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Abstract Concrete acquires a major share of infrastructure and building stock.
However, degradation and deterioration of reinforced concrete (RC) structures have
been a major concern for the construction industry in recent years. Evaluating the
current health of the structure is important for taking a decision regarding future
action on the structure. Structural health monitoring (SHM) becomes an essential
step for an engineer to gain knowledge about the health of the structure. SHM faces
various challenges due to site conditions as well as the limitations present in the
NDT tool itself. SHM compromises of collecting health data using NDT tools and
analyzing it with the physical or empirical model. These models are fitted using
various techniques to develop the relationship between the NDT readings and the
corresponding actual quantity of interest. Before the NDT tool is taken on site for
actual investigation, themodel should be calibrated in the laboratory. Themodel cali-
bration of the NDT tool is prone tomeasurement uncertainties which are not properly
incorporated in the commonly adopted regression method of calibration. This paper
focuses on the model calibration and selection of the best model using Bayesian
inference. Bayesian inference helps to quantify the measurement uncertainties. For
this, a measurement error model (MEM) is adopted to relate the NDT readings to the
property being estimated. An illustration of the calibration and selection process is
demonstrated for the proposed approach. For the demonstration, we adopt rebound
hammer which is one of the most common NDT tools used to evaluate the present
strength of concrete by relating the NDT readings to the crushing strength values
obtained in the laboratory. As multiple models are available in the literature for both
the cases, Bayesian model selection method is used for selecting the most plausible
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model from all available models. This will help us to identify whichmodel represents
the NDT instrument in the best possible way.

Keywords Bayesian inference · Measurement uncertainty · Model calibration ·
Model selection · NDT · RC structures · Rebound hammer · SHM

1 Introduction

With the commencement of the twentieth century, there was a surge in the use of
the reinforced concrete structures. It was eventually when concrete structures started
failing and deteriorating in an aggressive environment, engineers realized that con-
crete durability concerns were far more complex [1, 2]. Concrete degradation over
an extended period with an increased rate of aggressive environments has challenged
engineers for its maintainability and safe functioning. Infrastructure location exposes
concrete to environment highly susceptible to degradation. Thus evaluation of its
present state to closely accurate results is subject that to be dealt with caution. These
factors lead to either repair, retrofit, rehabilitate, and replace the structure based on
the vulnerability of the structure [3]. Before it is repaired or retrofitted, it is nec-
essary that the condition of the present structure is evaluated. Several methods like
destructive, semi-destructive, and non-destructive techniques are available for eval-
uation of concrete properties [1]. Spatial variation and instrument precision affect
the engineering judgments. Various standards viz., [4–7] etc. are available which
provides guidelines for the assessing concrete properties using a Non-Destructive
Testing (NDT) method.

NDT inspection involves the measurement recorded on the structure, evaluation
of concrete strength/property and analyzing the results obtained. This measurement
is prone to various errors and contains inherent deficiency due to various factors
involved in the inspection process [8]. The quality of measurement recorded depends
on the calibration of the instrument before it is actually taken on the site. For example,
rebound hammer before used on the actual structure, correlation graph is provided on
the instrument that is calibrated using the laboratory data of concrete cubes [9]. Thus,
it becomes necessary to calibrate the instrument correctly to incorporate the uncer-
tainties involved in the process. Various techniques are available for calibrating the
NDT instruments such as regression analysis, curve fitting, artificial neural networks
(ANN), and Bayesian updating. A huge amount of work is carried out by researchers
for calibration of NDT instruments and providing conversion models and calibration
curves. For e.g., Ploix et al. [10] carried out bilinear regression between UPV versus
water saturation and porosity rate where they successfully combined providing a
surface plot, which shows that the properties of the concrete can be correlated while
Sbartaï et al. [11] correlated UPV, RN, and compressive strength of concrete cubes
using 3-D plots. EN 13791: 2007 [12] suggest the calibration of NDT instrument
before using it for evaluation of structure. In case of corrosion, various models for
Linear Polarisation Resistance (LPR) are developed based on time-varying nature
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of the corrosion rate which is based on power law, Faraday’s law, Fick’s law, etc.
[13]. These model parameters are to be first calibrated using experimental data to
represent the actual phenomena in the most accurate way. The process of evaluat-
ing these parameters is called as model calibration. Once calibration of models is
achieved, it is necessary to check the appropriateness of each model and select the
best model which fits the calibration data with least error, and it is called as model
selection [14, 15]. In this paper, a demonstration of the model calibration and model
selection are discussed using Bayesian updating. This paper focuses on calibration
through Bayesian updating of the instrument using a probabilistic measurement error
model (MEM), in order to capture the measurement uncertainty and selecting the
best model [8]. Major advantages of the Bayesian model calibration are that it allows
to incorporate the variation in the calibration data and the parameters can be contin-
uously updated with new incoming data. But however it does not take into effect the
variation (or uncertainty) in the structure itself and does not involve special cases
like carbonated concrete, corroded, etc.

2 Bayesian Updating

Bayes’ theorem is given by Eq. (1),

f
(
θ |Dc

) = f (Dc|θ) × f (θ)
∫
�
f (Dc|θ) f (θ)dθ

(1)

where f (θ |Dc) is posterior probability, f (Dc|θ) is the likelihood obtained from
observed/measured/calibration data of a system, and f (θ ) is the prior distribution of
the model parameters [8]. The prior and the likelihood are the pillars of Bayesian
inference. The prior distribution of the parameters is obtained from the literature
which is known as informative prior while if this is unknown a (non-informative)
suitable distribution can be also be assumed. Likelihood function provides with the
necessary input to update the past knowledge (prior) which is incorporated using
experimental data. Generally, for n observed/measured statistically independent data,
the likelihood function is given by [16],

f (Dc|θl) = L(θl) =
n∏

i=1

Li (θl) (2)

Here, the subscript is added for θl which corresponds to the specific model param-
eters. There are several limitations in the computation of posterior distribution for
various reasons viz. (1) multiple number of parameters are involved, (2) large num-
ber of samples are required for simple Monte Carlo Simulation (MCS), (3) posterior
is not of a standard form, etc. [8]. Hence in this study, we adopt Markov Chain
Monte Carlo (MCMC) simulation where correlated random samples are generated
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enabling the user with a less computational intensive for posterior distribution. Sev-
eral MCMC techniques are available for posterior computation, this study adopts
Metropolis–Hastings algorithm for Bayesian updating [17].

3 Bayesian Model Calibration

The calibration problem can be summarized as one relating the NDT measurement
recorded to the quantity of interest defined using a mathematical model under some
specific condition. The parameters of the mathematical model are to be evaluated
and the quality of the fit obtained depends on the scatter of the data, calibration pro-
cedure adopted, number of training data (calibration data) available, etc. This may
include uncertainties due to the measurement process (instrument) and model itself.
These uncertainties present in the instruments can be accounted for by formulating
a probabilistic measurement error model (MEM) to relate NDT readings to the true
values. From the available deterministic models (Sect. 3.2), we may apply proba-
bilistic context taking measurement uncertainty into account by adding a random
variable E ∼ N (μ = 0, σ = e0). E is a correcting random variable where e0 is the
random error/noise which is independent and identically distributed (i.i.d.) which
represents measurement uncertainty [8]. The model now can be written as,

Y = M(B; X) + E (3)

On the basis of the probabilistic analysis, here B of M(·) are the parameters of the
models that are needed to be evaluated. Such regression models involving inspection
or measurement are MEM models.

Calibration is an inverse problemwhere the aim is to evaluate the values of param-
eters with the known value of Y and X (measurements which are known as training
data). In Bayesian calibration, these parameters are modeled as random variables
quantified by their respective probability distribution function (PDFs). The data
obtained through repeated experiments are combined with the prior distribution of
the parameters to obtain an updated posterior distribution. The prior can be repre-
sented by the joint PDF assuming that no correlation exists between each of the
parameters, f (θl |Ml) [18]. The likelihood function f (Dc|θl , Ml) can be formulated
as given in Eq. (2) where Dc is the training data and θl are the model parameters for
the particular model class, Ml . Hence from the Eq. (1), posterior is the product of
prior and likelihood, given by [8],

f (θl |Dc, Ml) = f (Dc|θl , Ml) f (θl |Ml)

f (Dc|Ml)
(4)

Below two sections present the calibration illustration for case of corrosion rate
measurement and crushing strength ( fc) estimation from rebound number values,
respectively.



Bayesian Model Calibration and Model Selection … 429

3.1 Rebound Hammer Calibration

Rebound hammer testing is an important step in structural auditing. The crushing
strength ( fc) is obtained from the graph given in the instrument manual or calculating
from model available from the literature. The quality and accuracy of fc estimation
rely on the precision of the calibration technique and calibration data (Dc

n). Literature
studies show that a great amount of work is being carried our correlating rebound
number (RN) and crushing strength ( fc) of concrete [19, 20]. Linear law, bilinear
law, power law, double power law, etc. are being used to relate RN and fc [1]. Codes
and standards also suggest calibration of rebound hammer instrument using suitable
technique and also provide calibration curves [7, 12, 21]. In this section, Bayesian
updating is demonstrated for calibration of rebound hammer instrument. In this study,
linear law, power law, and exponential law are adopted as there exist more than 20
models calibrated by different researchers [19]. Equation for each model is given in
Table 1.

In the above-given models, a and b are model parameters, and E is the random
error discussed in above section. The training data is sourced from Qasrawi, 2000
[22], using the WebPlotDigitizer [8], 118 points set of pairs of the corresponding
fc and RN were extracted. These were bifurcated into “Training Data” (Dc

n) and
“Validation Data” (Dv

n ) as show in Fig. 1. Validation Data is used for model valida-
tion which is beyond the scope of this paper. The prior parameters (a, b, E) have to
be defined in such a way that fc obtained should not be negative. For e.g., only in
linear model, a can take a negative value. In a linear model, the parameters b and σ

can take only positive values. To keep them positive, we rewrite them as: b = eb1 ,
σ = es . Thus, the parameters in case of linear law are [a b1 s]. Similarly for power
and exponential model, the parameters are [a1b1s]. The prior parameters in this study
considered as non-informative and a standard normal distribution N (μ = 0, σ = 1)
are assumed [8]. The joint prior distribution function (JPDF) is taken as the product of
the densities of individual parameters, by assuming each parameter to be independent
of others. Effect of prior in the presence of large number of training data is negli-
gible; however, calibration results are influenced for small number of training data.
Likelihood is formulated according to Eq. (2). Posterior was evaluated using Eq. (4)
and samples set of parameters were obtained. In the MCMC simulation, a Gaussian
proposal density is chosen: q

(
�+|θm

) ∼ N (θm,C).Here, C is an appropriate diago-
nal covariance matrix, chosen to ensure sufficient mixing of the Markov Chain [23].
Covariance matrix has to be so tuned that the acceptance rate should lie between 0.20
and 0.35 for three parameter [24]. As it was difficult to tune the covariance matrix
manually, DRAMwas used to obtain C by running it for an initial run ofN = 2000 or

Table 1 Models relating
rebound number (R) and
crushing strength of concrete

Linear Law fc = a + b.RN + E

Power Law fc = a.RNb + E

Exponential Law fc = a. exp(b.RN) + E
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Fig. 1 Relationship of rebound number (R) and crushing strength of concrete ( fc) [22]

N = 5000 simulations. The covariance matrix obtained from DRAM was then used
in Metropolis–Hastings (MH) algorithm for generating samples of N = 10,000 of
each parameter [8]. Now to check diagrammatically the bounds and the fitting of
the calibration (“training”) data, we carry out a forward problem for prediction of
crushing strength fc versus the same calibration data. Figures 2, 3 and 4 show the
prediction of each model using the calibrated data with 95% bounds. To carry out
this procedure, we substitute allN samples of for particular Ri measurement reading,
thus we get N = 10,000 fc values for one NDT reading. Mean is evaluated and two
times the standard deviation is plotted for 95% bounds.

4 Bayesian Model Selection

As discussed in Sect. 3.1, three models were selected for Bayesian calibration, and
thus there can be large number of varied types of model available. Models with
less number of parameters are called “simple” while with more number of param-
eters is called “complex.” It is necessary to select a model which is a compromise
between model complexity and goodness-of-fit, and fits best to the calibration data.
The appropriateness model can be selected based on criteria such as: checking the
difference of error between the measured value and the predicted value of the model
or curve fitting. In this study, model selection is carried out using Bayes’ theorem.
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Fig. 2 Model Prediction of fc versus the calibration data (Dc
n) for linear model

Fig. 3 Model Prediction of fc versus the calibration data (Dc
n) for power model
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Fig. 4 Model Prediction of fc versus the calibration data (Dc
n) for exponential Model

In Sect. 3.2, we have three a priori models (Ml), the probability of a particular
model Ml , conditioned on M and the data Dc

n , can be obtained by Bayes’ theorem
[14],

p(Ml |Dc
n,M) = f (Dc

n|Ml) · p(Ml |M)
∑L

l=1 f (Dc
n|Ml) · p(Ml |M)

(5)

where p(Ml |Dc
n,M) is the prior probability of each model Ml , which relates the

plausibility of each model, such that
∑

p(Ml |M) = 1. The term f (Dc
n|Ml) is called

as the evidence, and its calculation is generalized by Cheung and Beck, 2010 [25].
The best model maximizes the posterior model plausibility p(Ml |Dc

n,M), compared
to other models. This can be extended that the numerator of Eq. (5) should be maxi-
mized. The number of models available for a particular law was random in number
and taking into consideration that these laws can be infinitely fitted, the prior proba-
bility is considered to be equal: p(Ml |M) = 1/3. This can also be calculated based
on the ratio of total number of each model available, but this is very uncertain in this
case hence we take it equal.

Application of Bayes’ theorem enforces the belief that it is better to avoid unde-
sired extra effort which can be done in few steps. This belief is carried out when the
evidence is written as [14],

ln f (Dc
n|Ml) = E [ ln f (Dc

n|θ, Ml] − E

[
ln

f (θ |Dc
n, Ml)

f (θ |Ml)

]
(6)
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Table 2 Model selection results

Models from
Sect. 3.2

Prior
probability

Rank-based
prior
probability

Log evidence Expected
information gain

Ml p(Ml |Dc
n,M) ln f (Dc

n |Ml) E
[
ln f (θ |Dc

n ,Ml )

f (θ |Ml )

]

Linear Law 0.03681 2 −128.48 6.81

Power Law 0.9675 1 −122.92 11.02

Exponential
Law

0.02881 3 −126.43 12.29

where E[·] is the expectation with respect to the posterior f (θ |Dc
n, Ml). The first

term on the right-hand side of Eq. (6) is a measure of the data-fit and the second term
represents the Kullback–Leibler information gain from the data. The information
gain is higher for complex models as they over-fit the data, thereby penalizing the
evidence of a complex model [8]. Thus, the evidence is a trade-off between how well
themodel fits the data versus its complexity. Based on the posteriormodel probability
Eq. (5), the models are ranked in Table 2 and provide the values of the log evidence
and expected information gain.

Thus from Table 2, it can be concluded that power law strikes the best figure for
themost plausiblemodel and expected information gainwith respect to othermodels.
Thus using Bayesian model selection technique, comparing two parameters, the best
model can be inferred.

5 Conclusions

NDT instrument calibration is a vital step for good quality assessment of the concrete
properties. This study provides the framework of probabilistic approach adopting
Bayesian model calibration which is superior to deterministic method as it takes into
account the uncertainty involved. The key conclusions are summarized below:

1. Bayesian calibration results in sample values of parameters rather than single
point value evaluated using deterministic analysis. Hence a PDF is obtained for
the final estimate which gives better reliability on the prediction/estimation of
concrete properties.

2. Calibration parameters can be continuously updated with new incoming data
which will reduce the uncertainty involved in the measurement phenomenon.

3. Concrete properties of old RC structures having high spatial variation, proba-
bilistic technique provides a technique to integrate the structural properties as a
whole.

4. Bayesian model selection provides with an approach which evaluates the best
model which is simple and fits the calibration data.
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6 Future Scope

1. In this work, only three model laws were selected for calibration. More number
of complex models can be incorporated in the calibration and model selection
process. Also, bivariate models can be taken into consideration.

2. Model validation by challenging the calibrated model with a different set of data.
3. Data fusion of two different NDT instrument using Bayesian inference.
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