaks were recognized as being a P or T wave, setting
their width and amplitude according to the evaluated syntactic rule. They were dis-
criminated from other peaks by comparing their energies. Noisy peaks in a region
between two QRS complexes had to have less energy than the energy of the P and T
complexes in this region. The alternative of the syntactic rule that corresponded to a
P or T wave would specify its morphology. It was noted that the P and T waves that
had occurred before the first and after the last found QRS complex was not recog-
nized. This would make grammar easier. In [50], the author used the alphabet Σ =
K+, K−, rest, wave knowing that: K+ described a positive peak and K− described a
negative one. An ECG signal was assimilated into a sequence of symbols ofΣ . Each
symbol was assigned corresponding values. After that, the author used a context-free
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grammar G = (VT, VN, S, P) to describe an ECG signal where VT represented the
terminal vocabulary, VN represented the non-terminal vocabulary, S was the axiom,
and P represented the production rules where the character ‘.’ is a concatenation
operator:

Grammar G = (VT, VN, S, P) where:
VT={K+, K−, rest, wave}
VN={ECG, Beginning, End, Cardiac_Cycles, QRS, Peak, Rest, Segment,
Remaining, Non_QRS, QS, Q, R, S, P, T, R’, S’, R”, S”, SR, ST, TR, SP,
PR, TP, A, B, C, D, E, F}
S = {ECG}
P is the following rules:
ECG → Beginning.Cardiac_Cycles.End
Beginning → ε | Segment.Beginning | Peak.Beginning
Segment → Rest | wave
Pic → K+ | K−
End → QRS.Remaining
Remaining → ε | Segment.Remaining | Peak.Remaining
Cardiac_Cycles → Cardiac_Cycle.Cardiac_Cycles
QRS → [Q]?.R.S.R’.S’.R”.[S”]? | [Q]?.R.S.R’.[S’]? | [Q]?R.[S]? | Q.S
Non_QRS → SR | ST.T.TR | SP.P.PR | ST.T.A
A → B | C | D | E
B → ε | P . B
C → TP.P.PR.P.PR
D → TP.P.PR
E → ε | Pic.E | Segment.E
ST → F
TP → F
PR → F
TR → F
SP → F
PP → F
SR → Segment.F | Peak.F
F → ε | Segment.F | Peak.F
T → K+.K− | K−.K+ | K+ | K−
P → K+.K− | K−.K+ | K+ | K−
R → K+
R’ → K+
R” → K+
Q → K−
QS → K−
S → K−
S’ → K−
S” → K−
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In [50], the QRS complex classification was performed by the nearest neighbor-
hood classification algorithm (KNN). The distance between a given QRS complex
and a given class of QRS complexes was calculated as the average of the distances
between the given QRS complex and each QRS complex in the given class of QRS
complexes. The morphological (structural) and quantitative (statistical) character-
istics were taken into account when calculating the distance. Normalized duration
and normalized amplitude were the statistical characteristics used. Morphological
characteristics, when calculating the distance between two complexes, were taken
into account by aligning the complexes so that they would correspond best. Kokai
et al. [29] used grammar rules to recognize QRS complexes and distinguish between
QRS and non-QRS data. The authors relied on context-free grammar G = (VT, VN,
S, P) where VT was a terminal vocabulary, VN was a non-terminal vocabulary, S
was the ECG, and P was a set of the production rules. A QRS complex had to satisfy
the following 3 conditions:

The value of a peak had to be greater than a threshold s1. The angle between
the right segment of peak i and the left segment of peak i + 1 had to be less than a
threshold s2. The angle of each peak was less than a threshold s3.

The author used grammar G = (VT, VN, S, P), where:
VT={K+, K−, Line, Parabola}
K+ is a positive peak.
K− is a negative peak.
VN={ CARDIAC_CYCLES, CARDIAC_CYCLE, PEAK, PEAKS, QRS, NON_QRS,
SEGMENT, INTERWAVE_SEGMENT, SR, T_OR_P, P, T}
S = {ECG}
P represents the following production rules:
CARDIAC_CYCLES → CARDIAC_CYCLE.CARDIAC_CYCLES
CARDIAC_CYCLES → ε

CARDIAC_CYCLE → QRS.NON_QRS
QRS → PEAK.PEAKS
PEAKS → PEAK.PEAKS
PEAKS → ε

PEAK → K+ | K−
NON_QRS → SR|INTERWAVE_SEGMENT.T.INTERWAVE_SEGMENT|
INTERWAVE_SEGMENT.P.INTERWAVE_SEGMENT|
INTERWAVE_SEGMENT.T.INTERWAVE_SEGMENT.P.INTERWAVE_SEGMENT
SR → SEGMENT.INTERWAVE_SEGMENT|PEAK.INTERWAVE_SEGMENT
INTERWAVE_SEGMENT→ | SEGMENT.INTERWAVE_SEGMENT|PEAK.
INTERWAVE_SEGMENT
T → T_OR_P
P → T_OR_P
T _OR_P→ K+|K-|K+.K-| K−.K+
SEGMENT → Line|Parabola

Hanieh et al. [22] proposed a method for ECG signal segmentation separating P,
QRS complex, and T waves from the electrocardiogram signal. The ECG was first
normalized in order to be prepared for the next stage. The segmentation of each wave
was based on its time interval and waveform. A context-free grammar was used to
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extract the cardiac disease, which contains atrial fibrillation arrhythmia modeled
by regular expressions and DFA corresponding to each patient. The segmented ECG
signal was compared with the grammars generated by each DFA, and the disease was
confirmed if it matches the arrhythmia DFA. Otherwise, if it is not a match for any
arrhythmia DFA, it enters the comparison phase. Algorithm 2 presents the proposed
algorithm. In order to transform the ECG signal and generate its model based on

ecgSignal ← ECGrecorder(20s)
denoisedECG ← Filtering(ecgSignal)
ecgCharSequence ← Segmentation(denoisedECG)

inEcgSentence ← Optimize(ecgCharSequence)
for dfa ∈ ECG.DFA do
return dfa.associatedDesease
if dfa.accept(inEcgSentence) then
return dfa.associatedDesease

else
ecgSents ← dfa.Generate(|inEcgSentence|)
AT ← proposedMatch(ecgSents, inEcgSentence)

end if
end for
return AT

Algorithm 2: Arythmy Recognizer

regular expressions or form a corresponding DFA, the model was first formed from
the signal using a sequence of alphabets. This sequence was ((PQRTS)U*)* for a
normal waveform and (P*QRSTU)* for an atrial fibrillation arrhythmia. This model
was created based on the features of normal and arrhythmia waveforms, and the DFA
corresponding to the normal and arrhythmia waveforms was then delineated, which
is presented in Fig. 2 where the character ‘∼’ means that the element has not been
observed.

Salah et al. [42] described an entire normal ECG signal using a context-free
grammar. QRS complexes, RRdistances, PR, andQT intervalswere calculated. First,
the aim of the analyzers was to classify the input signal in the case of an ECG signal
or not and then to determine the number of cardiac cycles and the various indicators.

(a) A normal ECG pattern (b) ECG of a kind of atrial fib-
rillation disease

Fig. 2 DFA of two different ECG patterns
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The author was based on the following grammar G to describe the signal. VTwas the
terminal vocabulary of the grammar. VNwas the non-terminal vocabulary. S was the
axiom and Pwas the set of production rules. The proposed grammarG could describe
a normal ECG and could automate the detection of deviations from the norm.

G = (VT, VN, S, P) where:
VT = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, −, ., }
VN = {ECG, Col, Palier, Coda, Rest, End}
S = {ECG}
P is the set of the following rules:
ECG → Rest.P.Col | P.Col
Col → Q.R.Palier
Palier → S.Coda
Coda → Rest.T.End | T.End
End → ECG | ε

4 Discussion

Although the syntactic methods seem to be suitable for ECG signal recognition and
parameter measurement, little progress has been made up to date. In the reported
attempts, only specific aspects of this problem have been addressed. Context-free
grammar for peak recognition in ECGs has been described. Grammar has been pro-
posed for the detection of QRS complexes. Context-free grammar has been used for
the detection of certain ventricular arrhythmias. An attempt to analyze arrhythmia
using the finite state automata model has been described and the filtering of ECG
waveforms by the syntactic method has also been studied. The application of the syn-
tactical approaches to ECG signal recognition and parameter measurement described
in this document have yielded results inferior to those reported by some implemen-
tations using the non-syntactic approach. However, the non-syntactic approach has
been quite mature in this particular problem after a considerable body of research
work. Syntactic approaches may improve the results by further refinement of the
method. We have observed that the primitive pattern extractor does not always accu-
rately delineate the limits of the peaks. This type of error spreads in the following
steps, and is responsible for many inaccurate results. Removing this deficiency will
critically improve the overall performance of the approach. Hanieh et al. [22] applied
their method on the MIT-BIH arrhythmias database, and the algorithm has shown
an average sensitivity rate that does not exceed 96.3%. In [29], no information was
given on the database used, and the sensitivity rate reached. The methods men-
tioned above are all context-free grammar used mainly for the spatial interpretation
of peaks. In addition, they are very sensitive to noise and the choice of intra and inter
peak energy thresholds. Context-free grammar demands polynomial time parsing
process. The main goal of [43, 44] was to reach regular grammar with the addition
of some criteria. The author used a regular grammar and deterministic automata for
the recognition of QRS complexes which will be detailed in the following section.
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Although the syntactic method seems to be suitable for the problem of ECG signal
recognition and parameter measurement, little progress has been made so far. In the
reported attempts, only specific aspects of this problemwere addressed. Context-free
grammar for peak recognition in ECGs was described. Grammar was proposed for
the detection of QRS complexes. Context-free grammar was used for the detection
of certain ventricular arrhythmias. An attempt to analyze arrhythmia using the finite
state machine model was described, and even the filtering of ECG waveforms by the
syntactic method was also studied. The application of the syntactical approach to
ECG signal recognition and parameter measurement that has been described in this
document has yielded results inferior to those reported by some implementations
using the non-syntactic approach.

However, the latter is quite mature in this particular problem after a considerable
amount of research work for many years. In the syntactic approach, there is a lot of
room for improving the results by further refining the method. We have observed
that the primitive pattern extractor does not always accurately delineate the limits
of peaks. This type of error spreads in the following steps and is responsible for
many inaccurate results. Removing this deficiency will greatly improve the overall
performance of the approach. Hanieh et al. [22] applied their method on the MIT-
BIH arrhythmias data-base. The author formed an appropriate grammar for the atrial
fibrillation disease based on the performed segmentation. Common detection algo-
rithms of ECG signal waves used time interval length and range (width and height)
of the QRS combinations. Although these parameters are essential, they are not suf-
ficient for accurate detection. Therefore, the algorithm showed an average sensitivity
rate that did not exceed 96.3%.

Salah et al. [42] presented a context-free grammar to describe an entire ECG
signal. Nevertheless, this could not represent all the various types of signals. The
author focused only on normal cases, and themethodwas applied on very short signal
durations. Besides, the author compared his approach with old techniques adopted
by Holsinger [24], and Fraden and Neuman [14]. In [29], no information was given
about the database used, and the sensitivity rate reached. In addition, the methods
mentioned above are very sensitive to noise. Because of noise, several morphologies
can be found and thus interfere with the grammatical description of the signal and
generate erroneous peaks. Indeed, grammar has become able to classify several signal
types as ECG signals. On the other hand, the grammatical formalism has been used
only at level 3 (Fig. 3) to make the spatial interpretation of the elements of the signal.
In other words, researchers have not exploited the formalism of grammar during the
peak extraction phase at level 2 (Fig. 3).

The syntactic methods mentioned above are sensitive to the choice of energy
thresholds (amplitudes) and to intra and inter peak thresholds. Peak recognition was
carried out using another method, regardless of grammar. Indeed, our goal is to
extend the level of use of grammar and utilize grammar to extract shapes (level 2)
and spatial interpretation of shapes (level 3) with an addition of other criteria of
standard deviations and durations. We will use grammar type 3 for extracting QRS
complexes from an ECG signal and grammar type 2 for ECG signal recognition.
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Fig. 3 Signal processing
levels

The next section presents the work carried out in applying the syntax method to
the whole problem of ECG pattern recognition and parameter measurement. Solu-
tions to the sub-problems of primitive pattern selection, primitive pattern extraction,
linguistic representation, and pattern grammar formulation will be described.

5 Regular Grammar for QRS Complex Detection

The QRS complex represents the ventricular depolarization curve. All these three
peaks have durations between 0.06 and 0.1 s [2, 5, 6, 21, 26, 33, 45, 46]. In this
section, wewill describe in detail themethod of [43, 44]. A normalizedQRS complex
is assimilated as a sequence of peaks, and very short rests based on a specific vocabu-
lary with constraints. We show that regular grammar and deterministic automata are
useful for the recognition ofQRS complexes. They are used to represent a normalized
QRS complex as a sequence of positive and negative peaks based on the regular gram-
mar. This method is applied to the ECG records of the standard MIT-BIH database.
Several parameters are determined, such as QRS durations, RR distances, and peak
amplitudes. In other words, the ECG is likened to a language where a QRS complex
represents a sequence of words.

In the final version of the chapter, themethod described abovewill be implemented
to extract QRS complexes. True Positive (TP), False Positive (FP), False Negative
(FN), Sensitivity (Se), Positive Predictivity (+P), False Detection Rate (FDR), and
FN Rate (FNR) will be computed.

5.1 Signal Preprocessing

Practically, an ECG signal is too noisy and containsmany artifacts, hence the need for
pretreatment phases to reduce noise and facilitate lexical analysis afterwards. A band
pass filter reduces the influence of muscular noise, 60Hz interference, and T-wave
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(a) Input ECG

(b) Output ECG

Fig. 4 ECG signal preprocessing: filtering, centering and normalization

interference, and promotes the baseline. The desirable bandwidth for maximizing
the QRS energy is about 5–15Hz [37].

The following mathematical equations describe the different steps of the prepro-
cessing phase: band-pass filtering, centralization, and normalization of the signal
amplitude. An example is shown later in Fig. 4 where an ECG signal representing
tachycardia is filtered by a band-pass filter, normalized and centered.

S[n] is the signal, and H[n] is the band pass filter where the cut-off frequency is
5–15 Hz. m is the signal length.

S1[n] = S[n] ∗ H [n] (8)

S2[n] = S1[n] −
∑m

n=1 S1[n]
m

(9)

S2[n] = S2[n] − Mean(S2[n])
Max(S2[n] − Mean(S2[n])) (10)

Figure 4 provides an example of a real ECG signal before and after the filtering
process. The input signal is derived from a patient who presents with tachycardia.
The preprocessing process eliminates the artifacts and centralizes the signal.
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5.2 Variation in Standard Deviations of Peaks and Waves

Mathematically, a positive peak or a negative peak must have a standard deviation
σ very large compared to that of a wave and greater than a predefined threshold σ1
for a very short duration Δ below a predefined threshold Δ1.

Given the sampling frequency Fs, a peak (positive or negative), a wave or a
rest phase, is formed of a series of n normalized amplitudes a1, a2, . . . , an. The
calculation of the standard deviation σ and the duration Δ is as follows:

σ =
√√√√

n∑

i=1

(ai − ∑n
i=1

ai
n )

n
(11)

Δ = n

Fs
(12)

Figure 5 illustrates the standard deviation values of the many Q, R and S peaks
and the different P and T waves. This figure confirms that the two R and S peaks
show very large standard deviations greater than 0.2. Peak Q has standard deviations
greater than 0.1,while both P andTwaves have very lowvalues of standard deviations
below 0.05.

According to Fig. 5, we can designate σ1 = 0.1. From this value, we may distin-
guish between peaks and waves. In fact, a QRS complex is equated with a pair of
adjacent peaks that satisfy standard deviation criteria.

Fig. 5 Variation in standard deviations of peaks and waves
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Fig. 6 Variation in duration of peaks and waves

5.3 Variation in Duration of Peaks and Waves

Figure 6 depicts the values of the duration of the numerous Q, R and S peaks and
the different P and T waves. This figure confirms that the three Q, R and S peaks
indicate very short durations of less than 0.1 s whereas, the two P and T waves have
very important value durations that exceed 0.1 s.

According to Fig. 6, we can designate Δ1 = 0.1s. From this value, we may dis-
tinguish between peaks and waves. In fact, a QRS complex is referred to as a pair of
adjacent peaks that satisfy criteria for standard deviations and durations.

5.4 Grammatical Analysis of Signal

Afinite deterministic automaton (FDA) consists of a finite set of states (often denoted
Q), a finite setΣ of symbols (alphabet), a transition functionwhich takes as argument
a state and a symbol and returns a state (often noted δ), a start state often denoted as
q0, and a set of final states (often denoted F). Always q0 ∈ Q and F ⊆ Q.

DFA is a quintuplet (Q, Σ , δ, q0, F), where Σ is an alphabet, Q is a finite set of
states, δ : Q ∗ Σ → Q is the transition function, q0 is the initial state, and F is a set
of final states.

Here, the amplitude of the signal is processed as a sequence of values belonging to
the bounded interval [−1, 1]. The normalized amplitude is described as a sequence
of almost near zeros, as well as negative and positive values. In other words, the
signal is likened to a language where a QRS complex represents a sequence of
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Fig. 7 DFA representing a
normalized R peak

words. The Σ alphabet contains all the symbols that can represent the normalized
amplitude belonging to the bounded interval [−1, 1]. Then regular expressions allow
the lexical analysis of the signal. In fact, DFA and regular expressions represent the
rest phase, the positive peak, and the negative peak. These form the QRS complex
besides the standard deviation constraints.

Grammatically, character ‘ε’ is an empty word having a zero length. Character
‘*’ means ‘zero or more times’, character ‘+’ means ‘one or more times’, and ‘?’
means ‘zero or one time’. Often, the initial state is marked by an incoming arrow,
the states are symbolized by simple circles and the final states are marked by double
circles.

The DFA above (Fig. 7) and the following regular expressions describe a normal-
ized R peak:

• The initial state q0 = {0}.
• The finite set of states Q = {0, 1, 2, 3, 4}.
• The set of finite states F = {3, 4}.
• The finite set of symbols Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,−, .}.
• The transition functions are:

δ(0, 0) = 1
δ(1, .) = 2
δ(2, 1 − 9) = 3
δ(3, 0 − 9) = 3
δ(3, ε) = 0
δ(0, 1) = 4
δ(4, ε) = 0

R = {0.[1 − 9][0 − 9] ∗ |1}+ (13)

σR > σ1 (14)

ΔR < Δ1 (15)
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Fig. 8 DFA representing a
normalized negative peak (Q
or S peak)

DFA (Fig. 8), as well as the regular expressions describing a normalized negative
peak, are as follows:

Q = {−0.[1 − 9][0 − 9] ∗ | − 1}+ (16)

δQ >
δ1

2
(17)

ΔQ < Δ1 (18)

S = {−0.[1 − 9][0 − 9] ∗ | − 1.0}+ (19)

δS > δ1 (20)

ΔS < Δ1 (21)

• The initial state q0 = {0}.
• The finite set of states Q = {0, 1, 2, 3, 4, 5}.
• The set of finite states F = {4, 5}.
• The finite set of symbols Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,−, .}.
• The transition functions are:

δ(0,−) = 1
δ(1, 0) = 2
δ(2, .) = 3
δ(3, 1 − 9) = 4
δ(4, 0 − 9) = 4
δ(4, ε) = 0
δ(1, 1) = 5
δ(5, ε) = 0

Practically, the Q, R and S peaks are separated possibly by very short rest phases.
The following regular expression describes a standard rest phase:

rest = {{−}0.0[0 − 9]∗}+ (22)
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Fig. 9 DFA representing a
normalized rest phase

Δrest <
Δ1

2
(23)

The following DFA (Fig. 9) describes a normal rest phase where:

• The initial state q0 = {0}.
• The finite set of states Q = {0, 1, 2, 3, 4, 5}.
• The final state F = {3}.
• The finite set of symbols Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,−, .}.
• The transition functions are:

δ(0, 0) = 1
δ(1, .) = 2
δ(2, 0) = 3
δ(3, 0 − 9) = 3
δ(3, ε) = 0
δ(0,−) = 4
δ(4, 0) = 5
δ(5, .) = 2

Grammatically, the QRS complex is likened to a series of negative and positive
peaks that are eventually separated by a very short resting phase. The regular expres-
sions as well as the deterministic automata below (Figs. 10 and 11) assume that Q
peaks and rest phases may be absent.

The regular expression below and Fig. 10 describe a whole standardized QRS
complex. Q is the first peak down, which is always visible in the field. Peak R is the
second one; it has a high amplitude and is directed upwards. Peak S is the last one;
it is directed downwards.

QRS = {Q}?{rest}?{R}{rest}?{S} (24)

• The initial state q0 = {0}.
• The finite set of states Q = {0, 1, 2, 3, …, 23, 24}.
• The set of finite states F = {23, 24}.
• The finite set of symbols Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,−, .}.
• The transition functions are:

δ(0,−) = 1
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Fig. 11 DFA representing
QRS complex

δ(1, 0) = 2
δ(2, .) = 3
δ(3, 1 − 9) = 4
δ(4, 0 − 9) = 4
δ(4, ε) = 6
δ(1, 1) = 5
δ(4, ε) = 0
δ(5, ε) = 6
δ(5, ε) = 0
δ(6, ε) = 7
δ(6,−) = 7
δ(6, ε) = 11
δ(7, 0) = 8
δ(8, .) = 9
δ(9, 0) = 10
δ(10, 0 − 9) = 10
δ(10, ε) = 11
δ(10, ε) = 6
δ(11, 1) = 11
δ(11, 0) = 12
δ(12, .) = 13
δ(13, 1 − 9) = 14
δ(14, 0 − 9) = 14
δ(14, ε) = 11
δ(14,−) = 15
δ(15, 0) = 16
δ(16, .) = 17
δ(17, 0) = 18
δ(18, 0 − 9) = 18
δ(18, ε) = 14
δ(14, ε) = 19
δ(19,−) = 20
δ(20, 0) = 21
δ(21, .) = 22
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δ(22, 1 − 9) = 23
δ(23, ε) = 19
δ(23, 0 − 9) = 23
δ(20, 1) = 24
δ(24, ε) = 19

To better represent the automaton describing an entire QRS complex in a simpler
way, the next automaton (Fig. 11) describes an entire QRS complex where we have
modified and minimized the finite set of symbols, the finite set of states and the set
of finite states.

• The initial state q0 = {0}.
• The finite set of states Q = {0, 1, 2, 3, 4, 5}.
• The set of finite states F = {5}.
• The finite set of symbols Σ = {Q, R, S, Rest}.
• The transition functions are:

δ(0,Q) = 1
δ(0,Rest) = 2
δ(0,R) = 3
δ(1,R) = 3
δ(2,R) = 3
δ(3,Rest) = 4
δ(4, S) = 5
δ(3, S) = 5

5.5 Results

In this section, the method described above is applied to several real ECG signals
representing different patients and derived from the standard MIT-BIH arrhythmia
database. For all input signals, Q, R and S peaks, RR distances, and QRS complexes
are detected. TheRRdistance is the duration between two successiveR peaks. It is the
most important indicator of the frequency of the ventricles. In addition, a comparison
study with a large number of methods [3, 4, 7, 9, 16, 17, 19, 20, 30, 31, 37, 40, 47,
49] is applied in terms of QRS complex detection.

Table2 presents an application on several real ECG signals to extract QRS com-
plexes. TP, FP, FN, Se, +P, FDR and FNR are determined, where TP represents
the correctly identified QRS, FP represents the incorrectly identified QRS and FN
represents the incorrectly rejected QRS.

Se (%) = TP

TP + FN
∗ 100 (25)

+ P (%) = TP

TP + FP
∗ 100 (26)
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Table 2 Application on MIT-BIH standard database. Extraction of QRS complexes and determi-
nation of Se and +P rates

Record Record
length

Real
num-
ber of
QRS

TP FN FP Se (%) +P (%) FDR
(%)

FNR(%) RR QRS

100 1805 2273 2272 1 0 99.96 100.00 0.00 0.04 0.79 0.05

101 1805 1865 1864 1 0 99.95 100.00 0.00 0.05 0.96 0.06

102 1805 2187 2183 4 2 99.82 99.91 0.09 0.18 0.83 0.14

103 1805 2084 2082 2 2 99.90 99.90 0.10 0.10 0.86 0.05

104 1805 2230 2211 19 24 99.15 98.93 1.07 0.85 0.81 0.04

105 1805 2572 2571 1 0 99.96 100.00 0.00 0.04 0.70 0.07

106 60 67 67 0 0 100.00 100.00 0.00 0.00 0.88 0.06

107 60 70 70 0 2 100.00 97.22 2.78 0.00 0.82 0.12

108 1805 1763 1761 2 0 99.89 100.00 0.00 0.11 1.02 0.09

109 1805 2532 2526 6 2 99.76 99.92 0.08 0.24 0.71 0.09

111 60 69 69 0 0 100.00 100.00 0.00 0.00 0.89 0.05

112 1805 2539 2537 2 6 99.92 99.76 0.24 0.08 0.71 0.06

113 1805 1794 1794 0 1 100.00 99.94 0.06 0.00 1.00 0.05

114 60 54 54 0 0 100.00 100.00 0.00 0.00 1.10 0.03

115 1805 1953 1953 0 0 100.00 100.00 0.00 0.00 0.92 0.05

116 60 78 78 0 0 100.00 100.00 0.00 0.00 0.76 0.06

117 1805 1535 1534 1 1 99.93 99.93 0.07 0.07 1.17 0.06

118 1805 2275 2275 0 12 100.00 99.48 0.52 0.00 0.78 0.07

119 1805 1987 1987 0 0 100.00 100.00 0.00 0.00 0.90 0.07

121 1805 1863 1861 2 3 99.89 99.84 0.16 0.11 0.96 0.08

122 1805 2476 2475 1 2 99.96 99.92 0.08 0.04 0.72 0.07

123 1805 1518 1517 1 4 99.93 99.74 0.26 0.07 1.18 0.06

124 60 49 49 0 0 100.00 100.00 0.00 0.00 1.21 0.07

200 60 87 87 0 0 100.00 100.00 0.00 0.00 0.72 0.09

201 60 90 90 0 0 100.00 100.00 0.00 0.00 0.66 0.06

202 1805 2136 2111 25 0 98.83 100.00 0.00 1.17 0.85 0.07

203 60 97 97 0 0 100.00 100.00 0.00 0.00 0.61 0.08

205 60 89 89 0 0 100.00 100.00 0.00 0.00 0.66 0.05

207 1805 1862 1859 3 0 99.84 100.00 0.00 0.16 0.96 0.07

208 60 87 87 0 0 100.00 100.00 0.00 0.00 0.69 0.07

209 1805 3004 3002 2 7 99.93 99.77 0.23 0.07 0.59 0.05

210 1805 2647 2606 41 9 98.45 99.66 0.34 1.55 0.69 0.07

212 1805 2748 2748 0 5 100.00 99.82 0.18 0.00 0.65 0.06

213 1805 3251 3243 8 2 99.75 99.94 0.06 0.25 0.55 0.06

214 1805 2262 2229 33 0 98.54 100.00 0.00 1.46 0.81 0.07

(continued)
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Table 2 (continued)

Record Record
length

Real
num-
ber of
QRS

TP FN FP Se (%) +P (%) FDR
(%)

FNR(%) RR QRS

215 1805 3363 3337 26 0 99.23 100.00 0.00 0.77 0.54 0.06

217 1805 2208 2206 2 0 99.91 100.00 0.00 0.09 0.88 0.10

219 1805 2154 2152 2 0 99.91 100.00 0.00 0.09 0.83 0.06

220 1805 2048 2047 1 4 99.95 99.80 0.20 0.05 0.88 0.05

221 1805 2427 2400 27 0 98.89 100.00 0.00 1.11 0.75 0.06

222 60 75 75 0 0 100.00 100.00 0.00 0.00 0.81 0.05

223 60 80 80 0 0 100.00 100.00 0.00 0.00 0.75 0.07

228 60 68 68 0 0 100.00 100.00 0.00 0.00 0.86 0.07

230 1805 2256 2219 37 0 98.36 100.00 0.00 1.64 0.81 0.06

231 60 63 63 0 0 100.00 100.00 0.00 0.00 0.94 0.06

232 1805 1780 1747 33 4 98.15 99.77 0.23 1.85 1.03 0.06

233 60 94 94 0 0 100.00 100.00 0.00 0.00 0.58 0.07

234 1805 2753 2752 1 0 99.96 100.00 0.00 0.04 0.65 0.06

Total 58,720 73,562 73,278 284 92 99.74 99.86 0.14 0.26 0.82 0.07

FDR (%) = FP

TP + FP
∗ 100 (27)

FNR (%) = FN

TP + FN
∗ 100 (28)

Table 2 shows an application of the proposed method on different types of ECG
signals from the MIT-BIH arrhythmia database to extract the QRS complex. The
sampling frequency is 360Hz, the gain is 200, and the base is 1024mV.

For an input signal, several parameters are determined, such as the QRS number,
the RR distances, the QRS duration, and the standard deviation of RR distances.

Figure12 shows the Se an +P rates of the proposed method. The mean Se rate is
99.74% and the average rate of +P is 99.86%. The average FDR is 0.14%, and the
average FNR is 0.26%.

5.6 Noise Se

Table3 provides the noise Se, where the method is applied to different ECG record-
ings. Table3 shows the sensitivity variation and the positive Signal-to-Noise Ratio
(SNR) prediction rates.
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Fig. 12 Se and +P rates according to MIT-BIH records

For SNRvalues greater than 40dB, themethod provides high Se values that exceed
99%. For SNR values above 30dB, the method gives Se values that exceed 97%. For
low SNR values that are less than 24dB, the Se value decreases by 90%.

Figure13 illustrates the SNR Se rate variation for different ECG recordings (100,
101, 102, 103, and 105) from the MIT-BIH standard database. For low SNR values
below 20dB, the method provides Se rates that are less than 50%. However, Se
becomes increasingly important when the SNR values are greater than 30dB. For
SNR values that are greater than 30dB, the method gives Se rates that exceed 97%.
If the SNR is greater than 40dB, the method provides high Se values that exceed
99%.

5.7 R Peak Accuracy Detection

In this part, we determine the exact time of the first two R peaks present in records
100–110. Next, we compare the exact time of each peak R to that automatically
detected, and we calculate the RR distance. Thus, we can determine the value of
accuracy for each peak. From the values presented in Table4, the precision values
are very small and vary from 0.000 to 0.010s. As an average, the accuracy value is
0.002s for R peak detection and 0.003 for RR distance calculation.
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Table 3 Noise Se study of proposed method. Application on ECG signals with different SNR
values

Record SNR
(dB)

90 70 50 30 25 24 23 22 21 20

100 Se (%) 99.96 99.96 99.96 99.96 93.27 90.32 85.97 79.94 63.57 55.52

+P
(%)

100.0 100.0 100.0 99.91 83.73 80.29 76.99 72.80 62.72 57.52

101 Se (%) 99.95 99.95 99.95 99.79 95.28 86.27 84.13 81.88 87.56 48.04

+P
(%)

100.0 100.0 100.0 99.95 84.86 69.44 66.65 65.37 69.05 39.54

102 Se (%) 99.82 99.82 99.82 91.13 83.36 79.84 74.67 66.03 57.80 43.80

+P
(%)

99.91 99.91 99.91 88.90 83.51 75.52 68.84 58.87 51.34 40.47

103 Se (%) 99.90 99.90 99.90 99.86 97.46 95.30 88.58 83.25 70.59 54.89

+P
(%)

99.90 99.90 99.90 99.90 95.85 92.07 81.75 74.95 60.46 45.52

105 Se (%) 99.96 99.96 99.96 97.51 93.58 90.90 81.22 73.21 73.13 53.30

+P
(%)

100.0 100.0 100.0 99.09 95.90 92.56 79.61 73.15 73.04 61.01

Total Se (%) 99.92 99.92 99.92 97.65 92.59 88.53 82.91 76.86 70.53 51.11

+P
(%)

99.97 99.97 99.97 97.95 88.12 79.89 73.42 68.42 64.28 47.27

Fig. 13 Variation in Se rate according to SNR. Application on records 100, 101, 102, 103 and 105
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Table 4 Precision of proposed method for R peaks detection and calculating RR distance

ECG R peak
order

Exact time
of R peak
(s)

Detected
time of R
peak (s)

Precision
(s)

Exact
distance
of RR (s)

Detected
RR
distance
(s)

Precision
(s)

100 1 0.171 0.172 0.001 – – –

2 0.985 0.986 0.001 0.814 0.814 0.000

101 1 0.189 0.186 0.003 – – –

2 1.060 1.050 0.010 0.871 0.864 0.007

102 1 0.269 0.269 0.000 – – –

2 1.090 1.088 0.002 0.821 0.819 0.002

103 1 0.693 0.694 0.001 – – –

2 1.56 1.555 0.005 0.867 0.861 0.006

105 1 0.502 0.502 0.000 – – –

2 1.230 1.230 0.000 0.728 0.728 0.000

106 1 0.933 0.933 0.000 – – –

2 1.970 1.972 0.002 1.037 1.039 0.002

107 1 0.712 0.708 0.004 – – –

2 1.530 1.533 0.003 0.818 0.825 0.007

108 1 0.140 0.141 0.001 – – –

2 0.978 0.977 0.001 0.838 0.836 0.002

109 1 0.261 0.261 0.000 – – –

2 0.906 0.905 0.001 0.645 0.644 0.001

110 1 0.507 0.507 0.000 – – –

2 1.320 1.317 0.003 0.813 0.810 0.003

AVG
precision
rate

– 0.002 – – – – 0.003

5.8 Performance Comparison

In order to compare theQRScomplexdetection algorithmwith other algorithms in the
literature, the quality of performance detection is compared with several algorithms
tested and validated on theMIT-BIH database. These algorithms are varied, and each
of them is based on an appropriate technique.

Table5 shows a comparative study with a large number of methods applied to the
same MIT-BIH database in terms of sensitivity rates. Based on the results presented
in Table5, all QRS complex detection algorithms have good detection rates with Se
exceeding 99%. Similarly, the proposed method provides satisfactory and competi-
tive results with Se (99.74%) and can be considered as a powerful tool for detecting
the QRS complex in ECG signals.
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Table 5 Comparison of performances of several QRS detection algorithms cited in the literature

Method Description Sensitivity
(%)

[37] A derivative approach based on filtering and slope analysis 99.30

[20] A derivative approach based on filtering and optimized decision rule
process technique based on recursive temporal prediction

99.46

[30] Neural network based on adaptive filtering 99.00

[47] An approach based on mathematical morphology 99.50

[49] Support Vector Machine (SVM) based approach 99.38

[16] A mathematical model based on continuous wavelet transform 99.91

[17] Transformation based on duration and energy 99.26

[9] Use of adaptive thresholding 99.65

[7] Multi decomposition in wavelet packet 99.14

[31] SVM-based approach 99.75

[4] Approach based on discrete wavelet decomposition and energy
calculation

99.39

[19] Empirical modal decomposition 99.92

[40] Use of Euclidean metric distance with K-nearest neighbor algorithm
(KNN)

99.81

[44] Regular grammar-based approach and calculation of standard
deviations

99.74

6 Conclusion

This chapter has delivered an overview of ECG signal processing techniques, QRS
complex detection approaches, and waveform delineation based on syntactic meth-
ods. We have mentioned related context-free and regular grammar. We have delib-
erately relied on regular grammar, which has shown better results in improving the
accuracy rate. Deterministic automata have proved useful for the recognition of QRS
complexes. ECG signals have been observed as structured sections with a hierarchi-
cal order and proved that their representation is still more flexible. A comparison
study with a huge number of statistic methods has been established as regards the
accuracy rates.

In this chapter, regular grammar and deterministic automata have been found to be
useful for the recognition ofQRS complexes and cardiac cycles and the interpretation
of ECG signals. An ECG is referred to as a pair of adjacent waves and peaks that
meet certain criteria for standard deviations and durations.

Context-free grammar has proven to be useful for the recognition of normal
ECG signals. The results of the experiments have shown that the application of
our approach to several parts of a real ECG signal allows us to calculate the dura-
tions of QRS complexes and the RR distances. Furthermore, a comparative study
with the literature methods has been established in terms of Se rate.
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However, type 2 grammatical formalism has been applied only to normal ECGs.
Context-free grammar is unable to describe any ECG signals. The use of context-free
grammar was insufficient due to the varieties of ECG signals and the different types
of wave morphologies.

Indeed, type 3 grammar and deterministic automata have proved useful for the
recognition of peaks and QRS complexes and different morphologies of cardiac
cycles. These have been described using deterministic automata and regular expres-
sions. For an input signal, all the indicators have been deduced, such asQRSdurations
and RR distances. This work is intended to help with medical diagnosis and clinical
decision support.

Compared to statistical methods, the use of grammar provides more flexibility in
applications. Grammatical rigor has been extended to include other areas of appli-
cation such as signal and medical imaging. The main advantage of these methods is
the representation that it can provide. Syntactic approaches can powerfully represent
object structures and therefore can easily retrieve information. Finally, the gram-
matical formalism has proved its effectiveness for the processing and interpretation
of 1D and 2D medical data. This type of work is aimed at helping with a medical
diagnosis. Although the concise representation and the space economy provided by
the syntactic representation, it is important to highlight some limitations. The pro-
cessing cost can be high. As observed in this chapter, there are a dozen methods,
several objectives, and different types of possible representations.

Another limitation perceived in most use of the grammars. More complex mor-
phologies often require greater representation power and, therefore, higher time com-
plexity recognition. Especially, when the method needs a training phase, the process-
ing can request additional high computational time, depending on the morphology
to be represented and the type of grammar to be used.

Other very important restrictions can be observed concerning the high dependence
to preprocessing steps. Some of the mentioned articles in this chapter discussed this
level and used techniques to smooth noises, to enhance structures, and to segment
signals. It is very important to note that failures in this preprocessing step can lead
to failure in the use of grammars.

In future work, two fundamental and applicative perspectives will be dealt with.
Fundamentally,we can improve the preprocessing part and the accuracy rate.Besides,
we can propose other grammatical rules to represent distinct pathological cases.
At the application level, we can broaden the base of ECG signals and treat other
pathological cases such as those of the standard American Heart Association (AHA).
Wewill be able to extend our validation bases, carry out a preliminary preprocessing,
measure other indicators, and compare the method to those of references.
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Extraction of ECG Significant Features
for Remote CVD Monitoring

V. Naresh and Amit Acharyya

Abstract Remote healthcare monitoring for Cardiovascular Diseases (CVD) in the
present lifestyle is of the utmost importance throughout the world because of high
mortality rate, around 30% of deaths all over the world are due to the CVD as per
the World Health Organization (WHO) statistics. With the advancement of medical
industry and huge growth in IoT technology is gradually making the remote CVD
monitoring a reality. During the real-time Electrocardiography (ECG) acquisition,
proper detection of individual ECG beats, and the extraction of essential features
from each ECG beat is crucial to automate the diagnosis process of CVD remotely.
Therefore, it is necessary to explore various techniques for the detection of CVD
and the complexity involved in it. This chapter does the review and covers various
methods to process the ECG signal and focuses on the low complexity algorithms to
extract the significant clinical features of ECG.

Keywords ECG · Boundary detection · Feature extraction · Discrete wavelet
transform · Fragmented QRS · Cardiovascular diseases

1 Introduction

Electrocardiogram (ECG) is an interpretation of the electrical activity of the heart
over a certain period, which can be acquired by placing the electrodes on the chest
and limbs. It is an effective means of knowing the functional aspects of cardiovas-
cular system, ECG is the graphical representation of direction and magnitude of the
electrical activity of the heart which leads to the diagnosis of various Cardiovascular
Diseases (CVD) [1]. ECG is comprised of different characteristic waves (P, Q, R, S,
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Fig. 1 Standard ECG wave with its characteristic points and intervals

T) represents the depolarization and repolarization of the atria and ventricles of the
heart [2, 3] as shown in Fig. 1.

Among the various non-communicable diseases, CVD has become one of the
prominent reasons behind the agony of a large section of people all over the world,
resulting in millions of deaths every year throughout the globe [4]. There is an abrupt
increment in the human mortality rate due to CVD; the reasons could be due to the
delayed diagnosis or lack of proper distribution of health care facilities in the vicinity.
Thus, there is a tremendous necessity of developing a personalized CVD monitor-
ing device powered by battery backup and with a very low form factor to achieve
unobtrusiveness that works under the emerging Internet of Things (IoT) system setup
[5–8]. The device should be affordable and also should be reliable enough to extract
the essential features from the continuous ECG signal in a low complex fashion. To
achieve this, many challenges [9] imposed on such devices development viz., low
power consuming system design [6, 7], the complexity of analog front end circuit
design [10–12] and the processing algorithms [13–17] should remain at a minimum
level to prolong the battery life. As a part of processing, the acquired continuous
ECG data from the sensor need to be filtered and segregate into individual beats for
further analysis, reliable and accurate evaluation of ECG takes place by observing
the morphological features (including, amplitude, duration, polarity, and shape) of
characteristic waves such as P-wave, QRS-complex, T-wave, and the interval fea-
tures between the characteristic waves. [17]. During the acquisition in the real-time,
ECG signals are often corrupted with different types of noises such as baseline wan-
dering (electrode contact noise and motion artifacts), Power Line Interference (PLI),
Electromyogram (EMG) noise, and instrumentation noise which leads to the change
of original signal morphology [18–22]. Therefore, automatic assessment of ECG
signal is highly demanded in reducing false CVD detection due to the presence of an
unacceptable level of noises. ECG signal consists of very low-frequency components
of about 0.5–100 Hz, digital filters [23–25], are very effective for noise removal of
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such low-frequency signals. Methods of noise filtering have a decisive influence on
the performance of all ECG signal processing systems. Tremendous and elaborative
research regarding the processing of ECG is done by various researchers, Empiri-
cal mode decomposition [26], Pan-Tompkins based method for estimating the wave
boundaries [27], wavelets based boundaries extraction [5], hidden Markov models
proposed in [28], spline representation [29], and template methods [30]. Approaches
like time-domain feature termed as randomly selected signal pair difference (RSSPD)
[31], wavelet-based multi-scale derivative estimators [32, 33], feature extractions
using the steep slope of characteristic waves [34], time domain morphology and
gradient based methodology for the ECG feature extraction [17] have been used
for the detection of individual ECG beats and extraction of essential features from
ECG to detect the CVD. However, the major drawback of these methods is that they
are computationally intensive while implementing the whole system for the remote
CVD monitoring which contains feature extraction, compression, and other clas-
sification techniques along with a communication module. Thus, optimization and
robustness of algorithms play a significant role when modeling the portable remote
CVD monitoring system. Therefore, this chapter covers processing algorithms for
the application of ECG, which are low-complex by sharing the resources between
the algorithms and efficient enough to extract the essential features of ECG to detect
the CVD. By exploring the advantages of both Discrete Wavelet Transform (DWT)
and Time Domain Morphology (TDM) analysis [5, 13, 35], this book chapter covers
three topics and provides an insight into the computation of each topic. Firstly, the
Boundary Detection (BD) followed by Feature Extraction (FE) and the Fragmented
QRS (f-QRS) complex.

2 Application of DWT for CVD Monitoring

AnECG signal is susceptible to noise and a high degree of variability can be observed
in the signal due to various physiological conditions.VariousECGdenoisingmethods
have been presented based on the moving average andmedian filters [36], frequency-
selective filters, adaptive filters, Discrete Cosine Transform (DCT) [37], nonlinear
Bayesianfilter,mathematicalmorphological operators, independent component anal-
ysis (ICA) [38]. Several transformation techniques likeShort TimeFourierTransform
(STFT) [39] and Discrete Time Fourier transform (DTFT) [40] were used, but they
were restricted due to the limitation of signal analysis either in time or frequency
domain. Fourier transform provides the information of spectral components existing
in the signal but does not provide the information regarding the occurrence of the
components at the specific time intervals. The alternative approach is based on the
DWT, which interprets the signal in time-scale domain that represents the timescale
of the input signal and also its corresponding frequency at that instant. Because of
time-scale analysis, DWT can separate the noise and artifacts at its different res-
olution levels [41]. Due to the periodic occurrence of ECG waves with different
frequency components, DWT will be a helpful tool for the analysis. DWT has been
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Fig. 2 DWT flow diagram (H.P.F: High Pass Filter h(n), L.P.F: Low Pass Filter g(n), filter co-
efficient cD_Lx represents Detailed coefficients of level ‘x’, similarly cA_Lx: Approximation coef-
ficients of level ‘x’)

used in the past for several applications including ECGwhere the basis function used
is quadratic spine wavelet [33], which is computationally intensive.

Discrete wavelet transform decomposes the discrete time signals by passing
through a series of high pass and low pass filters; the filtering operation changes
the resolution of the signal, which reflects the degree of information contained in
the signal, also changing the scale by the down sampling operation [42]. Decom-
position process halves the time resolution of the signal since half the number of
samples of the original signal characterizes the present signal, and on the other hand
it doubles the frequency resolution since the frequency band represents half of the
original frequency band. This procedure is performed several times, i.e. decompos-
ing the original signal at various levels as shown in Fig. 2. The original signal X(n) is
decomposed by passing through a series of high pass and low pass filters and subsam-
pled by two at each level, the frequency at each level is represented in radians since
it is a discrete signal. The output of the high pass filter has half the time resolution
but doubles the frequency resolution as compared to the original signal at each level.

The output of the high pass filter is known as detailed coefficients, and the output
of the low pass filter is known as the approximation co-efficient, which is passed
onto the successive levels for further decomposition. This procedure eliminates the
less prominent frequency bands from the original signal having low amplitudes thus,
in effect, aiding in data compression. This technique is suitable for filtering out the
unwanted components like noise and artifacts from the original ECG signal and thus
helps in getting a clean ECG signal. The selection of the type of the wavelet to be
implemented is of utmost importance as it determines the accuracy of ECG feature
extraction and complexity since the output of low pass or a high pass filter is basically
a convolution of the incoming signal with the corresponding filter co-efficient. In this
chapter, HAAR wavelet transform is taken for the analysis of ECG signal, because it
involves minimal filter coefficients and is computationally efficient and thus makes it
more suitable for the purpose of being implemented compared to other conventional
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Fig. 3 (Casea)ObservationofDWTcoefficients on theoccurrenceof discontinuities, (Caseb) level
three detailed coefficients pattern w.r.t the ECG wave deflections

wavelet transform like quadratic spline wavelets. The equations of the high pass
(h(n)) and low pass (g(n)) [43] shown in Eqs. (1) and (2) are used to compute the
detailed and approximate coefficients for a generalized signal.

h(n) = 1√
2

(
n/2∑
n=0

(Xi [2n + 1] − Xi [2n + 2])

)
(1)

g(n) = 1√
2

(
n/2∑
n=0

(Xi [2n + 1] + Xi [2n + 2])

)
(2)

The morphology of the ECG samples remains unchanged even if the multipli-
cation the factor is removed from the equation; hence 1/

√
2 in the equation can

be eliminated during the processing of the ECG signal to reduce the complexity of
the algorithm. The detailed coefficients of DWT filter banks will follow a particu-
lar manner whenever there is any discontinuity in the original signal, maximum or
minimum peaks or any changes like notches in the signal can be easily detected by
the zero crossing of the wavelet coefficients as shown in Fig. 3a, it can be noticed
that the increasing part of the original signal results in negative wavelet coefficients,
and the decreasing slope gives the positive wavelet coefficients, the amplitude of the
coefficients depends on the slope value of the signal at that index. This analysis is
helpful to find the positive deflections and negative deflections of the ECGwave w.r.t
the isoelectric line and also helps to detect the local maximum and minimum in the
QRS complex to find the discontinuities. For the positive deflection of the ECGwave,
minimum followed by maximum coefficients are observed in the third level detailed
coefficients and vice versa for the negative deflection, as shown in Fig. 3b. DWT
acts as a basic building block that will be shared by BD, FE and f-QRS modules as
shown in Fig. 4 to reduce the complexity of the system and maintain the accuracy
level of classification.
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Fig. 4 DWT block shared
by ECG processing blocks.
*(cD_Lx, cA_Lx represents
level ‘x’ detailed and
approximation coefficients
respectively)

3 Boundary Detection

After placing the electrodes on the body, the ECG device start sensing from any point
withinP,Q,R, S,T. Since the startingpoint is unknown, and the real challenge exists in
segregating each ECG beat accurately from the continuous waveform and feed them
to other processing blocks as shown in Fig. 5. Three steps are involved in detecting
the boundaries of each beat from the continuous ECG wave, firstly minimum and
maximum estimation of coefficients in the level three detailed coefficients, secondly
R-peak estimation and boundary calculation is the final step of BD block.

3.1 Maximum and Minimum Calculation of Detailed
Coefficients

To achieve the accurate boundaries from the continuous ECG wave, the analysis has
to be done on the third level detailed coefficients, where the noise components are

Fig. 5 Block level diagram of the processing steps
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Fig. 6 Block level representation of BD flow

suppressed in the first two levels of DWT, and the noise-free representation starts
from the third level. To begin the discussion of BD, consider ‘X’ number of ECG
samples are applied as an input to the DWT, with the effect of down sampling, every
stage of filter gives X/2L number of coefficients as the output. ‘L’ represents the
resolution level of the DWT performed, the number of coefficients obtained at the
third level are X/23. Since the analysis should be performed on the third level, we
concentrate on the third level detailed coefficients. To obtain boundaries, level three
coefficients are divided into ‘k’ number of sub frames, where k = X/1024(sampling
rate), each frame holds X/

(
2L × k

)
a number of coefficients. If X = 4096 ECG

samples, then the number of sub frames would be ‘4’, and each sub frame has 128
number of level three detailed coefficients, as shown in Fig. 6. Algorithm 1 shows the
pseudo code for extracting the boundaries of the ECG wave, detecting the boundary
of ECG beats depends on the R-peak index location, which in turn depends on the
minimum and maximum index locations of level three detailed coefficients. For
a better understanding of the BD module, it would be good to consider the fixed
number of input ECG samples and explain the flow. Considering the number of input
ECG samples X = 4096 applied to DWT module as shown in Fig. 6, the number of
detailed coefficients obtained at third (cD_L3) and fifth (cD_L5) level of DWT are
512 and 128 respectively. cD_L3 coefficients are used to extract the R-peak indexes
and cD_L5 are used to extract the P and T waves respectively. Split the cD_L3 into
four sub frames as shown in Fig. 6 and refer line number 6 of Algorithm 1. The index
of minimum and maximum value in each sub frame corresponds to R-peak of each
ECG beat as shown in Fig. 7b, hence the exact R-peak indexes of all the beats can
be found if the minimum and maximum index values of the cD_L3 coefficients in
each sub frame are known. Hence, further analysis has to be done to find the index
of maximum and minimum value in each sub frame, to find the indexes take the
minimum value (min_of_max) from all the maximums as described in line number
6 of Algorithm 1.
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Fig. 7 (Case a) Projections of cD_L3 coefficients on original ECG signal, (Case b) maximum and
minimum of cD_L3 coefficients present in each sub frame

3.2 R-Peak Estimation

Based on the index of the maximum value in each sub frame of cD_L3 R-peak can be
extracted, but there would be a chance of missing the ECG beat due to lesser R-peak
amplitude and its corresponding coefficients compared to other beats as shown in
Fig. 7b highlighted with oval shape in the third frame. In order to find the missing
ECG beat, threshold calculation is performed by taking the minimum value of all the
maximums as shown in Fig. 6. Based on the rigorous testing during the development
of algorithm on various healthy and unhealthy ECG test cases, the threshold has been
fixed to 45% of the minimum value (‘min_of_max’). To find the R-peak index, the
threshold value and all the cD_L3 coefficients are passed to the comparator as shown
in Fig. 6, the output of the comparator produces ‘1’ if the cD_L3 value is greater
than the threshold value else it produces ‘0’. The output ‘1’ from the comparator
indicates that there would be a possibility of R-peak corresponding to that index.
The sequence of 1’s and 0’s comes as the output from the comparator and stored in
an array as shown in Fig. 6, search for the indexes which are having ‘1’ and note
them if the difference between the index is greater than 36, the fixed value ‘36’ is
proven to give accurate results based on the statistical analysis for the ECG sampling
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of 1 kHz, the fixed value will alter if there is any change in the sampling frequency of
the ECG signal. The index of all ‘1’s obtained corresponds to the index of maximum
values of the cD_L3 coefficients of each sub frame, with the above procedure the
index of missing coefficient present in the third frame is obtained along with the
index of other maximum coefficients.

Generally, the R-peak (positive deflection) in the ECG signal is decomposed as
the minimum followed by a maximum in the cD_L3 coefficients, since the index
of maximum values is obtained, index of minimum values need to be found. To
calculate these indexes, search for the index of minimum value with the range 10
samples towards the left and right side of the maximum index as explained in line
number 40 of Algorithm 1. The R-peak index is calculated by projecting the obtained
and minimum index (min_1, min_2 min_3, min_4, min_5) and maximum index
(max_1, max_2 max_3, max_4, max_5) to the original signal as shown in Fig. 7a,
since the analysis is done on the third level decomposition, the obtained maximum
and minimum index values of cD_L3 has to be multiplied by 8 (min_1 × 23, max_1
× 23) to project the original signal. If the ECG wave has positive deflection, then the
index of absolute value within the indexes will be the R-peak index, whereas if the
ECG wave has negative deflection, then search for the positive value towards the left
from the index of absolute value.
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3.3 Boundary Calculation of ECG Beats

Start and end boundary of each ECG beat can be obtained by taking the average of
two successive R-peak index values noted as B0–B5 as shown in Fig. 7a, the average
calculation of R-peak index may not give the exact boundary index values for every
ECG beat, particularly at the time of abnormal heart rhythm. For few ECG test cases,
the boundary index resulted from the average of R-peak indexes may occur on the
previous T-wave of ECG beat or it may be on the P-wave of its own beat, hence few
conditions based on the RR interval and checking the amplitude of the index obtained
to be followed to get the accurate boundary index, since the boundary of the ECG
beat should be on the isoelectric line, the value of the obtained boundary index should
be close to the zero value. In some cases, the first and last ECG beat is neglected if the
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Fig. 8 Different ECG test cases extracting R-peaks and boundaries, (Case a: First degree AV block,
Case b: Left BBB, Case c: Right BBB, Case d: Normal signal)

entire beat information (P, Q, R, S, T) is not present within the ‘X’ number of ECG
samples, the condition for these types of cases are shown in line number 43 and 48 of
Algorithm 1. BD uses the DWT module and extracts the start and end boundaries of
each ECG beat along with the R-peak index and amplitude information. Heart Rate
Variability (HRV) and Heart Rate (HR) can be calculated with the help of R-peak
index values. HRV is the index difference between the successive R-peaks, whereas
HR is calculated by counting the number of R-peaks for one minute and used to find
the condition of the patient, such as bradycardia (HR < 50) and tachycardia (HR >
100). The BD has been analyzed by applying various ECG test cases, which start
with different characteristic points (P, Q, R, S, and T) as shown in Fig. 8.

4 Feature Extraction

The time interval between the characteristic waves follows a standard time duration
and amplitude (voltage) if any deviation from the normal tracing represents patho-
logical. The process of extracting the clinically important fiducial points like onset
and offset index of P-wave, QRS complex, T-wave as well as the amplitudes of char-
acteristic waves (P, Q, R, S, T) from the ECG beat is termed as FE, extracting these
feature points of ECG beats and categorizing them as normal and abnormal is termed



368 V. Naresh and A. Acharyya

as classification. The detection of each ECGbeat from the BDmodule is fed to the FE
block to extract these fiducial points. Finding QRS complex and P/T characteristic
waves are possible by applying Modulus-Maxima Analysis (MMA) on cD_L3 and
cD_L5 coefficients, respectively, time domain morphology is used to refine the find-
ings that occurred using MMA. Since the analysis employs both frequency and time
analysis, this method is called a Hybrid Feature Extraction Algorithm (HFEA) [13].
For the explanation of the FE algorithm, a single isolated heart beat with all the char-
acteristic waves is considered. The onset and offset of the characteristic waves are
calculated based onMMA principle, and they are localized by aModulus-Maximum
Pair (MMP) on the coefficients of DWT.With respect to the isoelectric line, the ECG
wave can have positive or negative deflection, the index locations corresponding to
the pair of extrema in the cD_L3 coefficients will behave minimum followed by
maximum for the positive deflection and vice versa for the negative deflection of
ECG wave. The complete flow of HFEA has been shown in the form of pseudo-code
shown in Algorithm 2.

Using MMA, the global extrema pair, which is having the temporal positions (t1,
t2) in the cD_L3 can be obtained, these positions exhibit the highest separation from
the isoelectric line, as shown in Fig. 3b. The extraction of QRS onset is calculated as
the preceding extrema from the MMP of the search window [t1 − 4, t1], likewise, the
QRS offset is estimated using the succeeding extrema of the MMP of search window
[t2, t2 + 4]. The temporal resolution of level three coefficients is reduced by a factor
of ‘8’ compared to the input given original timescale, this leads to the less accurate
localization of the deflections either Q-peak, S-peak, and QRS boundaries as shown
in Fig. 9a To avoid this, time domain morphology is employed for the refinement
of the extracted values to achieve an accurate estimation of the fiducial points. For
the refinement of the QRS complex, exploiting the characteristic signal of the QRS
complex by using the derivative signal is performed on Level three approximation
(cA_L3) coefficients for the analysis. The initial QRS boundaries are extended in
time by 64 ms before to the initial QRS onset [t′3 = t3 − 8] and 120 ms after the
initial QRS offset [t′6 = t6 + 15]. An approximation of the derivative f′[n] for n ∈
[t′3, t′6] is calculated as the backward difference between two successive samples of
cA_L3 coefficients. The derivative signal is compared with the threshold values as
shown in the line number 24 of Algorithm 2, the point where the value of the gradient
is more than the predefined threshold leads to the amendment of the QRS boundary.
To find the QRS onset, the derivative signal is taken from the beginning up to the
R-peak index [t′3, R-peak], whereas for the QRS offset, the gradient signal is taken
from its end toward s R-peak [R-peak, t′6]. The threshold value is ascertained based
on the computation of applied ECG signal; the initial approximation produced by
DWT is improved with the execution of TDM, as shown in Fig. 9b.
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Fig. 9 Case a: Interpretation of initial QRS boundaries using MMA, Case b final QRS boundaries
using TDM refinement
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Finding the Q-peak and S-peak indexes is the final step of the QRS refinement, the
Q-peak can be obtained by finding the minimum value between the QRS onset to the
R-peak and the S-peak index is calculated by finding the minimum value between
the R-peak to QRS offset. After finalizing the QRS boundaries using the TDM
refinement process, a similar procedure modulus-maxima analysis is applied on the
cD_L5 coefficients within the portion of the signal that precedes and succeeds the
QRS complex to identify the onset and offset of P and T waves and its corresponding
peaks indexes. P and T waves follow the positive or negative deflection based on the
leads considered and the condition of the patient, hence the modulus-maxima pair
in cD_L5 that localize the P and T waves helps to determine the deflections and the
peak value by projecting the maximum and minimum values to the original signal
by multiplying with a factor of ‘32’ as shown in the line number 34 of Algorithm 2.
The following explanation of Algorithm 2 is for one ECG beat, and the same applies
to all other ECG beats extracted from the BD algorithm. Various ECG abnormalities
can be identified using the extracted features from the FE algorithm. For example,
P-wave follows a positive deflection in most of the leads except in the case of avR,
in unusual cases, P-wave can be of negative deflected or produce long duration
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which indicates an ectopic pacemaker and atrial enlargement, respectively. Using
the FE algorithm, the deflection and the duration of the P-wave can be identified
by searching the absolute value and the interval difference between the P onset and
P offset respectively, and the obtained values are compared to the standard P-wave
amplitude and the duration to detect CVD. Typically, the P wave interval should
less than 80 ms, if the duration is higher it indicates an abnormality. Likewise, other
features from theFEgive the information of intervals and amplitudes and compared to
the standard values to detect the abnormalities like first degree atrioventricular block
(PR > 200 ms), LBBB, RBBB (QRS complex interval > 120 ms), left ventricular
hypertrophy (high QRS amplitudes), hyperkalemia (peaked T-waves), ventricular
tachycardia (prolonged QT interval), etc. [1]. The validation of BD and FE is done
using various healthy and unhealthy cases of ECG taken from publically available
ECG database PhysioNet’s PTB Database (PTBDB), CSEDB and IITHDB sampled
at 1 kHz to show the HFEA performance is very close to the state of the art ECG
delineators.

The performance evaluation ofBDandFEare shown inTables 1 and 2 respectively
in-terms of the mean and standard deviation of the error between the algorithm
and the annotation result for each record. Overall mean and the standard deviation
are calculated by taking the average of mean and the standard deviation error of
all the records. The BD and FE algorithms have been analyzed by customizing
the continuous ECG wave starting index with different case points (P, Q, R, S,
and T) and resulted in achieving 99% accuracy in detecting the boundary of ECG
beat and extracting the features from each ECG beat. The use of DWT with the
Haar function as the basis allows for a significant reduction in the computational
complexity compared to other DWT based approaches, which is beneficial in terms
of the overall energy consumption. Taking these concepts from the algorithm level to
hardware system level perspective will reduce the complexity and can be integrated
with other intellectual properties like compression and communication blocks for
the CVD monitoring device.

5 Fragmented QRS

The f-QRS is an indicator of myocardial scar, due to which abnormalities within the
QRS complex can be observed. Due to the intraventricular conduction defect, a notch
in the QRS complex can be noticed in the patients with left ventricular hypertrophy
[44]. RsR′ pattern of the QRS complex can be seen due to the injured tissue around
the infarct scar [45]. Das et al. [46] have proved that the patients with coronary artery
disease and were associated with myocardial conduction block has f-QRS complex,
which is defined by a notch or an additional R wave within the QRS complex as
shown in the Fig. 10 [44]. Haukilahti et al. [47] defined that if the QRS complex has
more than one R wave or any notch in the nadir of the R wave or the S wave can
be defined as f-QRS complex. On a 12 lead ECG, f-QRS is defined as narrow QRS
complex duration which maintains an interval of less than 120 ms for healthy cases.
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Table 1 Performance details of boundary detection algorithm [5]

Database Performance metric Start boundary End boundary

CSE DB # ann beats 10,500 10,500

u ± S (ms) 4 ± 5.2 3 ± 4.7

Sigma (samples) 5 4

% Error FBD 0.03%

PTBDB # ann beats 1950 1950

u ± s (ms) 3 ± 4.5 3.5 ± 3.8

sigma (samples) 4 7

% Error FBD 0.03%

IITH database # ann beats 750 750

u ± s (ms) 7 ± 9.1 5 ± 7.2

Sigma (samples) 9 10

% Error FBD 0.06%

Several investigations [48–50] have been published and proven the effectiveness of f-
QRS over conventional biomarkers in the detection of myocardial infarction, cardiac
sarcoidosis and various other diseases which fields it on a path to become a potential
bio-marker.

Automated detection of f-QRS followed by identification of its various morpholo-
gies in addition to the conventional ECG feature (e.g. P, QRS, T amplitude, and
duration, etc.) extraction will lead to a more reliable diagnosis and disease prog-
nosis than the state-of-the-art approaches and thereby will be of significant clinical
importance for both hospital-based and emerging remote health monitoring environ-
ments. Hence, this topic gives an insight into the automatic detection of f-QRS and
identifying its different morphologies and termed as Fragmentation Detection and
Morphology Identification (FDMI) [35]. QRS complex of the ECG beat is extracted
from the FE block as explained in the earlier section since the index of QRS complex
is known, the corresponding level one detailed coefficient can be taken from theDWT
block to find the irregularities. FDMI uses the detailed wavelet coefficients of QRS
to find the discontinuities along with the position of its occurrence and frame the
classification rules for different types of fragmentation. There are two subsections in
FDMI viz. Fragmentation Detection (FD) and Morphology Identification (MI).

5.1 Fragmentation Detection

As discussed in the earlier section, DWThelps to find the discontinuities that occur in
the original signal. DWT generates zero crossing points whenever there is any peak
or nadir in the signal [35] as shown in Fig. 3b, this analysis can be used to model
the FD. A peak in the QRS complex is identified as a sudden change in sign and
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Fig. 10 Discontinuities associated within the QRS complex [46]

follow the wavelet coefficients with the same sign, whereas the behavior of notches
is identified by the frequent change in the sign of detailed coefficients.

To detect the local extrema and the notches in the QRS complex accurately, linear
interpolation is performed on the QRS complex to increase the time resolution by
a factor of 2, interpolation is performed based on the observational interpretations
during the development of FDMI algorithm [35]. Interpolation is performed by taking
the mean of two consecutive samples and insert in between them to increase the
number of samples applied to FDMI, and this process doesn’t affect the morphology
of extrema and the notches. The Fig. 3b shows the bar plots of detailed wavelet
coefficients corresponding to the QRS complex, noticing the change in coefficients
and correlating them w.r.t to applied QRS complex helps to formulate the rules for
identifying the notches and extrema. The coefficient values represented as bars may
not seem to align because the scale of the x-axis of the original signal and the bar plot
of detailed coefficients are different. The number of detailed coefficients obtained is
half the number of samples applied at the input of DWT, in Fig. 3b, the number of
samples applied to DWT is 9, and the obtained coefficients are 5, the value of the last
coefficient is zero. After analyzing several test cases of healthy and unhealthy QRS
complexes, the criteria shown in Fig. 11 has been formulated [35] and it is refined to
capture all sorts of discontinuities like local extrema and notches in theQRS complex.
The FD algorithm starts by observing the leftmost side of the detailed coefficients of
DWT and proceeds towards the right while moving through the coefficients, patterns
are spotted and if any of the patterns match with the rules mentioned in the Fig. 11,
then the corresponding discontinuity is recognized. Algorithm pointer (k) is used
to point out the detailed coefficients, if any discontinuity occurs, ‘k’ pointing at a
particular point of the wavelet coefficients is incremented as per the rules mentioned
in Fig. 11, else it increments by one. In the pattern A1 shown in Fig. 11, there are two
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Fig. 11 Rules for the identification of discontinuities, (‘a’, ‘b’, ‘c’, ‘d’ are the successive detailed
coefficients in the bar plot. Pointer ‘k’ starts from ‘a’ and its increment shifts from ‘a’ to ‘b’)

successive sign changes in the value of detailed coefficients which says that there is
an occurrence of a local extreme pair in its vicinity and hence it can be assumed as the
presence of a notch. Likewise, in pattern A2, there are three consecutive sign changes
in the coefficients and implies that there are three extrema and the identification of
notch depends on the magnitude of the coefficients, and the other is identified as
extrema. Similarly, Fig. 11 describes the rules for the identification of other patterns
having notch or extrema. FD algorithm makes use of the rules and gives the number
of notches, maxima, and minima present in the QRS complex as the output.
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5.2 Morphology Identification

There exist several various RSR′ patterns, and six fundamental morphologies of
f-QRS, [35] had covered various other possible morphologies in RSR′ patterns to
increase the robustness of the algorithm. Figure 12 shows the necessary criteria for the
identification of various QRS morphologies whose interval is ≤120 ms. Information
on the number of notches, maxima, and minima from the FD module is given to
MI module to get the details of a point of occurrence, which can be the positive or
negative side of the reference axis, height, and depth of the R and S waves in the QRS
complex. A clear attempt has been made to maintain the difference between a notch
and extrema pair to find the locations of discontinuities. In Fig. 12, morphology A, C,
E, and I are considered to be dominant over the presence of notches so as to prevent
the morphologies from being identified as f-QRS. The criteria formulated for the MI
are more robust, where it is able distinctively to identify all the morphologies without
any conflict.

To measure the performance of FDMI in terms of accuracy, PTBDB [51] from
PhysioNet has been used, this database has 15 lead ECG data comprising conven-
tional 12 lead and 3 orthogonal Frank leadwhich are sampled at 1 kHz. ECGdatabase
is categorized based on cardiac disorders, to design and model the FDMI algorithm
ECG data from various diagnostic classes viz. cardiomyopathy, BBB, dysrhyth-
mia, myocardial hypertrophy, valvular heart disease, myocarditis, healthy controls,
myocardial infarction, and other miscellaneous conditions have been considered.
Based on the criteria shown in Figs. 12 and 13 the output from the FDMI results in
the number of notches extrema points (maxima, minima), the time instant at which
they occur and themagnitude of the extrema. To explain the insight of algorithm, four
different test cases of f-QRS are taken shown in Fig. 13, in all the cases, explained
plot ‘a’ shows the QRS complex and the plot ‘b’ shows the bar plot of detailed
wavelet coefficients and the notches are indicated with circles, extreme are indicated
with rectangles in the QRS complex.

Case 1: The QRS morphology shown in Fig. 13 case 1a is a notched R (rsR′), it
shows that there are two minima’s both are less than zero which indicates a
negative value, one maxima with a positive value and single positive notch.
Case 1(b) shows the detailed coefficients of the QRS complex and applied
as an input to the FDMI module, the algorithm detects all the points by
using the rules shown in Fig. 12.

Case 2: In this case, the morphology is RsR′ without ST elevation as shown in
Fig. 13 case 2a, the corresponding wavelet coefficients shown in Fig. 13
case b applied to FDMI and resulted in two maxima, two minima and zero
notches in the original signal as the output.

Case 3: The morphology shown here is Rsr′, the number of maxima, minima, and
notches are 1, 2, and 1 respectively will be the outcome from the FDMI as
shown in Fig. 13 case b.

Case 4: FragmentedQRShas been shown in this case,where the number ofmaxima,
minima, and notches is 2, 3 and 0 respectively as shown in Fig. 13 cases a.
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Morphology Name Criteria Conflict

(A)
rSr’

(A)
max(Pmaxv(1,2))

<|Pminv(1)|
Nmax = 2
Nmin = 1

Pmaxv(1,2)>0
Pminv(1)<0
Nnotch = NF

When this morphology 
is encountered, the 

presence of notches on 
R, R’ or S wave will 

not lead it to be termed 
as fragmented QRS

(B)
Notched R 

(rsR’)

(B1)
Without Q

(B2)
WithQ

Nmax=1; Nnotch=1
Pmaxv(1)>0;Pnotchv(1)>0

Pnotchh(1)<Pmaxh(1)

(B1)
Nmin=1; Pminv(1)<0

(B2)
Nmin=2; Pminv(1,2)<0

When Nnotch>1 then the 
morphology resembles 

Fragmented QRS

(C)
RsR’ with ST 

elevation

(C1)
With Q

(C2)
Without Q

Nmax=2; Nnotch=0
Pmaxv(1,2)>0; End of QRS 
complex must lie above 

horizontal axis.

(C1)
Nmin=2; Pminv(1)<0;

Pminv(2)>0

(C2)
Nmin=1; Pminv(1)>0

Case may arise when 
sR’ is identified as a 

notch instead of a 
minima-maxima pair. 

Then all the cases 
arising are captured by 
morphology (F). For 

an extremum to be R it 
has to be identified as 

a maximum.

(D)
rsR’

(D1)
With S’

(D2)
Without S’

Nmax=2;Pmaxv(1,2)>0; 
Pmaxh(1)<Pminh(1).

(D1)
Nmin=2; Pminv(1,2)<0

(D2)
Nmin=1; Pminv(1)<0;
Pmaxv(1)<Pminv(1);
Pminv(1)<Pmaxv(2);

Presence of notches 
will not affect the 

morphology.

Fig. 12 Various QRS morphologies. *(NF, number and the presence of notches not fixed, Nmax:
Number of maxima, Nmin: Number of minima, Nnotch: Number of notches, Pmax(i): position at
which ith maxima occurs on the vertical axis (magnitude along with sign); Pmaxh(i), position at
which ith maxima occurs on the horizontal axis; Pminv(i), position at which ith minima occurs on
the vertical axis; Pminh(i), position at which ith minima occurs on the horizontal axis; Pnotchv(i),
position at which ith notch occurs on the vertical axis; Pnotchh(i), position at which ith notch occurs
on the horizontal axis)
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(E)
RsR’ without ST 

elevation

(E1)
With Q and S

(E2)
S without Q

(E3)
Q without S

(E4)
Without Q and S

Nmax=2;Nnotch=0;
Pmaxv(1,2)>0;

(E1)
Nmin=3;Pminv(1,3)<0;

Pminv(2)>0

(E2)
Nmin=2;Pminv(1)>0;

Pminv(2)<0

(E3)
Nmin=2;Pminv(1)<0;

Pminv(2)>0;Pminh(1)<Pmaxh(1
)

(E4)
Nmin=1;Pminv(1)>0

If Nnotch≥1 then the 
morphology 
resembles 

Fragmented QRS. R’ 
or R must be etected 
as a maxima and not 

a notch for its 
morphology to be 

RsR’.

(F)
Rsr’

(F1)
Without Q and S 

wave
(F2)

Only Q

(F3)
Q and S both 

present

(F4)
Only S

Nmax=1;Nnotch=1;
Pmaxv(1)>0;

Pnotchh(1)>Pmaxh(1);
Pnotchv>0

(F1)
Nmin=0

(F2)
Nmin=1;Pminv(1)<0;
Pminh(1)<Pmaxh(1)

(F3)
Nmin=2;Pminv(1,2)<0;
Pminh(1)< Pmaxh(1);
Pminh(2)>Pmaxh(1)

(F4)
Nmin=1;Pminv(1)<0;
Pminh(1)>Pmaxh(1)

sr’ must be identified 
as a notch and not an

extremum pair. If more 
than one notch occurs 

the morphology 
resembles Fragmented 

QRS

(G)
RSr’

Nmax=2;Nnotch=UD
Nmin=1;Pmaxv(1,2)>0

Pminv(1)<0
Pmaxv(1)>|Pminv(1)|
Pmaxv(2)<|Pminv(1)|

Presence of notches 
will not affect the 

morphology.

Fig. 12 (continued)

In Fig. 13 case b a minima (<0) is encountered first followed by maxima
(>0), minima (<0), maxima (>0) and minima (<0). A four-point star shown
does not lead to discontinuity but, represents the sudden changes in the
gradient of the wave.

For the evaluation of FDMI, several ECG test cases were taken from the database,
the QRS complexes extracted from FE were examined by two cardiologists who
are referred to cardiologist’s status (CS). The results obtained from the FDMI were
compared with the CS, the sensitivity and specificity values are calculated.

True Positive (TP): The cardiologists detected fragmentation in a particular lead
of the patient, and the algorithm reported correctly.
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(H)
Notched S

(H1 and H3)
Notch in 

downstroke and 
upstroke of S 
wave. Q not 

present

(H2 and H4)
Notch in 

downstroke and 
upstroke of S 

wave. Q 
present.

(H5 and H6)
If notch is 
detected as 

extremum pair 
in any of the 

cases.

(H1 and H3)
Nmax=1;Nnotch=1;

Nmin=1;Pminv(1)<0;
Pmaxv(1)>0; Pnotchv<0
Pnotchh(1)< Pmaxh(1);

(H2 and H4)
Nmax=1;Nnotch=1;

Nmin=2;Pminv(1,2)<0;
Pmaxv(1)>0; Pnotchv<0
Pnotchh(1)> Pmaxh(1);

(H5)
Nmax=2;Nmin=2;

Nnotch=1;
Pmaxv(1)>0; Pmaxv(2)<0

Pminv(1,2)<0

(H6)
Nmax=2;Nmin=3;

Nnotch=1;
Pmaxv(1)>0; Pmaxv(2)<0

Pminv(1,2,3)<0

If more than one 
notch is present then 
the morphology will 

be termed as 
Fragmented QRS. 

Notch may be 
discovered as a 

extremum pair but 
still the morphology 

resembles Notched S.

(I)
RSR’

(I)
Min(Pmaxv(1,2))>|Pminv(1)|

Nmax=2; Nmin=1
Pmaxv(1,2)>0
Pminv(1)<0
Nnotch=NF

Presence of notch 
doesn’t affect the 

morphology.

(J)
Fragmented 

QRS

(J)
If none of the 

aforementioned 
morphologies are detected 

and 
Nnotch>=1;

Or
Nmax>=2; Nmin>=2

Visually identified 
notch may be detected 
as an extremum pair. If 

so, then such 
morphology will be 

termed as Fragmented 
QRS. Notches may 
occur in R and/or S 

wave.

Fig. 12 (continued)

False Positive (FP): The cardiologists did not detect fragmentation, but the algo-
rithm reported the presence of fragmentation in a particular
lead.

True Negative (TN): The cardiologists did not detect fragmentation and the algo-
rithm reported correctly.

False Negative (FN): The cardiologists detected fragmentation in a particular lead
but the algorithm could not detect

The sensitivity and specificity were calculated using Eqs. (3) and (4)

Sensitivity = TP/(TP + FN) (3)

Specificity = TN/(TN + FP) (4)
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Fig. 13 Different cases ofQRScomplex and their corresponding detailed coefficients [35] (Notches
and extrema are denoted by circle and rectangle, respectively.)
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Fig. 13 (continued)
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To know the performance of the algorithm, 372 leads from thirty-one test cases
neglecting the frank lead the result obtained is 89.8%, it says that the sensitivity and
specificity values obtained are 0.897 and 0.899 respectively. Most of the cardiologist
show interest to check for fragmentation in Bundle Branch Block (BBB) cases, for
the test cases which are having BBB alone, the sensitivity and specificity are found
to be 0.932 and 0.933, respectively.

In the test cases shown in Fig. 13 case 4b, it is observed that whenever the gra-
dient is high, the magnitude of the detailed coefficients is also high in value. FDMI
algorithm also captures the sudden changes in gradient which do not result in the
extremum pair, this can be seen clearly in the case 4, a sudden gradient change in the
gradient before the occurrence of final maxima (case 4(b)) can be seen (denoted by a
four-point orange star) with the magnitude of detailed coefficients suddenly decreas-
ing and then increasing. This highlights the sensitivity of the detailed coefficients to
sudden changes in the ECG, thus, it is significant to denoise the raw ECG before
applying to the FDMI blocks otherwise a noisy part in the QRS complex may be
detected as a notch. Hence, baseline wandering removal and denoising is essential
for the accurate detection of morphology in the QRS complex.

The sampling rate of the ECG signal is crucial while performing the f-QRS detec-
tion, if the sampling rate of ECG is low, then the probability of detecting the discon-
tinuities in the QRS complex will be less due to its low time resolution. Sampling
frequency of 2 kHz will be suitable for the FDMI algorithm implementation.

The importance of sampling frequency can be observed with an example, Fig. 14a
(i) (ii) shows the interpolated QRS complex and the original QRS, which have high
and less time resolution respectively, Fig. 14a (iii) (iv) shows the bar plot of detailed
coefficients corresponding to interpolated and original QRS complex respectively.
From the figures, it can be observed that the increasing number of samples helps to
identify the undetectable notches. The undetectable notch will lead to an inaccurate
count of notches; hence morphology will lead to an improper diagnosis. Figure 14b
(iii) Follow the patterns shown in Fig. 11, when patterns of A1 and A3 are found,
it identifies the presence of notch but, if the patterns like A2 and A4 are found,
it is tough to interpret whether this pattern should be considered as a notch or an
extremum pair. If magnitude criteria are not considered, then the maximum would
be identified as a notch, and its peak is identified as maxima. Hence, it is necessary to
have the magnitude criteria to find the difference between the notch and the extrema.

6 Conclusion

This chapter emphasis processing the ECG signal to extract the essential clinical
features in low-complex fashion and detect cardiovascular diseases. The topics cov-
ered in this chapter are three-folded. Firstly, detecting boundaries of individual ECG
beats from the continuous ECG signal using the BD algorithm. Secondly, a low-
complex ECG feature extraction algorithm is performed on each ECG beat to extract
the morphological features (including, amplitude, duration, polarity, and shape) of
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Fig. 14 Importance of QRS complex interpolation and magnitude criteria

characteristic waves such as P-wave, QRS-complex, T-wave, and the interval fea-
tures between the characteristic waves by reusing the same module present in the
proposed BD methodology. Thirdly, fragmented QRS (f-QRS) complex reuses the
module present in the BD and acts as an efficient bio-marker to detect the ECG
abnormalities occurring due to the discontinuities present in the QRS complex, FD
module gives the details of the number of notches,maximas andminimas present, this
count is applied as input to MI module to identify the morphology of the QRS com-
plex by extracting the time instance of discontinuities. Low-complexity is achieved
by reusing the DWT module with Haar function as the basis allows for a signif-
icant reduction in the computational complexity compared to other DWT based
approaches. Several test cases of healthy and unhealthy from PTBDB, MIT-DB,
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IITHDB are considered to validate the algorithms and achieved the accuracy levels
suitable for clinical relevance.
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An Accelerated Computational
Approach in Proteomics

Swati Bhardwaj, Venkateshwarlu Yellaswamy Gudur
and Amit Acharyya

Abstract The advent of new technologies and research in the field of computational
bioinformatics has revolutionized the rate of biological data generation. As a result,
the contribution of data from proteomics and genomics has increased by many folds,
doubling every 18 months. Thereby, the operations involved in proteomics study
have become significantly compute intensive. Protein identification, a fundamental
process in proteomics study, requires identification of one or more proteins from a
large database of proteins. It is rigorously used for disease diagnosis and progno-
sis by assisting in biomarker identification and discovery for the futuristic medical
prescription. Now a days, mass spectrometry is a widely used analytical tool in pro-
teomics studies which includes peak detection and database searching as essential
steps. To cope up with the ever increasing growth of biological data in the domain of
proteomics, protein identification requires accelerated and efficient solutions. This
chapter mainly focuses on the review of various hardware accelerated methodologies
for peak detection in mass spectrometry data and database searching for strings from
an algorithmic and architectural perspective in the context of protein identification.

1 Proteomics: A Generic Overview

A biological molecule or biomolecule is the generic term for molecules and ions in
living organisms. Macromolecules are large biomolecules including nucleic acids,
proteins, carbohydrates, and lipids. Proteins are the most abundant macromolecules
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in the human body. They are indispensable agents serving crucial functions in all
the biological processes [1, 2]. They play an integral role in several physiological
functions, including metabolism, immunity, growth control, tissue repair, transporta-
tion and storage of other molecules like oxygen, etc. They also function as catalysts,
membranes, enzymes, and play crucial structural and functional roles.

Amino acids are the basic building blocks of proteins, and the immense diversity
and properties of proteins are substantiated by the unique characteristics of these
amino acids. Proteins are also called linear polymers of amino acids. There are 20
amino acids in human body, and every protein is composed of these amino acids. The
amino acids in proteins are linked together by chemical bonds called peptide bond.
The peptide bond is formed when the carboxyl group of one amino acid reacts with
the amino group of another amino acid. A short chain of two or more amino acids is
called peptide, and a chain of a large number of amino acids is called polypeptide.
Protein consists of one or more polypeptide chains. Therefore, proteins are long
chains of amino acids held together by peptide bonds [1, 2].

Proteomics is a generic term used for the large-scale study of proteins, especially
their structure and physiological roles or functions. The term proteome was coined
by Marc R. Wilkins in 1994, an Australian scientist, and the term proteomics first
appeared in 1997. The human blood serum and plasma contain a mixture of various
proteins. These proteins and their constituents in the blood are directly related to
the physiological and functional features of the body. Their relative abundance and
modification may precisely reflect the disease or infection status of different organs
inside the human body. Therefore, the systematic analysis and study of the proteins
are useful for prediction, diagnosis, prognosis, treatment, and prevention for a variety
of diseases [3–5].

The basis for disease diagnosis using clinical chemistry is bestowed by the con-
cept that many diseases manifest themselves by changes in human physiology [6]. It
has been established that the presence of various pathologies is substantiated by mis-
regulations in proteins [7]. The protein signatures acting as biomarkers can directly
reflect the status of a disease. Thus, protein identification and a comprehensive exam-
ination of various changes in the proteins is the key to the diagnosis of various health
disorders.

In disease diagnosis using proteomics study, protein identification is an integral
part. Protein identification is the process to identify and characterize the protein in
the given serum sample. In layman terms, it identifies the sequence of amino acids
of the protein. As described earlier, protein identification leads to a comprehensive
study of the protein by understanding its sequence, structure, and functionality. It is
widely being used for clinical studies of various domains including cancer, cardio-
vascular diseases, organ transplant, neuromuscular disease, etc. [8–10]. In addition, it
is also being used for early detection of diseases, disease-tailored therapeutic targets,
personalized therapy and genetic medicine [3–6, 8, 11, 12].

In this chapter, we briefly introduce proteomics followed by protein identifica-
tion involving mass spectrometry. In Sect. 2, preprocessing of mass spectrometry
data using Independent Component Analysis (ICA) and string matching in protein
databases are discussed. The need for accelerated approaches in proteomics is dis-
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cussed inSect. 3. InSect. 4, accelerated solutionswith detailed hardware architectures
for ICA and string matching are discussed followed by the respective computational
analysis in Sect. 5.

2 Mass Spectrometery Analysis for Protein Identification

Proteomic research and protein identification require the analysis of large-volume
of protein data with high-throughput methodologies. Mass spectrometry (MS) has
emerged as a powerful tool for proteomic research enabling high-speed analysis,
sensitivity, and selectivity [13]. It is a widely used technique for detecting proteins
or peptides in mixtures obtained from biological samples like serum or plasma. It
provides immense potential for the proteomic study of disease detection and helps to
identify the targeted drugs at the protein or peptide level [6, 8, 11, 13].MS is used over
a wide range of applications involving various biomolecules. It is extensively used in
the domain of tissue biopsy, disease-tailored therapeutic targets, food adulteration,
environmental observation, diagnosis and treatment of cancer, etc [5–8].

In the proteomics studies, proteins are digested into peptides and later analyzed by
mass spectrometry. Proteins can be identified either by a single stage of mass spec-
trometry, called peptide mass fingerprinting (PMF) or by using two stages, called
tandem MS or MS/MS. The analysis of MS data can be done using two approaches,
peptide mass fingerprinting (PMF) and MS/MS followed by de novo sequencing. In
PMF followed by database searching, generally, a protein is digested using enzymes
like trypsin, chymotrypsin, etc. and the generated pattern of peptide masses is corre-
lated with the peptide sequences that are obtained from the in-silico digestion of the
database proteins. This approach is applicable only when the peptides correspond-
ing to the m/z values of the unknown peptides are pre-existing in the database. In
de novo sequencing the amino acid sequence of the unknown peptides is determined
from the mass spectrum. In this approach, a purified sample is subjected to prote-
olytic digestion using enzymes like trypsin, chymotrypsin, Lys-C, etc. The peptides
obtained after digestion undergoes through MALDI and tandem MS analysis. The
isolated peptide ions in the first MALDI MS stage are further subjected to MS anal-
ysis to determine the amino acid sequence. The amino acid sequences are searched
in protein databases using string matching operation to identify proteins or to obtain
relevant information from databases [13–15].

Mass to charge (m/z) ratios of the peptides is determined using MS. In the pro-
teomic analysis using MS, one of the essential steps is to extract peptide peaks from
the raw MS spectra. Peak detection is a feature extraction step which further leads
to protein identification, and discovery of biomarkers for disease detection [16, 17].
Initially, the raw data obtainedmust be converted to discrete peaks that can be used in
a database search. However, it is a very challenging process to detect the peak from
the raw data collected fromMS and to finally conclude the peptide or protein identi-
fication. The acquired spectra fromMS have complex features, as they are composed
of a number of overlapping peaks having different amplitudes that quantify the abun-
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dance of the peptides. Usually,MS spectra are contaminated by biological or physical
artifacts, including the background noise and the baseline trend [16]. Peak-detection
methods with high accuracy and sensitivity are needed to separate peptide signals
from the noise and artifacts. Therefore, various algorithms facilitating the identifi-
cation of the peaks corresponding to the true peptide signals have been proposed in
the literature for analyzing MALDI-TOF data [16–21]. However, the problem of the
potential detection of noise peaks as desired signals was not completely resolved,
which is a bottleneck for the development of reliable tools for biomarker discovery
using proteomics analysis and early disease diagnosis [22].

An Independent Component Analysis (ICA) based approach for the processing
of proteomic signals and extracting the protein profiles from MALDI-TOF MS data
was proposed in [23]. In the context of ICA, the mass spectra are considered as the
observed mixed signals where the protein profiles are assumed to be independent
of each other and correspond to the independent source signal components. Each
independent source signal should contain a single peak or multiple peaks that are
up-scaled or down-scaled by the same factor across the mass spectra. As a basic
requirement for the ICA problem, the number of mass spectra needed for the ICA
decomposition should be at least equal to the number of expected peptides. Therefore,
ICA with high dimensions is used for proteomic data analysis, for separating the
artifacts and for direct resolution of the protein signals. This ICA based method was
validated by Mantini et. al. on simulated data for separating protein peaks, without
significant signal distortion in [23]. ICA based protein identification method was
found more reliable and reduced the false discovery rate of protein peak masses than
the state-of-the-art classical methods in terms of peak detection [23].

String matching is a versatile operation employed at various stages of the bioin-
formatics pipelines including searching genome databases and mass spectrometry
based proteomics study where database search parameters are controlled for search-
ing of peptide tags. Online data analysis is a part of hypotheses-driven tandem mass
spectrometry (hdMS/MS). HdMS/MS need to perform data analysis under a strict
real-time limits [24, 25]. In LC-MS/MS based shotgun proteomics, the precursor ion
selection is an important task to reduce the number of MS/MS peaks in the analy-
sis. The peptide sequences are used to avoid redundant computations and searches
and thereby reducing the time consumption. In these applications, peptides derived
from the mass spectrometry data are either searched in protein databases or proteins
obtained from genome translated in all six reading frames. There is a need for accel-
erated solutions to analyse the evergrowing proteomic and genomic databases, as
discussed in the next section.

3 Need for Accelerated Approaches in Proteomics

Recent technological advancements and research in high-throughput next-generation
sequencing methods have contributed a large amount of genomics data to the life
science society, and it is growing at an exponential rate doubling every 18 months,



An Accelerated Computational Approach in Proteomics 393

surpassing Moore’s law in electronics [26]. Furthermore, due to the advancements
in liquid chromatography and mass spectrometry, mass spectra data in proteomics
is also growing at a very high rate [27]. As a result of the increasing growth of
data in genomics and proteomics, various operations of bioinformatics involving
this data have become computationally intensive and time consuming. As discussed
in the previous section, the operations for MS data analysis like independent compo-
nent analysis and string matching need immediate attention for designing efficient
methodologies addressing the problems arising as a result of the huge data growth
[23, 28].

In the field of computational bioinformatics various computationally intensive
algorithms are accelerated using high-performance computing solutions including
multiprocessors, multicore CPUs, clusters, cloud and grid computing, etc. These
solutions involve a large computational infrastructure and thereby making their man-
agement very costly [29]. Hence, research is emphasized on cost-effective hardware
accelerators including field programmable gate arrays (FPGAs). In literature, high-
density FPGAs are reported to employ for efficient implementation and acceleration
of various computationally intensive algorithms in bioinformatics [30, 31].Hardware
acceleration using FPGAs is achieved in numerous domains like signal preprocess-
ing using ICA, pairwise sequence alignment, resequencing, gene-sequence analysis,
multiple sequence alignment, read assembly in genomics, the study of homologous
sequences, DNA sequencing, database searching, etc. [30, 31].

In mass spectrometry based proteomic data analysis, peak detection is an essen-
tial step for subsequent analysis. ICA forms an integral part of proteomics using
mass spectrometry. The aforementioned applications, require hand-held devices that
perform the necessary computations on-the-fly. ICA has wide-ranging applications
across multiple domains like biomedical signal separation for EEG, ECG, EMG [32–
37], fetal heart sound extraction [38, 39], speech and audio processing [40, 41] and
protein identification [23] to name a few. The need for unobtrusiveness, portability,
speed, and power-efficiency demanded by these devices have imposed speed, area
and power constraints on the design. Various algorithms for ICA have been proposed
over a period of time. FastICA (FICA) algorithm proposed in [42] is the most com-
monly used algorithm as it is faster than the other state-of-the-art ICA algorithms
[43, 44] in terms of convergence speed.

FICA involves various complex arithmetic operations such as square root, matrix
multiplications, and division operations. It comprises two steps—Preprocessing and
fixed-point Iteration. A low complex algorithm-architecture optimization
approach to eliminate the computationally complex operations using COordinate
Rotation DIgital Computer (CORDIC) was presented in [45]. This makes use of
a single 2D CORDIC engine recursively to perform nD FICA, resulting in hard-
ware saving and thereby makes it suitable for resource constrained applications. The
method illustrated in [45] uses entirely sequential operations for computing each
fixed point Iteration step iteratively for all the n vector, hence drastically increasing
the overall computation time. So, there is a need to explore the possibilities for accel-
erating the FICA algorithm by reducing the number of computation steps required
by removing the redundant steps on the architectural-algorithmic level.
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Hardware acceleration in string matching is useful in various disciplines includ-
ing biomarker discovery, basic local alignment search tool, proteogenomic mapping,
homologous series detection, sequence alignment and sequence similarity in homol-
ogy, etc. [14, 46, 47]. Aho-Corasick algorithm (ACA) is one of the most popu-
lar multi-pattern string matching algorithms [28]. In the literature, various research
groups have reported the applications of Aho-Corasick algorithm in computational
bioinformatics. Brudno et al. (2003) used a simplified version of ACA in the fast
alignment of large genomic sequences [48]. The SITEBLAST algorithm byMichael
et al. (2004), uses ACA for local alignment of genomic sequences [49]. Hyyrö et
al. (2005) have reported that ACA performs best from various string matching algo-
rithms to locate unique oligonucleotides from DNA databases [46]. In the protein
identification pipeline, Alex et al. (2005) used ACA for matching peptides obtained
using mass spectrometry in DNA databases [50]. Parallelly, Dandass et al. used ACA
in genome annotation using proteomics data called proteogenomic mapping where
peptides obtained in mass spectrometry are matched in a genome database translated
in all six reading frames [51].

In bioinformatics, very often there is a need for completing string matching
in strict time constraints. These include various domains like searching genome
databases for nucleotide sequences, proteome databases for amino acid sequences,
hypotheses-driven tandem mass spectrometry (hdMS/MS), LC-MS/MS based shot-
gun proteomics, etc. where the search operation has to be completed in stipulated
time to avoid data pile up and match with the rate of data generation [15, 24, 25, 48,
49, 52]. In conventional FPGA based hardware accelerators design for string match-
ing, the design-steps involve commercial tools and require hundreds of seconds for
executing synthesis, implementation, and configuration file generation [53–55]. This
approach is limited with drawbacks at instances where the patterns are generated at
a higher rate than the reconfiguration time of FPGAs [24, 25, 50]. The reconfigura-
tion of FPGAs is a time-consuming task and involves dedicated computer systems
and technical expertise to handle sophisticated proprietary tools. To match with the
data rate of high-throughput technologies and to provide an efficient solution for the
computationally intensive string matching operation there is an utmost requirement
for alternate accelerated methodologies.

4 Hardware Acceleration in Protein Identification

Mass spectrometry (MS/MS) analysis of a substantial proteomic study can generate
hundreds of gigabytes of raw mass spectrometry data. In order to effectively address
the bottlenecks of huge data analysis for proteomic studies, high-performance and
accelerated computing resources are essential. In the previous section, we have seen
that there is a need for a hardware accelerator for ICAand stringmatching architecture
and algorithms to facilitate low-cost, high speed solution for protein identification.
In this section, we will study the accelerated approaches at the algorithmic and
architectural level to meet the evergrowing need for high throughput technologies in
the field of proteomics.
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4.1 Independent Component Analysis for Proteomics

Mass spectrometry analysis is based on the measurement of mass to charge (m/z)
values, present in the MS spectra. As briefly explained in Sect. 2, for reliable protein
identification the raw MS data is preprocessed using methods like baseline removal,
denoising, normalization, and peak detection [16] as various artifacts are also mixed
with the MS data. These artifacts may be the result of other peptides and chemi-
cals eluting from the chromatographic column, degradation (i.e., mass reduction) of
peptides in the mass analyzer and airborne contaminants. The analyzed MS spectra
have multiple overlapping peaks with a large variation that makes them difficult to
be solved with the typically available methods. Proteomic studies using MS require
data analysis where little or no prior information on the composition of a sample is
available, resulting in a typical case of a Blind Source Separation (BSS) problem. The
use of BSS for mass spectra separation using Principal Component Analysis (PCA)
[56, 57] and Independent Component Analysis (ICA) [23, 58, 59] have been well
explored in the literature. The components estimated by PCA may contain negative
values as PCA does not impose any constraints on non-negativity. However, the com-
ponents of the real mass spectra are non-negative, which makes PCA non-effective
for MS data analysis [56, 57]. The protein identification method based on ICA was
found to be more reliable than the state-of-the-art classical methods in terms of peak
detection [23].

As discussed in Sect. 3, ICA has many applications in the biomedical signal
processing, genomics, and protein profiling [23, 58, 59]. ICA can separate the sta-
tistically independent source signals in the domain of protein identification. To meet
the need for high-throughput technologies and the ever-growing proteomic data, low
complex hardware accelerators are needed for peak detection and protein identi-
fication without sacrificing accuracy. This motivated the researchers to develop the
architectural-algorithmic holistic approach for hardware accelerators usingCORDIC
and Vector cross product [60, 61]. In continuation to the CORDIC based methodol-
ogy proposed for nD FICA by Acharyya et. al. in [45], Bhardwaj et al. proposed an
accelerated yet low complex FICA methodology termed as Hybrid FICA [60, 61].

4.1.1 Mathematical Overview of Independent Component Analysis

FICA attempts to solve the basic problem of BSS comprising of a system of n
independent sources, where n is the number of expected peptides found in the protein
mixture in context to proteomics. The basic representation of FICA can be expresses
is as follows:

X = AS (1)

where X is a matrix with n mixed signal vectors or MS spectra in context to pro-
teomics, S is a matrix with n statistically independent source signal vectors or inde-
pendent peptide signals in context to proteomics, out of which no more than one is
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Gaussian distributed, andA is the n × n mixing matrix used to obtainX from S [62].
X and S are n × L matrix with each row denoted by xi and si respectively and can
be expressed as X = {xi} and S = {si}, i ∈ [1, n]. xi and si in turn can be expressed
as xi = {xi, j } and si = {si, j }, j ∈ [1, L], where L is the frame-length of each signal.

As mentioned earlier, FICA consists of Preprocessing and Iteration steps [62].
The aim of the preprocessing is to do centering and whitening of the mixed signals.
The mixed signals with zero mean and unit variance are obtained after preprocessing
by using centering, covarience and EVD which can be implemented using CORDIC
[44, 63]. For the sake of brevity, the discussion about preprocessing is omitted here as
the focus is on FICA Iteration, the inputs to which are available after preprocessing.
The Iteration step takes the centered and whitened signals (Z) and computes an
estimate (Sest) of the original sources by finding an n × n unmixing matrixW. This
is expressed as:

Sest = WTZ (2)

W =

⎡
⎢⎢⎢⎣

w1,1 w2,1 · · · wn,1

w1,2 w2,2 · · · wn,2
...

...
...

w1,n w2,n · · · wn,n

⎤
⎥⎥⎥⎦ (3)

The i th column of W represents the weight vector wi used to estimate the i th inde-
pendent component (i ∈ [1, n]). The fixed-point FICA Iteration introduces a contrast
function to maximize the non-Gaussianity and hence maximizing the independence
of the sources. Considering Kurtosis-based contrast function, wi is updated at the
end of every iteration as shown [62]:

wnew
i = E{Z(wi

TZ)3} − 3wi (4)

The vector update step is followed by orthogonalization of wi with respect to all
the previously computed unit vectors wc

j , ∀i ∈ [2, n], j ∈ [1, i − 1] (where c stands
for the converged vector), in order to ensure that different wi do not converge to the
same maxima. This can be achieved by Gram Schmidt Orthogonalization which is
expressed as:

worth
i = wnew

i −
i−1∑
j=0

(wi.wc
j )w

c
j (5)

where “_” indicates normalized value henceforth. Orthogonalization is followed by
normalization of the vector as shown:

wnew
i = worth

i

‖worth
i ‖ (6)
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After normalization, a convergence check is performed to ascertain if worth
i is in the

same direction aswi. If not, the entire process (4)–(6) is repeated. The FICA Iteration
procedure is carried out until i = n, following which Sest can be computed usingW
as shown in (2).

The computationally expensive nature of the arithmetic operations in (2), (4),
and (6) prompted the introduction of CORDIC to provide a low-complex hardware
mapping for 2D FICA in [45]. Considering clockwise rotation, the fundamental
CORDIC expressions can be given as follows:

[
x f

y f

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x0
y0

]
(7)

where the initial vector (x0, y0) is rotated by an angle θ to obtain the final vector
(x f , y f ) [64–68]. This fundamental 2D CORDIC can be used iteratively in the Rota-
tion and Vectoring modes of operation to perform generic nD FICA. This section
summarizes the aforementioned procedure in terms of its mathematical formulation
that is essential for understanding the proposed methodology. Interested readers can
refer to [45] for a detailed description of the architecture.

The following concise notations for x f , y f , and θ in (7) were introduced in
[45] for brevity: x f = Rotx (x0, y0, θ) , y f = Roty(x0, y0, θ), θ = Vecθ(x0, y0) and
‖(x0, y0)‖ = Vecx (x0, y0). Expanding (4) for n dimensions, we get:

wnew
i,k = E

⎡
⎣zk, j

⎛
⎝

p=n∑
p=1

z p, jwi,p

⎞
⎠

3⎤
⎦ − 3wi,k (8)

where wnew
i,k is the kth component of wnew

i , wi,k is the kth component of the unit
vectorwi (i, k ∈ [1, n]), and j ∈ [1, L]. Expressingwi in polar form gives rise to the
following terms:

R2D
x, j = Rotx (z1, j , z2, j , Vecθ(w1,1,w1,2))

V 2D
θ = Vecθ(w1,1,w1,2), V

2D
x = Vecx (w1,1,w1,2)

RnD
x, j = Rotx (z1, j , R

(n−1)D
x, j , Vecθ(w1,n, V

(n−1)D
x ))

V nD
θ = Vecθ(w1,n, V

(n−1)D
x ), V nD

x = Vecx (w1,n, V
(n−1)D
x )

(9)

The vector update step in (4) can now be performed by recursive use of the funda-
mental 2D CORDIC as follows:

wnew
i,k = E

[
zk, j {RnD

x, j }3
] − 3wi,k (10)

To map the normalization step in (6) onto the same CORDIC, [x0 y0] in (7) were
replaced with [0 1]. The outputs

[
x f y f

]
, therefore, become [sin θ cos θ], which

are the normalized components of [x0 y0].
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The following terms were defined to obtain generalized expressions for nD nor-
malization.

V 2D
x = Vecx (w

orth
i,1 ,worth

i,2 ), V kD
x = Vecx (w

orth
i,k , V (k−1)D

x )

V 2D
θ = Vecθ(w

orth
i,1 ,worth

i,2 ), V kD
θ = Vecθ(w

orth
i,k , V (k−1)D

x )

R(k−1)D
x = Rotx (0, R

kD
x , V kD

θ ), RnD
x = Rotx (0, 1, V

nD
θ )

R(k−1)D
y = Roty(0, R

kD
x , V kD

θ ), RnD
y = Roty(0, 1, V

nD
θ )

(11)

where k ∈ [3, n]. The normalized vector wi
new of an nD vector wi

orth can now be
obtained as follows:

wnew
i,k =

⎧⎪⎪⎨
⎪⎪⎩

Roty(0, R3D
x , V 2D

θ ) if k = 1
Rotx (0, R3D

x , V 2D
θ ) if k = 2

Roty(0, R(k+1)D
x , V kD

θ ) if k ∈ [3, n − 1]
Roty(0, 1, V nD

θ ) if k = n

(12)

Finally, the estimation step in (2) was expressed in terms of CORDIC operations by
replacing wi in (9) with the converged i th weight vector wc

i . The estimation of the
i th independent component sesti = {sesti, j } ( j ∈ [1, L]) is given by:

sesti, j = Rotx (zn, j , R
(n−1)D
x, j , Vecθ(w

c
i,n, V

(n−1)D
x )) (13)

4.1.2 Acceleration by Exploiting Algorithmic Redundancies for
Independent Component Analysis

The procedure for CORDIC-based nD FICA illustrated in the previous subsection
based on [45] computes the weight vectors in an entirely sequential manner, reusing
the same 2D CORDIC engine over multiple levels to realize the highly complex
operations involved in each stage of FICA Iteration. The iterative use of a single
unit of CORDIC contributes to the overall low complexity of the architecture. Each
stage of FICA Iteration still involves a significant number of clock cycles to com-
pute the expressions in (4)–(6). The number of clock cycles taken by one level of
CORDIC rotation will depend on the frame-length L , as the samples of each signal
zi have to be fed sequentially to the CORDIC block. As there are (n − 1) levels of
CORDIC Rotation Mode (CRM) for nD FICA according to (10), one vector update
step requires (L(n − 1) + Ncordic) cycles, where Ncordic is the CORDIC latency. In
addition, each Iteration stage involves Gram Schmidt orthogonalization, CORDIC-
based normalization, and convergence check, each of which further contributes to
the total computation time [45].

As proposed in [61], reducing the computation time of FICA needs observation
of all the steps involved. FICA Iteration requires orthogonalization of each wi after
every update step to ensure maximum de-correlation between the computed vectors
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Fig. 1 The results obtained by performing conventional FICA on mixtures of three independent
signals generated in Matlab

as evident from (5) and (6). Figure1 shows the unmixing vectors obtained after
performing conventional 3D FICA in Matlab. It can be inferred from this figure
that wc

3 is perpendicular to the plane containing wc
1 and wc

2. We know that, a cross
product operation performed on two vectors v1 and v2 in R3, results in a vector that
is mutually perpendicular to both v1 and v2 [69, 70]. The direction of wc

3 can be
directly obtained by performing a cross product operation on wc

1 and wc
2. Also, the

orthogonalization in FICA is always followed by the normalization, so the converged
vectors wc

1 and wc
2 in Fig. 1 are of unit magnitude. Therefore, the magnitude of the

result obtained by taking the cross product of wc
1 and wc

2 can be expressed as:

‖wc
1 × wc

2‖ = ‖wc
1‖ · ‖wc

2‖ · sin π/2

= ‖wc
1‖ · ‖wc

2‖ = 1
(14)

This signifies that a cross product operation onwc
1 andw

c
2 results in not only the direc-

tion but also the exact value of the required unit vectorwc
3 without having to perform

normalization separately. Extending the same concept to n dimensions, it can be
inferred that a cross product operation on the orthonormal vectorswc

1,w
c
2, . . . ,w

c
n−1

will directly yield the final vector wc
n [69, 70] as shown:



400 S. Bhardwaj et al.

wc
n =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en
wc
1,1 wc

1,2 · · · wc
1,n

wc
2,1 wc

2,2 · · · wc
2,n

...
...

...

wc
n−1,1 w

c
n−1,2 · · · wc

n−1,n

∣∣∣∣∣∣∣∣∣∣∣

(15)

where |.| represents determinant operation, e1, . . . , en represent the unit vectors
in Rn, and wc

i, j represents the j th component of the i th converged vector wc
i , ∀i ∈

[1, n − 1], j ∈ [1, n].
Obtaining wc

n through cross product requires only the (n − 1) previously con-
verged vectors as opposed to the entire mixed signal matrix Z that is required in
(4) and (10). This eliminates the process of feeding L inputs sequentially to (n − 1)
levels of 2D CORDIC, and can substantially reduce the overall time required for
computing wc

n. In addition, there is now no need to perform orthogonalization, nor-
malization, and convergence check, as wc

n is already orthonormal to all the other
vectors by virtue of the mathematical rules governing cross product. In other words,
eliminating the nD hybrid FICA algorithmic redundancy proposed in [61], the result
of carrying out the operations in (4)–(6) over multiple iterations can now be attained
by simply computing a vector cross product, thereby eliminating the entire stage of
FICA Iteration required for computing wc

n. The architecture details to Hybrid FICA
will be discussed in the next subsection.

Although, [61] provides acceleration, but vector cross product requires huge area
corresponding to the extra hardware resulting in area overhead for higher dimension
Hybrid FICA, adding to the hardware complexity. In [71] paper, the authors tried to
explore the algorithmic redundancieswithout adding any extra architectural hardware
complexity, resulting in low complex and accelerated nD FICA architectural design
methodology termed as Simplex FICA. Motivated by this fact, as part of preliminary
study, Bhardwaj et al. introduced the basic concept of Simplex FICA in [72] and
extended the work further to [71] to propose an nD Simplex FICA methodology, in
which a significant gain in computation time without adding any area overhead to the
CORDIC-basedFICApresented in [45]. It is to be noted, that the scope ofnDSimplex
FICA methodology is not limited only to the CORDIC based FICA implementation
proposed in [45], but it can be easily adopted by anyFICA implementation techniques
resulting in significant acceleration.

Simplex FICA uses a different approach to compute nth weight vector [71]. It is
illustrated as follows.

Let us consider the case of 3D FICA as shown in Fig. 1. To ensure that there
is maximum de-correlation between the vectors, the update step in FICA Iteration
stage should be followed by orthogonalization of each wi as observed from (5) and
(6). If the three unmixing vectors are given by wc

1, w
c
2, and wc

3, then wc
3 has to be

orthogonal to the plane containingwc
1 andw

c
2. After computingwc

1 andw
c
2 (using the

iterative stages of update, orthogonalization, normalization and convergence check),
the only possible direction for the third unmixing vector wc

3 is perpendicular to the
plane containingwc

1 andw
c
2. The direction forw

c
3 can be obtained by orthogonalizing
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the starting value of w3 with respect to w
c
1 and w

c
2 as per (5). Since w

c
1, w

c
2 and the

starting value of w3 are already normalized, orthogonalization of w3 will result in
the required unit vector wc

3. This will entirely eliminate the FICA Iteration stage for
computing wc

3.
Extending the same concept to n dimensions, it can be inferred that orthogonal-

ization of the starting random value ofwn with the orthonormal vectorswc
1 . . .w

c
n−1,

will directly yield the final vector wc
n. Unlike the state-of-the-art methods for

computing wc
n which require the entire mixed signal matrix Z for computing (4) and

(10), Simplex FICA uses only orthogonalization which is performed using GSO.
GSO requires only the (n − 1) previously converged vectors wc

1 . . .w
c
n−1. If a nor-

malized random vector is fed as an initial random vector corresponding to wn , there
will be no need to perform normalization step after orthogonalization step. Hence,
by using the proposed methodology, the overall computation time required for wc

n
computation reduces significantly, hereby eliminating the normalization step and the
need to process L sequential inputs for the update step. Furthermore, convergence
check is not needed, as wc

n is already orthonormal to all the pre-computed vectors.
To summarize, computing the operations in (4)–(6) iteratively for wc

n calculation
is equivalent to single GSO step, eliminating the need for entire update step, nor-
malization step and convergence check step for wc

n computation. The advantage of
this approach lies in the fact that the reduction of computation time comes with no
additional hardware overhead, as the same resources which are required for execut-
ing the previous stages can be used for the last stage as well. We can conclude that
Simplex FICA methodology exploited the following redundancies in the existing
conventional FICA algorithm to facilitate acceleration:

• The iterative update step for nth FICA iteration becomes redundant and unneces-
sary.

• The normalization step becomes redundant for nth stage (enhancement over [72]).
• Convergence check for nth FICA iteration becomes unnecessary.

4.1.3 Detailed Architecture of the Accelerated Independent
Component Analysis

This subsection gives the detailed architecture of the FICAmethodologies discussed
in the previous subsection namely nD Hybrid FICA and nD Simplex FICA. The
hardware architecture implements ion for Hybrid FICA in [61] is presented in Fig. 2.
Figure 2a shows the top-level viewof the proposed architecture.All the samples of the
input mixed signals are stored in the Memory Bank using separate data memories.
Temporary memory is used to store intermediate CRM outputs, which are to be
used during the next level of CORDIC. The Control Unit (CU) enables each block
when necessary, and is responsible for proper synchronization and interfacing of all
the blocks to maintain a cycle-accurate design. CU also keeps track of the current
CORDIC level to provide the appropriate inputs and passes the outputs of the last
level of CORDIC to Update Unit where the vector update step is performed. Gram-
Schmidt orthogonalization, Kurtosis-based vector update, and nD Cross Product
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Fig. 2 a Top level block diagram of the architecture for nD Hybrid FICA. b Doubly-pipelined
architecture for CORDIC rotation and vectoring mode

computation are all performed in the respective blocks shown. Outputs from the
Update Unit is once again orthogonalized, and the whole iterative process is repeated
until the corresponding weight vector converges or when the maximum number of
iterations is reached. Inputs to CORDIC pass through a multiplexer array that sends
selected signals to CRM and CORDIC Vectoring Mode (CVM), and the outputs are
similarly de-multiplexed before being sent to the Control Unit. Since normalization
requires only the CORDIC outputs [45], it is performedwithin the Control Unit itself.
After computing wc

n−1, the Cross Product unit is activated to directly compute wc
n.

It is important to ensure that the hardware complexity of ICA computation is not
much increased by the introduction of the Vector Cross Product operation. Hence,
the generic low-complexity algorithm for nD cross product computation proposed in
[73] is followed. The architecture used in [61], uses symmetry based implementation
for 4D cross product as the fundamental unit [73]. To avoid the use of extra hardware
intensive arithmetic units for 4D cross product, resource-sharing of the multiplies
used for Gram-Schmidt Orthogonalization Unit in Fig. 2a is done. Therefore, Hybrid
FICA proposed in [61] attains greater speed by making use of the same resources
that are present in state-of-the art FICA implementation methodologies.

Figure 2b shows the implementation of CVM and CRM. The angle computed
in CVM by adding/subtracting the micro-angles obtained at each micro-rotation
stage is to be provided to CRM where it is again broken down into micro-angles.
To avoid this redundancy, we make use of the doubly-pipelined architecture [74],
which directly feeds the micro-angles obtained at every micro-rotation stage in CVM
to the corresponding micro-rotation stage in CRM. However, during normalization,
CRM is activated only during the last level of CVM [45]. Hence, we improvise the
doubly-pipelined architecture by inserting amultiplexer between eachmicro-rotation
stage of CRM and CVM as shown in Fig. 2b. The micro-angles obtained from CVM
during normalization (denoted by θnormi , i = 1, 2, . . . , NC ) are stored in a register.
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Fig. 3 Top level architectural detail diagram for nD simplex FICA

Each of these is provided as one of the inputs to the multiplexer of the corresponding
micro-rotation stage whose other input is the micro-angle coming directly from
CVM. The samples z1, j , z2, j , . . . , zn, j of the preprocessed signals required during
the vector update stage, and the values 0 and 1 required during normalization stage
are multiplexed appropriately before being given to x and y inputs of CRM. In
addition, the x-output of CRM can be directly fed to its y-input for the next level
during normalization, while during vector update the x-output corresponding to each
sample is stored in a temporarymemory fromwhich it is read and given as the y-input
to CRM (indicated by Rot (l−1)

x,i ter ). Similarly, the values of wk(k = 1, 2, . . . , n − 1)
required during normalization, and their normalized values required during an update
and estimation stages are multiplexed and provided as the x and y inputs of CVM.
The x-output of CVM is fed back to its y-input.

In addition to the architecture proposed in [45], an extra hardware module for nD
cross product is introduced in [61] for algorithmic and architectural improvement,
as shown in Fig. 2a. Figure 2b is partially derived from [45] for CORDIC based
implementation for wc

1 to wc
n−1 computation. Further, the CORDIC Block is shown

in Fig. 2a is disabled for wc
n computation.

Top level block diagram for a low complex accelerated architectural methodology
for nD Simplex FICA is shown in Fig. 3. The architecture for Simplex FICA for
w1 to w(n−1)n computation is similar to that of Hybrid FICa as described earlier.
The input mixed signal samples are stored in a Memory Bank. The intermediate
CRM outputs are stored in temporary memory. Separate GSO block is used for
computing the orthogonalization. Normalization, Update and estimation steps are
performed using the CORDIC engine. The corresponding inputs to all the steps are
generated from the Control Unit (CU) when necessary. Convergence check for all
the computed weight vector after every iteration stage is performed in Convergence
check block for wk where, k = 1 : (n − 1). As discussed earlier for wn computation
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only one orthogonalization step (GSO), with respect to the previously computed
w1,w2, . . .wn−1 is performed. It can be noted that the proposed method is not limited
to using only GSO for orthogonalization. Any orthogonalization scheme can very
well be adopted. The CU ensures the proper synchronization and interfacing of all
the blocks for maintaining a cycle-accurate design by enabling the various blocks at
the right time. Though Bhardwaj et al. have used the CORDIC based FICA given in
[45] for implementing the proposed methodology, but the proposed methodology is
equally valid for any other FICA implementation.

4.2 Accelerated Approaches in String Matching

String matching is one of the most popular functions in text processing applications
in which locations of strings/patterns are identified in a given database text. It is
extensively used in the field of computational and information systems, with many
real-world applications including web search engines, intrusion detection, informa-
tion retrieval, word processing, pattern recognition, finding locations of nucleotides
and amino acids in bioinformatics, etc. [14, 47, 48, 75]. Various algorithms are
present in the literature that performs the operation of string matching. Depend-
ing on the number of patterns that are simultaneously searched, these algorithms
can be broadly classified into a single pattern or multi-pattern matching algorithms.
These include brute force searching, Knuth-Morris-Pratt algorithm, Boyer-Moore
algorithm, Rabin-Karp algorithm, Aho-Corasick algorithm, Commentz-Walter algo-
rithm, etc.

4.2.1 Hardware-Software Codesign Based Methodology
for Accelerated String Matching

Hardware-software codesign is a concurrent, interconnected and coordinated design
of a system that includes both hardware and software modules/components and they
interact with each other to perform a complete task [76]. In the codesign based
approach for system design, the desired functionality is achieved by partitioning
the system into dedicated hardware and software modules. This approach facilitates
the advantages like speed, power, and parallelism of hardware and flexibility, mod-
ularity and reusability of software [76]. Design constraints are met by combining
the rewards offered by both hardware and software [77]. Over many decades, the
research in hardware-software codesign has evolved through a number of stages and
passed through multiple approaches such as focusing on partition strategies, code-
sign approaches in multiprocessing, multithreading, and multicore environments,
codesign architectures, etc. [77].

Recently, a new paradigm is rendered by employing system-on-chip (SoC), where
all components of computing and communication of a system are available on a
single chip, in hardware-software codesign [78]. This approach uses SoC FPGAs
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Fig. 4 Time profiling of Aho-Corasick algorithm running in software. All the values are shown as
the percentage of the total time of execution of the AC algorithm

like the Zynq family from Xilinx and Stratix, Arria and Cyclone SoC families from
Intel. These SoC FPGAs take away the need for standalone integrated circuits (IC)
for hardware and provide a single chip solution. In addition to SoC FPGAs with
on-chip ARM processors, there are a variety of softcore processors available for
hardware-software codesign. These are off-the-shelf, ready to use, customizable and
synthesizable processor cores that facilitate rapid prototyping and reduce the time
in the design cycle. OpenRISC 1200, PicoBlaze, Leon 3 and Mico32 are open-
source softcore processors while MicroBlaze, PowerPC, Nios II, and Xtensa LX are
commercial softcore processors [79, 80].

Usually, in hardware-software codesign, profiling and partitioning are performed
on the desired functionality of the system [76, 77]. In software profiling, the high-
level description of the system functionality represented by a programming language
is analyzed thoroughly for resource-intensive and time-consuming operations, func-
tions, and tasks. This is achieved with the aid of profiling software that accurately
analyze the program and provides useful insights into the various operations and
functions carried in the program. In order to analyze the string matching opera-
tion using the Aho-Corasick algorithm, one of the most popular multi-pattern string
matching algorithms, the time profiling operation on the algorithm implemented
using C program is performed. The profiling results obtained by running the pro-
gram on multiple test cases are shown in Fig. 4. It is evident that 73% of the time,
a significant amount, is consumed in executing the search function and operations
between the nodes of the AC finite state machine (FSM). A careful analysis of the
results will lead to partition of the node functions and search function of the system
into hardware, while tasks related to data control and management are assigned to
software. To reconfigure the system by patterns changing with time, the functions
implemented in hardware are desired to be updated quickly within the time interval
by which next set of patterns is available.
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Table 1 Flow of the hardware-software codeisgn methodology for string matching

Algorithm 1: Algorithmic flow of the codesign methodology for string matching

Input: Sets of patterns S, database for searching dbase
Output: locations of patterns with their ID
1: while S is not empty do
2: read patterns of set Si and create AC finite state machine (FSM) -sw
3: create a memory table for the corresponding FSM -sw
4: initiate hardware and transfer table to the local memory of hardware -sw & hw
5: perform string matching -hw
6: update results and communicate to the software -hw & sw
7: stay in standby till next set of patterns arrive -sw & hw
8: end

Abbreviations: sw—software, hw—hardware

4.2.2 Architectural Methodology for Accelerated String Matching

In the hardware-software codesign basedmethodology, frequently used and compute
intensive functions or tasks of the underlying algorithm are offloaded to dedicated
hardware while control and data management tasks are performed by software [52,
76, 77, 80]. The Substantial speedup can be achieved by employing fixed hardware
accelerators for the time-consuming algorithmic and data processing tasks. The flex-
ible software running on the processor core is well suited for executing control
oriented and decision making tasks and data management. Using these guidelines,
the algorithmic flow for a novel hardware-software codesign based methodology for
string matching is presented in Table 1.

Given a number of sets of patterns S, the string matching operation requires to
identify these patterns in the database dbase. At a given interval Ti, let Si denote
a set of patterns that are changing with respect to time, while Si + 1 denotes the
next set of patterns at the interval Ti + 1. The problem statement is to reconfigure
the string matching system with the patterns in Si and scan the database for these
patterns before the interval Ti + 1. In the methodology, the software program reads
the patterns from PC or external memories and creates an AC finite state machine
for these patterns. A memory table is created for the corresponding FSM using
the memory based FSM implementation presented in [81]. The software program
initializes the hardware accelerator and transfers the memory table of patterns to
it. The string matching operation is performed by the hardware accelerator, and the
search results are communicated to the software program. These steps in the flow
are repetitively run for the next set of patterns of Si + 1. In the design, as soon as the
patterns of Si are available, the system has to be reconfigured with them and scan
the database before Si + 1 is made available. This is an essential feature of a runtime
reconfigurable system.
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Fig. 5 Aho-Corasick FSM illustration for stringmatchingwith patternsAC,DAC,ABDandACED

4.2.3 Memory Based FSM Implementation of Aho-Corasick Algorithm

Illustration of Aho-Corasick Algorithm

The properties of ACA including linear time complexity and the ability to simulta-
neously identify multiple patterns in a given text, make it advantageous than other
stringmatching algorithms [28, 46]. Let us illustrate the ACA by considering a group
of four patterns AC, DAC, ABD and ACED to be searched in a database. In the algo-
rithm, the group of patterns is preprocessed, and an FSM is created. The searching
operation is performed by passing the characters from the text or database as input
to the FSM. Figure 5 shows the FSM created by ACA for the group of patterns.

In the FSM each circle is called a state or node. The initial state or root state is
denoted by state 0. A character of the text is read and passed as input to the FSM
and for the corresponding character, a transition of state occurs. These transitions are
represented by edges or branches labelledwith the corresponding character for which
the transition occurs. Root state is retained when there is nomatching of characters in
the text while remaining states indicate partially or fully matched patterns. A double
circled state indicates a valid pattern match. All the edges are made up of normal
and failure transitions. Normal transitions occur when specific characters from the
text are matched with the patterns, while failure transitions are useful for finding the
patterns that overlap with other patterns. For the sake of simplicity, failure transitions
to the root node are not represented in the diagram.

Memory Based Aho-Corasick FSM Implementation

Memory based implementation of FSM is the technique to realize the FSM using
memories. Recently there are various advances in FPGA technologies including
the on-chip memory growth. As a result, memory based implementation of FSMs
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Fig. 6 Hardware details of the block RAM based Aho-Corasick FSM

on FPGAs using the on-chip memories is receiving significant research focus [81].
RAM memories including block RAM (BRAM) can be read and written during
the operation runtime. This facilitates them to be employed for the implementation
of different FSMs circuits. In addition to the runtime update, BRAM memories do
not involve the time-consuming design steps, including synthesis, placement, and
routing operations, as compared to logical elements based distributed RAM.

In a processor or computing machine, FSMs can be realized by memory tables
[51, 81]. Figure 6 shows the hardware details of the block RAM based Aho-Corasick
FSM for the group of patterns considered in the example. A tabular representation
for realizing the FSM is also shown alongside the hardware. The string matching
operation using the memory table is performed as follows. At any given time, the
control is at oneof the states in theFSM, and in thememory table, a rowcorresponding
to that state is read as activated by the address generated by the state register. This
row of the output of the memory is connected as inputs to the multiplexer. Out of
the various inputs, which are the next states in the FSM, the multiplexer selects a
particular input, i.e. state specific to the character read from the database. Let theword
‘cell’ denote a part of the register in memory. The inputs to the multiplexer are state-
cells, while the cells corresponding to output match vectors are called output-cells.
The control shifts to the next state as determined by the contents of the state register,
which in turn holds the state-cell. The input character determines the transition. For
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a given state, the pattern match column indicates the patterns that are matched. For
a given state, no output or match is indicated by a null value in the output-cell from
the pattern match column, while a non-null value indicates a match of patterns. The
individual bits of the output-cell indicate their corresponding patterns matched in the
database.

Memory Consumption in the Aho-Corasick FSM Implementation

The size (depth and width) of block RAM required to store the FSM table, is depen-
dent on the size and number of patterns. For a group of S patterns each of maximum
length L, the maximum number of states generated in the Aho-Corasick FSM is SL,
which in turn decides the maximum depth of the block RAM. Each cell in a column
excluding the cells of the pattern match column holds a state value of the FSM. The
width of a state-cell is the ceiling value of log2(SL). Let thewidth of the patternmatch
column is ω bits, then for a given alphabet of α symbols, the width of each register
in the block RAM is α log2(SL) + ω bits. The maximum number of bits required to
represent a character from the alphabet set is decided by the value of log2(α). The
value of ω decides the maximum number of overlapping patterns identified in any
state. Depending on the input character symbol, an α-to-1 multiplexer selects the
contents of the state-cell corresponding to that character. In other words, the input
character symbol helps the transition from one state to another by activating the next
state value corresponding to that character. The values of the output match vector
of width ω carry the information of patterns matched in that state. For a given state,
each bit in the output-cell indicates whether or not the corresponding pattern is found
in the database. The values of S, L, α, and ω in the aforementioned example are 4,
4, 26 and 4 respectively. Theoretically, the value of SL is 16, but due to overlapping
of certain parts of the patterns, it is 10. A block RAM of 1080 bits, width of 108 bits
and depth of 10, is required to store the Aho-Corasick FSM generated by the group
of patterns AC, DAC, ABD and ACED whose total size is 12 characters.

4.2.4 Hardware-Software Codesign Based Architectural Methodology
for String Matching

As described earlier, the search function and the node operations of the FSM are the
most time-consuming tasks in the Aho-Corasick algorithm. For an efficient design
using hardware-software codesign, these tasks are well suited for acceleration using
hardware. In Gudur et al. [82, 83] a novel approach for accelerated string matching
that also supports fast reconfiguration by patterns changing with time is proposed.
In this article, the patterns that are to be matched in the database are updated to
the hardware system in real-time, and the matching operation on the database is
performed in an accelerated mode using hardware-software codesign methodology.
A Search Engine is designed for the Aho-Corasick FSM, and the detailed hardware
architecture is shown in Fig. 7. Initially, before the start of the search operation, the
block RAM in the Search Engine is configured with the data in FSM memory table
by enabling memory write and memory store signals. Later, the search operation is
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Fig. 7 Detailed hardware architecture of the search engine for AC FSM

initiated by enabling and disabling the search andmemorywrite signals, respectively.
One character at a time is read from the database, and the corresponding part of the
memory output, which is a state-cell, is selected by the multiplexer. The next state
address of the memory is held by a State Register connected at the output of the
multiplexer, which in turn is generated by the state-cells. Bits of the Output Match
Vector from the pattern match column indicates the strings that are matched in the
respective states. Whenever a pattern is successfully matched, a flag is raised. In the
next part, the block RAMbased search engine of ACA FSM explained here is used to
design the accelerated and reconfigurable string matching using hardware-software
codesign.

Fig. 8 Detailed hardware architecture for string matching
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The detailed hardware architecture for string matching using the hardware-
software codesign methodology is given in Fig. 8. The Search Engine covered in
the previous section is instantiated inside an AC Core module. The module receives
the data in the FSM memory table of the group of patterns and also the associated
signals for controlling the local memory operations from the processor or top mod-
ule where the AC core is instantiated. The Search Engine Control Logic generates
the necessary signals to control the search operation in the AC core and also raises
a flag for the processor whenever the search operation is completed on the given
database text. A Database Memory (DM) is used to locally store the text before the
search begins and it feeds the AC Core with the input characters. These characters
from the database are read using the Dbase (database) Read Address Generation
Circuit (DRAGC) that is used to generate the address for the DM while the search-
ing operation is running. The bits of Output Match Vector of the AC Core indicates
the patterns that are identified and they are converted to the corresponding pattern
identification numbers in the Encoder. The Encoder also generates the address for
the Global Memory with the help of an address counter while the concatenation
circuit generates the data for this memory. The memory data input is obtained by
clubbing the pattern ID and the corresponding location obtained fromDRAG circuit.
An interface is provided to the processor or the top module and the Global Memory
to read the search results.

Fig. 9 System level architecture for hardware-software codesignmethodology basedAho-Corasick
algorithm
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System level architecture for the accelerated and reconfigurable string matching
using the hardware-software codesign approach is presented in Fig. 9. For ease of
understanding and representation, various signals and control circuits in the above
description are clubbed to form blocks representing their corresponding operations.
A processing system is realized using an ARMor softcore processor. In this codesign
methodology, the software part of the system is implemented using the processor.
On-chip or on-board DDR memory called as Processor Memory that acts as local
memory is connected to this processor for storing the compiled software instruc-
tions. Due to the limitation of on-chip memory, the DDR memory is desirable for
programs that produce a large memory footprint. A synchronous reset to the entire
system is provided by the Processor System Reset (PSR) block. Signals from the
PSR block is used to reset all the hardware blocks in the system to their initial states.
The Memory Controller facilitates a communication link between the processor and
memorymodules in the system. Here, Advanced Extensible Interface (AXI)memory
controller is used for the AMBA AXI interconnect systems.

The ACCore block initiated by the group of patterns performs the stringmatching
operation on the database. Memory based implementation of FSM shown in Figs. 6
and 7 are realized using the Control Logic along with the Local Memory. Depending
on the contents of the state register, which holds the value of a state in the ACA
FSM, a particular row is activated in the block RAM, which is used to realize Local
Memory. The AC Core reads characters from the database and from this row the
multiplexer selects a next state-cell value corresponding to the character. The output
of the multiplexer which holds the next state is fed to the state register that acts the
address for the memory. The output match vector in the activated row shows the
patterns that are matched in the present state. Besides taking control actions in the
AC Core, the Control Logic keeps track of the counter for the characters and value
of the output match vector. The entire system is residing on an FPGA or SoC FPGA.
Off-chip memories like external hard disc drives, memory cards, flash drives or any
other portable memories are used to store large size databases.

The working of the system can be described as follows. The software program of
the hardware-software codesign basedmethodology for the stringmatching operation
is designed to read the patterns to be searched from an external Secure Digital High
Capacity (SDHC) memory card or they come from a host machine. The group of
patterns forms a set Si. Next, ACA FSM is generated for the corresponding patterns
in the software. A memory table is created for the FSM by the software and the
corresponding data is transferred to the Local Memory of the AC Core using the
Control Logic. String matching operation is performed on the Database Memory by
the AC Core, and the results of the search operation are updated to the processor by
writing to Global Memory that is interfaced to the processor. It is evident that the
AC Core is substituted for the AC algorithm, and this module acts as the hardware
accelerator.

The size of the Local Memory limits the number of patterns in Si that can be
searched in a single pass. For a large number of patterns, external memory is used to
replace the Local Memory. In addition, as the system creates a memory table during
runtime, it also supports runtime reconfiguration. This feature can also be used as an
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alternate way to search a large number of patterns. For example, if the system can
search ω patterns in one pass, then initially a ω number of patterns are searched in
the database followed by the next ω patterns. Direct access from the AC Core to the
database and global memories, removes the latency in communication and also the
overload of memory operations on the software. In addition, as soon as the FSM table
is stored and the search signal is enabled, the AC Core can perform string matching
without the intervention of software for memory operations.

4.2.5 Application of the Codesign Methodology for String Matching in
Protein Identification

As a result of the excessively rising number of proteins, hardware accelerated solu-
tions are used for protein identification to address the bottlenecks in the computa-
tional bioinformatics pipeline [14, 27, 50, 51, 82, 83]. To demonstrate the codesign
methodology, protein identification, which is a fundamental step in protein sequence
analysis is used. In protein identification using tandem mass spectrometry, one of
the most common procedures, the amino acid sequences of the peptide fragments
obtained bymass spectrometry are matched against the large protein databases that is
similar to the operation of string matching in a database text [14, 27, 50, 51, 82, 83].
The peptides that are obtained from the proteins have grown into millions in number
and in addition semi, or non-specific digestion has multiplied the number of peptides
by many times [27]. To scan databases for these peptide sequences and identify a
protein accurately, high-speed methods employing high-density FPGAs are neces-
sary, which can be fulfilled by the codesign methodology. In the field of proteomics,
these methods can benefit the discipline of disease biomarker identification and aid
disease diagnosis and prognosis [47].

The amino acid sequences of the peptide fragments are the patterns to be searched
and these are used to create Aho-Corasick FSM as explained in earlier sections.
The codesign methodology is useful to search proteome databases at high speed
and simultaneously supports runtime reconfiguration with varying peptides patterns.
The FASTA format is used to store the proteomes in database memory. A simple
binary coding is used to represent different amino acids and additional symbols of
the FASTA format. For protein identification the AC core is designed to keep track
of the protein ID, the peptides matched and the locations of peptides in the protein
sequence. These results are stored in the global memory and updated to software
via the interface, where software does post-processing like the ranking of proteins
according to their scores.

4.2.6 Codesign Based String Matching System Implementation on
FPGA

Zynq SoC FPGA device with an ARM processor or any FPGA with a softcore pro-
cessor can be useful to accomplish the accelerated, and reconfigurable hardware-
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Fig. 10 A Prototype of the system implementation using Avnet Zedboard

software codesign methodology. The system designed using hardware-software
codesign methodology described in earlier sections is verified using Xilinx Vivado
Design Suite software tools and Avnet Zedboard development board. To examine the
hardware accelerator designed in AC core, it is synthesized independently using the
Vivado synthesis tool [84]. For default constraints, the maximum frequency at which
the hardware accelerator can run is 316.776 MHz. Higher frequency rates can be
achieved by constraining the synthesis tool more stringently at the cost of increased
area and resources. The Zynq SoC FPGA has a reconfigurable hardware fabric to
implement the hardware accelerator and a programmable processor to implement
the software on the same chip making it an ideal choice. The system is implemented
by following the embedded system design flow of the Vivado tool. Avnet Zedboard
has an on board XC7Z020 SoC FPGA device, and it is used for the physical verifi-
cation of the system. ARM Cortex-A9 MPCore CPU of this FPGA is employed as
the processing system. The AC Core is packaged as an IP and it is interfaced with
the processing system. In the system implementation on the Zedboard, patterns to be
searched are read from an external SDHC memory card. An AC FSM is created for
these patterns in software and converted to a memory table as explained in earlier
sections. This data of the FSM memory table is stored in the local BRAM memory
with the help of Control Logic. For validation of the system, on-chip memory is used
for storing the database.

A prototype diagram of the system implementation on Avnet Zedboad is shown in
Fig. 10. The hardware accelerator, AC core, is packaged into an IP using the Vivado
tool. This custom IP is instantiated in a top module along with the ARM processing
system and other essential blocks as depicted in Figs. 8 and 9. The complete hardware
system is synthesized and implemented using the embedded system design flow. For
interested readers, more details about embedded system design flow and custom
IP packaging and an interface can be found in [84]. A bitstream file of the entire
system is generated and it is used to configure the Avnet Zedboard using JTAG. A
C program to implement the system using hardware-software codesign is written in
SDK tool of Vivado suite following the algorithmic flow described in Table 1. The
driver functions that are needed to communicate with the custom IP are written in a
separate C header file. Using hardware drivers, the C program employs the hardware
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accelerator for matching patterns in the databases both of which are stored on the
SDHC memory card. The Zedboard configuration with the bitstream file is a one-
time process as the hardware logic in the system is generic in nature and does not
require to modify when patterns are changed. The results of the string matching
operation can be communicated through the UART port or stored on the SDHC card.
Due to the limited BRAM resources on the FPGA, the search operation on the entire
database is performed in batches. When external memories are employed in place
of FPGA BRAM, the entire database can be searched in a single pass. In this case,
driver functions to communicate with the external memory should be written.

5 Computational Analysis

In this section, the detailed analysis of the methodologies for hardware acceleration
discussed in the previous sections is presented. Various performance metrics are
discussed to compare the methodologies proposed by Bhardwaj et al. and Gudur et
al. [61, 71, 82, 83] with respect to the state-of-the-art methodologies.

5.1 Analysis of Accelerated Approach for Independent
Component Analysis

5.1.1 Hardware Implementation and Resource Utilization

TheHybrid FICAmethodology proposed byBhardwaj et al. in [41]was implemented
onXilinx, Vertex-7 FPGA for 5DHybrid ICAwith 1024 × 5 samples. The design for
5D Hybrid FICAwas also implemented on the ASIC platform and synthesized using
Synopsys Design Compiler with UMC 90 nm standard cell libraries. The design was
implemented at an operating frequency of 1 MHz, though the design was tested to
work at maximum operating frequency of 176 MHz and the design was reported to
consume 0.6478mWof power at operating voltage of 1.08 V and area of 0.501 mm2.
The designwas also implemented onXilinxVertex−7 FPGA, utilizing 14776—Slice
LUTs, 13805—Registers and 331—Muxes.

FastICA has wide applications in the field of Biomedical applications, protein
identification, speech processing, BCI, etc. and Hybrid FastICA is equally applica-
ble to all the applications where conventional FastICA can be used. However, for
functional validation and the practical utility of the proposed method, audio sig-
nals as shown in Fig. 11a, b, have been used for the proof of the concept. The five
mixed audio signals sampled at a rate of 8 kHz are shown in Fig. 11b. To obtain
a reliable comparison platform, the mixed signals were provided as inputs to the
Matlab package for conventional FICA in [85] and a Matlab model of the proposed
Hybrid FICA. To verify the hardware functionality of our method, a completely
parameterized design aimed at generic nD Hybrid FICA with 32-bit word-length
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Fig. 11 a The original speech samples collected from 5 different sources—from top to bottom:
a vehicle siren, male news-reader, female news-reader, orchestra, and a rock band. b The signals
obtained by mixing the speech signals

Fig. 12 a The original speech samples collected from 5 different sources—from top to bottom:
a vehicle siren, male news-reader, female news-reader, orchestra, and a rock band. b The signals
obtained by mixing the speech signals

was implemented using Verilog HDL and tested with the same signals used in the
Matlab model (single precision floating point implementation). The mixed signals
corresponding to the audio signals were input to all the three aforementionedmodels,
and the normalized values of the estimates obtained are shown in Fig. 12a–c. It can be
observed that the results obtained from both the Matlab and HDL models of Hybrid
FICA match those of the conventional FICA, thereby corroborating the functional
validity of the Hybrid FICA for real-time signals.

The Simplex FICA methodology proposed by Bhardwaj et al. in [71] was imple-
mented using Verilog HDL for 6D Simplex FICA with 1024 × 6 samples and was
synthesized on Synopsys Design Compiler using UMC 90 nm standard cell libraries.
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Fig. 13 a The EEG samples from six different sources. b The signals obtained by mixing the EEG
signals

Fig. 14 a–c Estimated independent components obtained by performing 6D FICA for the mixed
EEG signals shown in Fig. 13b using a Matlab model of conventional FICA, b Matlab model of
Simplex FICA, and c HDL model of Simplex FICA

The design consumes 0.5703 mW of power at an operating voltage of 1.08 V and
area of 0.497 mm2 with a maximum operating frequency of 240 MHz.

For functional validation of SimplexFICA,Bhardwaj et. al. have usedEEGsignals
although it can be validated on any biomedical signals including proteomic data
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Table 2 Performance comparison with other designs

Shyu et al.
[32]

Van et al.
[35]

Acharyya
et al. [45]

Yang et al.
[33]

Bhardwaj
et al. [61]

Bhardwaj
et al. [71]

Implementation
approach

FPGA ASIC ASIC ASIC ASIC ASIC

Technology NA 90 nm 90 nm 90 nm 90 nm 90 nm

Application Speech EEG Generic ECoG Generic Generic

Algorithm FastICA FastICA FastICA FastICA FastICA FastICA

Number of channels 2 8 5 8 5 6

Maximum operating
freq. (MHz)

50 100 100 11 176 240

Power dissipation
(mW)

NA 16.35 0.782
@1.08V

0.0816
@0.32V

0.647 0.57036
@1.08V

Area (mm2) NA 1.4872 0.497 0.3969 0.501 0.497

from mass-spectrometry. The EEG signals used were taken from the Physionet [86]
database which was recorded at a sampling frequency of 256 Hz. EEG data recorded
from a healthy volunteer is used to validate the proposed algorithm. The EEG signals
are shown in Fig. 11a, b, have been used for the proof of the concept. Figure 13a
shows the six EEG signals and Fig. 13b shows the mixed EEG signals. For a reliable
comparison, the method used for Hybrid FICA explained above is also used by [71].
The estimated signals obtained by using the Conventional FICA and Matlab and
HDL model of Simplex FICA are plotted in Fig. 14a–c, respectively, which makes
it evident that the proposed methodology is functionally correct.

Table 2 shows the comparison of accelerated methodologies for FICA namely
Hybrid FICA and Simplex FICA with the state of the art designs. The area utilized
for ASIC implementation of the designs using the Design Compiler can be used
for comparing the area. The computation speed for Hybrid and Simplex FICA have
improved significantly as will be explained further in the next subsection, whereas
area of the Hybrid FICA design has increased to 0.501 mm2 from 0.430 mm2 in [45],
as we have added the hardware corresponding to cross product. It can be noted that
the area for Simplex FICA is 0.497 for 6D FICA, which is less then Hybrid FICA
[61] and equal to that of [45]. We can see that the Hybrid FICA and Simplex FICA
design has comparable or better area and power results with the other state-of-the-art
designs as a result of addition of cross product module but the computation time for
Hybrid FICA and SImplex ICA is less as compared to all the other state of the art
designs as discussed in next subsection.

5.1.2 Computation Time Analysis

To obtain a generic model of the number of computation steps saved for Hybrid
FICA [61], each of the steps (4)–(6) need to be considered for the nth Iteration stage
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of CORDIC-based nD FICA described in (10)–(13). Denoting a number of inde-
pendent components by n and number of CORDIC stages as Ncordic, the number of
computation steps required for normalization based on CORDIC can be represented
as:

Nnorm = (n − 2)Ncordic + (n − 1)Ncordic

= (2n − 3)Ncordic
(16)

This can be derived by considering (n − 2) levels of CVM in feed-forward fashion
[45], followed by the last level of CVM,which does not need to be counted separately
since it is doubly pipelined with the first level of CRM. There are totally (n − 1)
levels of CRM following the (n − 2) levels of CVM, which gives rise to the (n − 1)
and (n − 2) terms in (16). The number of computation steps for CORDIC-based
update step, with the frame-length L , can be expressed as:

Nupdt = L(n − 1) + Ncordic (17)

This can be easily obtained by considering (n − 1) levels of doubly pipelined CVM
and CRM with the L inputs to each CRM level being given sequentially. As no
particular architecture for implementing Gram-Schmidt orthogonalization has been
recommended, we consider North to be a generic notation for the number of compu-
tation steps required for orthogonalizing a particular vector with a given basis vector.
Therefore, the number of computation steps required for orthogonalizing wn with
the vectors wc

1 to w
c
n−1 can be denoted as:

North,wn = (n − 1)North (18)

The number of steps required to check for convergence is denoted by Nconv, and may
vary according to the architecture used. From (16) to (18), we can obtain the number
of steps required for computing wn as follows:

Nwn = Nnorm + Nupdt + (n − 1)North + Nconv

= (L + 2Ncordic + North)(n − 1) + Nconv
(19)

As there can be multiple iterations required to compute wn, the total computation
steps will be:

Nwn,total = i(Nwn) (20)

where i is the number of iteration required. The percentage of steps saved in wc
n

computation can now be obtained by:

Nclk_sav_hybrid = Nwn,total − NnD
cp

Nwn,total
∗ 100 (21)
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Fig. 15 Average percentage of clock cycles saved in wn computation by employing Hybrid FICA
in 4–7 dimensions for different values of frame-length and the number of iterations i that would
have been taken by the completely CORDIC-based procedure

where NnD
cp is the number of computation steps required for nD vector cross product

computation which is implementation specific and depends on trade-offs between
resources and latency.

The computation time saved in 5D Hybrid FICA performed on the speech signals
was obtained by simulating its HDL model for a frame-length of 1024 samples. It
was observed that 4400 clock cycles were required for one single Iteration stage
required to compute wn−1, whereas the computation of wn using the cross product
was completed in merely 223 clock cycles. The percentage of cycles saved in the nth
Iteration stage can, therefore, be given by:

N 5D
clk_sav = 4400i − 223

4400i
∗ 100 (22)

which is about 97% even for the least possible value of i (i.e. i = 2). Figure 15 shows
the average percentage of clock cycles saved in the case of 4D to 7D Hybrid FICA
for various frame-lengths and the number of iterations that would have been required
for wc

n computation without cross product. For instance, considering a frame-length
of 1024 samples, let us assume that the CORDIC-based FICA would have taken 2
iterations to compute wn. From Fig. 15, it can be seen that the average value of the
computation time savings obtained by substituting n = 4, . . . , 7 in (21) is 77% of the
number of cycles required for computing wn without cross product. The percentage
of cycles saved is further seen to increase to 85 and 88% if we assume that CORDIC-
based FICA takes 3 and 4 iterations respectively to compute wn. Moreover, it can
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be observed that the time saved by employing the proposed method significantly
increases with the increase in frame-length.

For Simplex FICA presented in [71], the number of computation steps needed for
wn computation using Simplex FICA is denoted as NnD

sim and is given by

NnD
sim = North,wn (23)

The percentage saving of computation steps for Simplex FICA in terms of clock
cycle saving for wi computation, can be represented as:

Nclk_sav_sim = Nwn,total − NnD
sim

Nwn,total
∗ 100 (24)

Using (19), (20), and (23) in (24), we get:

Nclk_sav_sim = (1 − North,wn

Nwn,total
) ∗ 100

= ( i((L + 2NC)(n − 1) + Nconv)

Nwn,total

+ (i − 1)North,wn

Nwn,total

) ∗ 100

(25)

where, Nwn,total = i((L + 2NC) + (n − 1)North + Nconv) using (19) and (20).

Fig. 16 Percentage clock cycles saved for wn computation by using Simplex FICA with respect
to the state-of-the-art design for 4D–12D with respect to different values of frame-length (L) with
a fixed number of iterations (i = 2)
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Fig. 17 Average percentage clock cycles saved for wn computation by using Simplex FICA for
4D–12Dwith respect to different values of frame-length for varied values of the number of iterations
(i = 2, 3, 4) taken by the state-of-the-art design

Figure 16 shows the Percentage of Clock Cycles Saved (PCCS) forwn (last stage)
computation by using Simplex FICA for 4–12 dimensions for different values of
frame-length, with a fixed number of iterations (i = 2) that would be needed by the
state-of-the-art wn computation. For example, considering a frame-length of 1024
samples and i = 2 to computingwn, it can be observed that the PCCS obtained from
Fig. 16 and for L = 1024, n = 6, NC = 16 and i = 2 in (25) is 99.34% with respect
to the number of cycles required forwn computation using the conventional method.
The PCCS, further increases to 99.66, 99.83 and 99.91% for the frame length of
2048, 4096 and 8192 respectively. It can be inferred from Fig. 16 that by using the
proposed methodology, the time saving in terms of computation steps is very high
and does not vary much on increasing the dimensions of the independent signal
(98.8% for 100 dimensions, L = 8192, i = 2), hence the Simplex FICA gives good
amount of PCCS for higher dimensional FICA.

Figure 17 shows the Average Percentage Clock Cycle Saving (APCCS) for wn

computation using Simplex FICA for 4D–12Dwith respect to different FrameLength
L and the number of iterations needed forwn computations. TheAPCCS for 4D–12D
Simplex FICA for L = 4096, i = 2 is 99.783% and further increases to 99.855 and
99.891% for L = 4096, i = 3 and L = 4096, i = 4 respectively. It is observed from
the Fig. 17 that APCCS increases with the Frame Length and also increases as the
number of iterations i needed for wn computation increases.
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Table 3 Resource utilization
on FPGA by codesign
methodology based string
matching system

Resources Utilized Available

LUT memory 182 17,400

LUT 3318 53,200

Block RAM 32.5 140

Flip-flop 4662 106,400

BUFG 1 32

Fig. 18 Power consumption of the codesign methodology based string matching system

5.2 Analysis of Codesign Based Accelerated String Matching

5.2.1 Resource Utilization

The post-implementation results showing resources utilized by the system of Fig. 9
including the hardware accelerator are presented in Table 3. From the resources avail-
able on FPGA 3318 LUT (6.24%), 4662 FF (4.38%) and 32.50 BRAM (23.21%) are
consumed by the system and total on-chip power consumption of the whole system
is 1.734W. The Vivado power analysis is used to estimate the power consumption of
the system and is presented in Fig. 18. Approximately 86–88% of power is consumed
by the processing system (ARM processor). The hardware accelerator in the system
consumes 0.023 W which is a very small value in comparison with CPU or GPU
based string matching systems.
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Fig. 19 Time required to reconfigure the string matching system with patterns. Dependency of
reconfiguration time on the number of patterns is plotted for varying length of patterns

5.2.2 Performance on Reconfiguration Time

In applications where patterns are changed with respect to time, the system needs
to be configured with the new patterns. In the system designed using the codesign
methodology, an AC FSM is created and the core is reconfigured with new data
of FSM memory tables. To examine the system’s use for real-time reconfiguration,
the effect of the number of patterns and their size on reconfiguration time of the
AC Core is studied. Here different patterns of varying total sizes are considered
and the reconfiguration time of the AC core obtained from a system implemented
on Zedboard is plotted against the number of patterns in Fig. 19. These results are
obtained for a fabric clock of 100 MHz. From the figure, it is evident that there
exists a linear relation between reconfiguration time and the number of patterns; the
reconfiguration time of the AC core increases linearly with the number of patterns. It
is observed that themean reconfiguration time is about a fewhundreds ofmilliseconds
value and thus the codesign methodology is worth employing in applications that
demand real-time or on-field reconfiguration in string matching. This work is the
first of its kind where the time required for reconfiguration of a hardware-assisted
string matching system for bioinformatics applications is reported in the literature.
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5.2.3 Performance Evaluation of the System in Terms of Search Time

To test the system for protein identification, UniProt proteomics data [87] is used. To
demonstrate on-field reconfiguration, data of five different organisms are considered.
A system that can search 32 patterns is designed using the codesign methodology.
In the experiments, in each database, different sets of proteins are chosen randomly,
and the databases are searched for the peptides obtained from the digestion of these
proteins. PeptideMass [88], an online tool for enzymatic cleavage of proteins, is
used to digest the selected proteins. The peptides obtained are stored in different
patterns files with their corresponding identifiers as file names. These peptides are
patterns for the stringmatching operation and are searched in the proteome databases
stored on the SDHC memory card. The improvement of the system design using the
hardware-software codesign based methodology over software-only Aho-Corasick
string matching algorithm running on a workstation is tested. The workstation is
running onWindows 7 operating system on Intel Xeon E5-2650 v2CPU@2.60GHz
with 8 GB RAM. A similar software-only version of the ACA is also implemented
using the ARM processor available on the Zynq XC7Z020 FPGA of the Avnet
Zedboard. This version running on the Zedboard demonstrates a microprocessor
or microcontroller tailored embedded system solution for string matching. In the
system implementation using the codesign methodology, a clock of 100 MHz is
used for running the hardware accelerator, and this facilitates a constant throughput
of 800 Mbps for the system. The results obtained are shown in Table 4. Due to space
limitation, only a few sets of results are given in the table. These results are obtained
after calculating the mean values for multiple test cases in every database. On an
average, there is a 4 times improvement in search time by the hardware-software
codesign methodology over software-only version running on the workstation and
23 times improvement over the software running on theARMprocessor onZedboard.
While calculating the gain in speed, the time required for multiple reconfigurations
and also the time required for multiple searching of the same database is added to the
search time. If only the time required for searching a single batch in the database is
considered, then the improvement over speed is 13 and 70 times for software running
on the workstation and ARM respectively.

5.2.4 String Matching in Large Proteomic Databases

To examine the practical applicability of the codesign methodology, a protein
database comprised of 10 different primate animals is constructed [87]. Each database
has a different number of proteins, and the total number of proteins in the concate-
nated database is 297,293. The total size of the constructed database is 153 MB and
it has 159,654,352 amino acids. Randomly selected proteins are digested using the
PeptideMass tool [88]. Figure 20 summarizes the results obtained for the large pro-
tein database. Only a few test cases are presented in the table due to space limitation.
Next, to study the effect of the number of patterns and their length while searching
for large databases, a set of simulated patterns is created. The number of patterns in
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Table 4 Features of patterns and search time obtained using the system

Type of
Dbase

#patterns1 #bytes2 Max (l)3 Avg (l)4 σ5 S/W
(PC) ms

S/W
(ARM)
ms

Codesign
ms

Dbase1 31.6 397.4 43.4 12.834 9.244 1511.3 9339 418.120

Dbase2 33.2 496.7 50.6 16.144 11.044 1590.1 9826 504.472

Dbase3 58.2 708.5 44.5 12.339 8.295 1912.7 10552 751.447

Dbase4 35.4 525.9 53.6 16.586 13.064 1872.7 10977 526.662

Dbase5 32.7 430.9 35.6 12.692 8.145 3341.2 18341 673.161

∗Dbase = database, S/W = Software Dbase1 = 13786.526, Dbase2 = 14954.893, Dbase3 =
14545.275, Dbase4 = 16944.043, Dbase5 = 32272.287 (all values in kB) 1number of patterns, 2total
number of bytes in all patterns, 3maximum length pattern, 4average length of pattern, 5standard
deviation

Fig. 20 Search time for string matching in large proteomic databases

each test case is 256 while their length is varied from 16, 32, 64 and 128. Finally, a
test case comprising of 256 patterns of random lengths is also considered. For each
case, multiple datasets are used for running the system designed using the codesign
methodology. The results obtained are also presented in Fig. 20. In each case, only
the mean values of the results obtained for multiple datasets are presented in the
table. From the results, it is evident that the codesign methodology is applicable for
searching large sized databases within a reasonable time interval.
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Table 5 Comparison of codesign methodology with similar method

Comparison metric Lei et al. [89] Codesign

Speedup versus CPU 2X 4X

Speedup versus ARM 5X 23X

Total power (W) 1.368 1.734

Hardware accelerator power (mW) 60 23

Host PC requirement Yes No

Type of pattern searching Single Multiple

Table 6 Comparison of codesign methodology with software methods

Pattern length Faro and Lecroq [90] Codesign Speed gain

Time Time/pattern Time Time/pattern

256 1210 3.025 43.921 0.17157 17.63

128 1550 3.875 43.722 0.17079 22.69

64 1520 3.8 42.676 0.1667 22.8

32 1560 3.9 42.385 0.16557 23.55

16 1910 4.775 42.269 0.16511 28.92

8 2590 6.475 42.427 0.16573 39.07

4 2320 5.8 42.253 0.16505 35.14

5.2.5 Cross Examination with Similar Approaches

The performance of the codesign methodology with similar work reported in the
literature [89, 90] is discussed as follows. Lei et al. proposed a KMP algorithm based
accelerator for stringmatching, andAvnet Zedboardwas used for the implementation
[89]. As the actual time for searching is not available in the literature, the speedup
is normalized for comparing speed improvement. The comparison is presented in
Table 5. The codesign based methodology is 4X faster in comparison with software
running on CPU while Lei et al. are 2X faster and in comparison with ARM version
running on Zedboard, the codesign methodology is 23X faster while the method of
Lei et al. is 5X faster. In brief, the codesign methodology is 2X–4X faster than Lei
et al. Except for total power, the codesign methodology outperforms Lei et al. in all
metrics since the former has higher power consumption as the processing system
(PS7) consumes more power than the PS in Lei et al.

Faro et al. discussed an extensive survey of exact string matching algorithms [90].
In this article, experimental results obtained by running various algorithms imple-
mented in C program is presented. Here, a 1.66 GHz PC with Intel Core2 processor
and 2GB RAM is used for experimentation. A protein sequence of 3,295,751 length
is taken from Protein Corpus for the experimental purpose (http://data-compression.
info/Corpora/ProteinCorpus/). The same database is used for string matching oper-
ation using the codesign methodology. Patterns of varying lengths of 4, 8, 16, 32,

http://data-compression.info/Corpora/ProteinCorpus/
http://data-compression.info/Corpora/ProteinCorpus/
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64, 128 and 256 are considered. The results are tabulated in Table 6. Faro et al. con-
sidered 400 patterns. Due to limited BRAM resources on the FPGA, 256 patterns
are only considered. The search time for varying lengths of patterns and search time
per pattern are examined for the database. The best time for every algorithm imple-
mented in C program is reported by Faro et al. given in the table. On average the
codesign methodology is 27 times faster than the algorithms surveyed by Faro et al.
in [90]. Here, all the time units are in second. Time/Pattern indicates the mean time
taken to search for one pattern in the database.

6 Conclusion

The advancements in high-throughput proteomics and bioinformatics technologies
have facilitated the use of proteomic studies for disease diagnosis, disease-tailored
therapeutic targets, and personalized therapy. Mass spectrometry plays a vital role in
proteomics. Protein identification using mass spectrometry involves a huge amount
of data processing and database searching. The computational demands posed by
real-time proteomic analysis are difficult to meet. So, there is a need for accelerated
solutions in the field of mass spectrometry data analysis using Independent Compo-
nent analysis and string matching techniques for database searching. In this chapter,
we have discussed different accelerated methodologies in the field of proteomics.
Hardware accelerated, algorithmic-architectural methodologies for FICA namely
Hybrid FICA and Simplex FICA and the real-time reconfigurable accelerated tech-
niques for string matching using hardware-software codesign are discussed in detail.
It is evident from the discussion that these hardware accelerated methodologies hold
a promising future in the field of proteomics including domains like protein iden-
tification, biomarker discovery for disease detection, gene-sequence analysis, DNA
sequencing, and Genomics.
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